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Abstract

In this paper, I present a Bayesian decision theory and define choice-based subjec-

tive probabilities that faithfully represent Bayesian decision makers’ prior and posterior

beliefs regarding the likelihood of the possible effects contingent on his actions. I ar-

gue that no equivalent results can be obtained in Savage’s (1954) subjective expected

utility theory and give an example illustrating the potential harm caused by ascribing

to a decision maker subjective probabilities that do not represent his beliefs.

∗I am grateful to Itzhak Gilboa, Simon Grant, Robert Nau, Tiemen Woutersen, Eddie Dekel and, espe-

cially, Peter Wakker for their comments and to the NSF for financial support under grant SES-0314249. Part

of the work reported here was done during my visit to the Center for the study of rationality and interactive

decisions, at the Hebrew University of Jerusalem.
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1 Introduction

Decision making under uncertainty involves choosing among courses of action whose exact

consequences are not determined solely by the decision maker’s choice. With few excep-

tions, modeling decision making under uncertainty invoke the analytical framework of Sav-

age (1954), consisting of a set of states, S; a set of consequences, C; and the set, F, of all

the mappings from the set of states to the set of consequences. Elements of F, referred to

as acts, correspond to conceivable courses of action; a decision maker is characterized by a

preference relation on F . States resolve the uncertainty in the sense that once the (unique)

true state becomes known, the unique consequence implied by each and every act becomes

known. Subsets of S are events. An event is said to obtain if the true state belongs to it.

In Savage’s subjective expected utility theory, the structure of a (prior) preference re-

lation, <, on F, depicted axiomatically, allows its representation by an expected utility

functional, Z
S

u (f(s)) dπ (s) , (1)

where u is a real-valued (utility) function defined on the consequences; π is a finitely addi-

tive, nonatomic probability measure on S; and f ∈ F. Moreover, the utility function u is

unique up to positive linear transformation, and, given u, the subjective probability measure

π is unique. Presumably, the interest in this representation stems from the notion that the

decision maker evaluates alternative acts by assessing, separately, the merit and likelihood of

the possible consequences and then integrates these assessments. In other words, the merit
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of the consequences and the decision maker’s degree of belief regarding their likelihood are

meaningful cognitive phenomena that may be quantified, respectively, by a utility function

and a subjective probability measure. These numerical values are combined, using the func-

tional in equation (1), to obtain a numerical valuation of the act. In this interpretation, a

decision maker’s beliefs is a relation on the set of events whose meaning is “at least as likely

to obtain as.”

Clearly, any probability measure on S defines beliefs.1 In Savage’s (1954) theory the deci-

sion maker’s (prior) beliefs are defined by the probability measure π. However, the uniqueness

of π and, consequently, of Savage’s beliefs, is predicated on the convention that constant acts

are constant utility acts (that is, the utility function is state-independent). This convention,

however, is not implied by the axioms and, more important, is not testable within Savage’s

analytical framework.2 Yet without it, it is impossible to disentangle the probabilities and

marginal utilities. Consequently, there are infinitely many prior probability measures con-

sistent with a decision maker’s prior preferences. In other words, even if a decision maker’s

beliefs constitute a quantifiable psychological phenomenon and his choice behavior is con-

sistent with the axiomatic structure of expected utility theory, the proposition that the

subjective probabilities ascribed to him by Savage’s model represent the decision maker’s

beliefs is untestable. In what follows I use the term identifiable subjective probabilities to

refer to a probability measure, consistent with the decision maker’s choice behavior, whose

1Let ºB be a binary relation on the set of events defined by E ºB E0 if and only if π (E) ≥ π (E0) , for

all events E and E0.
2For more details regarding the first part of this assertion, see Karni (1996, 2006).
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uniqueness is not predicated on a particular choice of a utility function. The argument above

implies that Savages’ subjective probability measure is unidentifiable.

A decision maker who, upon receiving new information, displays a change of preferences

reflecting his modified beliefs is said to be Bayesian if the representation of his prior pref-

erences involve an identifiable prior probability measure on the set S; the representations

of his posterior preference relations involve well-defined posterior probability measures on

S; and the representations of the posterior preference relations are obtained from the prior

preference relation by updating the prior probabilities according to Bayes rule. Next I show

that Savage’s model fails to yield an identifiable prior and is not a model of Bayesian decision

making.3

To prove this assertion, let γ be a strictly positive, bounded, real-valued function on S,

and let E (γ) =
Z
S

γ (s) dπ (s) . Then the prior preference relation, depicted by the represen-

tation (1) is also represented by

Z
S

û (f(s), s) dπ̂ (s) , (2)

where û (·, s) = u (·) /γ (s) and π̂ (s) = π (s) γ (s) /E (γ) , for all s ∈ S.4

Consider next an experiment whose possible outcomes are pertinent to the decision

maker’s assessment of the likely realization of events. Let X be the set of observations, and

3The same criticism applies to all subjective expected utility models that invoke Savage’s analytical

framework, such as the model of Anscombe and Aumann (1963).
4This point has been recognized by Drèze (1987); Schervish, Seidenfeldt, and Kadane (1990); Karni

(1996), (2003); Karni and Schmeidler (1993); and Nau (1995).
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denote by q (x | s) the conditional probability of the observation x if the true state is s (s

may be thought of as the parameters underlying the distribution of X) and {q (· | s) | s ∈ S}

is a family of likelihood functions. Then, invoking representation (1), the induced posterior

preference relations {<x| x ∈ X} of a Bayesian decision maker are defined as follows: for all

x ∈ X, and f, f 0 ∈ F,

f <x f 0 ⇔
Z
S

u (f(s)) dπ (s | x) ≥
Z
S

u (f 0(s)) dπ (s | x) , (3)

where, for each x ∈ X,

π (· | x) = q (x | ·)π (·)Z
S

q (x | s0) dπ (s0)
(4)

is the posterior probability measure obtained by the application of Bayes’ theorem.

Invoking representation (2), define the induced posterior preference relations, {<̂x | x ∈

X}, of the same Bayesian decision maker whose prior probability measure is π̂ (·) as follows:

for all x ∈ X, and f, f 0 ∈ F,

f<̂x
f 0 ⇔

Z
S

û (f(s), s) dπ̂ (s | x) ≥
Z
S

û (f 0(s), s) dπ̂ (s | x) , (5)

where

π̂ (· | x) = q (x | ·) π̂ (·)Z
S

q (x | s0) dπ̂ (s0)
. (6)

However,

Z
S

û (f(s), s) dπ̂ (s | x) =

⎡⎢⎢⎢⎢⎣
Z
S

q (x | s0) dπ (s0)Z
S

q (x | s0) dπ̂ (s0)

⎤⎥⎥⎥⎥⎦
Z
S

u (f(s)) dπ (s | x) . (7)
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Hence for all f, f 0 ∈ F and x ∈ X,

Z
S

û (f(s), s) dπ̂ (s | x) ≥
Z
S

û (f 0(s), s) dπ̂ (s | x) (8)

if and only if Z
S

u (f(s)) dπ (s | x) ≥
Z
S

u (f 0(s)) dπ (s | x) . (9)

Thus <x= <̂x
for all x ∈ X. The fact that a decision maker updates his preferences using

Bayes’ rule does not imply that either his prior or his posterior beliefs, as defined by the

representing probabilities, are unique.

