
 האוניברסיטה העברית בירושלים
THE HEBREW UNIVERSITY OF JERUSALEM

COMPUTING AN OPTIMAL CONTRACT
IN SIMPLE TECHNOLOGIES

by

YUVAL EMEK and MICHAL FELDMAN

Discussion Paper # 452 May 2007

 מרכז לחקר הרציונליות

CENTER FOR THE STUDY
OF RATIONALITY

Feldman Building, Givat-Ram, 91904 Jerusalem, Israel
PHONE: [972]-2-6584135 FAX: [972]-2-6513681

E-MAIL: ratio@math.huji.ac.il
 URL: http://www.ratio.huji.ac.il/

Computing an Optimal Contract in Simple Technologies

Yuval Emek
∗

Michal Feldman
†

Abstract

We study an economic setting in which a principal motivates a team of strategic agents

to exert costly effort toward the success of a joint project. The action taken by each agent is

hidden and affects the (binary) outcome of the agent’s individual task stochastically. A Boolean

function, called technology, maps the individual tasks’ outcomes into the outcome of the whole

project. The principal induces a Nash equilibrium on the agents’ actions through payments that

are conditioned on the project’s outcome (rather than the agents’ actual actions) and the main

challenge is that of determining the Nash equilibrium that maximizes the principal’s net utility,

referred to as the optimal contract.

Babaioff, Feldman and Nisan [1] suggest and study a basic combinatorial agency model for

this setting. Here, we concentrate mainly on two extreme cases: the AND and OR technologies.

Our analysis of the OR technology resolves an open question and disproves a conjecture raised

in [1]. In particular, we show that while the AND case admits a polynomial-time algorithm,

computing the optimal contract in the OR case is NP-hard. On the positive side, we devise

an FPTAS for the OR case, which also sheds some light on optimal contract approximation of

general technologies.

1 Introduction

We consider the setting in which a principal motivates a team of rational agents to exert costly

effort towards the success of a joint project, where their actions are hidden from her. The outcome

(usually, success or failure of the project) is stochastically determined by the set of actions taken

by the agents and is visible to all. As agents’ actions are invisible, their compensation depends

on the outcome and the principal’s challenge is to design contracts (conditional payments to the

agents) as to maximize her net utility, given the payoff that she obtains from a successful outcome.

The problem of hidden-action in production teams has been extensively studied in the economics

literature [6, 8, 11, 7, 12]. More recently, the problem has been examined from a computational

∗Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, 76100

Israel. E-mail: yuval.emek@weizmann.ac.il.
†Postdoctoral fellow, School of Engineering and Computer Science and the Center for the Study of Rationality,

The Hebrew University of Jerusalem, Jerusalem, 91904 Israel. E-mail: mfeldman@cs.huji.ac.il.

1

perspective [4, 1, 2]. This line of research complements the field of Algorithmic Mechanism Design

(AMD) [10, 9, 3] that received much attention in the last decade. While AMD studies the design

of mechanisms in scenarios characterized by private information held by the individual agents, our

focus is on the complementary problem, that of hidden-action taken by the individual agents. In

[1], the authors concentrated on the case of homogeneous users, i.e., agents with identical capabil-

ities. The current work extends the original work to the more complex (yet realistic) case, that of

heterogeneous agents.

For example, consider an executive board that assigns stock options to the company’s employees

in attempt to motivate them to excel so that the value of the company increases. While the exact

contribution of each individual may be difficult to measure, the stock’s market price is visible to

all, hence it serves as the groundwork in determining future payments to the staff. Given the

significance of each employee (position, rank, etc.), how many stock options should he get?

For another example, consider the following scenario. A sender wishes to send a packet of

information to a distant destination in a network in which intermediate routers are owned and

operated by autonomous individuals or firms with diverse economic interests. The packet reaches

the destination only if it successfully traverses through all hops in (at least) one network path to the

target. Each intermediate router decides whether to exert ”effort” (e.g., allocation of bandwidth,

memory, storage or CPU’s processing power) when attempting to forward the packet. If it does, it

incurs some positive cost, but the packet traverses that hop with higher probability. While the final

outcome of whether a packet reached its destination is clearly visible, it is rarely feasible to monitor

the exact amount of effort exerted by each intermediate router. Therefore, the sender can motivate

the intermediate routers by payments conditional on the final outcome alone. Given the payoff that

the sender attains from the packet transmission, what is the optimal incentive structure she should

impose? What is the complexity of computing optimal incentives in the above examples? This is

the type of questions that motivate us in this work.

The model. We use the model presented in [1] (which is an extension of the model devised in

[13]). In this model, a principal employs a set1 N of agents in a joint project on her behalf. Each

agent i takes an action ai ∈ {0, 1}, which is known only to him, and succeeds or fails in his own task

probabilistically and independently. The individual outcome of agent i is denoted by xi ∈ {0, 1}.

If the agent shirks (ai = 0), he succeeds in his individual task (xi = 1) with probability 0 < γi < 1

and incurs no cost. If, however, he decides to exert effort (ai = 1), he succeeds with probability

0 < δi < 1, where δi > γi, but incurs some positive real cost c > 0.

A key component of the model is the way in which the individual outcomes determine the

outcome of the whole project. We assume a monotone Boolean function ϕ : {0, 1}n → {0, 1}

which determines whether the project succeeds as a function of the individual outcomes of the

1Unless stated otherwise, we assume that N = [n], where [n] denotes the set {1, . . . , n}.

2

n agents’ tasks (and is not determined by any set of n − 1 agents). Two fundamental examples

of such Boolean functions are AND and OR. The AND function is the logical conjunction of xi

(ϕ(x1, . . . , xn) =
∧

i∈N xi), representing the case in which the project succeeds only if all agents

succeed in their tasks. In this case, we say that the agents complement each other. The OR function

represents the other extreme, in which the project succeeds if at least one of the agents succeeds in

his task. This function is the logical disjunction of xi (ϕ(x1, . . . , xn) =
∨

i∈N xi), and we say that

the agents substitute each other.

Given the action profile a = (a1, . . . , an) ∈ {0, 1}n and a monotone Boolean function ϕ :

{0, 1}n → {0, 1}, the effectiveness of the action profile a, denoted by f (a), is the probability that

the whole project succeeds under a and ϕ according to the distribution specified above. That is,

the effectiveness f (a) is defined as the probability that ϕ(x1, . . . , xn) = 1, where xi ∈ {0, 1} is

determined probabilistically by ai: if ai = 0, then xi = 1 with probability γi; if ai = 1, then xi = 1

with probability δi. The monotonicity of ϕ and the assumption that δi > γi for every i ∈ N imply

the monotonicity of the effectiveness function f , i.e., if we denote by a−i ∈ {0, 1}n−1 the vector of

actions taken by all agents excluding agent i (namely, a−i = (a1, . . . , ai−1, ai+1, . . . , an)), then the

effectiveness function must satisfy f (1, a−i) > f (0, a−i) for every i ∈ N and a−i ∈ {0, 1}n−1.

The agents’ success probabilities, the cost of exerting effort, and the monotone Boolean function

that determines the final outcome determine the technology which is known to all. Formally, a

technology t = 〈N, {γi}
n
i=1, {δi}

n
i=1, c, ϕ〉 is a five-tuple, where N is a (finite) set of agents; γi

(respectively, δi) is the probability that xi = 1 when agent i shirks (resp., when agent i exerts

effort), where δi > γi; c is the cost incurred on an agent for exerting effort; and ϕ : {0, 1}n → {0, 1}

is the monotone Boolean function that maps the individual outcomes x1, . . . , xn to the outcome

of the whole project. We sometimes abuse notation and refer to the Boolean function ϕ as the

technology.

Since exerting effort entails some positive cost, an agent will not exert effort unless induced

to do so by appropriately designed incentives. The principal can motivate the agents by offering

them individual payments. However, due to the non-visibility of the agents’ actions, the individual

payments cannot be directly contingent on the actions of the agents, but rather only on the success

of the whole project. The conditional payment to agent i is thus given by a real value pi ≥ 0

that is granted to agent i by the principal if the project succeeds (otherwise, the agent receives 0

payment2).

The expected utility of agent i under the profile of actions a = (a1, . . . , an) and the conditional

payment pi is pi ·f (a) if ai = 0; and pi ·f (a)−c if ai = 1. Given a real payoff v ≥ 0 that the principal

obtains from a successful outcome of the project, the principal wishes to design the payments pi

as to maximize her own expected utility defined as Ua(v) = f (a) ·
(
v −

∑
i∈N pi

)
, where the action

2We impose the limited liability constraint, implying that the principal can pay the agents but not fine them.

Thus, all the payments must be non-negative.

3

profile a is assumed to be at Nash-equilibrium with respect to the payments pi (i.e., no agent can

improve his utility by a unilateral deviation). As multiple Nash equilibria may exist, we focus on

the one that maximizes the utility of the principal. This is as if we let the principal choose the

desired Nash equilibrium, and “suggest” it to the agents. The following observation is established

in [1].

