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A presentation of Quantum Logi based on anand then onnetive �Daniel LehmannSelim and Rahel Benin Shool of Computer Siene and Engineeringand Center for the Study of Rationality,Hebrew University,Jerusalem 91904, IsraelJanuary 2007AbstratWhen a physiist performs a quanti measurement, new infor-mation about the system at hand is gathered. This paper studiesthe logial properties of how this new information is ombined withprevious information. It presents Quantum Logi as a propositionallogi under two onnetives: negation and the and then operationthat ombines old and new information. The and then onnetive isneither ommutative nor assoiative. Many properties of this logiare exhibited, and some small elegant subset is shown to imply allthe properties onsidered. No independene or ompleteness result islaimed. Classial physial systems are exatly haraterized by theommutativity, the assoiativity, or the monotoniity of the and thenonnetive. Entailment is de�ned in this logi and an be proved to bea partial order. In orthomodular latties, the operation proposed byFinh in [3℄ satis�es all the properties studied in this paper. All prop-erties satis�ed by Finh's operation in modular latties are valid inQuantum Logi. It is not known whether all properties of Quantum�This work was partially supported by the Jean and Helene Alfassa fund for researhin Arti�ial Intelligene and by the Israel Siene Foundation grant 183/03 on \Quantumand other umulative logis" 1



Logi are satis�ed by Finh's operation in modular latties. Key-words: Generalized Boolean Algebras, Non-assoiative Boolean Alge-bras, Non-ommutative Boolean Algebras, Quantum Measurements,Measurement Algebras, Quantum Logi, Orthomodular latties, Mod-ular latties. PACS: 02.10.-v.1 Introdution1.1 BakgroundSine its foundation in [1℄, an impressive amount of di�erent systems havebeen proposed for Quantum Logi. This paper proposes a minimalisti syn-tax: one unary, :, and one binary, �, onnetives. The binary onnetiveis not the ommutative and assoiative onjuntion proposed by Birkho�and von Neumann but the non-ommutative, non-assoiative onjuntionproposed by Finh in [3℄ that is interpreted in this paper as an and thenonnetive ating on experimental propositions. The minimalisti syntaxprovides algebrai properties that have an immediate meaning for the logiof measurements in Quantum (and lassial) Physis. Central properties ofinterest are properties of the binary onnetive, �, alone, that do not men-tion :. The algebrai strutures, NCNAB-algebras, that orrespond to thisQuantum Logi are non-ommutative, non-assoiative algebras that gener-alize Boolean algebras. The algebrai properties of the onjuntion de�nean orthomodular partial order on the elements. The ommutative NCNAB-algebras are exatly the Boolean algebras, �tting the aepted wisdom thatClassial Physis is the speial ase of Quantum Physis one obtains whenall observables ommute.This should be ontradistinted with traditional presentations of Quan-tum Logi whih:� use a syntax inluding one unary onnetive and at least two binaryonnetives: onjuntion, disjuntion and often one or more implia-tions,� interpret onjuntion as the (ommutative) intersetion of losed linearsubspaes of Hilbert spae, whih is semantially problemati sine theprojetion on the intersetion A\B of two losed subspaes annot bede�ned using the two projetions on A and B,2



� leads to a presentation in whih the entral properties onsidered suhas distributivity, modularity or orthomodularity involve more than oneonnetive, and have no obvious meaning for proof-theory.Previous work on the non-ommutative onjuntion proposed by Finh [3℄,suh as [8℄ have always onsidered this onnetive as de�ned in terms of morebasi onnetives. This paper is losely onneted to [6℄. The main di�er-ene is that, there, the basi operation was omposition of projetions and,here, the basi operation is the projetion of one losed subspae on a losedsubspae.This paper leaves many questions unsolved.1.2 Plan of this paperIn Setion 2 the formal framework of Quantum Mehanis is presented andthe representation of knowledge about a quanti system in this frameworkis disussed. Setion 3 presents the syntax of the language that will be usedto talk about quanti systems. Setion 4 presents a semanti aount ofthis language and de�nes Hilbert Spae Quanti Logi. Setion 5 de�nes theorresponding �rst-order strutures, alled NCNAB-algebras. They gener-alize Boolean algebras. It provides an in-depth study of NCNAB-algebras.Setion 6 shows that orthomodular latties, under Finh's [3℄ interpretationof the and then onnetive satisfy a list of entral properties of NCNAB-algebras. All properties of even modular latties, under this interpretation ofthe and then onnetive, hold in NCNAB-algebras. Setion 7 is a summaryand onlusion.2 What is a quanti proposition?When, in [1℄, Birkho� and von Neumann introdued Quantum Logi, theyargued that an experimental proposition must be mathematially representedby a losed (linear) subspae of a Hilbert spae. Let us develop this point.The formalism generally aepted for Quantum Mehanis, brought to its�nal form by von Neumann in [9℄, onsiders the set of possible states of asystem to be the rays (i.e., one-dimensional subspaes) of a Hilbert spae,say H. A fundamental priniple of Quantum Mehanis laims that if, fromall one knows, the system ould be in any one of two di�erent states, thenit ould be in any one of the many di�erent superpositions of those two3



