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A presentation of Quantum Logi
 based on anand then 
onne
tive �Daniel LehmannSelim and Ra
hel Benin S
hool of Computer S
ien
e and Engineeringand Center for the Study of Rationality,Hebrew University,Jerusalem 91904, IsraelJanuary 2007Abstra
tWhen a physi
ist performs a quanti
 measurement, new infor-mation about the system at hand is gathered. This paper studiesthe logi
al properties of how this new information is 
ombined withprevious information. It presents Quantum Logi
 as a propositionallogi
 under two 
onne
tives: negation and the and then operationthat 
ombines old and new information. The and then 
onne
tive isneither 
ommutative nor asso
iative. Many properties of this logi
are exhibited, and some small elegant subset is shown to imply allthe properties 
onsidered. No independen
e or 
ompleteness result is
laimed. Classi
al physi
al systems are exa
tly 
hara
terized by the
ommutativity, the asso
iativity, or the monotoni
ity of the and then
onne
tive. Entailment is de�ned in this logi
 and 
an be proved to bea partial order. In orthomodular latti
es, the operation proposed byFin
h in [3℄ satis�es all the properties studied in this paper. All prop-erties satis�ed by Fin
h's operation in modular latti
es are valid inQuantum Logi
. It is not known whether all properties of Quantum�This work was partially supported by the Jean and Helene Alfassa fund for resear
hin Arti�
ial Intelligen
e and by the Israel S
ien
e Foundation grant 183/03 on \Quantumand other 
umulative logi
s" 1



Logi
 are satis�ed by Fin
h's operation in modular latti
es. Key-words: Generalized Boolean Algebras, Non-asso
iative Boolean Alge-bras, Non-
ommutative Boolean Algebras, Quantum Measurements,Measurement Algebras, Quantum Logi
, Orthomodular latti
es, Mod-ular latti
es. PACS: 02.10.-v.1 Introdu
tion1.1 Ba
kgroundSin
e its foundation in [1℄, an impressive amount of di�erent systems havebeen proposed for Quantum Logi
. This paper proposes a minimalisti
 syn-tax: one unary, :, and one binary, �, 
onne
tives. The binary 
onne
tiveis not the 
ommutative and asso
iative 
onjun
tion proposed by Birkho�and von Neumann but the non-
ommutative, non-asso
iative 
onjun
tionproposed by Fin
h in [3℄ that is interpreted in this paper as an and then
onne
tive a
ting on experimental propositions. The minimalisti
 syntaxprovides algebrai
 properties that have an immediate meaning for the logi
of measurements in Quantum (and 
lassi
al) Physi
s. Central properties ofinterest are properties of the binary 
onne
tive, �, alone, that do not men-tion :. The algebrai
 stru
tures, NCNAB-algebras, that 
orrespond to thisQuantum Logi
 are non-
ommutative, non-asso
iative algebras that gener-alize Boolean algebras. The algebrai
 properties of the 
onjun
tion de�nean orthomodular partial order on the elements. The 
ommutative NCNAB-algebras are exa
tly the Boolean algebras, �tting the a

epted wisdom thatClassi
al Physi
s is the spe
ial 
ase of Quantum Physi
s one obtains whenall observables 
ommute.This should be 
ontradistin
ted with traditional presentations of Quan-tum Logi
 whi
h:� use a syntax in
luding one unary 
onne
tive and at least two binary
onne
tives: 
onjun
tion, disjun
tion and often one or more impli
a-tions,� interpret 
onjun
tion as the (
ommutative) interse
tion of 
losed linearsubspa
es of Hilbert spa
e, whi
h is semanti
ally problemati
 sin
e theproje
tion on the interse
tion A\B of two 
losed subspa
es 
annot bede�ned using the two proje
tions on A and B,2



� leads to a presentation in whi
h the 
entral properties 
onsidered su
has distributivity, modularity or orthomodularity involve more than one
onne
tive, and have no obvious meaning for proof-theory.Previous work on the non-
ommutative 
onjun
tion proposed by Fin
h [3℄,su
h as [8℄ have always 
onsidered this 
onne
tive as de�ned in terms of morebasi
 
onne
tives. This paper is 
losely 
onne
ted to [6℄. The main di�er-en
e is that, there, the basi
 operation was 
omposition of proje
tions and,here, the basi
 operation is the proje
tion of one 
losed subspa
e on a 
losedsubspa
e.This paper leaves many questions unsolved.1.2 Plan of this paperIn Se
tion 2 the formal framework of Quantum Me
hani
s is presented andthe representation of knowledge about a quanti
 system in this frameworkis dis
ussed. Se
tion 3 presents the syntax of the language that will be usedto talk about quanti
 systems. Se
tion 4 presents a semanti
 a

ount ofthis language and de�nes Hilbert Spa
e Quanti
 Logi
. Se
tion 5 de�nes the
orresponding �rst-order stru
tures, 
alled NCNAB-algebras. They gener-alize Boolean algebras. It provides an in-depth study of NCNAB-algebras.Se
tion 6 shows that orthomodular latti
es, under Fin
h's [3℄ interpretationof the and then 
onne
tive satisfy a list of 
entral properties of NCNAB-algebras. All properties of even modular latti
es, under this interpretation ofthe and then 
onne
tive, hold in NCNAB-algebras. Se
tion 7 is a summaryand 
on
lusion.2 What is a quanti
 proposition?When, in [1℄, Birkho� and von Neumann introdu
ed Quantum Logi
, theyargued that an experimental proposition must be mathemati
ally representedby a 
losed (linear) subspa
e of a Hilbert spa
e. Let us develop this point.The formalism generally a