Observation. The best conditional payments (from the principal’s point of view) that induce the

action profile a ∈ {0, 1}n as a Nash equilibrium are pi = 0 for agent i who shirks (ai = 0), and

pi = c
∆i(a−i)

for agent i who exerts effort (ai = 1), where ∆i(a−i) = f (1, a−i) − f (0, a−i). (Note

that the monotonicity of the effectiveness function guarantees that ∆i(a−i) is always positive.)

The last observation implies that once the principal chooses the action profile a ∈ {0, 1}n,

her (maximum) expected utility is determined to be Ua(v) = f (a) · (v − p(a)), where p(a) is the

total payment (in case of a successful outcome of the project), given by p(a) =
∑

i|ai=1
c

∆i(a−i)
.

Therefore the principal’s goal is merely to choose a subset S ⊆ N of agents that exert effort (the

rest of the agents shirk) so that her expected utility is maximized. The agent subset S is referred

to as a contract and we say that the principal contracts with agent i if i ∈ S. We sometimes abuse

notation and denote f (S), p(S) and US(v) instead of f (a), p(a) and Ua(v), respectively, where

ai = 1 if i ∈ S and ai = 0 if i /∈ S. Given the principal’s payoff v ≥ 0, the optimal contract is

defined as S∗
v = argmaxS⊆N{US(v)}.

While finding the optimal set of payments that induces the contracted agents to exert effort is a

straight-forward task (and can be efficiently computed), finding the optimal contract S∗
v for a given

payoff v ≥ 0 is the main challenge addressed in this paper. It is easy to see that for sufficiently low

payoffs, no agent will ever be contracted while for sufficiently high payoffs, all agents will always

be contracted. The problem becomes interesting for intermediate payoffs. Given a technology t,

we refer to the collection of contracts that can be obtained as an optimal contract for some payoff

as the orbit of t (ties between different contracts are broken according to a lexicographic order3).

Let t = 〈N, {γi}
n
i=1, {δi}

n
i=1, c, ϕ〉 be an arbitrary technology. Once the contract S ⊆ N is

chosen, the expected utility of the principal US(v) = f (S)(v − p(S)) becomes a linear function

of the payoff v. Therefore each contract S corresponds to some line in the 2-dimensional plane.

It follows that computing the orbit of t is equivalent to identifying the top envelope of the lines

collection {US(·) | S ⊆ N}.

Our contribution. Multi-agent projects may exhibit delicate combinatorial structures of de-

pendencies between the agents’ actions. In the general case, these complex dependencies may be

represented by a wide range of monotone Boolean functions. In the two extremes of this range

reside two simple and natural functions, namely AND and OR, which represent the respective cases

of pure complementarities and pure substitutabilities. These functions are shown in [1] to exhibit

3This implies that there are no two contracts with the same effectiveness in the orbit.

4

very different properties with respect to the optimal contract problem. Yet, the authors leave many

questions open. Here, we provide a thorough analysis of the optimal contract problem in these two

technologies, and in particular, resolve an open question and disprove a conjecture raised in [1].

In addition to the analysis of the AND and OR technologies, we obtain an interesting property

exhibited by all technologies.

The substance of our analysis concerns the OR technology, which is left, to the most part,

unresolved in [1]. In particular, it is left as an open question whether computing the optimal

contract in any OR technology can be done in polynomial time. The first theorem proved in this

paper addresses this question.

Theorem 1. The problem of computing the optimal contract in OR technologies is NP-hard4.

Theorem 1 is addressed in Section 3. It is interesting to note that aside from establishing the

computational hardness of the problem, our analysis implies the existence of OR technologies that

admit exponential-size orbits. This disproves a conjecture raised in [1]. On the positive side, in

Section 2 we prove the following theorem.

Theorem 2. The problem of computing the optimal contract in OR technologies admits a fully

polynomial-time approximation scheme (FPTAS).

For the other extreme, the family of AND technologies, it is already established in [1] that the

orbit size of any AND technology is at most n + 1. Here we show that the orbit can be efficiently

computed, thus establishing the following theorem proved in Section 4.

Theorem 3. There exists an efficient algorithm for the problem of computing the optimal contract

in AND technologies.

In addition to the analysis of the AND and OR technologies, we obtain a positive result regarding

the general case. Consider an arbitrary technology t and let S be a collection of contracts. Given

some real α > 1, we say that S is an α-approximation of t’s orbit if for every payoff v, there exists

a contract S ∈ S such that US(v) ≥
US∗

v
(v)

1+ǫ . The following theorem is proved in Section 2.

Theorem 4. For every technology t = 〈N, {γi}
n
i=1, {δi}

n
i=1, c, ϕ〉 and for any ǫ > 0, the orbit of t

admits a (1 + ǫ)-approximation of size polynomial in 1
ǫ and |t|, where |t| stands for the number of

bits required for the binary representation of {γi}
n
i=1 and {δi}

n
i=1.

2 Approximated contracts

In this section we prove Theorem 2 by presenting an FPTAS for the optimal contract problem in

OR technologies. Theorem 4, whose proof is simpler and relies on some of the arguments presented

in the context of Theorem 2, is addressed at the end of the section. Consider some technology

t = 〈N, {γi}
n
i=1, {δi}

n
i=1, c, ϕ〉 and let S ⊆ N be an arbitrary contract. We first observe that if ϕ is

the AND function, then the effectiveness of S is given by f (S) =
∏

i∈S δi
∏

i∈N−S γi. For the OR

4The problem remains NP-hard even for the special case in which δi = 1 − γi for every i ∈ N .

5

function, we have f (S) = 1 −
∏

i∈S(1 − δi)
∏

i∈N−S(1 − γi). Therefore if all agents shirk, then the

effectiveness under an AND technology is
∏

i∈N γi. On the other hand, if all agents exert effort, then

the effectiveness under an OR technology is 1−
∏

i∈N (1−δi). Fix ∆ = min
{∏

i∈N γi,
∏

i∈N (1 − δi)
}
.

It is easy to verify that if t is an AND technology or an OR technology, then f (S) ∈ [∆, 1−∆]. The

following lemma generalizes this property to the whole range of technologies.

Lemma 2.1. The effectiveness f (S) satisfies f (S) ∈ [∆, 1 − ∆] regardless of the choice of the

monotone Boolean function ϕ : {0, 1}n → {0, 1}.

Proof. consider the underlying n-variables truth table of the Boolean function ϕ(x1, . . . , xn). Since

ϕ is not a function of any n− 1 variables, it cannot assign 0 to all rows of the table. Therefore, the

minimum possible effectiveness is achieved when ϕ assigns 1 to exactly one row (otherwise, it can

achieve a lower value by replacing a single 1 value with 0). By the monotonicity of ϕ, this single

row must correspond to x1 = · · · = xn = 1. (This is exactly the truth table of the AND function.)

Clearly, the minimum possible effectiveness is achieved when all agents shirk. Combined together,

the minimum possible effectiveness is simply IP (x1 = 1 ∧ · · · ∧ xn = 1 | a = (0, . . . , 0)) =
∏

i∈N γi.

The proof that the maximum possible effectiveness is IP (x1 = 1 ∨ · · · ∨ xn = 1 | a = (1, . . . , 1)) =

1 −
∏

i∈N (1 − δi) is analogous.

Next, we establish the sub-modularity of OR technologies. We say that a function h : 2N → R

is strictly sub-modular if h(S) + h(T) ≥ h(S ∪ T) + h(S ∩ T) for every S, T ⊆ N , where equality

holds (if and) only if S ⊆ T or T ⊆ S.

Lemma 2.2. The effectiveness function of every OR technology is strictly sub-modular.

Proof. Consider an arbitrary OR technology t = 〈N, {γi}
n
i=1, {δi}

n
i=1, c, ϕ〉. We need to show that

f (S) + f (T) > f (S ∪ T) + f (S ∩ T) for every two contracts S, T ⊆ N such that S − T 6= ∅ and

T − S 6= ∅. By definition, we have

f (S) + f (T) = 2 −
∏

i∈S

(1 − δi)
∏

i∈N−S

(1 − γi) −
∏

i∈T

(1 − δi)
∏

i∈N−T

(1 − γi)

and

f (S ∪ T) + f (S ∩ T) = 2 −
∏

i∈S∪T

(1 − δi)
∏

i∈N−(S∪T)

(1 − γi) −
∏

i∈S∩T

(1 − δi)
∏

i∈N−(S∩T)

(1 − γi) .

Dividing both equations by
∏

i∈S∩T (1− δi)
∏

i∈N−(S∪T)(1− γi), we conclude that it is sufficient to

prove that

∏

i∈S−T

(1 − δi)
∏

i∈T−S

(1 − γi) +
∏

i∈T−S

(1 − δi)
∏

i∈S−T

(1 − γi)

−
∏

i∈S−T

(1 − δi)
∏

i∈T−S

(1 − δi) −
∏

i∈S−T

(1 − γi)
∏

i∈T−S

(1 − γi) < 0 .

