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Abstract

The concept of a superposition is a revolutionary novelty intro-
duced by Quantum Mechanics. If a system may be in any one of two
pure states x and y, we must consider that it may also be in any
one of many superpositions of x and y. This paper proposes an in-
depth analysis of superpositions. It claims that superpositions must
be considered when one cannot distinguish between possible paths,
i.e., histories, leading to the current state of the system. In such a
case the resulting state is some compound of the states that result
from each of the possible paths. It claims that states can be com-
pounded, i.e., superposed in such a way only if they are not orthogo-
nal. Since different classical states are orthogonal, the claim implies
no non-trivial superpositions can be observed in classical systems. It
studies the parameters that define such compounds and finds two: a
proportion defining the mix of the different states entering the com-
pound and a phase difference describing the interference between the
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different paths. Both quantities are geometrical in nature: relating
one-dimensional subspaces in complex Hilbert spaces. It proposes a
formal definition of superpositions in geometrical terms. It studies
the properties of superpositions. Keywords: Superpositions in Quan-
tum Mechanics, Geometry of Hilbert Spaces, Quantum measurements,
Measurement algebras, Quantum Logic. PACS: 02.10.-v.

1 Introduction and Previous Work

During the elaboration of [1] John von Neumann wrote to Garret Birkhoff:
“I would like to make a confession which may seem immoral: I do not be-
lieve absolutely in Hilbert space any more. After all Hilbert-space (as far as
quantum-mechanical things are concerned) was obtained by generalizing Eu-
clidean space, footing on the principle of “conserving the validity of all formal
rules”. This is very clear, if you consider the axiomatic-geometric definition of
Hilbert-space, where one simply takes Weyl’s axioms for a unitary-Euclidean
space, drops the condition on the existence of a finite linear basis, and replaces
it by a minimum of topological assumptions (completeness + separability).
Thus Hilbert-space is the straightforward generalization of Euclidean space,
if one considers the vectors as the essential notions. Now we begin to believe
that it is not the vectors which matter but the lattice of all linear (closed)
subspaces. Because:

1. The vectors ought to represent the physical states, but they do it re-
dundantly, up to a complex factor only.

2. And besides the states are merely a derived notion, the primitive (phe-
nomenologically given) notion being the qualities, which correspond
to the linear closed subspaces” (see [4], p. 59, letter dated Nov. 13,
Wednesday, 1935).

The goal of this work is to pursue von Neumann’s program of describing
Quantum Logic in terms of closed subspaces and without vectors one step
further. This work presents two original features:

• it takes a logical approach to Quantum Physics, where states and
propositions take the main roles, and
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• while it assumes the formalism of Hilbert spaces that fits Quantum
Physics it tries the utmost to use only notions, such as states, proposi-
tions, projections, orthogonality and so on, that have a meaning, albeit
mostly trivial, in Classical Physics. Special care will be taken to ensure
that the quantic principles proposed hold classically.

2 Quantum Logic

One may say that Logic is the study of the relation between states of the
world and propositions used to talk about those states. Quantum logic must
therefore be the study of the relation between quantum states and quantum
propositions. The accepted view is that both quantum states and quantum
propositions should be represented by closed subspaces of a Hilbert space.
Quantum states are one-dimensional subspaces. Quantum logic is therefore
the study of the relation between one-dimensional subspaces and arbitrary
closed subspaces. One obvious topic for Quantum logic is therefore the study
of the properties of projections in Hilbert spaces: a one-dimensional sub-
space projects onto a one-dimensional or zero-dimensional subspace of any
closed subspace. Projections are also central to Quantum physics since they
correspond to the change brought about by the measurement of a physical
property. In a previous paper [3], a first study of some of the properties of
such projections has been presented: it deals only with qualitative proper-
ties. The present paper inaugurates the quantitative study of the projective
geometry of complex Hilbert spaces.

The purpose of the exercise is to shed light on the notion of measure-
ment in Quantum Physics by developing a geometry of Hilbert spaces whose
entities are physically meaningful: states of physical systems and measure-
ments on physical systems. Our goal can be understood in considering the
history of geometry. Euclidean plane geometry was the starting point. Its
elements are points and lines. Mathematical developments (due to Descartes
in particular) enabled a treatment of geometry in the vector space Rn. A
new definition of geometry, abstracting from the vector space structure and
returning to the basic notions of points and lines, enabled the development
of non-Euclidean geometries. For Hilbert spaces, historically the algebraic
presentation came first. The purpose of this paper is to extract from the alge-
braic presentation a leaner presentation similar in spirit to Euclid’s geometry.
Our basic entities are one-dimensional subspaces and, more generally, closed
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subspaces and not vectors.
In an obvious way, two elements (vectors) of a Hilbert space define a

number, their inner product. We are looking for numbers that characterize
subspaces, not vectors. This paper proposes to associate a real number with
any pair of one-dimensional subspaces x, y: p(x, y) and, by extension, to any
pair of a one-dimensional subspace and a closed subspace α: p(x, α). This
number is always in the interval [0, 1] and behaves in many ways like the
probability that the proposition α is found true when it is tested on state x,
in line with the probabilistic interpretation of Quantum Physics. It satisfies
further properties that are more difficult to interpret and characterize the
linear dependence structure and the definition of projections.

Another numerical quantity, an angle, θ, is defined by any triple of one-
dimensional subspaces. It represents the phase difference created by two
different measurements and will be interpreted as the source of the interfer-
ence occurring between alternative paths a particle could take. This paper
is devoted to the study of those aspects of the geometry of Hilbert spaces
related to the numbers p and θ. The study of those M-algebras (see [3]) that
admit quantities satisfying the properties of p and θ is left for further study.

3 Background and Notations

We assume a Hilbert space H on the field C of complex numbers is given.
The complex conjugate of a complex number c is c̄. For any complex number
c, | c | represents its modulus, which is a nonnegative real number. For any
complex number c different from 0, arg(c) represents its complex argument:
c =|c | ei arg(c). Elements of H will typically be: ~u,~v . . .. The zero vector is
denoted by ~0. The inner product of ~u and ~v is 〈~u,~v〉. The inner product is
linear in its first argument and conjugate-linear in its second argument. Two
vectors ~u and ~v are perpendicular, written ~u ⊥ ~v, iff 〈~u,~v〉 = 0. The norm of
~u is ‖ ~u ‖. A unit-vector is a vector of norm 1.

The set of all closed subspaces of H will be denote by M . The elements
of M should be thought of representing propositions, or, results of physical
measurements. Greek letters from the beginning of the alphabet will be used
to denote elements of M . The reader may think of a typical element of M , α
as meaning the spin in the z-direction is nonnegative. Note that propositions
represent measurements with a specified result or a set of possible results:
such as measuring the value 1/2 for the spin in the z-direction or measuring
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a nonnegative value for this spin. To every α ∈M one may associate its
orthogonal complement, which will be denoted ¬α. The proposition ¬α is
interpreted as the measurement that measures the quantity measured by α
but provides a value that is not in the set specified by α. If α claims that
the spin in the z-direction is nonnegative, ¬α measures the spin along the
same direction but finds it negative. Two specific propositions are worth
mentioning: falsehood, ⊥ is the null subspace {~0} and truth, > is the whole
space H. Any closed subspace α of H defines of projection of H onto α. For
any ~u ∈ H its projection on α will be denoted α(~u). The relation between
physical measurements and projections will be explained after we discuss
states.

Among the closed subspaces of H particular attention will be paid to one-
dimensional subspaces. The set of one-dimensional subspaces of H is denoted
X and the elements of X are typically letters from the end of the alphabet:
x, y and so on. As mentioned just above: X ⊆M . Elements of X will
be called states. A one-dimensional subspace x represents a possible (pure)
state of the physical system. Think of the state in which the spin in the
z-direction is 1/2, for example. Our assumption that states are propositions.
The fact that X ⊆M reflects the situation in which every pure state has an
associated measurement that characterizes it: one may measure the spin in
the z-direction and one of the possible values is 1/2. The proposition “the
spin in the z-direction is nonnegative” is not a state.

Since a proposition α ∈ M is a closed subspace of H, for any x ∈ X, either
x ⊆ α or α contains no vector of x except the zero vector. Any proposition
is the union of the states it includes and any proposition can be seen as the
set of all the states it includes. We shall indeed prefer the notation x ∈ α to
x ⊆ α.