I presented an alternative framework for the analysis of decision making under uncertainty

in Karni (2006). In this paper I use the same analytical framework to develop a theory of

decision making under uncertainty in which the prior and posterior subjective probabilities

of Bayesian decision makers are identifiable. The identifiability of the decision maker’s

beliefs and the definition of subjective probabilities is not a purely philosophical issue - it

has potential economic consequences. In the appendix I analyze a moral hazard problem

illustrating the potential pitfalls of ascribing the agent an incorrect prior. In that example

the principal knows the agent’s prior preference relation and uses Bayes’ rule to update

the agent’s preferences in the light of new information. However, even though the agent

is Bayesian, because the principal ascribes to him an incorrect prior, the principal fails to

design an incentive compatible contract.

Section 2 reviews the analytical framework and states the main result of Karni (2006).
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Section 3 presents a Bayesian decision theory and shows that the prior and posterior sub-

jective probabilities are identifiable. Concluding remarks appear in section 4.

2 The Theory

2.1 The analytical framework

Let Θ be a finite set of effects and A a set of actions. Actions represent initiatives that

decision makers may take to influence the likely realization of effects. A bet, b, is a mapping

from Θ into R, the set of real numbers. Bets have the interpretation of monetary payoffs

contingent on effects. Let B := RΘ denote the set of all bets, and assume that it is endowed

with the R|Θ| topology. Denote by (b−θr) the bet obtained from b ∈ B by replacing the θ

coordinate of b (that is, b (θ)) with r. In this framework, effects are analogous to states, in the

sense that they resolve the uncertainty associated with bets. However, unlike states, decision

makers believe that they may influence the likely realization of effects by their actions.

Decision makers are supposed to choose actions and, at the same time, place bets on the

effects. For example, a decision maker may adopt an exercise and diet regimen to reduce the

risk of heart attack and simultaneously take out health insurance and life insurance policies.

The diet and exercise regimens correspond to actions, the states of health are effects, and the

financial terms of an insurance policy constitute a bet. Formally, the choice set, C, consists

of all action-bet pairs (that is, C = A × B). A choice of an action a and a bet b results
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in an effect-payoff pair, or consequence, (θ, b (θ)). Let C denote the set of all consequences

(C = Θ×R).

A decision maker is characterized by prior preference relation, <, on C. The strict pref-

erence relation, Â, and the indifference relation, ∼, are the asymmetric and symmetric parts

of <, respectively. For each a ∈ A, the preference relation < on C induces a conditional pref-

erence relation on B defined as follows: for all b, b0 ∈ B, b <a b
0 if and only if (a, b) < (a, b0) .

An effect, θ, is said to be nonnull given the action a if (a, (b−θr)) Â (a, (b−θr0)) , for some

b ∈ B and r, r0 ∈ R; it is null given the action a otherwise. I assume that every effect is

nonnull for some action a. Given a preference relation, <, denote by Θ (a;<) the subset of

effects that are nonnull given a according to <. To simplify the notation, when there is no

risk of confusion, I write Θ (a) instead of Θ (a;<).

Two effects, θ and θ0, are said to be elementarily linked if there are actions a, a0 ∈ A

such that θ, θ0 ∈ Θ (a)∩Θ (a0) . Two effects are said to be linked if there exists a sequence of

effects θ = θ0, ..., θn = θ0 such that every θj is elementarily linked with θj+1. The condition

that every pair of effects be linked is used, below, to join the utility scales associated with

the different actions.

Actions may affect the decision maker’s well-being directly. For example, adopting a

diet regimen may require that the decision maker avoid eating food he likes. With this in

mind, I refer to a bet as constant valuation if, once accepted, it leaves the decision maker

indifferent among actions whose direct utility costs are just compensated for by the improved
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chances of winning better outcomes they afford.5 I assume that the set A consists of those

actions whose induced variations in the likely realization of alternative effects and associated

direct utility implications determine a unique set of constant valuation bets. Formally, let

I (a; b) = {b0 ∈ B | (a, b0) ∼ (a, b)}. The idea of constant valuation bets is then formalized as

follows:

Definition 1: A bet b̄ is said to be a constant-valuation bet if
¡
a, b̄
¢
∼
¡
a0, b̄

¢
for all

a, a0 ∈ A, and ∩a∈AI
¡
a; b̄
¢
= {b̄}.

The last requirement implies that if b̄ is a constant valuation bet, no other b ∈ B satisfies

(a, b) ∼ (a0, b) for all a, a0 ∈ A and (a, b) ∼
¡
a, b̄
¢
for some a ∈ A.6 Let Bcv denote the set of all

constant valuation bets. If b∗∗ and b∗ are constant valuation bets satisfying (a0, b∗∗) Â (a0, b∗)

for some a0 ∈ A, then, by transitivity of <, (a, b∗∗) Â (a, b∗) for all a ∈ A. Since transitivity

will be assumed, I write b∗∗ Â b∗ instead of (a, b∗∗) Â (a, b∗) .

The following richness assumption is maintained throughout:

(A.0) Every pair of effects is linked, there exist constant-valuation bets b∗∗ and b∗ such that

b∗∗ Â b∗ and, for every (a, b) ∈ C, there is b̄ ∈ Bcv satisfying (a, b) ∼ b̄.

5Because of the possible direct impact of the actions on the decision maker’s well-being, constant valuation

bets are different from Drèze’s (1987) notion of “omnipotent” acts and the idea of constant valuation acts

in Karni (1993, 2006) and Skiadas (1997).
6The model may be extended to include additional actions (see in Karni 2006).
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2.2 Axioms and Representation

The first two axioms are standard.

(A.1) (Weak order) < on C is a complete and transitive binary relation.

(A.2) (Continuity) For all (a, b) ∈ C the sets {(a, b0) ∈ C | (a, b0) < (a, b)} and {(a, b0) ∈

C | (a, b) < (a, b0)} are closed.

The third axiom requires that the “intensity of preferences” for monetary payoffs contin-

gent on any given effect be independent of the action that resulted in that effect.