6

The last inequality holds if and only if

∏

i∈S−T

(1 − δi)

(
∏

i∈T−S

(1 − γi) −
∏

i∈T−S

(1 − δi)

)

+
∏

i∈S−T

(1 − γi)

(
∏

i∈T−S

(1 − δi) −
∏

i∈T−S

(1 − γi)

)
< 0 ,

which in turn, can be rewritten as

(
∏

i∈T−S

(1 − γi) −
∏

i∈T−S

(1 − δi)

)(
∏

i∈S−T

(1 − δi) −
∏

i∈S−T

(1 − γi)

)
< 0 .

The assertion is now established as δi > γi for every i ∈ N .

We employ Lemma 2.2 to characterize an important property of OR technologies. This property

is a key ingredient in the analysis of our FPTAS algorithm.

Lemma 2.3. Consider an arbitrary OR technology t = 〈N, {γi}
n
i=1, {δi}

n
i=1, c, ϕ〉 and let S ⊆ N be

some contract such that |S| = m ≥ 2. If S is optimal for the payoff v > 0, then v
p(S) ≥ 1 + 1

m .

Proof. Let S ⊆ N be an arbitrary contract of size |S| = m ≥ 2. We first argue that p({i}) < pi(S)

(namely, that the total payment to the contract consisting of agent i alone is smaller than the

payment to agent i under the contract S) for every agent i ∈ S. To justify this argument recall

that p({i}) = c
f ({i})−f (∅) and pi(S) = c

f (S)−f (S−{i}) , hence we have to show that f ({i})+f (S−{i}) >

f (S) + f (∅), which is guaranteed by Lemma 2.2.

Fix j∗ = argmini∈N
1−δi
1−γi

. In the remainder, we prove that if v
p(S) < 1 + 1

m , then U{j∗}(v) >

US(v), in contradiction to the fact that S is optimal for v. We leave it to the reader to verify that

f ({j∗}) > f ({i}) and p({j∗}) < p({i}) for every i 6= j∗ (can be established by a straightforward

calculation). Since p(S) =
∑

i∈S pi(S), we conclude that p(S) > m · p({j∗}). On the other hand,

Lemma 2.2 implies that f (S) <
∑

i∈S f ({i}), hence f (S) < m · f ({j∗}).

Now, suppose that v
p(S) < 1+ 1

m . This implies vm−p(S)(m+1) < 0. As m ≥ 2, we may multiply

the inequality by m−1, obtaining vm(m−1)−p(S)(m+1)(m−1) = vm(m−1)−p(S)(m2−1) < 0.

Rearranging the last inequality, we conclude that v−p(S)/m
m − (v − p(S)) > 0. Since p(S)/m >

p({j∗}), we have v−p({j∗})
m − (v − p(S)) > 0. As f (S) > 0, we may multiply the inequality

by f (S), obtaining f (S)
m (v − p({j∗})) − f (S)(v − p(S)) > 0, and since f (S)/m < f (j∗), we get

U{j∗}(v) − US(v) = f ({j∗})(v − p({j∗})) − f (S)(v − p(S)) > 0. The lemma follows.

We are now ready to present our FPTAS algorithm, referred to as Algorithm Calibrate.

Consider the OR technology t = 〈N, {γi}
n
i=1, {δi}

n
i=1, c, ϕ〉 input to Algorithm Calibrate and

let ǫ > 0 be the performance parameter of the FPTAS. Recall that Lemma 2.1 guarantees that

f (S) ∈ [∆, 1 − ∆] for every contract S ⊆ N , where ∆ = min
{∏

i∈N γi,
∏

i∈N (1 − δi)
}
. Algorithm

7

∆(1 + η)0 ∆ ∆(1 + η)2 1

2
1-∆(1 + η)r∆(1 + η)r 1-∆(1 + η)2 1-∆(1 + η) 1 − ∆ 1

[)(])[)[)[](](](

Figure 1: A scale of precision 1 + η.

Calibrate generates a collection C of contracts in time O
(
n3 log 1

∆ · max
{
1, 1

ǫ

})
. (Note that the

binary representation of {γi}
n
i=1 and {δi}

n
i=1 requires Ω

(
log 1

∆

)
bits.) We will soon prove that for

every payoff v, there exists a contract S ∈ C such that
US∗

v
(v)

US(v) ≤ 1 + ǫ, where S∗
v is the optimal

contract for v.

Let η = min
{

1
2n2+1

, ǫ
2n(n+1+ǫn)

}
and let r = max

{
k ∈ Z≥0 | ∆(1 + η)k < 1

2

}
. Since r <

log1+η

(
1

2∆

)
= log 1

2∆ · log1+η(2), and since log1+η(2) ≤ 1
η , we conclude that r < 1

η log 1
∆ . We

partition the interval [∆, 1 − ∆] into the 2r + 3 smaller intervals [∆,∆(1 + η)), [∆(1 + η),∆(1 +

η)2), . . . , [∆(1 + η)r−1,∆(1 + η)r), [∆(1 + η)r, 1
2), [12 , 1

2], (1
2 , 1−∆(1 + η)r], (1−∆(1 + η)r, 1−∆(1 +

η)r−1], . . . , (1 − ∆(1 + η)2, 1 − ∆(1 + η)], (1 − ∆(1 + η), 1 − ∆]. The collection of these smaller

intervals is called the scale. Refer to Figure 1 for an illustration of the scale. The precision of the

scale is defined as 1 + η. We say that contract S is calibrated to interval I in the scale if f (S) ∈ I.

Observation 2.4. Let S, S′ ∈ N be some two contracts. The scale is designed to ensure that if S

and S′ are calibrated to the same interval, then f (S) ≤ (1+η)f (S′) and 1−f (S) ≤ (1+η)(1−f (S′)).

Throughout the execution, Algorithm Calibrate maintains a collection C of contracts. The

algorithm guarantees that no two contracts in C are calibrated to the same interval, thus |C| ≤ 2r+3

at any given moment. Algorithm Calibrate works in a dynamic programming fashion. On the

mth stage for m = 1, . . . , n, the algorithm considers the m-agents OR technology tm determined by

{γi}
m
i=1 and {δi}

m
i=1. (The cost c remains unchanged.) Given some contract S ⊆ [m], we denote the

effectiveness and payment of S under tm by f m(S) and pm(S), respectively. The collection C at

the end of the mth stage is denoted by Cm. Therefore at the end of the mth stage, we have S ⊆ [m]

for every S ∈ Cm. Moreover, for any two (different) contracts S, S′ ∈ Cm, if f m(S) ∈ I, where I is

some interval in the scale, then f m(S′) /∈ I.

At the beginning of the (m + 1)th stage the algorithm calibrates the contracts

{S, S ∪ {m + 1} | S ∈ Cm} to a new scale according to their effectiveness f m+1 under tm+1. Con-

sequently, there may exist some interval in the new scale to which two (or more) contracts are

calibrated (a conflict). Let I be such an interval and suppose that S1, . . . , Sl are the contracts

that were calibrated to I, that is, f m+1(Si) ∈ I for every 1 ≤ i ≤ l. Assume without loss of

generality that Sl admits a minimum payment under tm+1, i.e., pm+1(Sl) ≤ pm+1(Si) for every

1 ≤ i < l. The algorithm then resolves the conflict by removing the contracts S1, . . . , Sl−1 from

the new scale so that Sl remains the only contract calibrated to I. In that case we say that the

contracts S1, . . . , Sl−1 were compensated by the contract Sl. Thus the new collection Cm+1 contains

at most one contract for every interval and we may proceed with the next stage. At the end of the

nth stage Algorithm Calibrate returns the collection C = Cn.

8

We turn to the analysis of Algorithm Calibrate. The running time of the algorithm is deter-

mined by the number of stages (n) and by the size of the collection C. The latter cannot exceed

the number of intervals in the scale which is O
(

1
η log 1

∆

)
. In order to analyze the performance

guarantee of the algorithm, we first define the following notion. Given two contracts S, S′ ⊆ N and

a real α > 1, we say that S is an α-estimation of S′ under the technology t if (1) f (S) ≥ f (S′)
α ;

(2) 1 − f (S) ≥ 1−f (S′)
α ; and (3) p(S) ≤ αp(S′). We say that a collection S of contracts is an

α-estimation of the technology t if for every contract S′ there exists a contract S ∈ S such that S

is an α-estimation of S′ under t. We are now ready to establish the main lemma of this section.

Lemma 2.5. The collection Cm is a (1+η)m-estimation of the technology tm for every 1 ≤ m ≤ n.

Proof. The proof is by induction on m. To see that the assertion holds for m = 1, note that the

technology t1 admits exactly two contracts: ∅ and {1}. If these two contracts are calibrated to

different intervals on the first stage, then C1 contains both of them and we are done. Otherwise,

the two contracts are calibrated to the same interval (δ1 − γ1 must be very small) and only the

contract admitting smaller payment under t1 (the empty contract in our case) survives. In that

case the assertion holds due to Observation 2.4.