Note that if ~v ∈ x ∈ X and ~u ⊥ ~v then ~u ⊥ ~w for every ~w ∈ x. We denote
such a situation by ~u ⊥ x. If every ~u ∈ α is orthogonal to x we say that
x ⊥ α. If every x ∈ X, x ∈ α is orthogonal to β we say that α ⊥ β. The
image of any x ∈ X by any (projection) α ∈M is either a one-dimensional
subspace y ∈ X or the zero-dimensional subspace. This second possibility
occurs exactly when x is orthogonal to α. We shall denote by α(x) the one-
dimensional or zero-dimensional subspace that is the projection of x onto α.
Note that α(x) = x iff x ∈ α. We write α(x) = 0 to denote the case α(x) is
zero-dimensional, i.e., the case x ⊥ α. The projection of the zero-dimensional
subspace on any α is the zero-dimensional subspace and we shall extend the
action of α by setting α(0) = 0.
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In Quantum Physics measurements may change the state of the system.
The state obtained when measuring α in state x is precisely α(x), the projec-
tion of x on the subspace α. If x is orthogonal to α, then the measurement
α is impossible in state x: this happens precisely when the quantity mea-
sured by α has, in x, a well-defined value that is not in the set specified by
α. Equivalently, this happens precisely when x is in the subspace ¬α, or
(¬α)(x) = x.

4 Classical Physics

The notions described in Section 3 have been given a meaning grounded in
the Hilbert space formalism of Quantum Mechanics. This seems to preclude
their application to Classical Mechanics, since, classically, states are not rays
in a Hilbert space. Nevertheless, the common wisdom is that Quantum
Mechanics should apply everywhere and that Classical Mechanics should be
a limiting case of Quantum Mechanics. Indeed, both Classical Mechanics
and Quantum Mechanics can be studied in structures that abstract from the
definitions of Section 3, preserving the properties of states and measurements.
A full treatment is left for future work, but the following remark explains the
main feature of classical systems.

Classically, measurements do not change the state of a system, therefore
if a state x is not orthogonal to a proposition α, we have α(x) = x, expressing
the fact that either x possesses the property α or it possesses its negation
¬α. We have:

Principle of Classical Physics Any two different states are orthogonal.

5 The Reciprocity Principle

Before proceeding to an analysis of the notion of a superposition, a first
principle will be described. It states that if the measurement ¬x acting on
states y and z produces the same state, then x, y and z must sit in the same
plane, and therefore the measurement ¬y must produce the same state when
acting on x and on z.

Reciprocity Principle Let x, y, z ∈ X, be pairwise different.

Then (¬x)(y) = (¬x)(z) ⇒ (¬y)(z) = (¬y)(x).
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The Reciprocity Principle suggests the following definition.

Definition 1 We shall say that states x, y and z are coplanar, written
coplanar(x, y, z) iff either two out of the three are equal, or they are pairwise
different and (¬x)(y) = (¬x)(z).

The Reciprocity Principle says that coplanarity is a property of the set
{x, y, z}, i.e., for any permutation x′, y′, z′ of x, y, z coplanar(x′, y′, z′)
is equivalent to coplanar(x, y, z).

The Reciprocity Principle is experimentally testable: if the no answer to
a test x gives the same state when performed on y and on z, the no answer
on a test y will give the same answer on z and x.

In Hilbert space, indeed, if y and z have the same projection on the
subspace orthogonal to x, call it x′, then all four one-dimensional subspaces:
x, x′, y and z are in the same two-dimensional subspace, call it α, and
therefore the projections of z and x on the subspace orthogonal to y are both
the one-dimensional subspace of α orthogonal to y.

In Classical Physics, the Reciprocity Principle holds trivially, since its
assumptions are never satisfied. Indeed if x 6= y, we have (¬x)(y) = y, and
similarly (¬x)(z) = z and therefore the assumption implies y = z.

6 Superpositions: Conceptual Analysis

The concept of a superposition is a revolutionary novelty introduced by
Quantum Mechanics. If a system may be in any one of two pure states x and
y, we must consider that it may also be in any one of many superpositions of
x and y. This paper is devoted to an in-depth analysis of superpositions.

A remark that has resulted in a vast literature is the following: the rev-
olutionary character of quantic superpositions is the consequence of the fact
no such superpositions have to be considered, or may be seen in classical sys-
tems. In Schrödinger’s colorful thought experiment: the cat is either dead or
alive, but nobody has evidence of a superposition of a dead and a live cat.
This seems to contradict the principle exposed in Section 4, of the univer-
sality of Quantum Mechanics. If everything in the universe is quantic and
any two quantic states can be superposed, then any two classical states, such
as a live and a dead cat, can be superposed. Many explanations have been
proposed and this is not the place for a survey. Most explanations accept
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the existence of superpositions of classical states and explain why such su-
perpositions are not seen. The analysis of the superposition concept to be
developed below proposes a radically different explanation. It is not the case
that, in Quantum Mechanics, any two states can be superposed: no super-
position of orthogonal states can ever be considered. Since different classical
states are orthogonal, the only superpositions of classical states that can ever
occur are trivial: superpositions of a state with itself. Trivial superpositions
are indeed observed and unproblematic.

First, we wish to reflect on the nature of superpositions and their origin:
what are they and how do they come into consideration, without trying to
describe formally such superpositions. Then, we shall propose a formaliza-
tion.

The reader should notice that the linear combination of vectors of a
Hilbert space provides a formal operation, not a conceptual analysis, and
also that, since vectors do not represent states, the linear combination of
vectors cannot offer a proper formalization for the superpositions of states.
Even though we announced above that orthogonal states cannot be super-
posed, it is clear that orthogonal unit vectors can be combined linearly to
form unit vectors. This should convince the reader that we shall not formalize
superposition as a straightforward linear combination.

6.1 Nature and Origin

Superpositions must be considered to describe systems about which all we
know is that they are the result of one of a number of different possible paths
(or histories), i.e., if we have no way of knowing which history indeed took
place. In such a case, we must consider that the system is in some state that is
a superposition, i.e., a compound of the states that are the produced by each
of the possible paths. The term compound is used here where, chemically-
speaking, the term mixture may be more appropriate because this last term
is used in Quantum Mechanics with a different meaning.

If one knows which path has been taken, or one could discover which
path has been taken, then one must consider that the system is in the state
that results from the path taken, and one must use probability theory to
describe one’s ignorance about the state of the system. If one does not know
and cannot know which path has been taken, then one must consider that
the system is in some specific superposition of the states resulting from the
different possible paths. This is a general principle: if one cannot know which
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path has been taken, then those paths interfere and therefore the system
cannot be described using only probability theory, but must be described by
a state that is a compound, i.e., a superposition of the states resulting from
the different interfering paths. This general principle holds also in Classical
Physics, as will be seen in Section 6.3. The way in which the different paths
may interfere, i.e., the parameters that characterize the different possible
superpositions will be described in Section 6.2.

The paradigmatical example of such a situation is a the two-slits exper-
iment in which a particle travels through one of two slits and one does not
know which.

6.2 Parameters

To leave things simple we shall consider only the superpositions of two states,
without loss of generality as long as we consider only a finite number of
possible paths. Generalizing to path integrals is beyond the scope of this
paper. Suppose therefore that we must deal with a system that may result
from two different paths. If path p1 was taken, the system is in state y;
if path p2 was taken, the system is in state z. If one cannot know which
path was taken, one must consider that the system is in a state that is
some superposition of the two states y and z. Many such superpositions
are possible and the purpose of this section is to describe the experimental
parameters that influence the superposition to be used. In Section 6.3, the
question of whether we can know which path was taken will be given and
unequivocal answer.

It is natural to consider that the superposition of y and z obtained as the
result of the interference between the two paths p1 and p2 is characterized by
two parameters. The proper value to be chosen for each of those parameters
is a function of the experimental setup and of the path p1 and p2.

The first parameter, that will be denoted by r, describes the composi-
tion of the compound that is a superposition. It describes, in a sense, the
respective proportions (ratios) of y and z present in the superposition. The
parameter r is therefore a real number: 0 < r < 1 that describes the weight
of y relative to z in the superposition. We do not allow the values 0 or 1
since they do not describe a true superposition.

In the two-slits experiment, where y represents the state resulting from
the electron moving through the upper slit and z the state resulting from
the electron moving through the lower slit, the parameter r will depend on
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the respective widths of the two slits and the respective distance of those
slits to the origin. For example, if the upper slit is twice as large than the
lower one and both slits are at equal distance from the origin we shall put
r = 2/3 expressing the fact that we judge the possibility of y twice as high
as that of z. In the spin experiment, r will depend on the respective a priori
probabilities we give to each of the measurements.