states. Therefore propositions must be represented by linear subspaes of H.Birkho� and von Neumann argue that suh subspaes must be losed.Their argument is essentially the following. The basi piees of infor-mation one an gather about a system are of the type: the system is inthe eigensubspae of some self-adjoint operator for some eigenvalue �. Theeigensubspaes of any bounded linear operator are losed, and self-adjointoperators are bounded. Then they explain that the information one angather about any system is built out of those basi piees by intersetion(for information given by di�erent ommuting operators) and linear sum (fordi�erent possible eigenvalues). They argue that, even for in�nite suh sums,the result has to be understood as the losure of the linear span of the losedsubspaes onsidered.If a proposition is represented by a losed subspae A, one may, at least inpriniple, test the system for this proposition. The measurement, representedby the projetion on A will, if the system is in a state that satis�es theproposition (i.e., in A), give the orresponding eigenvalue with probabilityone and, if the system does not satisfy the proposition, the measurement willgive, with some stritly positive probability, some other eigenvalue.Consider now a totally unknown system on whih one performs a sequeneof two measurements. Before the �rst measurement, our knowledge is rep-resented by the whole (losed) spae H. After the �rst measurement, ourknowledge is represented by the losed subspae A that is the eigensubspaeorresponding to the result obtained. After the seond measurement, oneknows, not only that the system is in the losed subspae B orrespondingto the result obtained in the seond measurement, but also that it is in theprojetion on B of some ray of A. We must therefore onsider that, if A andB are meaningful losed subspaes, then the projetion of A on B, i.e., thediret image of A under the transformation bB, whih is the projetion onB, is a meaningful proposition. If one has performed a measurement whoseresult indiates A and, subsequently, one performs a measurement whoseresult indiates B, the knowledge that one possesses about the system isenapsulated in the subspae bB(A).At this point, a very fundamental remark kiks in. The projetion bB(A)of a losed subspae A on a losed subspae B is a subspae but is not alwayslosed. I am indebted to Semyon Alesker, Joseph Bernstein and Vitali Mil-man for enlightening me and providing me with an expliit ounter-example.The ounter-example is based on an unbounded operator whose graph islosed. By a result of Banah (1932) no suh operator an be de�ned on the4



whole spae, and one must build one suh operator de�ned on only part ofthe spae.There is no way, then, we an onsider an arbitrary Hilbert spae H andthe family of all losed subspaes of H. We ould deide to onsider onlythose Hilbert spaes H for whih the set of all losed subspaes is losedunder projetions, but there is absolutely no reason to stik to the idea,disussed ritially by Birkho� and von Neumann, that we should onsiderall losed subspaes of H. It seems muh more natural not to put restritionson H but to onsider only families of losed subspaes that are losed underprojetions. This is what will be done in Setion 4.3 SyntaxA syntax for denoting measurements and propositions to talk about themwill be desribed now. Terms denote measurements.De�nition 1 Let V be a denumerable set (of atomi terms). The set ofquanti terms over V will be denoted by QTerms(V ) and is de�ned indu-tively by:1. an element of V (an atomi term) is a quanti term,2. 1 is a quanti term,3. if x is a quanti term, then :x is a quanti term,4. if x and y are quanti terms, then x � y is a quanti term, and5. these are the only quanti terms.We shall write quanti terms using parentheses when useful and assumingthat : has preedene over �.One ould onsider a more extreme minimalisti approah based on thefollowing remark. If one reets on the two expressions (x � y) � z andx � (y � z), one noties that the former has an immediate experimental in-terpretation: the system may result from a measurement x followed by yfollowed by z. The latter expression does not present suh a natural inter-pretation. Its meaning is that the system may result from a measurement ofx and then a measurement that it ould have been the ase that y and then5



z were measured: a quite unnatural proposition to make, sine it is not learhow one ould measure that the system ould have been in a state satisfyingy and then z without measuring �rst y and then z. Therefore, one ould haverestrited the rule 4) above to: if x is a quanti term and y is a literal (i.e.,atomi term or negation of an atomi term), then x � y is a quanti term.This interesting possibility would probably be best treated in the frameworkof a alulus of sequents, and is left for future work.Propositions talk about terms.De�nition 2 A simple quanti proposition on V is a pair of elements ofQTerms(V ), written x = y for x; y 2 QTerms(V ). The onditional quantipropositions on V are de�ned in the following way:1. a simple quanti proposition is a onditional quanti proposition,2. if x = y is a simple quanti proposition and P is a onditional quantiproposition then if x = y then P is a onditional quanti proposition,and3. these are the only onditional quanti propositions.Notation:The proposition if w = x then if y = z then P will bedenoted: if w = x and y = z then P. The simple propositionx � y = x will denoted x � y.In Setion 4 we shall propose a semantis for the alulus of onditionalquanti propositions, based on the geometry of Hilbert spaes.4 SemantisWe shall formally de�ne the families of losed subspaes we are interested in.De�nition 3 Let H be a Hilbert spae and M be a family of losed subspaesof H. The family M is said to be a P-family i�� H 2 M ,� for any A 2M , A? 2M ,� for any A;B 2M , bB(A) 2M . 6