(A.3) (Action-independent betting preferences) For all a, a0 ∈ A, b, b0, b00, b000 ∈ B, θ ∈

Θ (a) ∩ Θ (a0) , and r, r0, r00, r000 ∈ R, if (a, b−θr) <
¡
a, b0−θr

0¢ , ¡a, b0−θr00¢ < (a, b−θr000) ,
and

¡
a0, b00−θr

0¢ < ¡a0, b000−θr¢ then ¡a0, b00−θr00¢ < ¡a0, b000−θr000¢ .
To grasp the meaning of action-independent betting preferences, think of the preferences

(a, b−θr) <
¡
a, b0−θr

0¢ and ¡a, b0−θr00¢ < (a, b−θr000) as indicating that, given an action a and

an effect θ, the intensity of the preferences of r00 over r000 is sufficiently larger than that of r

over r0 as to reverse the preference ordering of the effect-contingent payoffs b−θ and b0−θ. The

axiom requires that these intensities not be contradicted when the action is a0 instead of a

and bets are b00 and b000.7

7Action-independent betting preferences invokes Wakker’s (1987) idea of cardinal consistency. A more

elaborate discussion of this axiom is provided in Karni (2006).
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Karni (2006) shows that a preference relation on C satisfying (A.0), has the structure

described by axioms (A.1)—(A.3) if and only if there exist a continuous utility function, u, on

the set of consequences, a family of action-dependent probability measures, {π (·; a) | a ∈ A},

on the set of effects, and a family of continuous strictly increasing functions {fa : R→ R |

a ∈ A} such that, for all (a, b) , (a0, b0) ∈ C,

(a, b) < (a0, b0)⇔ fa

ÃX
θ∈Θ

u (b (θ) ; θ)π (θ; a)

!
≥ fa0

ÃX
θ∈Θ

u (b0 (θ) ; θ)π (θ; a0)

!
. (10)

Furthermore, u is unique; {fa}a∈A are unique up to common, strictly increasing, transforma-

tion; and, for each a ∈ A, the probability measure π (·; a) is unique, satisfying π (θ; a) = 0 if

and only if θ is null given a.

As in Savage’s (1954) model, the uniqueness of the probabilities in (10) is predicated

on an arbitrary normalization of the functions u and {fa}a∈A.8 Consequently, there is no

guarantee that the prior probabilities correspond to the decision maker’s prior beliefs.9

8The normalization consists of assigning b∗∗ and b∗ utilities as follows: u (b∗ (θ) , θ) = 0 for all θ ∈ Θ, andP
θ∈Θ u (b

∗∗ (θ) , θ)π (θ, a) = 1, a ∈ A. Then, for all a ∈ A, fa (1) = 1 and fa (0) = 0.
9To see this, fix a non-constant function γ : Θ → R++ and let Γ (a) =

P
θ∈Θ γ (θ)π (θ; a) , û (b (θ) ; θ) =

u (b (θ) ; θ) /γ (θ) , π̂ (θ; a) = γ (θ)π (θ; a) /Γ (a) , and f̂a = fa ◦ Γ (a) . Then, by (10), the prior preference

relation < is represented by

fa

Ã
Γ (a)

X
θ∈Θ

u (b (θ) ; θ)

γ (θ)

γ (θ)π (θ; a)

Γ (a)

!
= f̂a

ÃX
θ∈Θ

û (b (θ) ; θ) π̂ (θ; a)

!
. (11)

But π̂ (θ; a) 6= π (θ; a) for some a and θ. Therefore the prior subjective probabilities are not unique.
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3 Bayesian Preferences and Subjective Probabilities

3.1 Bayesian decision makers

ABayesian decision maker is characterized by a prior preference relation, a set of information-

dependent posterior preferences, and the condition that the posterior preferences are obtained

from the prior preference solely by updating his subjective probabilities using Bayes’ rule

(that is, leaving intact the other functions that figure in the representation). To model

the behavior of Bayesian decision makers it is necessary to formally incorporate into the

analytical framework new information.

Let X be a finite set of observations. For all θ ∈ Θ, q (· | θ) is a likelihood function

on X (that is, q (· | θ) ≥ 0 and
P

x∈X q (x | θ) = 1). Elements of X are observations that

might influence the decision maker’s beliefs regarding the likelihoods of the alternative effects

(experimental results, expert opinions, etc.). For every x ∈ X, let <x be a (posterior)

preference relation on C characterizing the decision maker’s choice behavior after he has

been informed of the observation x.

Consider a decision maker who, before choosing an action-bet pair, receives information

pertinent to his assessment of the likely realization of alternative effects, conditional on his

choice of action. Suppose that the decision maker updates his prior beliefs by the application

of Bayes’ rule. Formally,
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Definition 2: A decision maker whose prior preference relation, < on C, is represented by

fa
¡P

θ∈Θ u (b (θ) ; θ) π (θ; a)
¢
is Bayesian if his posterior preference relations, {<x}x∈X ,

are represented by fa
¡P

θ∈E u (b (θ) ; θ)π (θ | x, a)
¢
, where, for all x ∈ X, θ ∈ Θ and

a ∈ A,

π (θ | x, a) = q (x | θ)π (θ; a)P
θ0∈Θ q (x | θ0)π (θ0; a)

. (12)

The use of objective likelihood functions in this context warrants some explanation. The

effects are interpreted as conceivable unknown, parameters, whose likely realization depends

on the actions. To grasp this consider the following example: A decision maker believes that

the age of pregnant women affects the probability that their babies suffer form birth defects,

and take this into consideration when she chooses the age of pregnancy. In this instance

the age of the pregnancy corresponds to actions and birth defects and no defect correspond

to effects. Alpha-Feto is a protein secreted by the fetal liver and excreted in the mother’s

bloodstream. Alpha-Feto protein test (AFP) is a blood test performed on pregnant women

screening for neural tube defects such as a deformity of the spinal canal and the presence

of Down syndrome. Let θ and θ0 represent, respectively, the presence and absence of Down

syndrome in a fetus. The likelihood functions correspond to the distribution of AFP in

the blood sample conditional on whether or not the fetus dsplays the presence of Down

syndrome.
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3.2 The uniqueness of the priors

The main result asserts that if a decision maker is Bayesian in the sense of definition 2, then

the prior, action-dependent, subjective probabilities representing his beliefs are identifiable.

It requires, however, that the set of observations and associated likelihood functions be

rich in the following sense: for every nonconstant function γ : Θ → R++ let Γγ (a) :=P
θ∈Θ γ (θ)π (θ | a) and Γγ (a, x) :=

P
θ∈Θ γ (θ) π (θ | a, x) , where π (θ | a) and π (θ | a, x)

denote, respectively, the the prior probability of θ given a and the posterior probability of θ

given a and x, then,

(R) For every nonconstant function γ : Θ → R++ there is an observation x ∈ X and

a, a0 ∈ A such that

Γγ (a)

Γγ (a, x)
≥ 1 > Γγ (a

0)

Γγ (a0, x)
. (13)

Theorem 1 Suppose that there are at least two effects, R holds, and the decision maker’s

prior preference relation, < on C, satisfies (A.0)—(A.3). If the decision maker is Bayesian,

then the representation of his prior preferences admits a unique set of action-dependent

probability measures.