Assume that the assertion holds for m − 1 and consider the mth stage of the algorithm. Let

S∗ ⊆ [m] be an arbitrary contract and fix S̄∗ = S −{m}. By the inductive hypothesis, there exists

a contract S̄ ∈ Cm−1 such that S̄ is a (1 + η)m−1-estimation of S̄∗ under the technology tm−1. We

define the contract S ⊆ [m] as follows: if m ∈ S∗, then S = S̄ ∪{m}; if m /∈ S∗, then S = S̄. Given

an arbitrary contract R ⊆ [m], the effectiveness of R under the technology tm can be expressed as

f m(R) = 1 −
∏

i∈R

(1 − δi)
∏

i∈[m]−R

(1 − γi) = 1 − (1 − ζ(R))(1 − f m−1(R − {m})) (1)

= ζ(R) + f m−1(R − {m})(1 − ζ(R)) , (2)

where ζ(R) =

{
δm if m ∈ R

γm if m /∈ R
.

By Plugging S and S∗ into equation (1), and since 1−fm−1(S̄) ≥ 1−fm−1(S̄∗)
(1+η)m−1 , we conclude that

1 − fm(S) ≥ 1−fm(S∗)
(1+η)m−1 . By plugging S and S∗ into equation (2), and since fm−1(S̄) ≥ fm−1(S̄∗)

(1+η)m−1 ,

we conclude that fm(S) ≥ fm(S∗)
(1+η)m−1 . The contract S was considered during the mth stage of the

algorithm and calibrated to some interval I in the scale. Afterwards it was compensated by some

contract S′ ⊆ [m] that was calibrated to I as well (if S remains in Cm, then assume that S′ = S)

so that S′ ∈ Cm. By Observation 2.4, it follows that 1 − fm(S′) ≥ 1−fm(S∗)
(1+η)m and fm(S′) ≥ fm(S∗)

(1+η)m

as required.

It remains to prove that pm(S′) ≤ pm(S∗). Given an arbitrary contract R ⊆ [m], the payment

9

of R under the technology tm can be expressed as

pm(R) =
∑

i∈R

c

f m(R) − f m(R − {i})

= χ(m ∈ R) ·
c

f m(R) − f m(R − {m})
+

∑

i∈R−{m}

c

f m(R) − f m(R − {i})
, (3)

where χ(m ∈ R) is the characteristic function of the predicate m ∈ R (if m /∈ R, then the first term

should be ignored). By equation (2), we have f m(R)−f m(R−{m}) = (δm−γm)(1−f m−1(R−{m}))

and f m(R)−f m(R−{i}) =
(
f m−1(R − {m}) − f m−1(R − {i,m})

)
(1−ζ(R)) for every i ∈ R−{m}.

Plugging it into equation (3), we get

pm(R) = χ(m ∈ R) ·
c

(δm − γm)(1 − f m−1(R − {m}))
+

1

1 − ζ(R)
· pm−1(R − {m}) . (4)

Note that by the definition of S, we have ζ(S) = ζ(S∗), hence by plugging S and S∗ into equation

(4), and since pm−1(S̄) ≤ (1 + η)m−1pm−1(S̄∗) and 1 − fm−1(S̄) ≥ 1−fm−1(S̄∗)
(1+η)m−1 , we conclude that

pm(S) ≤ (1 + η)m−1pm(S∗). The assertion follows as pm(S′) ≤ pm(S).

Consider an arbitrary payoff v > 0 and let S∗
v ⊆ N be the optimal contract for v. Lemma 2.5

guarantees that the contracts collection C returned by Algorithm Calibrate contains a contract

S ⊆ N such that S is a (1 + η)n-estimation of S∗
v . In particular, S satisfies f (S) ≥ f (S∗

v)
(1+η)n and

p(S) ≤ (1+η)np(S∗
v). Therefore

US∗
v
(v)

US(v) = f (S∗
v)(v−p(S∗

v))
f (S)(v−p(S)) ≤ (1+η)n · v−p(S∗

v)
v−p(S) . Since η < 1

2n2 ≤ 1
2n , it

follows that (1+η)n < 1+2nη < 1+ 1
n . Lemma 2.3 then implies that p(S∗

v)(1+η)n < v, and therefore

we can substitute v−p(S) with v−p(S∗
v)(1+η)n, concluding that

US∗
v
(v)

US(v) ≤ (1+η)n · v−p(S∗
v)

v−p(S∗
v)(1+η)n .

Employing Lemma 2.3 once again, we derive
US∗

v
(v)

US(v) ≤ (1 + η)n ·
(1+ 1

n)p(S∗
v)−p(S∗

v)

(1+ 1
n)p(S∗

v)−p(S∗
v)(1+η)n

= (1 +

η)n · 1/n
1+(1/n)−(1+η)n . As (1+η)n < 1+2nη, and since η < 1

2n2 , we can substitute 1+(1/n)− (1+η)n

with 1 + (1/n) − (1 + 2nη), concluding that
US∗

v
(v)

US(v) < (1 + 2nη) 1/n
1+(1/n)−(1+2nη) = 1+2nη

1−2n2η
. The

promised bound
US∗

v
(v)

US(v) ≤ 1 + ǫ follows as η ≤ ǫ
2n(n+1+ǫn) , thus Theorem 2 is established.

Theorem 4 can now be established as well. Consider an arbitrary technology t =

〈N, {γi}
n
i=1, {δi}

n
i=1, c, ϕ〉 and some ǫ > 0. The contracts collection C is constructed in a single

stage of Algorithm Calibrate: we first calibrate all contracts in 2N into a scale of precision 1 + ǫ

and then remove from each interval all contracts excluding the one with minimum payment (un-

der t). More formally, the collection C contains at most one contract S that is calibrated to the

interval I, in this case p(S) ≤ p(S′) for every contract S′ ⊆ N such that S′ is calibrated to I.

Following the line of arguments presented earlier in this section, we show that |C| = O
(

1
ǫ log 1

∆

)
.

Moreover, if an arbitrary contract S∗ ⊆ N is not in C, then it was compensated by some contract

S ∈ C such that S and S∗ are calibrated to the same interval. Therefore f (S) ≥ f (S∗)
1+ǫ and since

p(S) ≤ p(S∗), it follows that US∗(v)
US(v) ≤ 1 + ǫ for every payoff v ≥ 0. Unfortunately, in the case

of arbitrary technologies (as opposed to OR technologies) we do not know how to construct the

collection C efficiently.

10

m+30 m+2m+1m1 2

0

0

0

0

1

2

0

0

0

0

0

u
j
i = 1 if i ∈ Γj and u

j
i = 0 otherwise 0

0

0

1

1

1

0

1

0

0

0

0

0

0

1

0

0

0

i

uα

uβ

uA

uB

uC

u1, . . . , un

Figure 2: The n + 5 vectors representing the n + 5 agents of the technology. The first n agents

correspond to the n variables of the 3-CNF formula φ, and the additional 5 agents are assigned

with the vectors uα, uβ, uA, uB and uC .

3 NP-hardness of OR technologies

We present a polynomial-time Turing reduction from X3SAT (Problem LO4 in [5]) to the problem

of computing an optimal contract for an OR technology. A 3-CNF formula φ in which all literals are

positive is solvable under X3SAT if there exists a truth assignment for the variables of φ that assigns

true to exactly one literal in every clause. Given a 3-CNF formula φ with m clauses and n variables

in which all literals are positive, we construct an OR technology t = 〈N, {γj}
n+5
j=1 , {δj}

n+5
j=1 , c, ϕ〉 such

that (1) the agent set N contains n + 5 agents (N = [n + 5]); (2) the cost incurred on an agent

for exerting effort is c = 1; and (3) γj = 1 − δj for every j ∈ N . The construction is designed to

guarantee that by performing O(n) queries, each reveals the optimal contract for some carefully

chosen payoff, we can decide whether φ is solvable under X3SAT.

Let W = {0, 1, 2, 3}m+2 ×{0, 1}2. Each agent j ∈ N is assigned with a vector uj ∈ W. The first

n agents correspond to the n variables of the 3-CNF formula φ. Assuming that variable j appears

in clauses Γj ⊆ {1, . . . ,m}, the vector uj = (uj
0, . . . , u

j
m+3) is defined so that uj

i = 1 if i ∈ Γj; and

uj
i = 0 if i /∈ Γj ; for every 1 ≤ j ≤ n and 0 ≤ i ≤ m + 3.

Agents n + j for j = 1, . . . , 5 are provided for the sake of the analysis. To avoid cumbersome

indexing, we denote n + 1 and n + 2 by α and β, respectively, and n + 3, n + 4 and n + 5 by A,

B and C, respectively. Agents α and β are assigned with the vectors uα = (0, . . . , 0, 1, 0) ∈ W

and uβ = (0, . . . , 0, 0, 1) ∈ W, respectively. Agents A, B and C are assigned with the vectors

uA = (0, . . . , 0, 1, 0, 0) ∈ W, uB = (1, 0, 0, . . . , 0, 1, 0, 0) ∈ W and uC = (2, 0, 0, . . . , 0, 1, 0, 0) ∈ W,

respectively (see Figure 2). Observe that the first n agents affect coordinates 1, . . . ,m; agents α

and β affect coordinates m + 2 and m + 3; and agents A, B and C affect coordinates 0 and m + 1.