The second parameter characterizing the interference between the two
paths, and therefore the superposition, is an angle ϕ, 0 ≤ ϕ < 2 π. This
angle represents the phase difference incurred in path p2 with respect with
p1. When we add or subtract angles, this has to be understood modulo 2 π.
This phase difference is determined by the experimental set-up: in a two-
slits experiment by the relative distance of the two slits to the origin and the
wavelength of the electron.

It seems to be a principle of Physics that any superposition of two states y
and z can be described with the help of those two parameters only. The only
superpositions we shall ever consider are therefore of the form super(y, z, r, ϕ)
for states y, z ∈ X and real numbers 0 < r < 1 and 0 ≤ ϕ < 2 π. The telling
notation r y + (1 − r) eiϕ z will be used in place of the more austere super(y, z, r, ϕ),
but the reader is warned that + does not mean addition, “ ” does not mean
multiplication and some of the properties one would expect from our nota-
tion do not hold. In particular the composition of superpositions does not
possess the properties suggested by the notation.

6.3 Conditions

Section 6.2 indicated that superpositions of states y and z should be consid-
ered only if there is no way to know which one of the paths p1 or p2 leading to
y and z respectively has been traveled. It is time to reflect on this condition.

If the states y and z are orthogonal: y ⊥ z, then there is a way to find out
for sure which of the two paths has been traveled: perform on the resulting
state a measurement testing whether the state is y or not: a test y, (¬y). If
path p1 has been traveled, the result will be a yes for sure since the state is
y. If path p2 has been traveled, the result, for sure, will be a no since the
state is z, orthogonal to y. Similarly, we could have tested for z or for any
proposition satisfied by one of the states y or z and orthogonal to the other
one. We see that no superposition of orthogonal states can ever be defined.
This is is stark contrast with the linear combination of vectors in a Hilbert
space.
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Further reflection shows that if the states y and z are not orthogonal, one
can never find out for sure which of the paths p1 or p2 has been traveled.
Indeed the only situation in which one could find out would be to test for
some proposition α satisfied, for sure, by one of the two states y or z and
not satisfied, for sure, by the other state. In other terms, a closed subspace
α containing one of y or z and orthogonal to the other one. But this implies
y ⊥ z. We see that:

Principle of Superposition The superposition r y + (1 − r) eiϕ z

is defined if and only if y 6⊥ z.

A list of desirable properties of superpositions will be presented now. In
Section 9 a definition of superpositions in the formalism of Hilbert spaces
will be provided, that satisfies all those desirable properties. It is a thesis of
this paper that the epistemological status of the properties below should be
considered a ground more secure than the Hilbert space apparatus. We shall
now deal, first, with trivial superpositions and, then, with a first principle
concerning generic superpositions.

6.4 Trivial Superpositions

Let us consider, first, the superpositions of a state y with itself: r y + (1 − r) eiϕ y.
By the Principle of Classical Physics, these are the only superpositions pos-
sible in classical physics.

Evidence from both classical and quantum physics shows that such su-
perpositions are trivial:

Principle of Triviality ∀y ∈ X, ∀r ∈]0, 1[, ∀ϕ ∈ [0, 2 π[, r y+(1−r) eiϕ y = y.

Having disposed of the cases y ⊥ z and y = z, let us study the generic
case of superpositions.

6.5 Principle of Coplanarity

Our first principle is that a superposition is coplanar with its components.
Assume y 6⊥ z.

Principle of Coplanarity ∀r ∈]0, 1[, ∀ϕ ∈ [0, 2 π[,
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coplanar(r y + (1 − r) eiϕ z, y, z).

This principle can be justified in the following way. The superposition
x = r y + (1 − r) eiϕ z results from our inability to know which of p1, re-
sulting in y or p2, resulting in z has been traveled. Measuring ¬y on x shows
that the path p1 has not been traveled and therefore p2 has been traveled
and the current state (¬y)(x) is in fact (¬y)(z).

The following is some kind of a converse of the principle of coplanarity.

Principle of Uniqueness If y 6= z, y 6⊥ z, x 6⊥ y, x 6⊥ z and coplanar(x, y, z),

then ∃r ∈]0, 1[, ϕ ∈ [0, 2 π[, such that x = r y + (1 − r) eiϕ z.

Moreover the r and the ϕ above are unique.
In the sequel, it will be shown that the geometry of Hilbert spaces allows

for the definition of two quantities ρ(x, y, z) and θ(x, y, z) for states x, y and
z that satisfy assumptions slightly more liberal than those of the Principle
of Superposition, such that x = ρ(x, y, z) y + (1 − ρ(x, y, z)) eiθ(x,y,z) z.

In Section 7, the quantity ρ(x, y, z) will be defined. In Section 8, the
quantity θ(x, y, z) will be defined. In Section 9, a definition of superpositions
in the formalism of Hilbert spaces will be proposed, and it will be shown that
this definition satisfies all the properties deemed desirable. In Section 10,
additional properties of superpositions will be studied.

7 Definition of ρ(x, y, z)

Given any three states x, y, z ∈ X, we shall define a real number ρ(x, y, z).
This definition will take place in three stages. First, we shall define a geo-
metrical property of two states.

7.1 The quantity a(x, y)

We shall now define the first geometric quantity we wish to consider. When
considering the geometry of Hilbert spaces it is useful to begin by reflecting
on the geometry of Euclidean spaces, about which we know much more and
have a much better intuition. Consider two lines, i.e, one-dimensional linear
(not affine) subspaces, in Rn. The only invariant characterizing their relation
is their angle. Two lines define a plane and four angles. Those four angles are
two pairs of equal angles. Therefore only two quantities are defined by two
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lines. Moreover those two angles add up to π, therefore there is essentially
only one quantity defined. One can take as the fundamental quantity either
the acute or the obtuse angle. Let us consider the acute angle as the quantity
of interest. Two lines in Euclidean space define an angle ϕ in the interval
[0, π/2]. Equivalently, they define a real number in the interval [0, 1], the
value of cos(ϕ).

The same quantity may be defined in Hilbert spaces.
Consider two states x, y ∈ X. We are trying to associate a numerical

quantity to this pair of states. The most natural thing to consider is the
inner product of two vectors contained in x and y respectively. It is very
natural to choose two unit-vectors ~u ∈ x and ~v ∈ y and consider the inner
product 〈~u,~v〉. This will not do since the quantity depends on the choice of
the unit-vectors ~u and ~v and we are looking for a quantity that depends only
on x and y. The inner product depends on the choice of the unit-vectors,
but its modulus does not. Consider therefore the quantity

a(x, y)
def
= | 〈~u,~v〉 |

for arbitrary unit-vectors ~u and ~v of x and y respectively. Any unit-vector
~u′ of x has the form: ~u′ = eiθ~u and any ~v′ of y has the form: ~v′ = eiϕ~v.
Therefore 〈~u′, ~v′〉 = ei(θ−ϕ)〈~u,~v〉, and | 〈~u′, ~v′〉 | = | 〈~u,~v〉 |.

The following is easily proved.

Lemma 1 For any x, y ∈ X:

1. a(x, y) is a real number of the interval [0, 1],

2. a(x, y) = 1 iff x = y,

3. a(x, y) = 0 iff x ⊥ y,

4. a(y, x) = a(x, y).

7.2 Similarity: the quantity p

It turns out that the square of the quantity a(x, y), akin to the cos2 of an
angle has even more remarkable properties.

Definition 2 Given any states x, y ∈ X, we shall define their similarity
p(x, y) by

p(x, y) = a2(x, y).
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The quantity p will be called similarity because it measures how similar,
i.e., close, are its arguments x and y. Its physical interpretation is straight-
forward: p(x, y) is the probability that, when, on state x, one tests whether
y is the case, one gets a positive answer. With probability 1 − p(x, y) one
gets the the answer that y is not the case. This physical interpretation is the
reason p = a2 and not a has been chosen as the quantity of reference. Note
that p can be directly obtained experimentally. Below, we shall extend the
definition of p to measure the similarity between any state x ∈ X and any
proposition α ∈M , i.e., the degree to which state x satisfies proposition α.

A straightforward result on Hilbert spaces will be recalled now.

Lemma 2 Let ~u,~v ∈ H. Assume ~v is a unit-vector and ~v ∈ x ∈ X. Then
the projection x(~u) of ~u on x is 〈~u,~v〉~v.

Proof: ~u− 〈~u,~v〉~v is indeed orthogonal to ~v and therefore to x.

First properties of p are described in the following.

Lemma 3 For any x, y ∈ X:

1. p(x, y) is a real number in the interval [0, 1],

2. p(x, y) = 1 iff x = y,

3. p(x, y) = 0 iff x ⊥ y,

4. p(y, x) = p(x, y),

5. for any unit-vector ~u ∈ x, p(x, y) = 〈~u, y(~u)〉 where y(~u) is the projec-
tion of ~u on y,

6. for any unit-vector ~u ∈ x, p(x, y) = ‖y(~u)‖2.