epted for Quantum Me
hani
s, brought to its�nal form by von Neumann in [9℄, 
onsiders the set of possible states of asystem to be the rays (i.e., one-dimensional subspa
es) of a Hilbert spa
e,say H. A fundamental prin
iple of Quantum Me
hani
s 
laims that if, fromall one knows, the system 
ould be in any one of two di�erent states, thenit 
ould be in any one of the many di�erent superpositions of those two3



states. Therefore propositions must be represented by linear subspa
es of H.Birkho� and von Neumann argue that su
h subspa
es must be 
losed.Their argument is essentially the following. The basi
 pie
es of infor-mation one 
an gather about a system are of the type: the system is inthe eigensubspa
e of some self-adjoint operator for some eigenvalue �. Theeigensubspa
es of any bounded linear operator are 
losed, and self-adjointoperators are bounded. Then they explain that the information one 
angather about any system is built out of those basi
 pie
es by interse
tion(for information given by di�erent 
ommuting operators) and linear sum (fordi�erent possible eigenvalues). They argue that, even for in�nite su
h sums,the result has to be understood as the 
losure of the linear span of the 
losedsubspa
es 
onsidered.If a proposition is represented by a 
losed subspa
e A, one may, at least inprin
iple, test the system for this proposition. The measurement, representedby the proje
tion on A will, if the system is in a state that satis�es theproposition (i.e., in A), give the 
orresponding eigenvalue with probabilityone and, if the system does not satisfy the proposition, the measurement willgive, with some stri
tly positive probability, some other eigenvalue.Consider now a totally unknown system on whi
h one performs a sequen
eof two measurements. Before the �rst measurement, our knowledge is rep-resented by the whole (
losed) spa
e H. After the �rst measurement, ourknowledge is represented by the 
losed subspa
e A that is the eigensubspa
e
orresponding to the result obtained. After the se
ond measurement, oneknows, not only that the system is in the 
losed subspa
e B 
orrespondingto the result obtained in the se
ond measurement, but also that it is in theproje
tion on B of some ray of A. We must therefore 
onsider that, if A andB are meaningful 
losed subspa
es, then the proje
tion of A on B, i.e., thedire
t image of A under the transformation bB, whi
h is the proje
tion onB, is a meaningful proposition. If one has performed a measurement whoseresult indi
ates A and, subsequently, one performs a measurement whoseresult indi
ates B, the knowledge that one possesses about the system isen
apsulated in the subspa
e bB(A).At this point, a very fundamental remark ki
ks in. The proje
tion bB(A)of a 
losed subspa
e A on a 
losed subspa
e B is a subspa
e but is not always
losed. I am indebted to Semyon Alesker, Joseph Bernstein and Vitali Mil-man for enlightening me and providing me with an expli
it 
ounter-example.The 
ounter-example is based on an unbounded operator whose graph is
losed. By a result of Bana
h (1932) no su
h operator 
an be de�ned on the4



whole spa
e, and one must build one su
h operator de�ned on only part ofthe spa
e.There is no way, then, we 
an 
onsider an arbitrary Hilbert spa
e H andthe family of all 
losed subspa
es of H. We 
ould de
ide to 
onsider onlythose Hilbert spa
es H for whi
h the set of all 
losed subspa
es is 
losedunder proje
tions, but there is absolutely no reason to sti
k to the idea,dis
ussed 
riti
ally by Birkho� and von Neumann, that we should 
onsiderall 
losed subspa
es of H. It seems mu
h more natural not to put restri
tionson H but to 
onsider only families of 
losed subspa
es that are 
losed underproje
tions. This is what will be done in Se
tion 4.3 SyntaxA syntax for denoting measurements and propositions to talk about themwill be des
ribed now. Terms denote measurements.De�nition 1 Let V be a denumerable set (of atomi
 terms). The set ofquanti
 terms over V will be denoted by QTerms(V ) and is de�ned indu
-tively by:1. an element of V (an atomi
 term) is a quanti
 term,2. 1 is a quanti
 term,3. if x is a quanti
 term, then :x is a quanti
 term,4. if x and y are quanti
 terms, then x � y is a quanti
 term, and5. these are the only quanti
 terms.We shall write quanti
 terms using parentheses when useful and assumingthat : has pre
eden
e over �.One 
ould 
onsider a more extreme minimalisti
 approa
h based on thefollowing remark. If one re
e
ts on the two expressions (x � y) � z andx � (y � z), one noti
es that the former has an immediate experimental in-terpretation: the system may result from a measurement x followed by yfollowed by z. The latter expression does not present su
h a natural inter-pretation. Its meaning is that the system may result from a measurement ofx and then a measurement that it 
ould have been the 
ase that y and then5



