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Abstract

A decision maker (an agent) is engaged in a repeated interaction with Nature. The

objective of the agent is to guarantee to himself the long-run average payo¤ as large

as the best-reply payo¤ to Nature�s empirical distribution of play, no matter what

Nature does. An agent with perfect recall can achieve this objective by a simple

better-reply strategy. In this paper we demonstrate that the relationship between

perfect recall and bounded recall is not straightforward: An agent with bounded

recall may fail to achieve this objective, no matter how long recall he has and no

matter what better-reply strategy he employs.
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1 Introduction

In every (discrete) period of time a decision maker (for short, an agent) makes

a decision and, simultaneously, Nature selects a state of the world. The agent

receives a payo¤ which depends on both his action and the state. Nature�s

behavior is ex-ante unknown to the agent, it may be as simple as an i.i.d.

environment or as sophisticated as a strategic play of a rational player. The

agent�s objective is to select a sequence of decisions which guarantees to him

the long-run average payo¤ as large as the best-reply payo¤ against Nature�s

empirical distribution of play, no matter what Nature does. A behavior rule

of the agent which ful�lls this objective is called universally consistent 1 : the

rule is �consistent�if it is optimized against the empirical play of Nature; the

word �universally�refers to its applicability to any behavior of Nature.

A range of problems can be described within this framework. One example,

known as the on-line decision problem, deals with predicting a sequence of

states of Nature, where at every period t the agent makes a prediction based on

information known before t. The classical problem of predicting the sequence

of 0�s and 1�s with �few�mistakes has been a subject of study in statistics,

computer science and game theory for more than 40 years. In a more general

problem, an agent�s goal is to predict a sequence of states of Nature at least

as well as the best expert from a given pool of experts 2 (see Littlestone and

Warmuth, 1994; Freund and Schapire, 1996; Cesa-Bianchi et al., 1997; Vovk,

1998). Another example is no-regret learning in game-theory. A regret 3 of an

agent for action a is his average gain had he played constant action a instead

of his actual past play; the agent�s goal is to play a sequence of actions so that

he has �no regrets�(e.g., Hannan, 1957; Fudenberg and Levine, 1995; Foster

and Vohra, 1999; Hart and Mas-Colell, 2000, 2001; Cesa-Bianchi and Lugosi,

2003).

1 The term �universal consistency�is due to Fudenberg and Levine (1995).
2 By an �expert�we understand a given deterministic on-line prediction algorithm.
Thus, �to do as well as the best expert�means to make predictions, on average, as
close to the true sequence of states as the best of the given prediction algoritms.
3 This paper deals with the simplest notion of regret known as external (or uncon-
ditional) regret (see, e.g., Foster and Vohra, 1999).
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Action a is called a better reply to Nature�s empirical play if the agent could

have improved upon his average past play had he played action a instead of

what he actually played in the past. In this paper, we assume that in every pe-

riod the agent plays a better reply to Nature�s past play. The better-reply play

is a natural adaptive behavior of an unsophisticated, myopic, non-Bayesian

decision maker. The class of better-reply strategies encompasses a big variety

of behavior rules, such as �ctitious play and smooth �ctitious play 4 ; Hart

and Mas-Colell (2000)�s �no-regret�strategy of playing an action with prob-

ability proportional to the regret for that action; the logistic (or exponential-

weighted) algorithms used in both game theory and computer science (see

Littlestone and Warmuth, 1994; Freund and Schapire, 1996; Cesa-Bianchi

et al., 1997; Vovk, 1998); the polynomial (lp-norm) �no-regret�strategies and

potential-based strategies of Hart andMas-Colell (2001) (see also Cesa-Bianchi

and Lugosi, 2003).

The agent is said to havem-recall if he is capable of remembering the play ofm

last periods, and the empirical frequency of Nature�s play to which the agent

�better-replies� is the simple average across the time interval not exceeding

the last m periods. A special case of agent with perfect recall (m =1) is well
studied in the literature, and universally consistent better-reply strategies of

an agent with perfect recall are well known (see Hannan, 1957; Foster and

Vohra, 1999; Hart andMas-Colell, 2000, 2001; Cesa-Bianchi and Lugosi, 2003).

The question that we pose in this paper is whether there are better-reply

strategies for an agent with bounded recall (m < 1) which are (nearly) uni-
versally consistent if the agent has su¢ ciently large length of recall. We show

that an agent with long enough recall can approach the best reply to any i.i.d.

environment. However, by a simple example we demonstrate that an agent

cannot optimize his average play against general (non-i.i.d.) environment, no

matter how long (yet, bounded) recall he has and no matter what better-reply

strategy he employs. Formally, we say that a family of better-reply strategies

with bounded recall is asymptotically universally consistent if for every " > 0

and every su¢ ciently large m = m(") an agent with recall length m has an

4 In the original (Fudenberg and Levine, 1995)�s de�nition, the smooth �ctitious
play is not a better-reply strategy; however, certain versions of it (e.g., lp-norm
strategy with large p) are better-reply strategies (see Section 3).
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"-universally consistent strategy in this family. We prove the following state-

ment.