Proof: For 5, note that for any unit-vector ~v of y, we have, by Lemma 2,
y(~u) = 〈~u,~v〉 ~v, and therefore 〈~u, y(~u)〉 = 〈~u,~v〉 〈~u,~v〉 = | 〈~u,~v〉 |2. Note
that this implies that the inner product 〈~u, y(~u)〉 is a real number. For 6, note
that projections are Hermitian and idempotent, and therefore 〈y(~u), y(~u)〉 =
〈~u, y(y(~u))〉 = 〈~u, y(~u)〉.

The next result is central. It shows that, for states of any given proposi-
tion α, the projection on α is determined by the p-structure.

Theorem 1 For any proposition α ∈M and any states x, y ∈ X, if x 6⊥ α
and y ∈ α then p(x, y) = p(x, α(x)) p(α(x), y).
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Proof: Let ~u be a unit-vector of x. Since y ∈ α, the projection of any vector
on y can be obtained by projecting the vector first on α and then projecting
the result on y. In particular, y(~u) = y(α(~u)). Therefore

p(x, y) =‖y(~u)‖2=‖y(α(~u))‖2 / ‖α(~u))‖2 / : × ‖α(~u)‖2

Let ~v = α(~u)/ ‖α(~u‖. Notice that ~v is a unit-vector of α(x) and therefore

p(x, y) =‖~v ‖2 × ‖α(~u)‖2= p(α(x), y) × p(x, α(x))

since α(~u) is the projection of ~u on α(x), and by Lemma 3.

The following shows that the action of projections can be read of the
similarity p.

Corollary 1 For any proposition α ∈M and any state x ∈ X, if x 6⊥ α then
α(x) is the unique state y of α on which the value of p(x, y) is maximal.

In short, there is a unique state of α that is most similar to x, this is x’s
projection on α.
Proof: By Theorem 1, since p(α(x), y) ≤ 1 by Lemma 3, p(x, y) ≤ p(x, α(x))
for any y ∈ α.

For uniqueness, suppose y ∈ α and p(x, y) = p(x, α(x)). By Theorem 1,
p(x, α(x)) = p(x, α(x)) p(α(x), y). Since x is not orthogonal to α, p(x, α(x)) > 0
and therefore p(α(x), y) = 1 and α(x) = y.

It is now only natural to extend the definition of p to an arbitrary propo-
sition as second argument. For any x ∈ X and α ∈M , we define p(x, α) in
the following way:

• p(x, α) = 0 if x ⊥ α, and

• p(x, α) = p(x, α(x)) otherwise.

The following is known, in Physics, as Born’s rule. The quantity p(x, α)
is the probability of measuring the property α in state x.

Lemma 4 For any state x ∈ X and any proposition α ∈M , if ~u 6= ~0 ∈ x,
p(x, α) =‖ α(~u) ‖2 / ‖ ~u ‖2.

The proof is obvious. The following is an obvious consequence of Corollary 1.

Corollary 2 For any state x and any proposition α, x ∈ α iff α(x) = x iff
p(x, α) = 1.
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The next two sections prove additional properties of the quantity p. Sec-
tion 7.3 shows that, for any given x and different α’s, p(x, α) behaves very
much as a probability on the propositions. Exactly so, for propositions that
commute as projections. Section 7.4 proves an intriguing inequality that
provides a numerical strengthening of the Interference property of [3]. Sec-
tion 7.3 and 7.4 are mainly technical and can be skipped without conceptual
harm.

7.3 Similarity as probability

The following results will show that, for any fixed x ∈ X, the quantities
p(x, α) for different measurements α play the role of a probability on the
propositions. For any two propositions α, β ∈M we shall define, as tradi-
tional since [1], their conjunction α ∧ β as their intersection α ∩ β (note the
intersection of closed subspaces is a closed subspace) and their disjunction
α ∨ β as the topological closure of their linear sum: cl(α + β). Note that
these notations are inconsistent with those of [3] where conjunction and dis-
junction were defined only for commuting propositions. We shall demonstrate
a particular interest in commuting propositions. For the sake of obtaining a
straightforward definition of commutation, we shall extend our notation for
projections.

Definition 3 Let α, β ∈M be two propositions. We shall say that α and β
commute iff for any x ∈ X α(β(x)) = β(α(x)).

Lemma 5 Any two propositions α, β ∈M commute iff there are three pair-
wise orthogonal propositions γi, i = 1, . . . , 3 such that α = γ1 ∨ γ2 and β =
γ1 ∨ γ3.

Note that one of the propositions γi may be the falsehood ⊥.
Proof: The if claim is obvious. The only if claim follows from the fact that
projections are Hermitian and that Hermitian operators commute iff they
have a joint basis of eigenvectors.

Corollary 3 For any α, β ∈ X, if α ⊆ β or α ⊥ β, then α and β commute.

Proof: In the first case, take γ1 = α, γ2 = ⊥ and γ3 = ¬α ∧ β. In the second
case, take γ1 = α, γ2 = ⊥ and γ3 = β.
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Corollary 4 For any α, β ∈ X, if α and β commute then ¬α and β com-
mute.

Proof: Let α = γ1 ∨ γ2 and β = γ1 ∨ γ3. Then ¬α = ¬γ1 ∧ ¬γ2. Since
γ3 ⊆ ¬α, we have, by the orthomodular property, ¬α = γ3 ∨ ¬γ1 ∧ ¬γ2 ∧ ¬γ3.
But β = γ3 ∨ γ2 and γ2 ⊥ ¬γ1 ∧ ¬γ2 ∧ ¬γ3.

First, we shall consider disjunctions of orthogonal propositions.

Lemma 6 If α ⊥ β then, for any x ∈ X, p(x, α ∨ β) = p(x, α) + p(x, β).

Proof: Consider any ~u 6= ~0 ∈ x. Now (α ∨ β)(~u) = α(~u) + β(~u) (see [2] The-
orem 2, page 46). Therefore 〈~u, (α ∨ β)(~u)〉 = 〈~u, α(~u)〉+ 〈~u, β(~u)〉.

Corollary 5 If αi is a family of pairwise orthogonal measurements, then for
any x ∈ X we have p(x,

∨

i∈I αi) =
∑

i∈I p(x, αi).

Proof: By induction on the size of I, and associativity of disjunction.

The following lemmas are fundamental characteristics of probabilities.

Lemma 7 For any α ∈M and any x ∈ X: p(x, α) + p(x,¬α) = 1.

Proof: By Lemma 6, p(x, α) + p(x,¬α) = p(x, α ∨ ¬α). But α ∨ ¬α = >
and therefore (α ∨ ¬α)(x) = x and, by Corollary 2, p(x, α ∨ β) = 1.

Lemma 8 For any α ∈M and any x ∈ X: 0 ≤ p(x, α) ≤ 1.

Proof: By Lemmas 4 and 7.

Lemma 9 Let α, β ∈M be any commuting measurements. For any x ∈ X
p(x, α ∨ β) = p(x, α) + p(x, β) − p(x, α ∧ β).

Proof: We know that α ∨ β = (α ∧ β) ∨ (α ∧ ¬β) ∨ (¬α ∧ β). The three
parts of the disjunction above are pairwise orthogonal, therefore Corollary 5
implies that p(x, α ∨ β) = p(x, α ∧ β)+ p(x, α ∧ ¬β)+ p(x,¬α ∧ β). But, by
Lemma 6: p(x, α ∧ β)+ p(x, α ∧ ¬β) = p(x, α) and p(x, α ∧ β)+ p(x,¬α ∧ β) =
p(x, β).

The lemmas above dealt mostly with the properties of disjunction. The next
result concerns conjunction and parallels the consideration of conditional
probabilities.
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Lemma 10 Let α, β ∈M be any commuting measurements. For any x ∈ X:
p(x, α ∧ β) = p(x, α) p(α(x), β).

Proof: Since α ∧ β = α ◦ β, by the definition of p, taking any ~u 6= ~0 ∈ x:

p(x, α∧β) =
‖ (α ◦ β)(~u) ‖2

‖ ~u ‖2
=

‖ (α ◦ β)(~u) ‖2

‖ α(~u) ‖2

‖ α(~u) ‖2

‖ ~u ‖2
= p(α(x), β) p(x, α).

Corollary 6 Let α, β ∈M be any measurements such that α ≤ β. Then for
any x ∈ X, p(x, α) ≤ p(x, β).