We extend the assignment of vectors to sets of agents (a.k.a. contracts) in a natural way. Given

a contract S ⊆ N , we define the vector uS =
∑

j∈S uj . As each clause in φ contains (at most) three

variables, and by the definition of the vectors uα, uβ , uA, uB and uC , it follows that uS ∈ W for

every contract S ⊆ N . Observe that different contracts may be assigned with the same vector in

11

W.

The reduction relies on the following fact: the formula φ is solvable under X3SAT if and only

if there exists a contract S with vector uS = (1, . . . , 1) ∈ W. To justify this fact, note that a truth

assignment that assigns true to exactly one variable in every clause is translated to a contract S

with uS = (uS
0 , 1, 1, . . . , 1, uS

m+1, u
S
m+2, u

S
m+3). Agents α, β and B can be added to S, thus setting

uS
0 = uS

m+1 = uS
m+2 = uS

m+3 = 1, without affecting any other coordinate. We will show that if such

a contract exists, then it is optimal for some payoff v∗ which will be determined later on.

Consider the vector x = (x0, . . . , xm+3) in W. Let σ(x) =
∑m+1

i=0 xi4
i and fix µ = 45(m+2).

We define the partial evaluation of x to be τp(x) =
(
1 + 1

µ

)σ(x)
. Note that since xi ≤ 3 for every

0 ≤ i ≤ m+1, and since µ >
(∑m+1

i=0 3 · 4i
)5

, it follows that µ > (σ(x))5 for any x ∈ W. The partial

evaluation of x can be rewritten as τp(x) =
∑σ(x)

j=0

(σ(x)
j

)
µ−j, thus 1 + µ−1 ≤ τp(x) ≤ 1 + O(µ−4/5)

and in general,

τp(x) =

k−1∑

j=0

(
σ(x)

j

)
µ−j + O

(
µ−4k/5

)
(5)

for any 0 < k ≤ σ(x). The full evaluation of x is defined to be τ(x) = τp(x) · µ2xm+2 · µ5xm+3 .

Observe that τ(x) = τp(x) if xm+2 = xm+3 = 0. Moreover, τ(x) ≤ (1 + O(µ−4/5))µ7 for every

vector x ∈ W. Fix χ = 2µ7 (so that χ > τ(x) for every vector x ∈ W). Clearly, for any two

vectors x,y ∈ W, the full evaluation of x is greater than the full evaluation of y if and only if x is

lexicographically greater5 than y.

Proposition 3.1. Let x = (x0, . . . , xm+3) and y = (y0, . . . , ym+3) be two vectors in W such that

x is lexicographically greater than y. The difference τ(x) − τ(y) satisfies (i) if xm+2 6= ym+2

or xm+3 6= ym+3, then τ(x) − τ(y) = (1 + o(1))µ2xm+2+5xm+3 ; and (ii) if xm+2 = ym+2 and

xm+3 = ym+3, then µ2xm+2+5xm+3−1 < τ(x) − τ(y) ≤ O(µ2xm+2+5xm+3−(4/5)).

Proof. The bound in (i) follows immediately from the definition of full evaluation as the partial

evaluation is 1 + o(1). To establish (ii), note that since τ(x) > τ(y) although xm+2 = ym+2 and

xm+3 = ym+3, we must have τp(x) > τp(y). By the definition of partial evaluation, it follows that
τp(x)
τp(y) =

(
1 + µ−1

)σ(x)−σ(y)
, hence 1 + µ−1 ≤ τp(x)

τp(y) ≤ 1 + O(µ−4/5). Therefore

µ−1 < τp(y)(1 + µ−1 − 1) ≤ τp(x) − τp(y) ≤ τp(y)(1 + O(µ−4/5) − 1) ≤ O(µ−4/5)

The proof is completed as τ(x) − τ(y) = µ2xm+2+5xm+3(τp(x) − τp(y)).

Let ǫ = µ−κ, where κ is a sufficiently large constant that will be determined later on. We

would have wanted to define the effectiveness factors of the OR technology by fixing γj = 1− δj =

τ(uj) · ǫ for every j ∈ N . Unfortunately, the standard binary representation of τ(uj) may be

5The vector x = (x0, . . . , xm+3) is lexicographically greater than the vector y = (y0, . . . , ym+3) if there exists a

coordinate 0 ≤ j ≤ m + 3 such that xi = yi for every i > j and xj > yj .

12

much larger than the binary representation of φ for some j, and in particular, exponential in

m. We handle this obstacle by estimating the partial vector evaluations (see (5)). Given a vector

x = (x0, . . . , xm+3) ∈ W, let τ̃p(x) =
∑⌈5(κ+7)/4⌉−1

j=0

(σ(x)
j

)
µ−j = τp(x)−O(µ−κ−7) = τp(x)−O(ǫµ−7)

and τ̃(x) = τ̃p(x) · µ2xm+2 · µ5xm+3 = τ(x) − O(ǫ). Note that the binary representation of τ̃(x) is

polynomial (linear actually) in m. The technology t is now determined by fixing

γj = 1 − δj = τ̃(uj)ǫ = τ(uj)ǫ − O(ǫ2) (6)

for all j ∈ N .

Let S ⊆ N be some contract and assume that |S| = k > 0. Let ν be the maximum among

all constants hidden in the O notation of (6), that is, τ(uj)ǫ − γj ≤ νǫ2 for every j ∈ N . By the

definition of OR technologies, we have

f (S) = 1 −
∏

j∈S

(1 − δj)
∏

j∈N−S

(1 − γj)

= 1 −
∏

j∈S

ǫ
(
τ(uj) − O(ǫ)

) ∏

j∈N−S

(
1 − ǫ

(
τ(uj) − O(ǫ)

))

= 1 − ǫk
∏

j∈S

τ(uj) −
n+5∑

l=1

(−1)lǫk+l · O

(
νlχ

(
n + 5

l

))

= 1 − τ(uS)ǫk −
n+5∑

l=1

(−1)lǫk+l · O

(
νlχ

(
n + 5

l

))
.

Taking ǫ <
(

1
νχ(n+5)

)2
guarantees that

f (S) = 1 − τ(uS)ǫk ± O(ǫk+(1/2)) . (7)

Following a similar line of arguments, we conclude that f (∅) = O(ǫ1/2). The next proposition can

now be established.

Proposition 3.2. Let S, S′ ⊆ N be some two contracts and let k = |S|, k′ = |S′|. Then f (S) <

f (S′) if and only if (i) k < k′; or (ii) k = k′ and τ(uS) > τ(uS′
).

Proof. The first claim follows immediately from (7) by taking ǫ ≪ χ−1. For the second claim,

note that by (7), it is sufficient to prove that τ(uS) − τ(uS′
) = ω(ǫ1/2). This is guaranteed due to

Proposition 3.1 by taking ǫ ≪ µ−2.

A direct consequence of Proposition 3.2 is that f (S) = f (S′) if and only if |S| = |S′| and

13

uS = uS′
. The conditional payment to the agents in S, where |S| = k, can now be expressed as

p(S) =
∑

j∈S

1

f (S) − f (S − j)

=
∑

j∈S

[
1 − τ(uS)ǫk ± O(ǫk+(1/2)) − 1 + τ(uS−j)ǫk−1 ± O(ǫk−(1/2))

]−1

=
∑

j∈S

[
τ(uS−j)ǫk−1 ± O(ǫk−(1/2))

]−1

=
∑

j∈S

[
τ−1(uS−j)ǫ1−k ± O(ǫ(3/2)−k)

]

=
∑

j∈S

τ−1(uS−j)ǫ1−k ± O(ǫ(5/4)−k) ,

where S − j denotes the contract S −{j} and the last equation follows from taking ǫ < (n + 5)−4.

Define π(S) =
∑

j∈S τ−1(uS−j), so that

p(S) = π(S)ǫ1−k ± O(ǫ(5/4)−k) . (8)

Note that π(S) < |S| for every contract S ⊆ N since each term in the sum is smaller than 1.

Let S ⊆ N be some contract and assume that |S| = k > 0. By plugging (7) and (8) into the

definition of utility, we get

US(v) =
(
1 − τ(uS)ǫk ± O(ǫk+(1/2))

)(
v − π(S)ǫ1−k ± O(ǫ(5/4)−k)

)

= v − π(S)ǫ1−k ± O(ǫ(5/4)−k) − τ(uS)vǫk + π(S)τ(uS)ǫ ± O(τ(uS)ǫ5/4)

± O(vǫk+(1/2)) ± O(π(S)ǫ3/2) ± O(ǫ7/4)

= v − π(S)ǫ1−k − τ(uS)vǫk ± O(ǫ(5/4)−k) ± O(vǫk+(1/2)) ,

where the last equation is guaranteed by taking ǫ < ((n + 5)χ)−4/3. For the empty contract, we

have p(∅) = 0 and U∅(v) = v · O(ǫ1/2).