There is no family of bounded-recall better-reply strategies which is asymp-

totically universally consistent.

The statement is proven by a counterexample. We construct a game where

if Nature plays a certain form of the �ctitious play, then, regardless of what

better-reply strategy the agent uses, for every agent�s recall length m the limit

play forms a cycle. The average payo¤ of the agent along the cycle is bounded

away from the best-reply payo¤ by a uniform bound for all m. Intuitively,

the reason for a cyclical behavior is that in every period t the agent�s learns a

new observation, a pair (at; !t), and forgets another observation, (at�m; !t�m).

An addition of the new observation shifts, in expectation, the agent�s average

payo¤ (across the last m periods) in a �better�direction, however, the loss of

(at�m; !t�m) shifts it in an arbitrary direction. Since the magnitude of the two

e¤ects is the same, 1=m, it may lead to a cyclical behavior of the play. Note

that with unbounded recall, m =1, the second e¤ect does not exist, i.e., the
agent does not forget anything, and, consequently, a cyclical behavior is not

possible.

A closely related work of Lehrer and Solan (2003) assumes bounded recall

of agents and studies a certain form of a better-reply behavior. Lehrer and

Solan describe an "-universally consistent strategy, where the agent period-

ically �wipes out� his memory. Comparison of this work with our results

brought into our paper an interesting insight that �better memory multiplies

regrets�: an agent can achieve a better average payo¤ by not using, or delib-

erately forgetting some information about the past (see Section 6 for further

discussion).

2 Preliminaries

In every discrete period of time t = 1; 2; : : : a decision maker (or an agent)

chooses an action, at, from a �nite set A of actions, and Nature chooses a

state, !t, from a �nite set 
 of states. Let u : A � 
 ! R be the agent�s

payo¤ function; u(at; !t) is the agent�s payo¤ at period t. Denote by ht :=
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((a1; !1); : : : ; (at; !t)) the history of play up to t. Let Ht = (A�
)t be the set
of histories of length t and let H =

S1
t=1Ht be the set of all histories.

Let p : H ! �(A) and q : H ! �(
) be behavior rules of the agent and

Nature, respectively. For every period t, we will denote by pt+1 := p(ht) the

next-period mixed action of the agent and by qt+1 := q(ht) the next-period

distribution of states of Nature. A pair (p; q) and an initial history ht0 induce

a probability measure over Ht for all t > t0.

We assume that the agent does not know q, that is, he plays against an un-

known environment. We consider better-reply behavior rules, according to

which the agent plays actions which are �better� than his actual past play

against the observed empirical behavior of Nature. Formally, for every a 2 A
and every period t de�ne Rmt (a) 2 R+ as the average gain of the agent had he
played a over the last m periods instead of his actual past play. Namely, let 5

Rmt (a) =
�
1

m

Xt

k=t�m+1 (u(a; !k)� u(ak; !k))
�+

for all t � m

and

Rmt (a) =
�
1

t

Xt

k=1
(u(a; !k)� u(ak; !k))

�+
for all t < m.

We will refer to Rmt (a) as the agent�s regret for action a.

The parameter m 2 f1; 2; : : :g [ f1g is the agent�s length of recall. An agent
with a speci�ed m is said to have m-recall. We shall distinguish the cases of

perfect recall (m =1) and bounded recall (m <1).

Consider an agent with m-recall. Action a is called a better reply to Nature�s

empirical play if the agent could have improved upon his average past play had

he played action a instead of what he actually played in the last m periods.

De�nition 1. Action a 2 A is a better-reply action if Rmt (a) > 0.

A behavior rule is called a better-reply rule if the agent plays only better-reply

actions, as long as there are such.

De�nition 2. Behavior rule p is a better-reply rule if for every period t,

whenever maxa2ARmt (a) > 0,

Rmt (a) = 0 ) pt+1(a) = 0; a 2 A:
5 We write [x]+ for the positive part of a scalar x, i.e., [x]+ = maxf0; xg.
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The focus of our study is how well better-reply rules perform against an un-

known, possibly, hostile environment. To assess performance of a behavior rule,

we use Fudenberg and Levine (1995)�s criterion of "-universal consistency de-

�ned below.

An agent�s behavior rule p is said to be consistent with q if the agent�s long-

run average payo¤ is at least as large as the best-reply payo¤ to the average

empirical play of Nature which plays q.