Proof: If α ≤ β, the two measurements commute and α = β ∧ α. By Lemma 10,
then p(x, α) = p(x, β) p(β(x), α) ≤ p(x, β) by Lemma 8.

Corollary 7 Let α, β ∈M be any commuting measurements. Then for any
x ∈ X, p(x, β) = p(x, α) p(α(x), β) + p(x,¬α) p((¬α)(x), β).

Proof: Since α and β commute, by Theorem 1 of [3], β = (α ∧ β) ∨ (¬α ∧ β).
By Lemma 6 we have: p(x, β) = p(x, α ∧ β) + p(x,¬α ∧ β). We conclude,
by Lemma 10, that p(x, β) = p(x, α) p(α(x), β) + p(x,¬α) p((¬α)(x), β).

In Corollary 7 one cannot omit the requirement that α and β commute.
The consideration of a two-dimensional Euclidean space where α is the x-
axis and x makes an angle θ with the x-axis is sufficient. If β is x, then
p(x, β) = 1 whereas p(x, α) = cos2(θ) = p(α(x), β) and p(x,¬α) = sin2(θ) =
p((¬α)(x), β). Also taking β orthogonal to x gives p(x, β) = 0 and p(x, α) =
cos2(θ) = p((¬α)(x), β) and p(x,¬α) = sin2(θ) = p(α(x), β). Nevertheless
the result holds in the following case.

Lemma 11 For any x ∈ X and any α, β ∈M such that α(x) ∈ β and (¬α)(x) ∈ β,
one has

p(x, β) = p(x, α) p(α(x), β) + p(x,¬α) p((¬α)(x), β) = 1.

Proof: By assumption both α(x) and (¬α)(x) are subspaces of β. Given any
~u ∈ x, both α(~u) and (¬α)(~u) are in β. But β is a subspace and therefore
α(~u) + (¬α)(~u) = ~u ∈ β.
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Lemma 12 For any x ∈ X and any α, β ∈M such that (α ◦ β)(x) = (β ◦ α)(x),
we have p(x, β) = p(x, α) p(α(x), β) + p(x,¬α) p((¬α)(x), β).

Proof: Assume that (α ◦ β)(x) = (β ◦ α)(x). By Lemma 4, (¬α ◦ β)(x) =
(β ◦ ¬α)(x). Take any ~u 6= ~0 ∈ x. Then,

p(x, β) = ‖ β(~u) ‖2 / ‖ ~u ‖2 = ‖ α(β(~u))) + (¬α)(β(~u)) ‖2 / ‖ ~u ‖2 =

‖ α(β(~u))) ‖2 / ‖ ~u ‖2 + ‖ (¬α)(β(~u)) ‖2 / ‖ ~u ‖2 =

‖ β(α(~u))) ‖2 / ‖ ~u ‖2 + ‖ (β)((¬α)(~u)) ‖2 / ‖ ~u ‖2 =

‖ β(α(~u)) ‖2

‖ α(x) ‖2

‖ α(x) ‖2

‖ ~u ‖2
+

‖ (β)((¬α)(~u)) ‖2

‖ (¬α)(x) ‖2

‖ (¬α)(x) ‖2

‖ ~u ‖2
=

p(α(x), β) p(x, α) + p((¬α)(x), β) p(x,¬α).

7.4 An inequality

The next result strengthens the Interference property of [3] by presenting a
quantitative version of the principle.

Theorem 2 For any α, β ∈M and any x ∈ X such that α(x) = x,

p(x, β) (1 − p(β(x), α))2 ≤ p(β(x), α) (1 − p(α(β(x)), β))

Note that, by Theorem 1, p(x, β) ≤ p(β(x), α) but (1 − p(β(x), α)) ≥ (1 − p(β(x), α)).
The fact that the quantity 1 − p(β(x), α) appears squared seems inevitable.
An examination of R3 shows that it may be the case that p(x, β) (1 − p(β(x), α)) >
p(β(x), α)(1 − p(α(β(x)), β)).
Proof: Assume ~t 6= ~0 ∈ x. Let ~u = β(~t), ~v = α(~u) and ~w = β(~v).

In a first step we want to show that:

‖ ~u− ~v ‖2= 〈~t , ~v − ~w〉.

Indeed: ‖ ~u− ~v ‖2= 〈~u− ~v , ~u− ~v〉 = 〈~u , ~u− ~v〉− 〈~v , ~u− ~v〉. But the
last term is null since ~u− ~v is orthogonal to α in general and in particular
to ~v. We have:

‖ ~u− ~v ‖2= 〈~u , ~u− ~v〉.
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But ~t− ~u is, similarly, orthogonal to ~u and 〈~u , ~u〉 = 〈~t , ~u〉. Since ~u− ~v is
orthogonal to ~t, 〈~t , ~u〉 = 〈~t , ~v〉. We have:

‖ ~u− ~v ‖2= 〈~t , ~v〉 − 〈~u ,~v〉.

Again, ~v − ~w is orthogonal to ~u and therefore: 〈~u ,~v〉 = 〈~u , ~w〉 and ~t− ~u is
orthogonal to ~w and we have: 〈~u , ~w〉 = 〈~t , ~w〉. Therefore:

‖ ~u− ~v ‖2= 〈~t , ~v〉 − 〈~t , ~w〉 = 〈~t , ~v − ~w〉.

By Cauchy-Schwarz therefore we have:

‖ ~u− ~v ‖2 ≤ ‖ ~t ‖ ‖ ~v − ~w ‖ .

and:
‖ ~u− ~v ‖4 ≤ ‖ ~t ‖2 ‖ ~v − ~w ‖2 .

But: ‖ ~u ‖2= ‖ ~v ‖2 + ‖ ~u− ~v ‖2, and ‖ ~v ‖2= ‖ ~w ‖2 + ‖ ~v − ~w ‖2. There-
fore we have:

(‖ ~u ‖2 − ‖ ~v ‖2)2 ≤ ‖ ~t ‖2 (‖ ~v ‖2 − ‖ ~w ‖2).

and
‖ ~u ‖2

‖ ~t ‖2
(1 − ‖ ~v ‖2

‖ ~u ‖2
)2 ≤ ‖ ~v ‖2 − ‖ ~w ‖2

‖ ~u ‖2
,

p(x, β) (1 − p(β(x), α))2 ≤ ‖ ~v ‖2

‖ ~u ‖2
(1 − ‖ ~w ‖2

‖ ~v ‖2
).

We conclude that:

p(x, β) (1 − p(β(x), α))2 ≤ p(β(x), α) (1 − p(α(β(x)), β)).

Theorem 2 is a quantitative strengthening of the Interference property
of projections in Hilbert spaces that plays a central role in the definition
of an M-algebra [3]. Indeed, assuming that x ∈ α, if α(β(x)) ∈ β, then,
by Corollary 2, p(α(β(x)), β) = 1 and by Theorem 2, either p(x, β) = 0 or
p(β(x), α) = 1. In both cases we have p(β(x), α) = 1 and, by Corollary 2,
β(x) ∈ α.
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7.5 The quantity ρ(x, y, z)

The stage is now set for the definition of the quantity ρ(x, y, z) announced in
the principle of superposition. Very naturally ρ(x, y, z) measures the relative
similarity of x to y and z respectively.

Definition 4 For any x, y, z ∈ X define

ρ(x, y, z) = p(x, y)/(p(x, y) + p(x, z)).

The following is obvious by Lemma 3.

Lemma 13 If x 6⊥ y and x 6⊥ z, then 0 < ρ(x, y, z) < 1.

Lemma 14 For any x, y, z ∈ X ρ(x, z, y) = 1 − ρ(x, y, z).

In relation with the principle of superposition, we shall consider quantities
ρ(x, y, z) only for states such that coplanar(x, y, z) and y 6⊥ z, but the defi-
nition of ρ above can be used for any triple of states. It is only the definition
of the quantity θ(x, y, z) below that requires that y and z be non-orthogonal.

8 Phases for Triangles: the quantity θ(x, y, z)

We may now proceed to the definition of a second geometric quantity relating
three states: θ(x, y, z). This quantity does not seem to have been studied
previously.