Consider some two contracts S, T ⊆ N . Assuming that f (S) 6= f (T), we refer to the payoff on

which the lines US(·) and UT (·) intersect as the intersection payoff of S and T , denoted v[S, T],

namely, US(v[S, T]) = UT (v[S, T]). The next lemma correlates the intersection payoffs to the size

of the contracts and to the vectors representing the contracts.

Lemma 3.3. Let S, S′ ⊆ N be some two contracts such that f (S) 6= f (S′). Define k = |S| and

k′ = |S′|. The intersection payoff v[S, S′] satisfies (i) if 0 < k = k′, then

v[S, S′] = ǫ1−2k π(S′) − π(S) ± O(ǫ1/4)

τ(uS) − τ(uS′) ± O(ǫ1/2)
;

and (ii) if k 6= k′, k, k′ ≥ 0, then

Ω(ǫ(5/4)−k−k′

) ≤ v[S, S′] ≤ O(ǫ(3/4)−k−k′

) .

(Observe that the case 0 = k = k′ is irrelevant as there is only one empty contract.)

14

Proof. Assume without loss of generality that k ≤ k′. Suppose first that k > 0. By comparing the

utilities of S and S′ on payoff v[S, S′], we get

π(S)ǫ1−k + τ(uS)v[S, S′]ǫk ± O(ǫ(5/4)−k) ± O(v[S, S′]ǫk+(1/2))

= π(S′)ǫ1−k′

+ τ(uS′

)v[S, S′]ǫk′

± O(ǫ(5/4)−k′

) ± O(v[S, S′]ǫk′+(1/2)) ,

hence

v[S, S′] =
π(S′)ǫ1−k′

− π(S)ǫ1−k ± O(ǫ(5/4)−k′
)

τ(uS)ǫk − τ(uS′)ǫk′ ± O(ǫk+(1/2))
.

By setting k = k′, (i) is established. Otherwise, if 0 < k < k′, then, by taking ǫ < min{(n +

5)−2, χ−2}, we get

v[S, S′] =
π(S′)ǫ1−k′

± O(ǫ(5/4)−k′
)

τ(uS)ǫk ± O(ǫk+(1/2))
= ǫ1−k′−k π(S′) ± O(ǫ1/4)

τ(uS) ± O(ǫ1/2)
. (9)

It remains to consider the case 0 = k < k′. Once again by comparing the utilities of S and S′

on payoff v[S, S′], we have

v[S, S′] − π(S′)ǫ1−k′

− τ(uS′

)v[S, S′]ǫk′

± O(ǫ(5/4)−k′

) ± O(v[S, S′]ǫk′+(1/2)) = v[S, S′] · O(ǫ1/2) ,

hence, by taking ǫ < χ−2, we get

v[S, S′] =
π(S′)ǫ1−k′

± O(ǫ(5/4)−k′
)

1 − O(ǫ1/2)
. (10)

Taking ǫ < (max {(n + 5), χ})−4 guarantees the bounds in (ii) due to (9) and (10).

Let x = (x0, . . . , xm+3) be a vector in W. We say that x is protected if xm+2 = xm+3 = 1. For

every 0 ≤ k ≤ n + 5, let Ψk(x) = {S ⊆ N | uS = x and |S| = k}. We argue that if x is a protected

vector in W, and if Ψk(x) 6= ∅, then at least one contract in Ψk(x) is in the top envelope of the

lines collection {US(·) | S ⊆ N}. We first establish some bounds related to π(·).

Proposition 3.4. Let S ⊆ N be a contract. If uS is protected, then π(S) = Θ(µ−2) and in

particular, τ−1(uS−β) ≤ π(S) ≤ (1 + O(µ−3))τ−1(uS−β). If uS is not protected, then 1 − o(1) ≤

π(S) ≤ |S|.

Proof. Suppose that uS is protected. First observe that since α ∈ S −β, it follows that τ(uS−β) =

Θ(µ2). Therefore if τ−1(uS−β) ≤ π(S) ≤ (1 + O(µ−3))τ−1(uS−β), then π(S) is indeed Θ(µ−2).

Recall that π(S) =
∑

j∈S τ−1(uS−j) =
∑

j∈S−{α,β} τ−1(uS−j) + τ−1(uS−α) + τ−1(uS−β). For

every j ∈ S − {α, β}, we have τ−1(uS−j)
τ−1(uS−β)

= τ(uj)
τ(uβ)

= 1+O(µ−4/5)
µ5 , and τ−1(uS−α)

τ−1(uS−β)
= τ(uα)

τ(uβ)
= 1

µ3 .

Therefore π(S)
τ−1(uS−β)

= (k−2)(1+O(µ−4/5))
µ5 + 1

µ3 + 1. Since k − 2 ≤ n + 3 ≤ 3m + 3 ≪ µ, we have

π(S) ≤ (1 + O(1)
µ3)τ−1(uS−β).

Now suppose that uS is not protected. We choose agent j′ as follows. If α ∈ S or β ∈ S, then

let j′ be the (sole) agent in S ∩ {α, β}. (Recall that {α, β} * S as S is not protected.) Otherwise,

15

let j′ be any agent in S. Denote uS−j′ = (u0, . . . , um+3). Since uS is not protected, it follows that

um+2 = um+3 = 0. Therefore τ(uS−j′) = τp(u
S−j′) = 1 + O(µ−4/5), and π(S) ≥ τ−1(uS−j′) =

1 − o(1).

Proposition 3.5. Let S, S′ ⊆ N be two contracts such that uS is protected and τ(uS) > τ(uS′
).

Then π(S′) − π(S) = Ω(µ−3).

Proof. If uS′
is not protected, then Proposition 3.4 guarantees that π(S′) − π(S) = Ω(1). Assume

that uS′
is protected. Since coordinate m+2 is set in both uS and uS′

, we have τ(uS−β)

τ(uS′−β)
=

τp(uS)

τp(uS′)
≥

1 + µ−1. By Proposition 3.4, we have π(S′) ≥ τ−1(uS′−β) and π(S) ≤ (1 + O(µ−3))τ−1(uS−β).

Therefore π(S′) − π(S) ≥ τ−1(uS−β)(1 + µ−1 − 1 − O(µ−3)). As τ−1(uS−β) = Θ(µ−2), it follows

that π(S′) − π(S) = Ω(µ−3).

Consider the collection F of all continuous functions g : R → R. Let H be a finite subset of F

and let g be a function in F . We say that g is dominated by the functions in H if for every v ∈ R,

there exists a function g′ ∈ H such that g(v) ≤ g′(v). Suppose that g and the functions in H are

linear. Following some standard geometric arguments, one can show that if g is not dominated by

any two functions in H, then g is not dominated by all functions in H. Given a contract S ⊆ N

and a subset of contracts H ⊆ 2N , we say that S is dominated by the contracts in H if US(·) is

dominated by the functions in {UT (·) | T ∈ H}.

We now turn to state the main lemma of this section, namely, that a contract assigned with a

protected vector cannot be dominated by any two contracts assigned with different vectors.

Lemma 3.6. Let S ⊆ N be a contract such that uS is protected and let k = |S|. Consider some

two contracts R,T /∈ Ψk(u
S). Then there exists a payoff v for which US(v) > max{UR(v),UT (v)}.

Proof. Assume without loss of generality that f (R) ≤ f (T). Proposition 3.2 implies that f (S) 6=

f (R) and f (S) 6= f (T), hence it is sufficient to consider the case f (R) < f (S) < f (T) (otherwise, S

cannot be dominated by R and T). We prove that v[R,S] < v[S, T]. This establishes the lemma

as it implies that US(v) > max{UR(v),UT (v)} for all v[R,S] < v < v[S, T].

Let kR = |R| and kT = |T |. We know, due to Proposition 3.2, that kR ≤ k ≤ kT . Lemma 3.3

is employed in order to analyze the following four cases. First if kR < k < kT , then v[R,S] =

O(ǫ(3/4)−kR−k) and v[S, T] = Ω(ǫ(5/4)−k−kT
), thus v[S,T]

v[R,S] = Ω(ǫ(1/2)−kT +kR
) ≫ 1, so the assertion

holds. If kR < k = kT , then, by Proposition 3.2, we have τ(uS) > τ(uT). By taking ǫ ≪ µ−12,

Proposition 3.5 implies that v[S, T] = ǫ1−2kΩ(µ−11). Hence, taking ǫ < µ−22 guarantees that

v[S, T] = Ω(ǫ(3/2)−2k). As v[R,S] = O(ǫ(3/4)−kR−k), we have v[S,T]
v[R,S] = Ω(ǫ(3/4)−k+kR

) ≫ 1, so

the assertion holds. If kR = k < kT , then, by Proposition 3.2, we have τ(uR) > τ(uS). By

Proposition 3.4 and Proposition 3.1, it follows that v[R,S] = O(ǫ1−2k). As v[S, T] = Ω(ǫ(5/4)−k−kT
),

we have v[S,T]
v[R,S] = Ω(ǫ(1/4)−kT +k) ≫ 1, so the assertion holds.