z were measured: a quite unnatural proposition to make, sin
e it is not 
learhow one 
ould measure that the system 
ould have been in a state satisfyingy and then z without measuring �rst y and then z. Therefore, one 
ould haverestri
ted the rule 4) above to: if x is a quanti
 term and y is a literal (i.e.,atomi
 term or negation of an atomi
 term), then x � y is a quanti
 term.This interesting possibility would probably be best treated in the frameworkof a 
al
ulus of sequents, and is left for future work.Propositions talk about terms.De�nition 2 A simple quanti
 proposition on V is a pair of elements ofQTerms(V ), written x = y for x; y 2 QTerms(V ). The 
onditional quanti
propositions on V are de�ned in the following way:1. a simple quanti
 proposition is a 
onditional quanti
 proposition,2. if x = y is a simple quanti
 proposition and P is a 
onditional quanti
proposition then if x = y then P is a 
onditional quanti
 proposition,and3. these are the only 
onditional quanti
 propositions.Notation:The proposition if w = x then if y = z then P will bedenoted: if w = x and y = z then P. The simple propositionx � y = x will denoted x � y.In Se
tion 4 we shall propose a semanti
s for the 
al
ulus of 
onditionalquanti
 propositions, based on the geometry of Hilbert spa
es.4 Semanti
sWe shall formally de�ne the families of 
losed subspa
es we are interested in.De�nition 3 Let H be a Hilbert spa
e and M be a family of 
losed subspa
esof H. The family M is said to be a P-family i�� H 2 M ,� for any A 2M , A? 2M ,� for any A;B 2M , bB(A) 2M . 6



Set-theorists: note that we use the term family only for 
onvenien
e sin
ethe families 
onsidered are sets. Note that, as mentioned in Se
tion 1, theproje
tion bB(A) is not always a 
losed subspa
e: M is a P-family only ifsu
h proje
tions amongst members of the family are 
losed. There are manyexamples of P-families. For example, the set of all 
losed subspa
es of a�nite-dimensional Hilbert spa
e is a P-family. For any Hilbert spa
e H, thefamily 
ontaining two elements: H and the null subspa
e is a P-family.An interpretation f of QTerms(V ) into a P-family M of H asso
iateswith every quanti
 term an element of M su
h that:� f(1) = H,� f(:x) = f(x)?,� f(x � y) = df(y)(f(x)).De�nition 4 If x = y is a simple quanti
 proposition over V , and f is aninterpretation of QTerms(V ) into a P-family M , we shall say that x = y issatis�ed under f i� f(x) = f(y). For a 
onditional quanti
 proposition if x =y then P we shall say that it is satis�ed under f i� either P is satis�ed underf or x = y is not satis�ed under f . A simple (resp. 
onditional) propositionis valid in a P-family M i� it is satis�ed under any interpretation f into M .A simple (resp. 
onditional) proposition is Hilbert-valid i� it is valid in anyP-family.The relation � de�ned following De�nition 2 is interpreted as subsetin
lusion.Lemma 1 Let f be an interpretation of QTerms(V ) into a P-family M .The simple proposition x � y is satis�ed under f i� f(x) � f(y).Proof: Let the 
losed subspa
es of H, A and B be de�ned by: A = f(x)and B = f(y). We see that A � B i� bB(A) = A i� f(x � y) = f(x).Hilbert Spa
e Quanti
 Logi
 is de�ned to be the set of all Hilbert-valid
onditional propositions.
7



5 Non-Commutative, Non-Asso
iative BooleanalgebrasIn this se
tion, an e�ort is made to try and de�ne the algebrai
 stru
turesthat 
an be taken as the essen
e of Quantum Logi
. Three prin
iples areguiding us:� Language: we are looking for a family of general algebras whose type
onsists of two 
onstants, a unary operation and a binary operation.Clearly other presentations may be 
onsidered, in a way that is similarto the many presentations of Boolean algebras. The only propertiesthat we shall 
onsider are properties that 
an be expressed as 
ondi-tional propositions.� Every P-family de�nes a stru
ture in the family. This is a disputableassumption: one may think that not all P-families are meaningful forQuantum Me
hani
s and therefore that we may have to 
onsider asub
lass of P-families. In this paper only 
onditional propositions thatare valid amongst all P-families will be 
onsidered.� Every Boolean Algebra is an algebra of the family. This assumptionis based on the strong feeling that Quantum Logi
 should not be seenas in
ompatible with 
lassi
al logi
, as is the 
ase with the 
urrentlyprevailing view of Quantum Logi
, as attested by the results of Ko
henand Spe
ker, but that 
lassi
al logi
 should be a spe
ial 
ase of Quan-tum Logi
. More pre
isely, 
lassi
al logi
 is Commutative QuantumLogi
 (when for every x, y, x � y = y � x).We 
onsider stru
tures hM; 0; 1;:; �i where M is a non-empty set, 0 and1 are elements of M , : is a unary fun
tion M �!M and � is a binaryfun
tion M �M �!M .De�nition 5 A stru
ture hM; 0; 1;:; �i is a non-
ommutative, non-asso
iativeBoolean algebra (NCNAB-algebra) i� it satis�es, for all interpretations ofatomi
 terms inM , all 
onditional quanti
 propositions valid in Hilbert Spa
eQuantum Logi
.Note that De�nition 5 does not require that 0 be di�erent from 1.It would be ni
e to be able to present now a list of 
onditional quan-ti
 propositions valid in Hilbert Spa
e Quantum logi
 and show that any8