De�nition 3. Let " > 0. A behavior rule p of the agent with m-recall is

"-consistent with q if for every initial history ht0 there exists T such that for

every 6 t � T

Pr(p;q;ht0 )

�
max
a2A

R1t (a) < "
�
> 1� ":

A behavior rule p is consistent with q if it is "-consistent with q for every " > 0.

Let Q be the class of all behavior rules. An agent�s behavior rule p is said to

be universally consistent if it is consistent with any behavior of Nature.

De�nition 4. A behavior rule p of the agent with m-recall is ("-) universally

consistent if it is ("-) consistent with q for every q 2 Q.

3 Perfect recall and prior results

Suppose that the agent has perfect recall (m =1). This case has been exten-
sively studied in the literature, starting from Hannan (1957), who proved the

following theorem. 7

Theorem 1 (Hannan, 1957). There exists a better-reply rule which is uni-

versally consistent.

6 Pr(p;q;h)[E] denotes the probability of event E induced by strategies p and q, and

initial history h.
7 The statements of theorems of Hannan (1957) and Hart and Mas-Colell (2001)

presented in this section are su¢ cient for this paper, though the authors obtained

stronger results.
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Hart and Mas-Colell (2000) showed that the following rule is universally con-

sistent:

pt+1(a) :=

8>>><>>>:
R1t (a)P

a02AR
1
t (a

0)
; if

P
a02AR

1
t (a

0) > 0;

arbitrary, otherwise.
(1)

According to this rule, the agent assigns probability on action a proportional

to his regret for a; if there are no regrets, his play is arbitrary. This result is

based on Blackwell (1956)�s Approachability Theorem. We shall refer to p in

(1) as the Blackwell strategy.

The above result has been extended by Hart and Mas-Colell (2001) as follows.

A behavior rule p is called a (stationary) regret-based rule if for every period

t the agent�s next-period behavior depends only on the current regret vector.

That is, for every history ht, the next-period mixed action of the agent is

a function of R1t = (R1t (a))a2A only: pt+1 = �(R1t ). Hart and Mas-Colell

proved that among better-reply rules, all �well-behaved� stationary regret-

based rules are universally consistent.

Theorem 2 (Hart and Mas-Colell, 2001). Suppose that a better-reply rule

p satis�es the following:

(i) p is a stationary regret-based rule given for every t by pt+1 = �(R1t ); and

(ii) There exists a continuously di¤erential potential P : RjAj+ ! R+ such that
�(x) is positively proportional to rP (x) for every x 2 RjAj+ , x 6= 0.

Then p is universally consistent.

The class of universally consistent behavior rules (or �no regret� strategies)

which satisfy conditions of Theorem 2 includes the logistic (or exponential

adjustment) strategy used by Littlestone and Warmuth (1994), Freund and

Schapire (1996), Cesa-Bianchi et al. (1997), Vovk (1998) and others, its better-

reply form is given for every t and every a 2 A by

pt+1(a) =
exp(�Rmt (a))� 1P

b2A ( exp(�R
m
t (b))� 1)

; (2)

� > 0; the polynomial (lp-norm) strategies and other strategies based on a sep-

arable potential (Hart and Mas-Colell, 2001; Cesa-Bianchi and Lugosi, 2003);

the smooth �ctitious play 8 .

8 For instance, the lp-norm strategy with large p, and the strategy (2) with large �
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4 Bounded recall and i.i.d. environment

The previous section shows that the universal consistency can be achieved

for agents with perfect recall. Considering the perfect recall as the limit of

m-recall as m ! 1, one may wonder whether the universal consistency can
be approached by bounded-recall agents with su¢ ciently large m.

We start with a result that establishes existence of better-reply rules which

are consistent with any i.i.d. environment. Nature�s behavior rule q is called

an i.i.d. rule if qt = qt0 for all t; t0, independently of the history. Let Qi:i:d: � Q
be the set of all i.i.d. behavior rules. An agent�s behavior rule p is said to be

i.i.d. consistent if it is consistent with any i.i.d. behavior of Nature.

De�nition 5. A behavior rule p of the agent with m-recall is ("-) i.i.d. con-

sistent if it is ("-) consistent with q for every q 2 Qi:i:d:.

Denote by Pm the class of all better-reply rules for an agent with m-recall,
m 2 N. Consider an indexed family of better-reply rules p = (p1; p2; : : :),

where pm 2 Pm, m 2 N.

De�nition 6. A family p is asymptotically i.i.d consistent if for every " > 0

there exists m such that for every m0 � m rule pm
0
is "-i.i.d. consistent.

Theorem 3. There exists a family p of better-reply rules which is asymptot-

ically i.i.d. consistent.