Proof. Consider a Bayesian decision maker whose prior preference relation< on C satisfies

(A.0)—(A.3). Then, by Karni (2006), < has the representation in (10). Denote by <x the

decision maker’s posterior preferences on C conditional on the observation x ∈ X. By
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definition, if the representation of < on C is given by

(a, b)→ fa

ÃX
θ∈Θ

u (b (θ) ; θ)π (θ; a)

!
, (14)

then for every x ∈ X , the posterior preference relation is represented by

(a, b) 7→ fa

ÃX
θ∈Θ

u (b (θ) ; θ)π (θ | x, a)
!
, (15)

where π (θ | x, a) is given in (12).

Given a nonconstant function γ : Θ → R++ let Γγ (a) =
P

θ∈Θ γ (θ)π (θ; a) .
10 Then the

prior preferences < on C is represented by

(a, b)→ f̂a

ÃX
θ∈Θ

û (b (θ) ; θ) π̂ (θ; a)

!
, (16)

where û (b (θ) ; θ) = u (b (θ) ; θ) /γ (θ) , π̂ (θ; a) = γ (θ)π (θ; a) /Γγ (a) , and f̂a = fa ◦ Γγ (a) .

Moreover, by definition 2, for every x ∈ X , the corresponding posterior preference relation

is represented by

(a, b) 7→ f̂a

ÃX
θ∈Θ

û (b (θ) ; θ) π̂ (θ | x, a)
!
, (17)

where π̂ (θ | x, a) = q (x | θ, a) π̂ (θ; a) /
P

θ0∈Θ q (x | θ0, a) π̂ (θ0; a) . By definition,

π̂ (θ | x, a) = q (x | θ, a) γ (θ)π (θ; a)P
θ0∈Θ q (x | θ0, a) γ (θ0)π (θ0; a)

. (18)

Recall that Γγ (a, x) =
P

θ∈Θ γ (θ)π (θ | a, x) . Hence, using (18),

X
θ∈Θ

û (b (θ) , θ) π̂ (θ | x, a) = 1

Γγ (a, x)

X
θ∈Θ

u (b (θ) ; θ)π (θ | x, a) . (19)

10Since γ is not constant, Γγ (a) 6= 1 for some a ∈ A.
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Moreover, by definition,

f̂a

ÃX
θ∈Θ

û (b (θ) , θ) π̂ (θ | x, a)
!
= fa

Ã
Γγ (a)

Γγ (a, x)

X
θ∈Θ

u (b (θ) ; θ)π (θ | x, a)
!
. (20)

Next I show that there exists an observation x ∈ X such that <x 6= <̂x
. Given the

function γ above, take a, a0 ∈ A and x ∈ X that satisfy R and b̂, b̂0 ∈ B be such that

u
³
b̂ (θ) , θ

´
= ū and u

³
b̂0 (θ) , θ

´
= ū0 for all θ ∈ Θ and fa (ū) = fa0 (ū

0) . The existence

of b̄ and b̄0 is an implication of (A.0) continuity of the uitlity functions and transitivity of

<. (To see this, take a constant-valuation bet b̄, rearrange the effects so that u
¡
b̄ (1) ; 1

¢
≥

u
¡
b̄ (2) ; 2

¢
≥ ... ≥ u

¡
b̄ (n) ;n

¢
. If all the weak inequalities are eqaulities that b̄ is a constant-

utility bet and, by definition, fa (ū) = fa0 (ū
0) . Suppose that for some of the inequalities

are strict. For all b̄ (i) ∈ argmax{u
¡
b̄ (θ) , θ

¢
| θ ∈ Θ} decrease the value of the payoff

by the same amount and for all b̄ (i) ∈ argmin{u
¡
b̄ (θ) , θ

¢
| θ ∈ Θ} increase the value in

such a way that
P

θ∈Θ u (b (θ) ; θ)π (θ | a) remains constant. This is possible by continuity.

Continue this process, until the payoff of the argmax set is equal to the second highest

payoff or the payoff of the argmin set is equal to the second lowest payoff in {b̄ (θ) | θ ∈ Θ},

whichever happens first. Repeat the process with the new armin and/or argmax sets. After

a finite number of repetitions the payoffs, b̂ (θ) , will be such that the utilities are the same.

By construction
³
a, b̂
´
∼
¡
a, b̄
¢
. Repeating the process with

¡
a0, b̄

¢
to obtain b̂0 such that³

a0, b̂0
´
∼
¡
a0, b̄

¢
). By definition

¡
a0, b̄

¢
∼
¡
a, b̄
¢
. Hence, by transitivity,

³
a0, b̂0

´
∼
³
a, b̂
´
,

which implies fa (ū) = fa0 (ū
0) .

By the representation (15)
³
a, b̂
´
∼x
³
a0, b̂0

´
, for all x ∈ X. Equation (20) and RC imply
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that

f̂a

ÃX
θ∈Θ

û
³
b̂ (θ) , θ

´
π̂ (θ | x, a)

!
= fa

µ
Γγ (a)

Γγ (a, x)
ū

¶
≥ fa (ū) = (21)

fa0 (ū
0) > fa0

µ
Γγ (a

0)

Γγ (a0, x)
ū0
¶
= f̂a

ÃX
θ∈Θ

û
³
b̂0 (θ) , θ

´
π̂ (θ | x, a)

!
.(22)

Thus
³
a, b̂
´
Â̂x
³
a0, b̂0

´
. Therefore <x and <̂x

cannot both be true. Consequently, there

is a unique representation of the prior preference relations of a Bayesian decision maker

that induces the correct posterior representations. The set of action-dependent probability

measures in this representation is unique. ¥

The proof of theorem 1 is a demonstration that updating the prior preference relation

by applying Bayes’ rule to a misspecified prior must, for some observations, induce posterior

preference realtions that disagree with the decision maker’s actual posterior preferences. To

develop an intuitive understanding of this result, consider the case of additive representa-

tion, namely, fa
¡P

θ∈Θ u (b (θ) ; θ)π (θ; a)
¢
=
P

θ∈Θ u (b (θ) ; θ)π (θ; a)+v (a) or, equivalently,

f̂a
¡P

θ∈Θ û (b (θ) ; θ) π̂ (θ; a)
¢
= Γγ (a)

P
θ∈Θ û (b (θ) ; θ) π̂ (θ; a) + v (a) , where û (b (θ) ; θ) =

u (b (θ) ; θ) /γ (θ) , π̂ (θ; a) = γ (θ)π (θ; a) /Γγ (a) , and Γγ (a) =
P

θ∈Θ γ (θ)π (θ; a) .