stru
ture satisfying those propositions is (isomorphi
 to) an NCNAB-algebra.This paper does not provide su
h a 
ompleteness result.We shall present a number of 
onditional quanti
 propositions that arevalid in Hilbert Spa
e Quantum Logi
 and prove interesting properties for allstru
tures that satisfy those properties, and therefore also for any NCNAB-algebra. No 
laim is made about the 
ompleteness of the list, and no 
laimis made about the independen
e of the properties listed in the sequel.In Se
tion 5.1, we shall present propositions that do not 
ontain :. A�rst result 
laims that they are valid in Hilbert Spa
e Quantum Logi
. Itsproof is postponed to Se
tion 6. A se
ond result shows that in any stru
turesatisfying those propositions, the relation � is a partial order. In Se
tion 5.2,we shall present propositions that deal with :, 
laim that they are valid inHilbert Spa
e Quantum Logi
 (proof postponed) and show that any stru
turethat satis�es those propositions and those of Se
tion 5.1 and is 
ommutative(or asso
iative, or monotoni
) is a Boolean algebra. In Se
tion 5.3 we shallpresent valid propositions whi
h, at this stage, 
annot be proven to followfrom the propositions of Se
tions 5.1 and 5.2. The reader should noti
e thatall the propositions presented below have a natural 
avor and represent waysof proving properties of quanti
 systems.5.1 Properties of and thenOur �rst set of propositions deal with � only. We shall say that x and y
ommute if x � y = y � x.Theorem 1 The following 
onditional quanti
 propositions are valid in HilbertSpa
e Quantum Logi
.1. Global Cautious Commutativity if x � y � x then x � y = y � x,2. Cautious Asso
iativity if x � y = y � x, then, for any z 2M , z � (x � y) =(z � x) � y,3. Lo
al Cautious Commutativity if (z � x) � y � x and (z � y) � x � y,then (z � x) � y = (z � y) � x,4. Z 0 � x = 0 = x � 0,5. N 1 � x = x = x � 1, 9



6. Left Monotony if x � y, then, x � z � y � z.Remarks:� the binary operation � is not assumed to be asso
iative or 
ommutative.� Taking M to be a Boolean algebra, 0 to be the bottom element, 1the top element, : to be 
omplementation and � to be greatest lowerbound, one obtains a model of all of the properties above, in whi
h �is asso
iative and 
ommutative, as well as a model of the properties ofTheorems 3 and 6.� Global Cautious Commutativity (GCC) is a weak 
ommutativityproperty, it 
laims that, under 
ertain 
ir
umstan
es, � is 
ommutative.The 
ommutativity property asserted x � y = y � x represents a global
ommutation property: x and y 
ommute in any 
ontext. Commuta-tion in a spe
i�
 
ontext z, a lo
al 
ommutation property, is expressedas (z � x) � y = (z � y) � x and appears in the property of Lo
al Cau-tious Commutativity (LCC) below. Theorem 2, item 9) shows thattwo propositions that 
ommute globally, 
ommute lo
ally in any 
on-text.� Cautious Asso
iativity (CA) is a weak asso
iativity property: under
ertain 
ir
umstan
es, i.e., if x and y 
ommute, we have asso
iativityfor z, x and y.� LCC is a weak 
ommutativity property, it 
laims that, under 
ertain
ir
umstan
es, propositions x and y 
ommute lo
ally, i.e., in the 
ontextof z.� Z expresses the fa
t that 0 is a zero for the operation �.� N expresses the fa
t that 1 is a neutral element for the operation �.� Left Monotony (LM) expresses the fa
t that the operation � is mono-tone, with respe
t to �, in its left argument. A symmetri
 property ofright monotony would imply 
ommutativity sin
e x � 1 would implyy � x � y � 1 = y and GCC would then imply x � y = y � x.Proof: One 
ould prove dire
tly, without mu
h diÆ
ulty, that the propertiesof Theorem 1 are valid in Hilbert Spa
e Logi
. Sin
e a stronger result, validity10



in Orthomodular Logi
, will be proved in Theorem 8, we postpone the proof.We may now prove that any stru
ture satisfying the properties of Theo-rem 1 has many interesting properties.Theorem 2 The following properties hold in any stru
ture that satis�es theproperties GLC, CA, LCC, Z, N, and LM of Theorem 1:1. 0 � x � 1,2. x � y � y,3. x � x, i.e., the relation � is re
exive, i.e., x � x = x,4. if x � y then x and y 
ommute,5. the relation � is antisymmetri
,6. the relation � is transitive,7. the relation � is a partial order,8. if x � y = y � x, then, for any z 2 M we have: z � (y � x) = z � (x � y) =(z � x) � y = (z � y) � x,9. if x � y = y � x, then, for any z 2M we have: (z � x) � y � x (and(z � y) � x � y),10. if x � y, then for any z 2M : z � x = (z � y) � x.Proof:1. By Z and N.2. By 1) above, x � 1. By LM, x � y � 1 � y. By N, x � y � y.3. By 2) above, 1 � x � x and now, by N, x � x.4. If x � y = x, by 3) of this Lemma, x � y � x and, by (GCC), x and y
ommute.5. Assume x � y and y � x. By 4) above, x and y 
ommute. Butx � y = x and y � x = y. We 
on
lude that x = y.11



6. Assume x � y and y � z. We have x = x � y = x � (y � z). But, by 4)above, y and z 
ommute and, therefore, by CA we have x � (y � z) =(x � y) � z = x � z.7. Obvious from the above.8. From the assumption: z � (y � x) = z � (x � y). By CA (z � x) � y =z � (x � y) and also (z � y) � x = z � (y � x).9. By 8) above, and then 2) above, (z � x) � y = z � (y � x) � y � x � x.By 6) above, we 
on
lude that (z � x) � y � x.10. By 4) x and y 
ommute and by 8) (z � y) � x = z � (x � y) = z � x.5.2 Properties of negationWe shall now deal with properties that involve both � and :. We shall writex ? y for x � y = 0.Theorem 3 The following 
onditional quanti
 propositions are valid in HilbertSpa
e Quantum Logi
.1. NP x � :x = :x � x = 0, i.e., x ? :x and :x ? x,2. RNL if x � z � y and x � :z � y, then x � y.Remarks:� NP, and RNL may be 
onsidered to be the proof rules that de�ne nega-tion. NP parallels a left introdu
tion rule. RNL is a non-
ommutativeleft elimination rule.� The property LNL, dual to RNL and expressed: if z � x � y and :z � x � y,then x � y is also valid in Hilbert Spa
e Quantum Logi
. It will be de-s
ribed and dis
ussed in Se
tion 5.3.� The properties RNL and LNL are an important novelty of this paper.All the properties of Theorems 1 and 3, ex
ept RNL, are satis�ed inHilbert spa
e when � is interpreted as interse
tion and : as orthogonal
omplement, the interpretation proposed by [1℄. Neither RNL nor its12