Proof Let q� 2 �(
) and suppose that qt = q� for all t. Denote by �qmt the

empirical distribution of Nature�s play over the last m periods,

�qmt (!) =
1

m
jk 2 ft�m+ 1; : : : ; tg : !k = !j ; ! 2 
:

Suppose that the agent plays the �ctitious play with m-recall. Namely, the

agent�s next-period play, pmt+1, assigns probability 1 on an action in argmax
a2A

u(a; �qmt ),

ties are resolved arbitrarily. Thus, the agent plays in every period a best reply

to the average realization of m i.i.d. random variables with mean q�. Since

maxa2A u(a; x) is continuous in x for x 2 �(
), the Law of Large Numbers
implies that in every period the agent obtains an expected payo¤ which is

"m-close to the best reply payo¤ to q� with probability at least 1 � "m, with

approximate the �ctitious play.
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"m ! 0 as m!1. �

5 A negative result

In this section we demonstrate that an agent with bounded recall cannot

guarantee his play to be "-optimized against the empirical play of Nature, no

matter how large recall length he has and no matter what better-reply rule he

uses.

De�nition 7. Family p = (p1; p2; : : :) of better-reply rules is asymptotically

universally consistent if for every " > 0 there exists m such that for every

m0 � m rule pm
0
is "-universally consistent.

Theorem 4. There is no family of better-reply rules which is asymptotically

universally consistent.

The theorem is proven by a counterexample.

L M R

U 1,0 0,1 0,3
4

D 0,1 1,0 0,3
4

Fig. 1.

Consider a repeated game � with the stage game given by Fig. 1, where the

row player is the agent and the column player is Nature. For every m denote

by pm and qm be the behavior rules of the agent and Nature, respectively. We

shall show that for every m0 2 N there exists m � m0 such that the following

holds.

Suppose that the agent with recall length m and Nature play game �. Then

for every agent�s better-reply rule pm there exist behavior rule qm of Nature,

initial history ht0 and period T such that for all t � T

Pr(pm;qm;ht0 )

"
max

a2fU,Dg
R1t (a) �

1

32

#
� 1

32
:

Let M = f4j + 2jj = 2; 3; : : :g. For every m 2 M , let pm be an arbitrary

better-reply rule, and let qm be the �ctitious play with m-recall. Namely,
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denote by uN the payo¤ function of Nature as given by Fig. 1, and denote by

�pt the empirical distribution of the agent�s play over the last m periods,

�pt(a) =
1

m
jk 2 ft�m+ 1; : : : ; tg : ak = aj ; a 2 A:

Then qmt+1 assigns probability 1 to a state in argmax
!2fL;M;Rg

uN(�pt; !) (ties are re-

solved arbitrarily). Let Pm be the Markov chain with state space Hm :=

(A� 
)m induced by pm and qm and an initial state ht0 . A history of the

last m periods, hmt 2 Hm will be called, for short, history at t. Denote by

Hm
C � Hm the set of states generated along the following cycle (Fig. 2). The

+ 1

(U,R) (D,M)
(U,M)

(D,R) (U,R)(U,L)
(D,L)

m/2 m/2or 2
m

or + 12
m

2
m

2
m

Fig. 2. Closed cycle of Markov chain Pm

cycle has four phases. In two phases labeled (U,R) and (D,R), the play is

deterministic, and the duration of each phase is exactly m=2 periods. In the

two other phases, the play may randomize between two pro�les (one written

above the other), and the duration of each phase is m=2 or m=2 + 1 periods.

First, we show that this cycle is closed in Pm, i.e., hmt 2 Hm
C implies h

m
t0 2 Hm

C

for every t0 > t.

Lemma 1. For every m 2M , the set Hm
C is closed in Pm.

The proof is in the Appendix.

Next, we show that the average regrets generated by this cycle are bounded

away from zero by a uniform bound for all m.

Lemma 2. For every m 2 M , if ht0 2 Hm
C , then there exists period T such

that for all t � T

Pr(pm;qm;ht0 )

"
max

a2fU,Dg
R1t (a) �

1

32

#
� 1

32
:

The proof is in the Appendix. Lemmata 1 and 2 entail the statement of The-

orem 4.

Remark 1 In the proof of Theorem 4, Nature plays the �ctitious play with

m-recall, which is a better-reply strategy for every m. Consequently, an agent
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with bounded recall cannot guarantee a nearly optimized behavior even if

Nature�s behavior is constrained to be in the class of better-reply strategies.

Remark 2 The result can be strengthened as follows. Suppose that whenever

an agent has no regrets, then he plays a fully mixed action, i.e.,

max
a02A

Rmt (a
0) = 0 ) pmt+1(a) > 0 for all a 2 A: (3)

The next lemma shows that if in game � the agent plays a better-reply strategy

pm which satis�es (3) and Nature plays the �ctitious play with m-recall, then

the Markov chain Pm converges to the cycleHm
C regardless of an initial history.

Thus the above negative result is not an isolated phenomenon, it is not peculiar

to a small set of initial histories.