In section 7.1 a quantity was attached to any pair of states. This quantity
was the modulus of some inner product. It seems natural that the argument
of a similar inner product represents another important geometrical quantity.
But, clearly some thinking must be done to define, out of such an argument,
a quantity that does not depend on the vectors chosen, but only on states.
A new quantity, θ(x, y, z), an angle in the interval [0, 2π] will be attached
to triples of states. This quantity can be defined only if no two of the three
states x, y and z are orthogonal. Under such a condition, if y 6= z and
coplanar(x, y, z), the quantity θ(x, y, z) should be understood in the following
way. The state x is a superposition of y and z in which the phase difference
is θ(x, y, z), i.e., x = ry + (1 − r)eiϕz for some r ∈]0, 1[, with ϕ = θ(x, y, z).
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Definition 5 Let x, y, z ∈ X be such that x 6⊥ y, y 6⊥ z and z 6⊥ x. We shall
define θ(x, y, z) in the following way. Choose arbitrary unit-vectors ~u, ~v and
~w in x, y and z respectively and let:

θ(x, y, z) = arg(〈~u,~v〉) + arg(〈~v, ~w〉) + arg(〈~w, ~u〉).

Note that each of those three inner products is different from zero, by
assumption, and therefore the three complex arguments are well-defined.

We need to justify the definition by showing that the quantity θ(x, y, z)
depends only on x, y and z and does not depend on the vectors ~u, ~v and ~w.
For example, the definition is independent of the vector ~u chosen in x since
any unit-vector ~s of x has the form ~s = eiϕ~u for some ϕ ∈ [0, 2π]. Had we
used ~s instead of ~u we would have obtained:

arg(〈eiϕ~u,~v〉) + arg(〈~v, ~w〉) + arg(〈~w, eiϕ~u〉) =

arg(eiϕ〈~u,~v〉) + arg(〈~v, ~w〉) + arg(e−iϕ〈~w, ~u〉) =

ϕ+ arg(〈~u,~v〉) + arg(〈~v, ~w〉) − ϕ + arg(〈~w, ~u〉).
A similar line shows that the choice of none of ~v or ~w influences θ(x, y, z).

We shall now prove some properties of θ. First, θ(x, y, z) is invariant
under a circular permutation of the arguments and antisymmetric under
transpositions.

Lemma 15 For any generic states x, y and z, we have: θ(y, z, x) = θ(x, y, z),
θ(x, z, y) = −θ(x, y, z) and θ(x, y, w) = θ(x, y, z) + θ(x, z, w) + θ(z, y, w).

Proof: Obvious.

The behavior of θ under (planar) orthogonal complements is also antisym-
metric.

Lemma 16 Assume x, y, z ∈ X are states no two of them are equal and
no two of them are orthogonal and such that coplanar(x, y, z). Let x′ =
(¬x)(y) = (¬x)(z), y′ = (¬y)(z) = (¬y)(x) and z′ = (¬z)(x) = (¬z)(y).
Then θ(x′, y′, z′) = −θ(x, y, z).

Proof: Choose an arbitrary unit-vector ~u in x. Let ~v be the unit-vector of
y such that 〈~u,~v〉 > 0. Let ~u′ be the unit-vector of x′ such that 〈~v, ~u′〉 > 0.
Let us have ~v = r1~u+ r2~u

′ for positive real numbers ri, i = 1, 2. The vector
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r2~u− r1~u
′ is a unit-vector in y′. Let ~v′ = r2~u− r1~u

′. Let ~w be the unit-vector
of z such that 〈~u, ~w〉 > 0. Let ~w = r3~u+ r4e

iϕ~u′ for positive ri’s i = 3, 4 and
some angle ϕ. Let ~w′ = r4e

−iϕ~u− r3~u
′, a unit vector of z′.

We see that:

θ(x, y, z) = arg(〈~u,~v〉) + arg(〈~v, ~w〉) + arg(〈~w, ~u〉) = 0 + arg(〈~v, ~w〉) + 0.

and

θ(x′, y′, z′) = arg(〈~u′, ~v′〉)+arg(〈~v′, ~w′〉)+arg(〈~w′, ~u′〉) = π+arg(〈~v′, ~w′〉)+π.

We are left to show that arg(〈~v′, ~w′〉) = − arg(〈~v, ~w〉). In fact, we shall
show that 〈~v′, ~w′〉 = 〈~w,~v〉. Indeed, 〈~v′, ~w′〉 = r2r4e

iϕ + r1r3 and 〈~w,~v〉 =
r1r3 + r2r4e

iϕ.

9 Formal Definition of Superpositions

We shall now present the definition of the superposition r y + (1 − r) eiϕ z.
The definition is not straightforward.

Definition 6 We shall now define the state r y + (1 − r) eiϕ z, for any r ∈]0, 1[,
any ϕ ∈ [0, 2 π[, any y, z ∈ X such that y 6⊥ z.

If y = z, let r y + (1 − r) eiϕ z = y.
Suppose now that y 6= z. Choose some arbitrary unit-vector ~v in y. Since

y 6⊥ z, there is a unique unit-vector ~w of z such that 〈~v, ~w〉 > 0. Let z ′ be
the one-dimensional subspace orthogonal to z in the two-dimensional subspace
generated by y and z: z′ = (¬z)(y). Since z 6= y, z′ 6⊥ y. Let, then, ~w′ be the
unique unit-vector of z′ such that 〈~v, ~w′〉 > 0. Let y′ be the one-dimensional
subspace orthogonal to y in the two-dimensional subspace generated by y and
z: y′ = (¬y)(z). Since y 6= z, we have y′ 6⊥ z. Let, then, ~v′ be the unique
unit-vector of y′ such that 〈~w,~v′〉 > 0. In summary, the following inner
products are positive real numbers: 〈~v, ~w〉, 〈~v, ~w′〉 and 〈~v′, ~w〉. Define, now:

~u =
√

1 − r ~v′ +
√
r eiϕ ~w′.(1)

Note that ~u 6= ~0 since ~v′ and ~w′ are linearly independent and one at least
(in fact both) of r or 1 − r is different from zero. We may now define
r y + (1 − r) eiϕ z to be the one-dimensional subspace generated by ~u.
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Note that this definition would not square well with a convention that
1 y + 0 eiϕ z = y, since ~u approaches ~w′, i.e., a state orthogonal to z and not
the state y for r approaching 1. This is the reason we do not hold such a
convention.

Lemma 17 Under the assumptions of Definition 6, one has 〈~v ′, ~w′〉 = −
√

p(y, z).

Proof: We know that ~v = r1 ~w + r2 ~w
′ for some real positive numbers r1,

r2. The unit vector ~v′ is orthogonal to ~v in the two-dimensional subspace
spanned by ~w and ~w′. Since langle~v′, ~w〉 > 0, we have ~v′ = r3 ~w + r4e

iϕ ~w′

for positive numbers r3, r4 and some angle ϕ. We have r1r3 + r2r4e
iϕ = 0.

Therefore r3 = r2, r4 = r1 and ϕ = π. We see that 〈~v′, ~w′〉 = −r4 = −r1 =

−〈~v, ~w〉 = −
√

p(y, z).

10 Properties of Superpositions

The following summarizes properties of superpositions that were discussed
above.

Lemma 18 For any y, z ∈ X such that y 6⊥ z and y 6= z and for any r ∈]0, 1[,
ϕ ∈ [0, 2 π[, if x = r y + (1 − r) eiϕ z then

1. coplanar(x, y, z) (Principle of Coplanarity),

2. x 6⊥ y and x 6⊥ z,

3. ρ(x, y, z) = r, and

4. θ(x, y, z) = ϕ.

Proof: Let ~y′ and ~z′ be the one-dimensional spaces containing ~v′ and ~w′ re-
spectively. From Equation 1 one sees that coplanar(x, y ′, z′). Since coplanar(y′, y, z)
and coplanar(z′, y, z), we have coplanar(x, y, z).

For (2), note that ~u cannot be co-linear with ~v ′ since r > 0. But coplanar(x, y, z)
and coplanar(y′, y, z) then implies that x 6⊥ y. Similarly x 6⊥ z since r < 1.

Let us evaluate p(x, y). Let a = ‖ ~u ‖2. We have, by Lemma 3: p(x, y) =
‖ y(~u) ‖2 / a. But y(~u) = y(

√
1 − r ~v′) + y(

√
r eiϕ ~w′) =

√
r eiϕ y( ~w′). There-

fore p(x, y) = r ‖ y( ~w′) ‖2 / a = r p(z′, y) / a. Similarly: p(x, z) = (1 − r) p(y′, z) / a.
But p(z′, y) = p(y, z′) = 1 − p(y, z) by Lemma 7 since z′ = (¬z)(y). Sim-
ilarly: p(y′, z) = 1 − p(z, y). We see that p(x, y) = r (1 − p(y, z)) / a and
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p(x, y) + p(x, z) = (r (1 − p(y, z)) + (1 − r) (1 − p(y, z))) / a = (1 − p(y, z)) / a.
Therefore p(x, y)/(p(x, y) + p(x, z)) = r. We conclude that ρ(x, y, z) = r.