16

In what follows we assume that kR = kT = k and τ(uR) > τ(uS) > τ(uT). We have to show

that π(S)−π(R)±O(ǫ1/4)

τ(uR)−τ(uS)±O(ǫ1/2)
< π(T)−π(S)±O(ǫ1/4)

τ(uS)−τ(uT)±O(ǫ1/2)
. By taking ǫ < χ−4, it is sufficient to prove that

(π(T) − π(S))(τ(uR) − τ(uS)) − (π(S) − π(R))(τ(uS) − τ(uT)) > ǫ1/8. Instead, we take ǫ ≪ µ−8

and establish the stronger bound

π(T)
(
τ(uR) − τ(uS)

)
+ π(R)

(
τ(uS) − τ(uT)

)
− π(S)

(
τ(uR) − τ(uT)

)
= Ω(µ−1) . (11)

Since uS is protected, and since τ(uR) > τ(uS), we conclude that uR must be protected too. As

for uT , we have to consider both cases (protected or not). If uT is not protected, then we establish

equation (11) by proving that π(T)(τ(uR) − τ(uS)) − π(S)τ(uR) = Ω(µ6). Proposition 3.4 and

Proposition 3.1 guarantee that π(T)(τ(uR) − τ(uS)) = Ω(µ6) and π(S)τ(uR) = O(µ5), thus the

assertion holds. In the remainder of this proof we assume that uR, uS and uT are all protected.

We will soon show that

τp(u
R) − τp(u

S)

τp(uT)
+

τp(u
S) − τp(u

T)

τp(uR)
−

τp(u
R) − τp(u

T)

τp(uS)
= Ω(µ−3) , (12)

thus, by the definition of full evaluation, it follows that

τ−1(uT−β)(τ(uR) − τ(uS)) + τ−1(uR−β)(τ(uS) − τ(uT))

− τ−1(uS−β)(τ(uR) − τ(uT)) = Ω(µ2) .

As Proposition 3.1 guarantees that τ−1(uS−β)(τ(uR) − τ(uT)) = o(µ5), we conclude that

τ−1(uT−β)(τ(uR) − τ(uS)) + τ−1(uR−β)(τ(uS) − τ(uT))

− (1 + O(µ−3))τ−1(uS−β)(τ(uR) − τ(uT)) = Ω(µ2) .

Equation (11) follows due to Proposition 3.4 and the assertion holds.

To establish Equation (12), let a = σ(uR) − σ(uS) and b = σ(uS) − σ(uT). Equation (12) can

be rewritten as

(1 + µ−1)a+b + (1 + µ−1)−a + (1 + µ−1)−b − (1 + µ−1)−a−b − (1 + µ−1)a − (1 + µ−1)b = Ω(µ−3) ,

which is equivalent to

a+b∑

j=0

(
a + b

j

)
µ−j +

∞∑

j=0

(−1)j
(

a + j − 1

j

)
µ−j +

∞∑

j=0

(−1)j
(

b + j − 1

j

)
µ−j

−
∞∑

j=0

(−1)j
(

a + b + j − 1

j

)
µ−j −

a∑

j=0

(
a

j

)
µ−j −

b∑

j=0

(
b

j

)
µ−j = Ω(µ−3) (13)

due to the Taylor expansions

(1 + z)q =

q∑

j=0

(
q

j

)
zj and (1 + z)−q =

∞∑

j=0

(−1)j
(

q + j − 1

j

)
zj .

17

We leave it to the reader to verify that the jth terms of the six sums on the left hand side of

equation (13) cancel each other for j = 0, 1, 2. For j = 3, the terms on the left hand side of

equation (13) sums up to
((a+b

3

)
−
(a+2

3

)
−
(b+2

3

)
+
(a+b+2

3

)
−
(a
3

)
−
(b
3

))
µ−3 = (a2b + ab2)µ−3 =

Ω(µ−3).

It remains to show that the absolute value of the sums on the left hand side of equation (13)

for j = 4, 5, . . . is o(µ−3). Instead we bound the larger expression

a+b∑

j=4

(
a + b

j

)
µ−j +

∞∑

j=4

(
a + j − 1

j

)
µ−j +

∞∑

j=4

(
b + j − 1

j

)
µ−j

+
∞∑

j=4

(
a + b + j − 1

j

)
µ−j +

a∑

j=4

(
a

j

)
µ−j +

b∑

j=4

(
b

j

)
µ−j

≤ 6 ·
∞∑

j=4

(
a + b + j − 1

j

)
µ−j .

As
(
a+b+j
j+1

)
/
(
a+b+j−1

j

)
≤ a + b for every positive j, we have

∞∑

j=4

(
a + b + j − 1

j

)
µ−j ≤

(
a + b + 3

4

)
µ−4

∞∑

j=0

(
a + b

µ

)j

= O
(
µ

4
5
−4
)
· O(1) = o(µ−3) ,

where the middle equality follows from µ = Ω
(
(a + b)5

)
. Therefore equation (13) is satisfied and

the assertion holds.

The next corollary follows.

Corollary 3.7. If x is a protected vector in W, then for every 0 ≤ k ≤ n + 5, either Ψk(x) = ∅ or

there exists a contract S ∈ Ψk(x) and a payoff v such that S is optimal for v.

Consider the vector x = (1, . . . , 1) ∈ W. Recall that our goal is to decide whether there exists

a contract S with uS = x. Note that S is of size at least 4 as it must contain agents α, β, B

and at least one more agent. For every 4 ≤ k ≤ n + 5, Corollary 3.7 guarantees that if Ψk(x) is

not empty, then such a contract S is optimal for some payoff v∗k. If we know the payoffs v∗k for all

4 ≤ k ≤ n + 5, then we can query all of them, thus deciding whether or not there exists a contract

S with uS = x.

Consider some 4 ≤ k ≤ n + 5 and assume that Ψk(x) is not empty. Recall that

uA = (0, . . . , 0, 1, 0, 0), uB = (1, 0, 0, . . . , 0, 1, 0, 0) and uC = (2, 0, 0, . . . , 0, 1, 0, 0). Let w =

(2, 1, 1, . . . , 1) ∈ W and let y = (0, 1, 1, . . . , 1) ∈ W. Since uA, uB and uC determine the value of

coordinates 0 and m+1 in W without affecting any other coordinate, and since B ∈ S and A,C /∈ S

for every contract S such that uS = x, it follows that Ψk(w) 6= ∅ and Ψk(y) 6= ∅ (as Ψk(x) 6= ∅

and agent B can be replaced by agent A or C in S). Let λw,x
k = max{v[S, T] | S ∈ Ψk(w) and T ∈

Ψk(x)} and let λx,y
k = min{v[S, T] | S ∈ Ψk(x) and T ∈ Ψk(y)} (see Figure 3). Note that λw,x

k and

18

λ
w,x
k λ

x,y
k

W ∈ Ψk(w)

X1 ∈ Ψk(x)

X2 ∈ Ψk(x)

Y ∈ Ψk(y)

v

U(v)

Figure 3: The contracts X1 ∈ Ψk(x) and W ∈ Ψk(w) realizes λw,x
k ; the contracts X2 ∈ Ψk(x) and

Y ∈ Ψk(y) realizes λx,y
k . For every payoff λw,x

k ≤ v ≤ λx,y
k , there exists a contract in Ψk(x) which

is optimal for v (bold lines).

λx,y
k are well defined as Ψk(w), Ψk(x) and Ψk(y) are not empty. Define v∗k = ǫ1−2k

(1+ξµ−1)µ9 , where

ξ = 2 ·
∑m+1

j=0 4j . Observe that the binary representation of v∗k is polynomial in m.

Lemma 3.8. The payoff v∗k satisfies λw,x
k < v∗k < λx,y

k .

Proof. Define w′ = (2, 1, 1, . . . , 1, 0) ∈ W, x′ = (1, . . . , 1, 0) ∈ W and y′ = (0, 1, 1, . . . , 1, 0) ∈ W.

By Lemma 3.3 and by Proposition 3.4, we have λw,x
k ≤ ǫ1−2k (1+O(µ−3))τ−1(x′)−τ−1(w′)+O(ǫ1/4)

τ(w)−τ(x)−O(ǫ1/2)
and

λx,y
k ≥ ǫ1−2k τ−1(y′)−(1+O(µ−3))τ−1(x′)−O(ǫ1/4)

τ(x)−τ(y)+O(ǫ1/2)
. Propositions 3.1 and 3.5 imply that

λw,x
k ≤ ǫ1−2k

(
(1 + O(µ−3))τ−1(x′) − τ−1(w′)

τ(w) − τ(x)
+ o(ǫ1/4)

)

and

λx,y
k ≤ ǫ1−2k

(
τ−1(y′) − (1 + O(µ−3))τ−1(x′)

τ(x) − τ(y)
− o(ǫ1/4)

)
.