dual LNL are satis�ed in this interpretation. Both are very naturalrules that express a very basi
 rule of reasoning, reasoning by 
ases: toprove � it is enough to prove that � holds if � holds and that � holdsif :� holds. Su
h reasoning by 
ases is valid in 
lassi
al logi
. It is alsovalid in many (preferential) non-monotoni
 logi
s [5℄. It is also used inQuantum Physi
s. The following presents a use of RNL. To prove thata system prepared in a 
ertain way has a 
ertain quanti
 property, itis enough to show that, after some measurement, all possible resultingsystems have the property. Suppose, for example, that one preparesmany 
opies of a quanti
 system and then measures, on ea
h 
opy, itsspin along some dire
tion d0. One �nds many possible values for thespin along the dire
tion d0. If, then, on ea
h of the resulting systems(with di�erent values for the spin along d0) one measures the value 0for the spin along a dire
tion d, this is a proof that the original system(before measuring along d0) had a zero spin along d. Su
h a proof-ruleseems to be 
ru
ially needed be
ause, even if one measures the spinalong d immediately (without measuring �rst along d0) one 
annot, ine�e
t, ex
lude the possibility that some intera
tion between the systemand its environment o

ured, resulting in some unknown measurement.Proof: As for Theorem 1, the proof is postponed to Theorem 8.A series of theorems will now des
ribe properties of all stru
tures satisfy-ing the properties above.Theorem 4 The following properties hold in any stru
ture that satis�es theproperties GLC, CA, LCC, Z, N, and LM of Theorem 1 and the propertiesNP and RNL of Theorem 3.1. :(:x) = x,2. 0 = :1 and 1 = :0,3. the relation ? is symmetri
,4. x � y i� x ? :y,5. x � y i� :y � :x,6. if x � y and y ? z, then x ? z,7. if y � x and y � :x then y = 0,13



8. if x � y and :x � y, then y = 1,9. if x � y and x � z, then x � y � z,Proof:1. By Theorem 2, item 2) ::x � x � x. By NP and Theorem 2, item 1)::x � :x = 0 � x. We 
on
lude, by RNL, that ::x � x. Similarly we
an show that x � ::x. We 
on
lude, by Theorem 2, that x = ::x.2. By NP :1 � 1 = 0. By N :1 � 1 = :1. Therefore :1 = 0 and, by 1)above, we have :1 = ::0 = 0.3. if x � y = 0, then, by Theorem 2, item 1), x � y � x and, by Theorem 2,item 4) x and y 
ommute and therefore y � x = 0.4. If x � y, we have x � :y = (x � y) � :y. But, by NP, y and :y 
om-mute and therefore, by CA and then NP and Z, x � :y = x � (y � :y) =x � 0 = 0.If x � :y = 0, then x � :y � y by Theorem 2, item 1). But x � y � yby Theorem 2, item 2). We 
on
lude, by RNL, that x � y.5. x � y i�, by 4), x ? :y, i�, by 3), :y ? x i�, by 1), :y ? ::x i�,by 4), :y � :x.6. If y ? z, we have, by 1), y ? ::z and, by 6) y � :z. By transitivityof � we have x � :z and therefore x ? ::z and x ? z.7. y � x implies y � :x � 0. y � :x implies y � ::x = 0 and y � x � 0.By RNL, then, y � 0 and sin
e 0 � y, y = 0 by Theorem 2, item 5).8. Assume x � y and :x � y. By 5) above we have :y � :x and :y �::x = x and, by 7), we have :y = 0, therefore y = ::y = :0 = 1by 2).9. Assume x � y and x � z. By LM, x � z � y � z. But, by 4) x � :z =0 � y � z. By RNL, then, x � y � z.The next lemma deals with 
ommuting propositions.14



Lemma 2 In any stru
ture that satis�es the properties of Theorems 1and 3:if all three propositions x, y and z 
ommute pairwise, then x 
ommuteswith y � z,1.2. if x 
ommutes with y, then x 
ommutes with :y,3. if x and y 
ommute, then x � y is their greatest lower bound and:(:x � :y) their least upper bound,4. if x and y 
ommute, then :(x � y) � y � :x,5. Robbins equation if x and y 
ommute then x = :(:(x � y) � :(x � :y)),6. Orthomodularity if x � y, then y is the least upper bound of x and:x � y.Proof:1. By CA x � (y � z) = (x � y) � z sin
e y and z 
ommute. Sin
e x andy 
ommute (x � y) � z = (y � x) � z. But x and z 
ommute and, byTheorem 2, item 8) (y � x) � z = (y � z) � x.2. Assume x and y 
ommute. We have, by Z, NP and Theorem 2, item 8):0 = 0 � y = (:x � x) � y = (:x � y) � x:Therefore :x � y ? x, :x � y ? ::x, :x � y � :x and, by GCC, :xand y 
ommute.3. For arbitrary x and y, x � y � y by Theorem 2, item 2); also x � y isgreater or equal to any lower bound of x and y, by Theorem 4, item 9).The fa
t that x and y 
ommute gives us the last property needed:x � y = y � x � x by Theorem 2, item 2).By 2 :x and :y 
ommute. Therefore :x � :y is the greatest lowerbound of :x and :y. By Theorem 4, item 5), :(:x � :y) is thereforethe least upper bound of ::x and ::y.
15