Lemma 3. For every m 2M , if pm satis�es (3), then for every initial history
ht0 the process P

m converges to Hm
C with probability 1.

The proof is in the Appendix.

To see that the statement of Lemma 3 does not hold if pm fails to satisfy

(3), consider again game � with the agent playing a better-reply strategy pm

and Nature playing the �ctitious play with m-recall, qm. In addition, suppose

that whenever maxa02ARmt (a
0) = 0, pmt+1(U) = 1 if t is odd and 0 if t is

even. Let t be even and let ht consist of alternating (UR) and (DR). Clearly,

Rmt (U) = Rmt (D) = 0, and Nature�s best reply is R, thus, qt+1(R) = 1. The

following play is deterministic, alternating between (UR) and (DR) forever.

6 Concluding remarks

We conclude the paper with a few remarks.

1. Why does the better-reply play of an agent with bounded recall fail to

exhibit a (nearly) optimized behavior (against Nature�s empirical play)?

For every a 2 A denote by vt(a) the one-period regret for action a,

vt(a) = u(a; !t)� u(at; !t);

and let vt = (vt(a))a2A. Since R
m
t�1 =

1
m

Pt�1
k=t�m vk, we can consider how the

11



regret vector changes from period t� 1 to period t:

Rmt = R
m
t�1 +

1

m
vt �

1

m
vt�m:

Since the play at period t is a better reply to the empirical play over time

interval t�m; : : : ; t�1, the term 1
m
vt(a) shifts the regret vector, in expectation,

towards zero, however, the term� 1
m
vt�m shifts the regret vector in an arbitrary

direction. A carefully constructed example, as in Section 5, causes the regret

vector to display a cyclical behavior.

2. The following model was introduced by Lehrer and Solan (2003). Suppose

that the agent has bounded recall m. Divide the time into blocks of size m:

the �rst block contains periods 1; : : : ;m, the second block contains periods

m+ 1; : : : ; 2m, etc. Let n(t) be the �rst period of the current block, 9 n(t) =

m dt=me+ 1. The agent�s regret for action a 2 A is de�ned by

R̂mt (a) =
1

t� n(t) + 1
Xt

�=n(t)
(u(a; !� )� u(a� ; !� )) : (4)

That is, R̂mt (a) is the agent�s average increase in payo¤ had he played a con-

stantly instead of his actual past play within in the current block. Let p� be

the Blackwell strategy (1) with better replies computed relative to (4). Clearly,

this strategy can be implemented by the agent with m-recall. However, the

agent behaves as if he remembers only the history of the current block, and

at the beginning of a new block he �wipes out� the content of his memory.

Notice that the induced probability distribution over histories within every

block is identical between blocks and equal to the probability distribution

over histories within �rst m periods in the model with a perfect-recall agent.

The Blackwell (1956)�s Approachability Theorem (which is behind the result

of Hart and Mas-Colell (2000) on the universal consistency of p�) gives the

rate of convergence of 1=
p
t, hence, within each block the agent can approach

1=
p
m-best reply to the empirical distribution of Nature�s play.

This result is a surprising contrast to the counterexample in Section 5. It shows

that an agent can achieve better average payo¤ by not using, or deliberately

forgetting some information about the past. Indeed, according to the example

presented in Section 5, if the agent uses full information that he remembers,

9 dxe denotes a number x rounded up to the nearest integer.
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the play may eventually enter the cycle with far-from-optimal behavior, no

matter with what initial history he starts.

3. Hart and Mas-Colell (2001) used a slightly di¤erent notion of better reply.

Consider an agent with perfect recall and de�ne for every period t and every

a 2 A
Dm
t (a) =

1

t

Xt

k=1
(u(a; !k)� u(ak; !k)) :

Note that Rmt (a) = [D
m
t (a)]

+. Action a is a strict better reply (to the empirical

distribution of Nature�s play) if Dm
t (a) > 0 and it is a weak better reply if

Dm
t (a) � 0. According to Hart and Mas-Colell, behavior rule p is a better-

reply rule if whenever there exist actions which are weak better replies, only

such actions are played; formally, whenever maxa2ADm
t (a) � 0,

Dm
t (a) < 0 ) pt+1(a) = 0; a 2 A:

The de�nition of a better-reply rule used in this paper is the same as Hart and

Mas-Colell�s, except that the word �weak� is replaced by �strict�; formally,

whenever maxa2ADm
t (a) > 0,

Dm
t (a) � 0 ) pt+1(a) = 0; a 2 A:

These notions are very close, and one does not imply the other. To the best

of our knowledge, all speci�c better-reply rules mentioned in the literature

satisfy both notions of better reply. It can be veri�ed that our results remain

intact with either notion.

Appendix

A-1 Proof of Lemma 1.