To compute θ(x, y, z), consider the vectors ~u, ~v and ~w of x, y and z
respectively. Since, by construction, arg(〈~v, ~w〉) = 0, we have: θ(x, y, z) =
arg(〈~u,~v〉) + arg(〈~w, ~u〉). But 〈~u,~v〉 = 〈

√
1 − r eiϕ ~w′, ~v〉 =

√
1 − r eiϕ〈 ~w′, ~v〉.

Since this last inner product is strictly positive, as is
√

1 − r, arg(〈~u,~v〉) = ϕ.
We have: 〈~w, ~u〉 = 〈~w,√r ~v′〉 > 0. Therefore arg(〈~w, ~u〉) = 0.

Lemma 19 Let x, y, z ∈ X such that y 6= z, x 6⊥ y, y 6⊥ z, z 6⊥ x and such
that coplanar(x, y, z), then x = ρ(x, y, z) y + (1 − ρ(x, y, z)) eiθ(x,y,z) z.

Proof: Choose ~v, ~v′, ~w and ~w′ such as in Definition 6: unit vectors, ~v ∈ y,
~w ∈ z, y′ = (¬y)(z), z′ = (¬z)(y). Take ~t to be any non-zero vector of x.
Since coplanar(x, y′, z′) and x 6= y′, x 6= z′, there are real numbers ri ∈]0, 1[,
ψi ∈ [0, 2 π[, for i = 1, 2 such that ~t = r1 e

iψ1 ~v′ + r2 e
iψ2 ~w′. The vector ~s =

1/
√

r2
1 + r2

2 e
−iψ1 ~t is a non-zero vector of x. But, if we let r = r2

2/
√

r2
1 + r2

2, we

have: ~s =
√

1 − r ~v′ +
√
r ei(ψ2−ψ1) ~w′ and therefore x = r y + (1 − r) ei(ψ2−ψ1) z.

By Lemma 18, now, r = p(x, y) + (p(x, y) + p(x, z)) and ψ2 − ψ1 = θ(x, y, z).

The following shows that any state is a non-trivial superposition of itself
and any other, non-orthogonal, state.

Corollary 8 Let y, z ∈ X such that y 6⊥ z. Then y = ry + (1 − r)z for r =
1/(p(y, z) + 1).

Proof: If y = z, by the definition of trivial superpositions. If y 6= z, by
Lemma 19 since ρ(y, y, z) = 1/(1 + p(y, z)) and θ(y, y, z) = 0.

We shall now evaluate p(r y + (1 − r) eiϕ z, x). First, we need to evaluate
the norm of the vector ~u of equation (1).

‖ ~u ‖2= 〈
√

1 − r ~v′ +
√
r eiϕ ~w′,

√
1 − r ~v′ +

√
r eiϕ ~w′〉 =

(1 − r) +
√

r(1 − r)e−iϕ〈~v′, ~w′〉 +
√

r(1 − r)eiϕ〈~w′, ~v′〉 + r

But, by construction there are r1, r2 > 0 such that ~v = r1 ~w + r2 ~w
′. Since

〈~v′, ~w〉 > 0, we have ~v′ = r2 ~w − r1 ~w
′. Therefore 〈~v′, ~w′〉 = −r1 = −

√

p(y, z).
We conclude that:

‖ ~u ‖2= 1 − 2 cosϕ
√

r(1 − r)p(y, z).

Notation: ω(r, y, z, ϕ) = 1/

√

1 − 2 cosϕ
√

r(1 − r)p(y, z).
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Lemma 20 For any x, y, z ∈ X, y 6⊥ z, for any r ∈]0, 1[, ϕ ∈ [0, 2π[, we
have:

p(r y + (1 − r) eiϕ z, x) =

ω(r, y, z, ϕ)2 | (
√

(1 − r)(1 − p(x, y)) +
√

r(1 − p(x, z))ei(ϕ−θ(x,y
′,z′)) |2 .

Proof: We shall write ω for ω(r, y, z, ϕ). Let ~u =
√

1 − r~v′ +
√
reiϕ ~w′. The

vector ω ~u is a unit-vector of r y + (1 − r) eiϕ z. Let ~t be the unique unit vec-
tor of x such that 〈~v′,~t〉 > 0. We have: 〈ω~u,~t〉 = ω(

√
1 − r〈~v′,~t〉 +

√
reiϕ〈~w′,~t〉).

But 〈~v′,~t〉 =
√

p(y′, x). Also

θ(x, y′, z′) = arg(〈~t, ~v′〉) + arg(〈~v′, ~w′〉) + arg(〈~w′,~t〉)

and 〈~v′, ~w′〉 = −
√

p(y, z) by Lemma 17. Therefore

θ(x, y′, z′) = π + arg(〈~w′,~t〉) = − arg(〈~w′,~t〉).

We conclude that:
p(r y + (1 − r) eiϕ z, x) =

| ω(
√

(1 − r)(1 − p(x, y)) +
√

r(1 − p(x, z))ei(ϕ−θ(x,y
′,z′))) |2 .

The expression found could be more elegant if we knew how to express
θ(x, y′, z′) in terms of θ(x, y, z). Unfortunately simple considerations show
that θ(x, y′, z′) is not determined by θ(x, y, z). In view of Lemma 16 it is
enough to show that θ(x′, y, z) is not determined by θ(x, y, z). Consider ~v
and ~v′ orthogonal unit vectors. Then ~u = 1/

√
2(~v + ~v′) is a unit vector. The

vector ~u′ = 1/
√

2(~v − ~v′) is a unit vector orthogonal to ~u. Let ~w = r1~v + r2~v
′

be a unit vector with r1, r2 > 0. If we take for x, y and z the one-dimensional
subspaces spanned by ~u, ~v and ~w respectively, we have θ(x, y, z) = 0. We also
have, using ~u′, θ(x′, y, z) = arg(1/

√
2(r1 − r2)). Take, first, r1 > r2, we then

have θ(x, y, z) = 0 = θ(x′, y, z). But if we take r1 < r2, we have θ(x, y, z) = 0
and θ(x′, y, z) = π. We see that θ(x′, y, z) is not determined by θ(x, y, z).

11 Superp-structures and their mappings

It is a thesis of this paper that the structure of superpositions is the funda-
mental structure of Hilbert spaces that is meaningful for Quantum Physics.
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To support this thesis one should, now, analyze the fundamental construc-
tions used in Quantum Physics, such as tensor products and quotients as
universal, i.e., categorical constructions in the category of superposition pre-
serving mappings. Such an analysis has not been performed yet. One pre-
liminary step must be the proper definition of the category of superposition
structures and their superposition preserving mappings. This paper does
not provide for a proper definition of such a category, whose objects must
include both structures defined by Hilbert spaces, studied here, and classical
structures in which any two distinct states are orthogonal, and all structures
in-between.

We shall, therefore, consider only superposition structures defined by
some Hilbert space. A more general definition abstracting from Hilbert
spaces and based on the properties of the quantities ρ and θ is left for future
work.

Definition 7 For any Hilbert space H on the complex field, the set of its
one-dimensional subspaces X together with the operation of superposition
associating an element r y + (1 − r) eiϕ z of X with any quadruple y, z ∈ X,
r ∈]0, 1[ and any ϕ ∈ [0, 2 π[ such that y 6⊥ z is called a superp-structure.
We shall, in the sequel, and without harm, denote by X the superp-structure
above, forgetting to give an explicit name to the superposition operation. A
superp-morphism f between two superp-structures X and Y is a function
f : X −→ Y that preserves superpositions, i.e., such that for any y, z ∈ X,
such that y 6⊥ z and for any r ∈]0, 1[ and any ϕ ∈ [0, 2 π[ the superposition,
in Y , r f(y) + (1 − r) eiϕ f(z) is defined, i.e., f(y) 6⊥ f(z) and is equal to
f(r y + (1 − r) eiϕ z).

This notion of a superp-morphism is original. Note that if f : X → Y
preserves superpositions and x 6⊥ y then f(x) 6⊥ f(y) since the superpositions
r f(x) + (1 − r) eiϕ f(y) must be defined.

We shall now present some preliminary results concerning superp-morphisms.
Our first two results are properties of all superp-morphisms. First, a superp-
morphism preserves ρ and θ for suitable triples.

Lemma 21 Let f : X1 → X2 is a superp-morphism. For any y, z ∈ X1 such
that y 6⊥ z and f(y) 6= f(z), for any r ∈]0, 1[ and any ϕ ∈ [0, 2 π[ we have
ρ(f(r y + (1 − r) eiϕ z), f(y), f(z)) = r and θ(f(r y + (1 − r) eiϕ z), f(y), f(z)) =
ϕ.
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Note that f(y) 6= f(z) cannot be weakened to y 6= z.
Proof: Since f preserves superpositions: f(r y + (1 − r) eiϕ z) = r f(y) + (1 − r) eiϕ f(z)
and the claims obtain from Lemma 18.