For every given a and any observation, x, the representation of the posterior preferences

of a Bayesian decision maker is obtained by the application of Bayes’ rule to the probability

measure that figures in the prior representation. Hence the representations of the posterior

preferences are:
P

θ∈Θ u (b (θ) ; θ)π (θ | x, a) + v (a) or Γγ (a)
P

θ∈Θ û (b (θ) ; θ) π̂ (θ | x, a) +
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v (a) , where π (θ | x, a) is given in (12) and π̂ (θ | x, a) is obtained from π̂ (θ; a) by Bayes’

formula. But, by definition,

Γγ (a)
X
θ∈Θ

û (b (θ) ; θ) π̂ (θ | x, a) + v (a) =
Γγ (a)

Γγ (a, x)

X
θ∈Θ

u (b (θ) ; θ)π (θ | x, a) + v (a) .

Since Γγ (a, x) > 0,
Γγ(a)
Γγ(a,x)

P
θ∈Θ u (b (θ) ; θ)π (θ | x, a) is a positive increasing transformation

of
P

θ∈Θ u (b (θ) ; θ)π (θ | x, a) . Hence for a given a, the induced posterior preferences are

necessarily the same, regardless of representation of the prior preferences.

To obtain the uniqueness of the prior, it is necessary to consider the posterior preferences

on bets conditional on distinct actions. Under the richness assumption the normalization

associated with distinct actions makes for diverse multiplicative coefficients which imply

that, for some observations,

Γγ (a)

Γγ (a, x)

X
θ∈Θ

u (b (θ) ; θ)π (θ | x, a) + v (a) ≥ Γγ (a
0)

Γγ (a0, x)

X
θ∈Θ

u (b0 (θ) ; θ)π (θ | x, a0) + v (a0)

and X
θ∈Θ

u (b (θ) ; θ)π (θ | x, a) + v (a) <
X
θ∈Θ

u (b0 (θ) ; θ)π (θ | x, a0) + v (a0) .

At least one of these representations of the posterior preferences cannot be true. The same

argument applies to the more general, nonadditive, representation (10).

4 Concluding Remarks

Insofar as Bayesian statistics is concerned, the main issue addressed by this work is the

existence of identifiable prior representing the statistician’s beliefs. As demonstrated in the
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introduction, subjective expected utility theories invoking Savage’s analytical framework do

not yield identifiable priors. In the theory presented here, the ability of a decision maker to

influence the likely realization of effects by his choice of action, his manifested willingness to

bet on the effects, and the changes in his betting behavior when new information becomes

available yield sufficient additional data to identify the subjective probability representing

the decision maker’s beliefs.

A decision maker’s beliefs are updated using likelihood functions that depict the relative

frequency of potential observations conditional on the effects. To see how this model relates

to the application of Bayes’ rule in conventional statistical analysis, consider the following

example. Let there be two sets of urns, K and K 0, and two types of urns. Urns of type

1 contain equal number of red and black balls, urns of type 2 contain twice as many red

balls as black balls. We are interested in identifying the decision maker’s prior probabilities

regarding the type of a particular urn. Suppose that the decision maker is allowed to choose

the set from which the urn is picked and simultaneously place bets on the type of the urn.

Then the sets K and K 0 correspond to actions, the urns correspond to effects. Experiments

consist sampling balls with replacement. Clearly, in this example, the likelihoods of the two

colors conditional on the type of urn are “objective” in the sense of the relative frequencies

while the prior and posteriors on the type of urn are subjective. If the statistician is Bayesian

and his utility function is effect independent — a refutable hypothesis in this theory — then, by

Theorem 1, the priors on the types corresponding to K and K 0 are identifiable.11 In other

11In Karni (2006) I studied a special case of effect-independent preferences. In that case, the effect-
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words, the model described above constitutes a choice-based foundations of the Bayesian

prior.

The hybrid model presented here and the examples above entail subjective assessment

of likelihoods of effects and objective (in the sense of relative frequencies) assessment of

likelihoods of observations conditional on the effects. It is possible to extend the model

to allow for subjective likelihood functions. In particular, the bets may be extended to

include payoff contingent on observations. Formally, an extended bet is a function β : Θ ×

X → R specifying monetary payoffs as a function of the observations and effects. Invoking

the notational conventions introduced above, let β−(θ,x)r be an extended bet whose (θ, x)

coordinate is repalced by r. Define x to be a null observation given θ if θ is nonnull given

a and
¡
a, β−(θ,x)r

¢
∼
¡
a, β−(θ,x)r

0¢ for all r, r0 ∈ R. An observation x is certain given θ

if
¡
a, β−(θ,x)r

¢
Â
¡
a, β−(θ,x0)r

0¢ for all x0 6= x and r, r0 > 0. For every θ if x is null given

θ, set q (x | θ) = 0 and if x is certain given θ, set q (x | θ) = 1. These indicator functions

are choice-based subjective likelihood functions the use of which renders the model purely

subjective.

Subjective probability are intended to measure the degree of belief a decision maker has

dependent utility functions take the form u (b (θ) , θ) = β (θ)u (b (θ))+α (θ) , β (θ) > 0. The identifiability of

the subjective probabilities in this model implies that the coefficients β (θ) and α (θ) may be inferred from

the decision maker’s choice behavior. If the utility functions are effect independent (that is β (θ) = β and

α (θ) = α for all θ) then it is natural to attribute to the model the usual statistical interpretation. Moreover,

in this case constant-valuation bets are constant bets.
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in the truth of events, that is, the degree of beliefs that the events obtain. This presumes

that the attribute “truth of events” is a measurable cognitive object. Formally, a decision

maker’s beliefs is binary relation, D on A×2Θ, where (a,E) D (a0, E0) has the interpretation

that the decision maker believes that E is more likely to obtain under the action a than E0

is under a0. In the introduction to Foundations of Measurement, Krantz et. al. say: “When

measuring some attribute of a class of objects or events, we associate numbers with the

objects in such a way that the properties of the attribute are faithfully represented by the

numerical properties.” (Krantz et. al. (1971), p. 1). If the degree of belief a Bayesian decision

maker has about the truth of an event is revealed by his choice behavior as hypothesized

by Ramsey (1931), then the result obtained here implies that there exists an identifiable

probability measure that faithfully represents the decision maker’s beliefs.
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APPENDIX

A Moral Hazard Problem

The following moral hazard problem is formulated using the parametrized distribution

approach. Let the agent be a risk-averse, Bayesian, expected utility—maximizing decision

maker. Suppose that the principal is not only aware of this but that he also knows the agent’s

prior preferences. The principal-agent relationship is governed by a contract specifying the

monetary payoff to the agent contingent on the outcome. If new pertinent information

becomes available before the terms of the original contract are fulfilled, the contract is

subject to renegotiation.