Let k = m�2
4
. Denote by zt the empirical distribution of play, that is, for every

(a; !) 2 A� 
, zt(a; !) is the frequency of (a; !) in the history at t,

zt(a; !) :=
1

m
jf� 2 ft�m+ 1; : : : ; tg : (a� ; !� ) = (a; !)j :

Let �t be is the frequency of play of U in the last m periods, �t = zt(U;L) +

zt(U;M) + zt(U;R).
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Fact 1. For every period t,

!t+1 =

8>>>>>>>><>>>>>>>>:

L; if �t <
1
4
;

M; if �t >
3
4
;

R; if 1
4
< �t <

3
4
:

Proof. Note that

uN(�pt;L)= zt(D,L) + zt(D,M) + zt(D,R) = 1� �t;
uN(�pt;M)= zt(U,L) + zt(U,M) + zt(U,R) = �t;

uN(�pt;R)=
3

4
:

Since Nature plays �ctitious play, at t+1 it selects !t+1 2 argmax
!2fL,M,Rg

uN(�pt; !).

Note that ties never occur, since m 2M and �t is a multiple of
1
m
, thus �t 6= 1

4

or 3
4
. �

(U,M) (D,M)

k k+1

(U,R) (D,R)
(a)

(U,M) (D,M)

k+1 k+1

(U,R) (D,R)
(b)

(U,M) (D,M)

k k

(U,R) (D,R)
(c)

(U,M)(D,M)

1 1

Fig. 3. Three forms of the (U,M)/(D,M) phase

Fact 2. Suppose that hmt 2 Hm
C such that t is the last period of the (D,R)

phase, and suppose that the (U,M)/(D,M) phase preceding the (D,R) phase

has form (a), (b) or (c), as shown in Fig. 3. Then the play for the next m=2,

m=2+1, or m=2+2 periods constitute the full cycle as shown in Fig. 2, where

phases (D,L)/(U,L) and (U,M)/(D,M) have forms 10 (a), (b) or (c).

Proof. Suppose that hmt contains m=2 (D,R)�s, preceded by the (U,M)/(D,M)

phase in form (a), (b), or (c). We shall show that the play in the next m=2 or

10 The forms of the (D,L)/(U,L) phase are symmetric to those of (U,M)/(D,M),

obtained by replacement of (U,M) by (D,L) and (D,M) by (U,L).
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m=2+1 periods constitute phase (D,L)/(U,L) in form (a), (b) or (c), followed

by m=2 (U,R)�s. Once this is established, by considering the last period of

phase (U,R) and repeating the arguments, we obtain Fact 2.

Case 1. Phase (U,M)/(D,M) preceding phase (D,R) has form (a) or (b). Note

that whether the (U,M)/(D,M) phase has form (a) or (b), hmt is the same,

since it contains only 2k + 1 � m=2 last periods of the (U,M)/(D,M) phase.
Let t be the last period of the (D,R) phase. We have �t =

k
m
< 1

4
, thus by Fact

1, !t+1 =L. Also,

Rt(U)= zt(D,L)� zt(D,M) = �zt(D,M) = �
k + 1

m
;

Rt(D)= zt(U,M)� zt(U,L) = zt(U,M) =
k

m
;

hence at+1 =D. Further, in every period t+j, j = 1; : : : ; k, (at+j; !t+j) = (D,L)

is played and (at+j�m; !t+j�m) = (U,M) disappears from the history. At period

t+ k we have

Rt+k(U)= zt+k(D,L)� zt+k(D,M) =
k

m
� k + 1

m
= � 1

m
;

Rt+k(D)= zt+k(U,M)� zt+k(U,L) = 0� 0 = 0:

There are no regrets, and therefore both (U,L) and (D,L) may occur at t+k+1.

Suppose that (D,L) occurs. Since (at+k�m; !t+k�m) = (D,M), it will disappear

from the history at t+ k + 1, so, we have

Rt+k+1(U)=
k + 1

m
� k

m
=
1

m
;

Rt+k+1(D)= 0� 0 = 0;

and (U,L) occurs in periods k + 2; : : : ; 2k + 2, until we reach �t+2k+2 =
k+1
m
>

1=4. Thus, the phase (D,L)/(U,L) has k + 1 (D,L)�s, then k + 1 (U,L)�s, i.e.,

it takes form (b). If instead at t+ k + 1 action pro�le (U,L) occurs, then

Rt+k+1(U)=
k

m
� k

m
= 0;

Rt+k+1(D)= 0�
1

m
= � 1

m
;

and, again, there are no regrets and both (U,L) and (D,L) may occur at t+1.