As a consequence, if f is a superp-morphism and x, y are not orthogonal,
then either they have the same image under f or f preserves their p.

Lemma 22 If f : X1 → X2 is a superp-morphism, then, for any x, y ∈ X1

such that x 6⊥ y and f(x) 6= f(y) we have p(f(x), f(y)) = p(x, y).

Proof: Assume f preserves superpositions, x, y ∈ X1 and x 6⊥ y. By Corol-
lary 8, x = rx+ (1 − r)y for r = 1/(p(x, y) + 1). By Lemma 21, now, ρ(f(x), f(x), f(y)) =
1/(p(x, y) + 1). But, by Definition,

ρ(f(x), f(x), f(y)) = p(f(x), f(x))/(p(f(x), f(x))+p(f(x), f(y)) = 1/(1+p(f(x), f(y))).

Therefore p(f(x), f(y)) = p(x, y).

The author does not know whether the assumption x 6⊥ y is necessary in
Lemma 22. Lemma 25 will show that, when superp-morphism f is obtained
from a linear mapping of Hilbert spaces, then the condition is not necessary.

Let H1 and H2 be Hilbert spaces and let X1 and X2 be the superp-
structures corresponding to H1 and H2 respectively. A natural way to obtain
a superp-morphism f : X1 → X2 is to start from a linear map m : H1 → H2.
Such a map m associates, with every one-dimensional subspace of X1, i.e.,
every member of X1, a subspace of X2 that is either one-dimensional or zero-
dimensional. Any injective, i.e., left-invertible, linear map m provides an
application fm : X1 → X2 defined by: fm(x) is the subspace generated by
m(~u), for any non-null ~u ∈ x.

Definition 8 A superp-morphism obtained from an injective linear mapping
between Hilbert spaces in the way described just above will be called regular.

Note that not all superp-morphisms are regular. Let H1 be any Hilbert
space of dimension two at least and H2 be a one-dimensional Hilbert space.
The superp-structure X2 has one element only. The unique mapping f : X1 → X2

is obviously a superp-morphism. But no linear map m : H1 → H2 is injective
and therefore no linear map defines f .

The regular superp-morphisms will now be fully characterized.

Lemma 23 Let H1, H2 be Hilbert spaces. If f : H1 → H2 is a linear func-
tion, the following three conditions are equivalent. A linear function f satis-
fying them is called a near-isometry.
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1. f is injective and for any ~u,~v ∈ H1, if ~u ⊥ ~v, then f(~u) ⊥ f(~v)),

2. there is some real number r > 0 such that, for any ~u ∈ H1 one has:
‖ f(~u) ‖= r ‖ ~u ‖,

3. there is some real number r > 0 such that, for any ~u,~v ∈ H1 one has:
〈f(~u), f(~v)〉 = r〈~u,~v〉.

Proof: Assume 1), we shall prove 2. Let ~ui be an orthonormal basis for
H1. Since f is injective ‖ f(~ui) ‖> 0 and since f preserves orthogonality, the
family f(~ui)/ ‖ f(~ui) ‖ is an orthonormal basis for f(H1). Let r =‖ f(~u1) ‖.
It is enough to prove that for any i, ‖ f(~ui) ‖= r. Take any complex numbers
c1, c2 different from zero. We have: c1~u1 + c2~ui ⊥ c̄2~u− c̄1~ui. Since f is linear
and preserves orthogonality, we have: c1f(~u1) + c2f(~ui) ⊥ c̄2f(~u) − c̄1f(~ui).
Since f(~u) ⊥ f(~ui) we have: c1c2(‖ f(~u) ‖ − ‖ f(~ui) ‖= 0 and ‖ f(~ui) ‖= r.

Assume now that 2) holds. The fact that 3) holds follows immediately
from the fact that scalar products in Hilbert spaces can be evaluated from
norms. The real part of 〈~u,~v〉 is equal to a fourth of ‖ ~u+ ~v ‖2 − ‖ ~u− ~v ‖2

and its imaginary part is equal to a fourth of i(‖ ~u+ i~v ‖2 − ‖ ~u− i~v ‖2). It
follows that 2 implies for any ~u,~v ∈ H1 one has: 〈f(~u), f(~v)〉 = r2〈~u,~v〉.

Assume 3. The function f is injective since f ‖ f(~u) ‖= √
r ‖ ~u ‖. It

obviously preserves orthogonality.

We shall now show that any near-isometry provides a superp-morphism.

Lemma 24 Let m : H1 → H2 be a near-isometry. Then fm is a superp-
morphism of X1 into X2.

In particular any unitary mapping is a superp-morphism. But, note that
even not all isometries are self-adjoint.
Proof: Assume 〈m(~u,m(~v)〉 = r〈~u,~v〉 for every ~u,~v ∈ H1. Since a near-
isometry is injective, the function fm is well-defined.

Now, for any x, y, z ∈ X1 a(fm(x), fm(y)) = a(x, y), p(fm(x), fm(y)) =
p(x, y), ρ(fm(x), fm(y), fm(z)) = ρ(x, y, z), and θ(fm(x), fm(y), fm(z)) = θ(x, y, z).
Assume now that x 6⊥ y and z = rx+ (1 − r)eiϕy. We have fm(x) 6⊥ fm(y)
and therefore the superposition rfm(x) + (1 − r)eiϕfm(y) is defined. But, by
the Principle of Uniqueness this last superposition is the unique element w of
X2 that is coplanar with fm(x) and fm(y) and such that ρ(w, fm(x), fm(y)) = r.
and θ(w, fm(x), fm(y)) = ϕ. But, sincem is linear, we have coplanar(fm(z), fm(x), fm(y))
and, by the above and Lemma 18 we have: ρ(f(z), f(x), f(y)) = ρ(z, x, y) = r

29



and θ(f(z), f(x), f(y)) = θ(z, x, y) = ϕ. We conclude that fm(rx+ (1 − r)eiϕy) =
rfm(x) + (1 − r)eiϕfm(y).

We now move to prove that if fm is any regular superp-morphism, then
m is a near-isometry. The following lemma shows that Lemma 22 may be
strengthened for regular superp-morphisms.

Lemma 25 Let H1 and H2 be Hilbert spaces and let X1 and X2 be the
superp-structures corresponding to H1 and H2 respectively. Assume m : H1 → H2

is an injective linear mapping and that fm : X1 → X2 is a (regular) superp-
morphism. For any x, y ∈ X1 p(f(x), f(y)) = p(x, y).

Proof: If x 6⊥ y, we conclude by Lemma 22. Assume, now, that p(x, y) = 0.
We may assume x 6= y. Since m is injective f(x) 6= f(y). By Lemma 7, for
any z ∈ X1, such that coplanar(z, x, y), we have p(z, x) + p(z, y) = 1. Now,
if z 6= x and z 6= y we have z 6⊥ y and z 6⊥ x and we conclude by Lemma 22
that p(f(z), f(x)) + p(f(z), f(y)) = 1.

But, since f is regular, any state coplanar, in X2, with f(x) and f(y) is
the image, by f , of some z coplanar, in X1, of x and y.

We conclude that, for any w ∈ X2 such that coplanar(w, f(x), f(y)) we
have p(w, f(x)) + p(w, f(y)) = 1. This implies that f(x) ⊥ f(y).

We can now fully characterize regular superp-morphisms.

Theorem 3 Let m : H1 → H2 be any linear injective mapping. The function
fm : X1 → X2 is a (regular) superp-morphism iff m is a near-isometry.

Proof: The if part is Lemma 24. The only if part follows from Lemmas 25
and 23.

12 Conclusion and future work

We have shown that the properties of superpositions are governed by two ge-
ometrical quantities ρ and θ defined for triples of one-dimensional subspaces
in a Hilbert space, thus moving forward John von Neumann’s program of
focusing on subspaces and not on vectors.

The most pressing task is probably now to provide an abstract defini-
tion of superp-structures, generalizing those structures provided by Hilbert
spaces.
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A quantic system composed of two sub-systems is represented by the
tensor product of the Hilbert spaces representing the two sub-systems. An
alternative, better grounded, description could be that such a quantic system
is represented by all superpositions of pairs consisting of a state of the first
sub-system and a state of the second sub-system. Such a definition equips
the tensor product with an algebraic structure that has not been studied so
far.
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