4. This is property (4) of Fin
h [3℄. Assume x and y 
ommute. ByTheorem 2, item 2), we have (:(x � y) � y) � :x � :x. But, by CA, wehave:(:(x � y) � y) � x = :(x � y) � (y � x) = :(x � y) � (x � y) = 0 � :x:By RNL we 
on
lude that :(x � y) � y � :x.5. It is enough to prove that, if x and y 
ommute :x = :(x � y) � :(x � :y).We have: x � y = y � x � x by Theorem 2, item 2) and therefore, byTheorem 4, item 5) :x � :(x � y). By 2) above, x 
ommutes with:y and x � :y = :y � x � x by Theorem 2, item 2) and therefore, byTheorem 4, item 5) :x � :(x � :y). By Theorem 4, item 9), we have:x � :(x � y) � :(x � :y).Consider, now that, by 1) and 2) just above x, :(x � y) and :(x � :y)
ommute pairwise. By CA, then, we have(:(x�y)�:(x�:y))�x = :(x�y)� (:(x�:y)�x)) � :(x�:y)�x � yby 4) above, but we also have(:(x�y)�:(x�:y))�x = :(x�:y)� (:(x�y)�x) � :(x�y)�x) � :yby 4) above. By Theorem 4, item 7),(:(x � y) � :(x � :y)) � x = 0:Now, by Theorem 4, item 4), (:(x � y) � :(x � :y)) � :x.6. If x � y then 
learly y is an upper bound for x and for (:x)�y by Theo-rem 2, item 2). Suppose now that x � z and (:x) � y � z. Sin
e x � y,x and y 
ommute, and, by just above, y = :(:(y � x) � :(y � :x)).Therefore y = :(:x � :(y � :x)). By 3 above, y is the least upperbound of x and y � :x = :x � y.De�nition 6 A stru
ture is 
ommutative i� for any x; y 2M , x � y = y � x.A stru
ture is asso
iative i� for any x; y; z 2M , (x � y) � z = x � (y � z). Astru
ture is monotone i� for any x; y 2 M , x � y � x.16



Theorem 5 For a stru
ture A = hM; 0; 1;:; �i satisfying the properties ofTheorems 1 and 3 the following propositions are equivalent:1. A is asso
iative,2. A is monotone,3. A is 
ommutative,4. A is a Boolean algebra.The failure of monotoni
ity is a hallmark of the approa
h to Quantum Logi
taken in [2℄. Theorem 5 shows that this failure is inherently linked to the fail-ure of asso
iativity and 
ommutativity. It was the feeling of many that, sin
ethe hallmark of Quantum Me
hani
s, as opposed to Classi
al Me
hani
s, isthe non-
ommutativity of operators, Quantum Logi
 should, in some way, benon-
ommutative. Theorem 5 shows why it also has to be non-asso
iative, aproperty that is more surprising.Proof: Assume A is asso
iative. Consider arbitrary elements x and y. Weshall show that x � y � x. By asso
iativity: (x � y) � :x = x � (y � :x).But, by Theorem 2, item 2), y � :x � :x and, by Theorem 4, item 6)and 1): y � :x ? ::x = x. Therefore, by Theorem 4, item 3) we havex � (y � :x) = 0 and (x � y) � :x = 0, x � y ? :x and, by Theorem 4, item 4)x � y � x.If A is monotone, then, by GCC, it is 
ommutative.Assuming A is 
ommutative, we 
ould use any of many di�erent 
har-a
terizations of Boolean algebras to show that it is a Boolean algebra. Weshall use the one 
onje
tured by Robbins. M
Cune [7℄ proved Robbins 
on-je
ture: any stru
ture in whi
h � is asso
iative, 
ommutative and satis�esthe Robbins equation, for any elements x and y::(:x � y) � :(:x � :y) = x;is a Boolean algebra. The operation � is 
ommutative by assumption. It isasso
iative by CA. It satis�es the Robbins equation by Lemma 2, item 5).A Boolean algebra is asso
iative.De�nition 7 Let M be any NCNAB-algebra and let X �M be a set ofpropositions of M . The sub-algebra generated by X, M(X) is the smallestsub-algebra of M 
ontaining X. 17



Note that M(X) is an NCNAB-algebra sin
e the interse
tion of a family ofNCNAB-algebras is an NCNAB-algebra due to the 
onditional-equationalform of the properties de�ning an NCNAB-algebra.Lemma 3 LetM be any NCNAB-algebra and let X �M be a set of pairwise
ommuting propositions: i.e., for any x; y 2 X x � y = y � x, then the sub-algebra of M generated by X, M(X) is a 
ommutative NCNAB-algebra.Proof: By Lemma 2, items 1) and 2).5.3 Additional propositions valid in Hilbert Spa
e Quan-tum Logi
Some additional propositions that are valid in Hilbert Spa
e Quantum Logi
will be presented here. The question whether these properties follow fromthose of Theorems 1 and 3 is still open.Theorem 6 The following properties hold in any NCNAB-algebra.1. LNL if z � x � y and :z � x � y, then x � y,2. NN if x � y and x � :z � y, then x � z � y.LNL is the dual of RNL. NN is a paradoxi
al rule of proof: to prove y afterone measures x and z, it is enough to prove . NN is a rule of 
autiousmonotony and the 
onverse of RNL.Proof: The proof is postponed to Theorem 8.6 Orthomodular and Modular Quantum Logi
A di�erent, weaker, semanti
s, based on ortho
omplemented latti
es may be
onsidered. It was proposed by Fin
h in [3℄.An interpretation f of QTerms(V ) into an ortho
omplemented latti
ehX;?;>; 0;�i asso
iates with every quanti
 term an element of M su
hthat:� f(1) = >,� f(:x) = f(x)0, 18