Even if it is state-independent, the agent’s prior preference relation admits infinitely

many representations, involving distinct probabilities and state-dependent utility functions

(see Karni [1996]). Among these, presumably, is a unique probability measure that is the

true representation of the agent’s beliefs. I intend to show that, even if the principal knows

the agent’s prior preferences but ascribes to him the wrong probabilities (and consequently

the wrong utilities), it is possible that once if new information becomes available, the two

parties to the original contract may agree to replace it with a contract that induces the agent

to select an action that is not in the principal’s best interest.

For the sake of concreteness I consider the following example. At the end of a regatta,

monetary prizes will be awarded to the boats that finish first and second. Suppose that
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there are three entrants, x, y, and z, and the prizes satisfy m1 > m2 > m3 = 0, where mi

denotes the prize awarded to the boat in place i. According to the rules, if one of the boats

withdraws from the race, it is automatically assigned third place; if two boats withdraw, the

race is cancelled and no prizes are awarded. The relevant set of outcomes, Θ, consists of the

six permutations of the order in which the boats cross the finish line.12

The boat owners recruit skippers and put them in charge of training their crews. Suppose

that the owners cannot monitor the training and that the training entails costly effort on

the part of skippers and crews. To motivate the sailors, an owner (principal) may offer his

skipper (agent) an incentive contract.

In what follows I describe the initial incentive contract and examine the implications

of renegotiating the contract of one of the remaining competitors - say, the owner of x - if

one of the other entrants announces its withdrawal from the race. To simplify the analysis,

I assume that the set of actions is a doubleton, with a0 denoting training vigorously and

a training lightly. Let c : {a, a0} → R be a function depicting the disutility to the agent

associated with the actions, and assume that c (a0) > c (a) = 0. Let Ei denote the event that

x finishes in position i (for example, E1 = {(x, y, z) , (x, z, y)}).

Recall that the skipper is assumed to be a risk-averse, Bayesian, expected utility - max-

imizer, and that the boat owner knows the skipper’s prior preferences, and that the skipper

12The outcomes of the race correspond to effects. As this example illustrates, the distinguishing charac-

teristic of effects is that, unlike states, their likely realization may be influenced by the decision maker.
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is a Bayesian. Suppose that the boat owner ascribes to the skipper his own probabilities

regarding the likely outcome, conditional on the level of training. This is the common prior

assumption, often invoked in the parametrized distribution formulation of principal-agent

problems.13 Under these assumptions, if the principal wants to induce the agent to train

vigorously, his problem may be stated as follows:

Program 1: Choose a contract w := (w (E1) , w (E2) , w (E3)) ∈ R3 so as to maximize

3X
i=1

u (mi − w (Ei))π (Ei; a
0) (23)

subject to the individual rationality constraint

3X
i=1

v (w (Ei))π (Ei; a
0)− c (a0) ≥ v̄ (24)

and the incentive compatibility constraint

3X
i=1

v (w (Ei))π (Ei; a
0)− c (a0) ≥

3X
i=1

v (w (Ei))π (Ei; a)− c (a) , (25)

where u and {π (Ei, j) | i ∈ {1, 2, 3}, j ∈ {a, a0}} denote the utility functions and the

conditional (on the actions) subjective probabilities of the principal, and v and c denote,

respectively, the utility of money and the disutility associated with the actions ascribed by

the principal to the agent. By assumption, π (·, ·) also denote the conditional probabilities

ascribed by the principal to the agent.

By assumption, the principal employs a representation of the agent’s prior preferences

13This entails a loss of generality, as the skipper’s prior preferences must permit this type of manipulations

of the representation. I indicate below where this assumption comes into play.
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consistent with the agent’s choice behavior. This depiction of the principal’s problem agrees

with the parametrized distribution formulation in the literature on agency theory.

Representation of the Agent’s Preferences

It is conceivable that, independently of his monetary reward, the agent cares about win-

ning but that the principal is unaware of this.14 Moreover, the principal cannot detect the

agent’s sentiments about winning from the skipper’s choice behavior. Suppose that the

agent’s true utility function is given by V (w, i, j) = Γ (j) v (w) /γ (i) , where 0 < γ (1) <

γ (2) < γ (3) , and Γ (j) =
P3

i=1 γ (i)π (Ei; j) , j ∈ {a, a0}. Note that the presence of a non-

additive component, Γ (j) , in the agent’s utility of action is also undetectable by observing

his choice behavior.15 Consistency of the agent’s prior preferences with their representation

in program 1

requires that his beliefs be represented by the probabilities

πA (Ei; j) =
γ (i)π (Ei; j)

Γ (j)
, j ∈ {a, a0}, i = 1, 2, 3. (26)

Hence the agent’s true objective function is given by:

Γ (j)
3X

i=1

γ−1 (i) v (w (Ei))π
A (Ei; j)− c (j) , j ∈ {a, a0}. (27)

Program 1 may then be restated a follows:
14This is, of course, a simplifying assumption. In general, it is sufficient that the prinicpal not know how

much the agent cares about winning.
15See Grossman and Hart (1983) for an example of principal-agent analysis in which the utility of action

has a multiplicative factor, as above.
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Program 1’: Choose a contract, w ∈ R3, so as to maximize

3X
i=1

u (mi − w (Ei))π (Ei; a
0) (28)

subject to the individual rationality constraint

3X
i=1

V (w (Ei) , i, a
0)πA (Ei; a

0)− c (a0) ≥ v̄ (29)

and the incentive compatibility constraint

3X
i=1

V (w (Ei) , i, a
0)πA (Ei; a

0)− c (a0) ≥
3X

i=1

V (w (Ei) , i, a)π
A (Ei; a) . (30)

Clearly, the solution, w∗, to the two programs is the same. Thus insofar as the principal is

concerned, as long as the contract w∗ is in effect, the misspecification of the agent’s utilities

and probabilities is of no consequence.

More generally, this discussion shows that, from a substantive point of view, when possi-

ble, ascribing to the agent the principal’s own beliefs is immaterial, provided that the utility

functions are adjusted so that the agent’s preferences are accurately represented. This implies

that the “common prior” assumption is harmless if the agent’s preferences are represented

correctly and no new information becomes available before the terms of the contract are

fulfilled. I revisit the “common prior” assumption at the end of this section.