If (U,L) occurs, then
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Rt+k+2(U)=
k

m
� k � 1

m
=
1

m
;

Rt+k+1(D)= 0�
2

m
= � 2

m
;

and (U,L) occurs in periods k + 3; : : : ; 2k + 1, until we reach �t+2k+1 =
k+1
m
>

1=4. Thus, the phase (D,L)/(U,L) has k (D,L)�s, then k + 1 (U,L)�s, i.e., it

takes form (a). Finally, if at t+ k + 2 (D,L) occurs, then

Rt+k+1(U)=
k + 1

m
� k � 1

m
=
2

m
;

Rt+k+1(D)= 0�
1

m
= � 1

m
;

and (U,L) occurs in periods k + 3; : : : ; 2k + 2, until we reach �t+2k+2 =
k+1
m
>

1=4. Thus, the phase (D,L)/(U,L) has k (D,L)�s, then single (U,L), then single

(D,L), and then k (U,L)�s, i.e., it takes form (c).

Case 2. Phase (U,M)/(D,M) preceding phase (D,R) has form (c). Then, sim-

ilarly to Case 1, we have �t =
k
m
< 1

4
, and (D,L) is deterministically played

k + 1 times, until

Rt+k+1(U)= zt+k+1(D,L)� zt+k+1(D,M) =
k + 1

m
� k

m
=
1

m
;

Rt+k+1(D)= zt+k+1(U,M)� zt+k+1(U,L) = 0� 0 = 0:

After that, (U,L) is played in periods k+2; : : : ; 2k+2, until we reach �t+2k+2 =
k+1
m
> 1=4. Thus, the phase (D,L)/(U,L) has k + 1 (D,L)�s and then k + 1

(U,L)�s, i.e., it takes form (b).

Let t1 = t+2k+1 if the phase (D,L)/(U,L) had form (a) and t1 = t+2k+2 if

(b) or (c). Notice that at the end of the phase (D,L)/(U,L) we have zt1(U,M) =

zt1(D,M) = 0, hence

Rt1(U)= zt1(D,L)� zt1(D,M) > 0;
Rt1(D)= zt1(U,M)� zt1(U,L) < 0;

Thus, (U,R) is played for the next m=2 = 2k + 1 periods, until we reach

�t1+m=2 =
3k+2
m

> 3=4, and phase (U,M)/(D,M) begins. �
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A-2 Proof of Lemma 2.

By Lemma 1, ht0 2 Hm
C implies h

m
t 2 Hm

C for all t > t0. Let h
m
t 2 Hm

C such that

t is the period at the end of the (D,R) phase. Since the history at t contains

only (U,M)/(D,M) and (D,R) phases, we have zt(D,L) = zt(U,L) = 0. Also,

since at the end of the (D,R) phase the number of U in the history is m+2
4
, it

implies that zt(U,M) = 1
4
+ 1

2m
. Therefore,

Rt(D) = zt(U,M)� zt(U,L) = zt(U,M) =
1

4
+

1

2m
� C

For every period � , jR� (D)�R�+1(D)j � 2
m
, therefore, in periods t � j and

t + j the regret for D must be at least Rt(D) � 2j=m. Since the duration of
every cycle is at most 2m+ 2, the average regret for D during the cycle is at

least

1

2m+ 2

 
C + 2

"�
C � 2

m

�
+
�
C � 4

m

�
+ : : :+

 
C � 2(m=4� 2)

m

!#!
�

� 1

2m

 
m

2
C � 2

m

m2 � 4
32

!
� 1

32
: (5)

Let m be the limit frequency of periods where at least one of the regrets

exceeds ",

m = lim
t!1

1

t

���� 2 f1; : : : ; tg : maxa2fU,DgRm� (a) � "��� :
Clearly, m > " implies that for all large enough t

Pr(pm;qm;ht0 )
h
maxa2fU,DgR

1
t (a) � "

i
� ":

Combining (5) with the fact that m is at least as large as the average regret

for D during the cycle, we obtain m � 1=32. �

A-3 Proof of Lemma 3.

We shall prove that, regardless of the initial history, some event Hm
E � Hm

occurs in�nitely often, and whenever it occurs, the process reaches the cycle,

Hm
C , within at most 2m periods with strictly positive probability. It follows

that the process reaches the cycle with probability 1 from any initial history.
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Fact 3. Regardless of an initial state, L and M occur in�nitely often.

Proof. Suppose that M never occurs from some time on. Then at any t

Rt(U)= zt(D,L)� zt(D,M) = zt(D,L) � 0;
Rt(D)= zt(U,M)� zt(U,L) = �zt(U,L) � 0:

Case 1. zt(D,L) > 0. Suppose that L occurred last time at t�j, 0 � j � m�1.
After that Umust be played with probability 1 in every period j0 = t�j+1; : : :,
until frequency of U increases above 3

4
and, by Fact 1, Nature begins playing

M. Contradiction.

Case 2. zt(D,L) = 0, That is, the agent has no regrets, his play is de�ned

arbitrarily. By assumption (3), pmt+1(U) > 0, and thus there is a positive prob-

ability that U occurs su¢ ciently many times that the frequency of U increases

above 3
4
and M is played. Contradiction.