� f(x � y) = (f(x) _ f(y)0) ^ f(y).Quanti
 propositions are given the obvious interpretation. Validity is de�nedas usual, for diferent families of ortho
omplemented latti
es: orthomodular,modular, and Boolean algebras. Orthomodular (resp. modular, Boolean)Quantum Logi
 is the set of all 
onditional propositions valid in orthomodular(resp. modular, Boolean) latti
es. It is easy to see that in Boolean latti
es,one has: x � y = x ^ y and therefore Boolean Quantum Logi
 is 
lassi
al logi
.But even in modular latti
es � is di�erent from ^: 
onsider the modularlatti
e of all subspa
es of a Hilbert spa
e.Let us now sort out the relations between all those logi
s we 
onsid-ered: Hilbert Spa
e Quantum Logi
 (HSQL), Orthomodular Quantum Logi
(OQL), Modular Quantum Logi
 (MQL) and Boolean Logi
 (BL).Theorem 7 OQL �MQL � HSQL � BL:The rightmost in
lusion is stri
t. It is not known whether OQL and HSQLare di�erent.In [1℄, Birkho� and von Neumann proposed modular latti
es as the stru
-ture of Quantum Logi
. The resear
h 
ommunity did not 
hose this pathand pursued the orthomodular path. Theorem 7 shows that, for the limitedlanguage 
onsidered in this paper, one may go the modular way.Proof: Orthomodular Quantum Logi
 is a subset of Modular Quantum Logi
sin
e any modular latti
e is orthomodular. We do not know whether thein
lusion is stri
t. To see that Modular Quantum Logi
 is a subset of HilbertSpa
e Quantum Logi
 
onsider that any P-family is part of a modular latti
e:the latti
e of all subspa
es ofH. Complementation in the latti
e is orthogonal
omplementation in Hilbert spa
e. We are left to show that, in a P-family,the latti
e operation de�ned by Fin
h is proje
tion. In other terms, thatgiven any two 
losed subspa
es A and B of the P-family, the proje
tion of Aon B, bB(A), is (A+B?) \ B.Lemma 4 Let H be Hilbert. If A is any (not ne
essarily 
losed) linear sub-spa
e of H and B is any 
losed subspa
e of H, then bB(A) = (A+B?) \ B.Proof: ~u 2 bB(A) i� there is some ~v 2 A su
h that ~u = bB(~v) i� ~u 2 B andthere is some ~v 2 A su
h that ~v � ~u ? B i� ~u 2 B and there are some ~v 2 Aand ~w 2 B? su
h that ~u = ~v + ~w i� ~u 2 (A+B?) \B.19



It is not known whether Hilbert Spa
e Quantum Logi
 is di�erent fromModular Quantum Logi
, or even whether it is di�erent from OrthomodularLogi
. The orthoarguesian law of [4℄ that traditionally separates Hilbertspa
e logi
 from orthomodular logi
 is not obviously expressible in terms of� and : only.Hilbert Spa
e Quantum Logi
 is a stri
t subset of Boolean Logi
. Indeedany Boolean Algebra is a �eld of subsets of some set X. Consider now theHilbert spa
e whose orthonormal basis is X. The elements of the �eld are
losed subspa
es and they form a P-family. MQL is therefore a subset ofBoolean Logi
. It is a stri
t subset sin
e HSQL is not 
ommutative.We shall now prove that all the properties of HSQL that were mentionedin Se
tion 5 are part of OQL, the weakest of our logi
s, therefore provingTheorems 1, 3 and 6.Let us assume an orthomodular latti
e and de�ne a � b = (a _ b0) ^ b.First, note that the relation � we de�ne in NCNAB-algebras 
oin
ides withthe ordering of the latti
e. If we use � to represent the order of the lat-ti
e: x � y i� x � y = x. Proof: Assume x � y, then, by orthomodularityx = y ^ (x _ y0), i.e., x = x � y. Conversely, if x = y ^ (x _ y0), then x � y.Lemma 5 If z � x � y, then z � x � z � (x ^ y).Proof: By de�nition z � x � z _ x0. Therefore z � x � z _ x0 _ y0 = z _ (x ^ y)0.But, by de�nition z � x � x and, by assumption, z � x � y. We 
on
lude thatz � x � (z _ (x ^ y)0) ^ x ^ y = z � (x ^ y).Lemma 6 If x � y, then for any z, z � x = (z � y) � x.Proof: By orthonormality z � (z _ y0) ^ y _ y0. By assumption, y0 � x0 andtherefore z � (z _ y0) ^ y _ x0 = (z � y) _ x0. Therefore z _ x0 � (z � y) _ x0and z � x � (z � y) � x.But y0 � x0 implies: z _ y0 � z _ x0, and (z _ y0) ^ y � z _ x0. Thereforez � y � z _ x0, ((z � y) _ x0) ^ x � (z _ x0) ^ x, i.e., (z � y) � x � z � x.Lemma 7 If (z � x) � y � x, then (z � x) � y = z � (x ^ y).Proof: Assume (z � x) � y � x. We have (z � x) � y � x ^ y and (z � x) � y =((z � x) � y) � (x ^ y). By Lemma 6, ((z � x) � y) � (x ^ y) = (z � x) � (x ^ y) =z � (x ^ y).The next lemma shows that orthomodular stru
tures satisfy some limitedform of distributivity. 20