New Information and Recontracting

Suppose that after having signed a contract, the owner and skipper of boat x learn that

one of the entrants — say, z — decides to withdraw from the race. This decision eliminates
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the possibility that one of the two remaining boats finishes third. Equivalently, the event

consisting of all the outcomes in which z finishes first or second becomes null. Let E3 (z)

denote the event consisting of outcomes in which z finishes third. Since both the principal

and the agent are Bayesian, the principal’s posterior probabilities are π (Ei; j | E3 (z)) =

π (E3 (z) ; j | Ei)π (Ei; j) /π (E3 (z) ; j) , and π (E3; j | E3 (z)) = 0, j ∈ {a, a0}. Moreover,

being aware that the agent is Bayesian, the principal updates the agent’s probabilities in

the same way. However — and here’s the rub — the agent’s true posterior probabilities are

πA (E3; j | E3 (z)) = πA (E3 (z) ; j | Ei)π
A (Ei; j) /π

A (E3 (z) ; j) , and πA (E3; j | E3 (z)) = 0,

j ∈ {a, a0}. To simplify the notation, henceforth I denote the posteriors π (Ei; j | E3 (z)) and

πA (Ei; j | E3 (z)) by π̂ (Ei, j) and π̂A (Ei, j) , respectively.

Consider next the issue of recontracting. The withdrawal of z from the race raises two

questions. First, are there perceived benefits to recontracting? Second, if the original con-

tract is replaced, is it necessarily true that the replacement contract induces the agent to

implement the action desired by the principal?

In principle, the original and the replacement contracts may be negotiated simultaneously

or sequentially. In other words, given that the announcement that one of the competitors

has pulled out of the race is made public before the beginning of training, the contract

governing the principal-agent relationship in this event may be negotiated before or after the

announcement. However, except for the cost of contracting, there is no difference between

the simultaneous and sequential negotiations. If the contracts are negotiated simultaneously,

the reservation utility of the agent must be the same under both contracts. If the contracts
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are negotiated sequentially, the first contract can be written to include a clause that makes

it null and void if one of the competitors withdraws from the race. The second contract

is negotiated under the same individual rationality and incentive compatibility constraints

and is, therefore, no different from the contract covering the same contingency that was

negotiated simultaneously. In the presence of contracting costs, the sequential negotiation

is preferable on two counts. First, if none of the competitors pulls out of the race, there

is no need for a second contract, which saves the contracting cost. Second, if one of the

competitors does pull out, it is better to incur the cost of recontracting later than earlier.

In what follows, I pursue the scenario of sequential contracting and analyze the case in

which the principal wants the agent to implement the rigorous training program. From the

principal’s point of view, the subsequent contract, w∗∗ = (w∗∗ (E1) , w∗∗ (E2)) , is the solution

to the following program:

Program 2: Choose w ∈ R2 so as to maximize

2X
i=1

u (mi − w (Ei)) π̂ (Ei; a
0) (31)

subject to the individual rationality constraint

2X
i=1

v (w (Ei)) π̂ (Ei; a
0)− c (a0) ≥ v̄ (32)

and the incentive compatibility constraint

2X
i=1

v (w (Ei)) π̂ (Ei; a
0)− c (a0) ≥

2X
i=1

v (w (Ei)) π̂ (Ei; a)− c (a) . (33)
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Recalling that c (a) = 0, it is easily verifiable that the solution, w∗∗, to program 2, is

given by the solution to the following equations:

v (w (E1)) = v̄ +
[1− π̂ (E1; a)] c (a

0)

π̂ (E1; a0)− π̂ (E1; a)
and v (w (E2)) = v̄ − π̂ (E1; a) c (a

0)

π̂ (E1; a0)− π̂ (E1; a)
. (34)

Consider next the problem as viewed by the agent. The agent should agree to w∗∗

if, under the corresponding best action, it meets his reservation utility. Formally, w∗∗ is

acceptable to the agent if

max
j∈{a,a0}

2X
i=1

V (w∗∗ (Ei) , i, j) π̂
A (Ei; j)− c (j) ≥ v̄. (35)

The second question - namely, whether it is necessarily true that w∗∗ induces the agent

to implement the action desired by the principal - may be restated as follows: Does the

incentive compatibility constraint

2X
i=1

V (w∗∗ (Ei) , i, a
0) π̂A (Ei; a

0)− c (a0) ≥
2X

i=1

V (w∗∗ (Ei) , i, a) π̂
A (Ei; a) (36)

hold?

I am interested in showing that it is possible that inequality (36) fails to hold. In this

instance, if z pulls out of the race, the original contract becomes null and void and the

two parties to the contract sign a new contract, w∗∗. However, under the new contract,

contrary to the expectations and the interests of the principal, the agent implements the

light training program. In other words, because he failed to ascribe to the agent the correct

prior probabilities and utilities, the principal misrepresents the agent’s posterior preference
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relation and, as a result, fails to provide the agent with the incentives that would have induced

him to act in the principal’s best interest.

A Numerical Example

In order to simplify the calculations, assume that the principal is risk neutral. Let the

agent’s utility function be V (w, i, j) = Γ (j)
√
w/γ (i) , i ∈ {1, 2, 3}, j ∈ {a, a0}. Suppose

that the principal perceives the problem facing him as program 1 above, with the prior

probabilities as follows:

Outcomes

⎛⎜⎜⎜⎜⎜⎜⎝
x

y

z

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
x

z

y

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
y

x

z

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
z

x

y

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
y

z

x

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
z

y

x

⎞⎟⎟⎟⎟⎟⎟⎠
π (·; a) 1.5

12
1.5
12

2
12

2
12

2.5
12

2.5
12

π (·; a0) 4
12

4
12

1
12

1
12

1
12

1
12

(37)

where, in describing the outcomes, the boats are ranked, from top to bottom, according to

their positions. Recall that the principal is the owner of boat x. Hence the principal’s prior

probabilities of the relevant events are:

π (E1; a) =
3
12

π (E2; a) =
4
12

π (E3; a) =
5
12

π (E1; a
0) = 8

12
π (E2; a

0) = 2
12

π (E3; a
0) = 2

12

(38)

Maintain the assumption that c (a) = 0, and suppose that the agent’s disutility associated
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with the rigorous training is c (a0) = 0.1 and his prior reservation utility level is v̄ = 11.8333.

Consider the contract

w∗=(w∗ (E1) = 144.26 , w
∗ (E2) = 137.82 , w

∗ (E3) = 139.65) . (39)

Insofar as the principal is concerned, this contract satisfies the agent’s perceived individual

rationality constraint

8

12

√
144.26 +

2

12

√
137.82 +

2

12

√
139.65− 0.1 = 11.8333 (40)

and the incentive compatibility constraint16

11.8333 =
3

12

√
144.26 +

4

12

√
137.82 +

5

12

√
139.65. (41)

Moreover, the principal would rather the agent implement a0 under the contractw∗ than a

under the fixed-pay contract w̄ = 11.83332. To see this, note that the value of the principal’s

objective function under (w∗, a0) is

8

12
(1000− 144.26) + 2

12
(500− 137.82)− 2

12
139.65 = 607.58, (42)

far exceeding the value of his objective function under the fixed contract and a, which is

3

12
1000 +

4

12
500− 11.8332 = 276.65. (43)

16The fact that in this example the incentive compatibility constraint is binding does not affect the

generality of the conclusion below.