The proof that L occurs in�nitely often is analogous. �

Fact 4. If !t =L and !t+j =M, then j > m
2
. Symmetrically, if !t =M and

!t+j =L, then j > m
2
.

Proof. Suppose that !t =L, then by Fact 1, �t�1 <
1
4
. Clearly, it requires

j > m
2
periods to reach �t+j�1 greater than

3
4
, which is required to have

!t+j =M. The second part of the fact is proved analogously. �

Fact 5. Regardless of an initial state, the event {!t =L and there are no more

L in hmt } occurs in�nitely often.

Proof. By Fact 3, both L and M occur in�nitely often. By Fact 4, the minimal

interval of occurrence of L and M is m
2
, hence if L occurs �rst time after M,

previous occurrence of L is at least m+ 1 periods ago. �

Fact 6. Suppose that !t =L and there are no more L in the history. Then

after j < m periods we obtain 1
4
< �t+j <

1
4
+ 1

m
, and with strictly positive

probability Rt+j(U) > 0 and Rt+j(D) � 0.

Proof. We have

Rt(U)= zt(D,L)� zt(D,M);
Rt(D)= zt(U,M)� zt(U,L):
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By Fact 1, !t =L implies �t�1 <
1
4
, that is, U occurs at most k times in the

history at t� 1, thus zt(U,M) � zt�1(U,M) � k
m
.

Case 1. Rt(D) > 0 and Rt(U) > 0 Then both (D,L) and (U,L) may be played.

Since history at t� 1 does not contain L, regardless of what disappears from
the history, we have Rt(U) nondecreasing and Rt(D) nonincreasing. Thus,

with positive probability, both (D,L) and (U,L) are played for j periods, until

we obtain 1
4
< �t+j <

1
4
+ 1

m
, Rt+j(U) > 0 and Rt+j(D) � 0. Note that

j < 3
4
m+1, since by Fact 4 the interval between the last occurrence of M and

the �rst occurrence of L is at least m=2, thus after period t +m=2 there are

no M in the history, Rt+m=2(U) > 0, Rt+m=2(D) < 0, and (U,L) is played at

most k + 1 = m+2
4
times until the frequency of U becomes above 1=4.

Case 2. Rt(D) > 0, Rt(U) � 0. Then (D,L) is played for the next j0 =

(zt(D,L)� zt(D,M)) �m+1 periods. At period t+ j0 we have Rt+j0(D) > 0 and
Rt+j0(U) > 0, and proceed similarly to Case 1.

Case 3. Rt(D) � 0, Rt(U) � 0. That is, the agent has no regrets, his play

is de�ned arbitrarily. By assumption, pt+1(D) > 0, hence there is a positive

probability that (D,L) occurs for j0 = zt(D,M) � m periods which will yield

Rt+j0(U) > 0, Case 2.

Case 4. Rt(D) � 0, Rt(U) > 0. Then (U,L) is played for j = 1 or 2 periods

(depending whether (at; !t) = (D,L) or (U,L)), and we have 14 < �t+j <
1
4
+ 1
m
,

Rt+j(U) = Rt(U) > 0 and Rt+j(D) < Rt(D) � 0. �

Using Fact 6, we can now analyze the dynamics of the process. Suppose that
1
4
< �t <

1
4
+ 1

m
, Rt(U) > 0, Rt(D) � 0. Then

I. (U,R) is played in the next jUR � m
2
periods, and we obtain 3

4
< �t+jUR <

3
4
+ 1

m
. Since by now M has disappeared from the history, the regrets are

Rt+jUR(U)� zt(D,L) > 0;
Rt+jUR(D)��zt(U,L) � 0:

II. (U,M) is played for the next jUM = k + 1 periods. Since jUR + jUM �
m
2
+ k + 1 = 3k + 1, it implies that zt+jUR+jUM (U,L) � k, and
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Rt+jUR+jUM (D) = zt+jUR+jUM (U,M)� zt+jUR+jUM (U,L)

� k + 1
m

� k

m
=
1

m
> 0:

III. With positive probability, (D,M) is played for the next jDM = k + 1

periods, and, since by now L is not in the history, we have

�t+jUR+jUM+jDM =1�
jDM
m

=
3k + 1

m
<
3

4
;

Rt+jUR+jUM+jDM (U)=�zt+jUR+jUM+jDM (D,M) < 0;
Rt+jUR+jUM+jDM (D)= zt+jUR+jUM+jDM (U,M) > 0:

Notice that at period t + jUR + jUM + jDM the last m periods correspond to

phases (U,R) and (U,M)/(D,M) of the cycle (the latter is in form (b)). �
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