Lemma 8 If z0 � x and z0 � y then (x _ y) ^ z = (x ^ z) _ (y ^ z). There-fore (x _ y) � z = (x � z) _ (y � z).Proof: In any latti
e and without any assumption (x _ y) ^ z � (x ^ z) _ (y ^ z).If z0 � x, we have, by orthomodularity, x = z0 _ z ^ x. Similarly, z0 � yimplies y = z0 _ z ^ y. Therefore (x _ y) ^ z = (z ^ x _ z ^ y _ z0) ^ z. Butz ^ x _ z ^ y � z and, by orthonormality: z ^ x _ z ^ y = z ^ (z ^ x _ z ^ y _ z0).The last 
laim follows trivially.Lemma 9 (x _ y) ^ (x _ y0) = x _ (x _ y0) ^ y.Proof: Without any hypothesis, in any latti
e x _ (x _ y0) ^ y � (x _ y) ^ (x _ y0).By orthomodularity, it is now enough to show that we have:(x _ (x _ y0) ^ y)0 ^ (x _ y) ^ (x _ y0) = 0;i.e., x0 ^ (x0 ^ y _ y0) ^ (x _ y) ^ (x _ y0) = 0:But (x0 ^ y _ y0) ^ (x _ y0) = y0 by orthomodularity sin
e y0 � x _ y0. There-fore x0 ^ (x0 ^ y _ y0) ^ (x _ y) ^ (x _ y0) = x0 ^ y0 ^ (x _ y) = 0.Theorem 8 Properties GCC, CA, LCC, Z, N, LM, NP, RNL, LNL andNN are valid in Orthomodular Quanti
 Logi
 and therefore in Hilbert Spa
eQuanti
 Logi
.Proof: Let us show now that GCC holds. Assume x � y � x. We shallshow that x � y = y � x. First, note that, by Lemma 5, x � y � x � (x ^ y) =x ^ y � (x _ y0) ^ y. Therefore x � y � y � x. By orthonormality, now, itis enough to prove that (x � y)0 ^ (y � x) = 0, i.e., (x � y)0 ^ (y _ x0) ^ x = 0.But (x � y)0 ^ x = x ^ (x0 ^ y _ y0) � (x _ y0) ^ (x0 ^ y _ y0 = y0 by orthonor-mality, sin
e y0 � x _ y0. Therefore (x � y)0 ^ x � x ^ y0 and(x � y)0 ^ (y _ x0) ^ x � x ^ y0 ^ (x0 _ y) = (x0 _ y)0 ^ (x0 _ y) = 0:Let us show that CA holds. Assume x � y = y � x. We have x � y � x ^ y �x � y. Therefore x � y = x ^ y. We have z � (x � y) = z � (x ^ y). By Lemma 6,then, z � (x � y) = (z � x) � (x ^ y) = ((z � x) � y) � (x ^ y). But ((z � x) � y � yand ((z � x) � y � x � y = y � x � x and therefore ((z � x) � y � x ^ y and,as noti
ed above, ((z � x) � y) � (x ^ y) = (z � x) � y.21



The property LCC follows dire
tly from Lemma 7. Properties Z, N, LMand NP are obvious.Let us show that RNL holds. Assume x � z � y and x � z0 � y. By or-thomodularity: x � ((x _ z0) ^ z) _ z0 and therefore x � y _ z0. Also x �((x _ z) ^ z0) _ z and therefore x � y _ z. Therefore x � (y _ z) ^ (y _ z0) � y.Let us show that LNL holds. By Lemma 8, (z � x) _ (z0 � x) = 1 � x = x.But, by assumption: (z � x) _ (z0 � x) � y.Let us show that NN holds. By Lemma 9 x _ (x � z0) = x _ ((x _ z) ^ z0) =(x _ z0) ^ (x _ z). We see that x � z = (x _ z0) ^ z � (x _ z0) ^ (x _ z) =x _ (x � z0).7 Future WorkHere is a list of open questions and lines of enquiry.� Are the properties of Theorems 1, 3 and 6 independent?� Do they 
hara
terize Hilbert Spa
e Quantum Logi
?� Find other stru
tures that de�ne NCNAB-algebras.� Study Ideals and Filters in NCNAB-algebras.� Find representation theorems for NCNAB-algebras, generalizing knownsu
h results for Boolean algebras.� Consider operations that 
an be de�ned using : and �. For exam-ple, :((x � :y) � (:x � y)) seems to provide a 
ommutative ex
lusivedisjun
tion.� Consider introdu
ing additional operations in the syntax. For examplean impli
ation that would be material impli
ation in Boolean algebrasand Sasaki hook in Hilbert spa
e satisfying z � x! y i� z � x � y, ora disjun
tion satisfying z � (x _ y) � w i� z � x � w and z � y � w.� What is the right de�nition of morphisms between P-families?� Do those morphisms preserve the latti
e stru
ture of the underlyingHilbert spa
es? 22
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