33



Next consider the situation as seen by the agent. Suppose that the agent’s true prior

beliefs are represented by the action dependent probabilities as follows:

Outcomes

⎛⎜⎜⎜⎜⎜⎜⎝
x

y

z

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
x

z

y

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
y

x

z

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
z

x

y

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
y

z

x

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
z

y

x

⎞⎟⎟⎟⎟⎟⎟⎠
πA (·; a) 32,847

1,000,000
32,847
1,000,000

175,180
1,000,000

175,180
1,000,000

291,970
1,000,000

291,970
1,000,000

πA (·; a0) 15
100

15
100

15
100

15
100

20
100

20
100

(44)

This means that there are positive numbers γ (i), i = 1, 2, 3, satisfying γ (1) < γ (2) < γ (3) ,

and Γ (j) =
P3

i=1 γ (i)π (Ei; j) , j ∈ {a, a0}, such that πA (Ei; j) = γ (i)π (Ei; j) /Γ (j) .

The solution to γ (i) , i = 1, 2, 3, and Γ (j) , j ∈ {a, a0}, is γ (1) = 6.0336, γ (2) = 24.134,

γ (3) = 32.179, Γ (a0) = 13.408, and Γ (a) = 22.961.17

17The calculation of {γ (i) | i = 1, 2, 3} and Γ(j), j ∈ (a, a0) is based on the following equations:

8
12γ(1)

8
12γ(1)+

2
12γ(2)+

2
12γ(3)

= 0.3

2
12γ(2)

8
12γ(1)+

2
12γ(2)+

2
12γ(3)

= 0.3

2
12γ(3)

8
12γ(1)+

2
12γ(2)+

2
12γ(3)

= 0.4

the solution to which is

γ (1) = 6.0336, γ (2) = 24.134, γ (3) = 32.179

Thus

Γ (a) =
3

12
6.0336 +

4

12
24.134 +

5

12
32.179 = 22.961

and

Γ (a0) =
8

12
6.0336 +

2

12
24.134 +

2

12
32.179 = 13.408.
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Hence his probabilities of the relevant events are18

πA (E1; a) = 0.065694 πA (E2; a) = 0.35036 πA (E3; a) = 0.58394

πA (E1; a
0) = 0.3 πA (E2; a

0) = 0.3 πA (E3; a
0) = 0.4

(45)

Because w∗ in (39) is the solution of program 1, it satisfies the individual rationality and

incentive compatibility constraints. Thus the agent accepts the contract w∗ and, under its

terms, implements the rigorous training program, as expected by the principal.

Consider next the effect of z pulling out of the race. The principal’s posterior probabili-

ties, which are also the posterior probabilities he ascribes to the agent, are obtained by the

application of Bayes’ rule. They are given by:

π̂ (E1; a) =
15
35

π̂ (E2; a) =
20
35

π̂ (E1; a
0) = 4

5
π̂ (E2; a

0) = 1
5

(46)

The principal considers offering the agent the contract, w∗∗ = (w∗∗ (E1) , w∗∗ (E2)) , that

would motivate him to implement a0. This contract is obtained by the solution to the equa-

tions (34) and is given by w∗∗ (E1) = 143.69, and w∗∗ (E2) = 137.31.
19

18The conditional probabilities {πA (Ei; a) | i = 1, 2, 3} are the solution to the equations

3
126.0336

3
126.0336+

4
1224.134+

5
1232.179

= πA (E1; a)

4
1224.134

3
126.0336+

4
1224.134+

5
1232.179

= πA (E2; a)

5
1232.179

3
126.0336+

4
1224.134+

5
1232.179

= πA (E3; a)

19Specifically, w∗∗ is given by the equations
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The principal’s payoff under (w∗∗, a0), is20

4

5
(1000− 143.69) + 1

5
(500− 137.31) = 757.6 (47)

His payoff under (w̄, a) , is

15

35
1000 +

20

35
500− 11.83332 = 574.26. (48)

Clearly, the principal is better off with (w∗∗, a0) than with (w̄, a) . That is, the principal is

better off offering to replace contract w∗ by contract w∗∗, expecting the agent to implement

the rigorous training program.

Next I show that the agent acceptsw∗∗ and, contrary to the anticipations of the principal,

chooses action a. Note that the agent’s posterior beliefs are represented by

π̂A (E1; a) =
32,847

32,847+175,180
= 0.1579 π̂A (E2; a) =

175,180
32,847+175,180

= 0.8421

π̂A (E1; a
0) = 0.5 π̂A (E2; a

0) = 0.5

(49)

If the agent accepts w∗∗ and implements a, his posterior expected utility is

22.961

Ã
0.1579

√
143.69

6.0336
+
0.8421

√
137.31

24.134

!
= 16.591, (50)

p
w∗∗ (E1) = 11.8333 +

20×0.1
13 , and

p
w∗∗ (E2) = 11.8333− 15×0.1

13 .
20The principal believes that if the agent acepts w∗∗, it will induce him to select the action a0.
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which exceeds his reservation utility. Thus the agent accepts w∗∗. The agent’s payoff under

(w∗∗, a0) is

13.408

Ã
0.5
√
143.69

6.0336
+
0.5
√
137.31

24.134

!
− 0.1 = 16.474. (51)

Comparing the agent’s payoffs corresponding tow∗∗ under the two actions, it is clear that

w∗∗ is not incentive compatible. Hence against the principal’s best interest (and wishes), the

agent implements the light training program.

Conclusion and Explanation

This example illustrates the potential consequences of the principal’s failure to ascribe to

the agent his true prior probabilities and utilities, even if the representation of the agent’s

prior preferences is accurate. It undermines the use of the common prior assumption, which

pervades agency theory. It shows that if the agent’s preferences are outcome independent,

the principal knows the agent’s prior preferences, and no new information becomes available,

the common prior assumption is harmless and convenient. However, in situations in which

recontracting under new information is possible, the use of the common prior assumption

is no longer harmless or automatically justified. In particular, if the posterior contracts are

to implement the second-best solutions, the agent’s true prior needs to be identified, and it

may or may not agree with the principal’s.

The result in this example reflects the fact that the agent believes that his choice of the
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more costly action shifts relatively large probability mass from the worst outcome, E3, to the

best outcome, E1, but little from E2 to E1. Hence the agent readily responds to incentives

when E3 is feasible. However, once E3 has been eliminated, the agent’s responsiveness

diminishes. Because he ascribed to the agent the wrong probabilities, the principal fails to

appreciate this lack of responsiveness and offers the agent the “wrong” replacement contract.
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