As τ−1(y′)
τ−1(x′)

= τ−1(x′)
τ−1(w′)

= τ(x)
τ(y) = τ(w)

τ(x) = 1 + µ−1, it follows that

λw,x
k ≤ ǫ1−2k

(
τ−1(w′)

τ(x)
(1 + O(µ−2)) + o(ǫ1/4)

)

and

λx,y
k ≥ ǫ1−2k

(
τ−1(x′)

τ(y)
(1 − O(µ−2)) − o(ǫ1/4)

)
.

By the definition of full evaluation, we have τ−1(w′)
τ(x) = (1 + µ−1)−(ξ+1)µ−9 and τ−1(x′)

τ(y) = (1 +

µ−1)−(ξ−1)µ−9, thus taking ǫ < µ−44 guarantees that λw,x
k ≤ ǫ1−2k(1 + µ−1)−(ξ+1)µ−9(1 + O(µ−2))

and λx,y
k ≥ ǫ1−2k(1 + µ−1)−(ξ−1)µ−9(1 − O(µ−2)). Since µ > ξ5, it follows that (1 + µ−1)ξ+1 =

(1+µ−1)(1+ξµ−1+O(µ−8/5)) ≥ (1+µ−1)(1+ξµ−1) and (1+µ−1)ξ−1 = 1+(ξ−1)µ−1+O(µ−8/5) ≤

19

1 + ξµ−1 − µ−1/2, hence

λw,x
k

v∗k
≤

(1 + ξµ−1)(1 + O(µ−2))

(1 + µ−1)ξ+1
≤

1 + O(µ−2)

1 + µ−1
< 1

and
λx,y

k

v∗k
≥

(1 + ξµ−1)(1 − O(µ−2))

(1 + µ−1)ξ−1
≥

1 + ξµ−1 − O(µ−2)

1 + ξµ−1 − µ−1/2
> 1 .

The assertion follows.

The analysis is completed with the following lemma, which together with Lemma 3.8 derive

Theorem 1.

Lemma 3.9. The optimal contract for the payoff v is in Ψk(x) for every λw,x
k < v < λx,y

k .

Proof. Consider an arbitrary payoff λw,x
k < v̄ < λx,y

k and suppose towards deriving contradiction

that there exists a contract T /∈ Ψk(x) such that T is optimal for v̄. Recall that Proposition 3.2

implies that f (Sw) < f (Sx) < f (Sy) for every three contracts Sw ∈ Ψk(w), Sx ∈ Ψk(x) and

Sy ∈ Ψk(y). Therefore by the definition of λw,x
k and λx,y

k , it follows that T /∈ Ψk(w) and T /∈ Ψk(y).

Let Rw ∈ Ψk(w) and Rx ∈ Ψk(x) be the contracts that realize λw,x
k and let Sx ∈ Ψk(x) and

Sy ∈ Ψk(y) be the contracts that realize λx,y
k , i.e., v[Rw, Rx] = λw,x

k and v[Sx, Sy] = λx,y
k .

We argue that T must satisfy f (Rw) ≤ f (T) ≤ f (Sy). This can be justified as follows. If

f (T) < f (Rw), then since UT (v̄) > URw(v̄), we have UT (v) > URw(v) for every v < v̄. As

URx(v) > URw(v) for every v > λw,x
k , and since v̄ > λw,x

k , it follows that Rw is dominated by T and

Rx, in contradiction to Lemma 3.6. The case where f (T) > f (Sy) is analogous. Proposition 3.2

implies that |T | = k and τ(y) < τ(uT) < τ(w) as otherwise, we get f (T) < f (Rw) or f (T) > f (Sy).

But this implies that uT = x, in contradiction to the assumption, as x is the only vector in W

which is lexicographically smaller than w and greater than y. The assertion follows.

4 AND technologies

It is shown in [1] that the orbit of every homogeneous AND technology is of size 2, and that the

orbit size of every heterogeneous AND technology cannot exceed n+1. In what follows, we prove a

stronger result, stating that for every k, the contract Sk ⊆ N consisting of the k agents admitting

the highest δi
γi

ratios dominates any other k-size contract in the sense that Sk provides both a

higher effectiveness and a lower payment. This result implies a trivial polynomial-time algorithm

for computing the optimal contract in AND technologies.

Let t = 〈N, {γi}
n
i=1, {δi}

n
i=1, c, ϕ〉 be some AND technology and assume without loss of generality

that δi
γi

≥ δi+1

γi+1
for every 1 ≤ i < n. Denote Sk = {1, . . . , k} for every 0 ≤ k ≤ n. In order to

prove Theorem 3, we show that f (Sk) ≥ f (S) and p(Sk) ≤ p(S) for any contract S ⊆ N such that

|S| = k.

20

Consider an arbitrary bijection b : Sk − S → S − Sk. By the definition of Sk, it follows

that
δj

γj
≥

δb(j)

γb(j)
for every j ∈ Sk − S. We first argue that f (Sk) ≥ f (S). Recall that f (Sk) =

∏
i∈Sk

δi
∏

i∈N−Sk
γi and f (S) =

∏
i∈S δi

∏
i∈N−S γi. Therefore we have to show that

∏

i∈Sk−S

δi

∏

i∈Sk∩S

δi

∏

i∈S−Sk

γi

∏

i∈N−(Sk∪S)

γi ≥
∏

i∈S−Sk

δi

∏

i∈S∩Sk

δi

∏

i∈Sk−S

γi

∏

i∈N−(S∪Sk)

γi

The last inequality is equivalent to

∏
i∈Sk−S δi∏
i∈Sk−S γi

≥

∏
i∈S−Sk

δi∏
i∈S−Sk

γi
,

which can be rewritten as
∏

i∈Sk−S
δi
γi

≥
∏

i∈Sk−S
δb(i)

γb(i)
. The argument follows.

We now turn to argue that p(Sk) ≤ p(S). Recall that for every contract R ⊆ N , we have

p(R) =
∑

i∈R pi(R), where pi(R) = c
f (R)−f (R−{i}) = c

f (R)
�
1−

γi
δi

� . Thus for every i ∈ Sk ∩S, we have

pi(Sk) ≤ pi(S) ⇔ c

f (Sk)
�
1−

γi
δi

� ≤ c

f (S)
�
1−

γi
δi

� , which holds as f (Sk) ≥ f (S) (the previous argument).

Similarly, for every i ∈ Sk − S, we have pi(Sk) ≤ pb(i)(S) ⇔ c

f (Sk)
�
1−

γi
δi

� ≤ c

f (S)

�
1−

γb(i)
δb(i)

� , which

holds as f (Sk) ≥ f (S) and δi
γi

≥
δb(i)

γb(i)
. The argument is established since USk

(v) = f (Sk)(v − p(Sk))

and US(v) = f (S)(v − p(S)).

Acknowledgments

We are indebted to Noam Nisan for his help on various parts of the paper.

21

References

[1] Moshe Babaioff, Michal Feldman, and Noam Nisan. Combinatorial Agency. In ACM EC’06,

2006.

[2] Moshe Babaioff, Michal Feldman, and Noam Nisan. Mixed Strategies in Combinatorial Agency.

In 2nd international Workshop on Internet and Network Economics (WINE), 2006.

[3] Joan Feigenbaum and Scott Shenker. Distributed Algorithmic Mechanism Design: Recent

Results and Future Directions. In Proceedings of the International Workshop on Discrete

Algorithms and Methods for Mobile Computing and Communications, 2002.

[4] Michal Feldman, John Chuang, Ion Stoica, and Scott Shenker. Hidden-action in multi-hop

routing. In ACM-EC, pages 117–126, 2005.

[5] M. R. Garey and D. S. Jhonson. Computers and intractability :a guide to the theory of NP-

completeness. New York: W. H. Freeman, 1979.

[6] Bengt Holmstrom. Moral Hazard in Teams. Bell Journal of Economics, 13:324–340, 1982.

[7] Patrick Legeros and Steven Matthews. Efficient and Nearly-Efficient Partnerships. Review of

Economic Studies, 60(3):599–611, 1993.

[8] Dilip Mookherjee. Optimal Incentive Schemes with Many Agents. Review of Economic Studies,

51(3):433–446, 1984.

[9] Noam Nisan. Algorithms for selfish agents. In Proceedings of the 16th annual symposium on

theoretical aspects of computer science, pages 1–15, 1999.

[10] Noam Nisan and Amir Ronen. Algorithmic Mechanism Design. In Proceedings of the 31st

Symposium on Theory of Computing, 1999.

[11] E. Rasmusen. Moral Hazard in Risk-Averse Teams. Rand Journal of Economics, 18:428–435,

1987.

[12] Ronald Strausz. Moral Hazard in Sequential Teams. Departmental Working Paper. Free

University of Berlin, 1996.

[13] Eyal Winter. Incentives and Discrimination. American Economic Review, 94:764–773, 2004.