Set-theorists: note that we use the term family only for onveniene sinethe families onsidered are sets. Note that, as mentioned in Setion 1, theprojetion bB(A) is not always a losed subspae: M is a P-family only ifsuh projetions amongst members of the family are losed. There are manyexamples of P-families. For example, the set of all losed subspaes of a�nite-dimensional Hilbert spae is a P-family. For any Hilbert spae H, thefamily ontaining two elements: H and the null subspae is a P-family.An interpretation f of QTerms(V ) into a P-family M of H assoiateswith every quanti term an element of M suh that:� f(1) = H,� f(:x) = f(x)?,� f(x � y) = df(y)(f(x)).De�nition 4 If x = y is a simple quanti proposition over V , and f is aninterpretation of QTerms(V ) into a P-family M , we shall say that x = y issatis�ed under f i� f(x) = f(y). For a onditional quanti proposition if x =y then P we shall say that it is satis�ed under f i� either P is satis�ed underf or x = y is not satis�ed under f . A simple (resp. onditional) propositionis valid in a P-family M i� it is satis�ed under any interpretation f into M .A simple (resp. onditional) proposition is Hilbert-valid i� it is valid in anyP-family.The relation � de�ned following De�nition 2 is interpreted as subsetinlusion.Lemma 1 Let f be an interpretation of QTerms(V ) into a P-family M .The simple proposition x � y is satis�ed under f i� f(x) � f(y).Proof: Let the losed subspaes of H, A and B be de�ned by: A = f(x)and B = f(y). We see that A � B i� bB(A) = A i� f(x � y) = f(x).Hilbert Spae Quanti Logi is de�ned to be the set of all Hilbert-validonditional propositions.
7



5 Non-Commutative, Non-Assoiative BooleanalgebrasIn this setion, an e�ort is made to try and de�ne the algebrai struturesthat an be taken as the essene of Quantum Logi. Three priniples areguiding us:� Language: we are looking for a family of general algebras whose typeonsists of two onstants, a unary operation and a binary operation.Clearly other presentations may be onsidered, in a way that is similarto the many presentations of Boolean algebras. The only propertiesthat we shall onsider are properties that an be expressed as ondi-tional propositions.� Every P-family de�nes a struture in the family. This is a disputableassumption: one may think that not all P-families are meaningful forQuantum Mehanis and therefore that we may have to onsider asublass of P-families. In this paper only onditional propositions thatare valid amongst all P-families will be onsidered.� Every Boolean Algebra is an algebra of the family. This assumptionis based on the strong feeling that Quantum Logi should not be seenas inompatible with lassial logi, as is the ase with the urrentlyprevailing view of Quantum Logi, as attested by the results of Kohenand Speker, but that lassial logi should be a speial ase of Quan-tum Logi. More preisely, lassial logi is Commutative QuantumLogi (when for every x, y, x � y = y � x).We onsider strutures hM; 0; 1;:; �i where M is a non-empty set, 0 and1 are elements of M , : is a unary funtion M �!M and � is a binaryfuntion M �M �!M .De�nition 5 A struture hM; 0; 1;:; �i is a non-ommutative, non-assoiativeBoolean algebra (NCNAB-algebra) i� it satis�es, for all interpretations ofatomi terms inM , all onditional quanti propositions valid in Hilbert SpaeQuantum Logi.Note that De�nition 5 does not require that 0 be di�erent from 1.It would be nie to be able to present now a list of onditional quan-ti propositions valid in Hilbert Spae Quantum logi and show that any8



struture satisfying those propositions is (isomorphi to) an NCNAB-algebra.This paper does not provide suh a ompleteness result.We shall present a number of onditional quanti propositions that arevalid in Hilbert Spae Quantum Logi and prove interesting properties for allstrutures that satisfy those properties, and therefore also for any NCNAB-algebra. No laim is made about the ompleteness of the list, and no laimis made about the independene of the properties listed in the sequel.In Setion 5.1, we shall present propositions that do not ontain :. A�rst result laims that they are valid in Hilbert Spae Quantum Logi. Itsproof is postponed to Setion 6. A seond result shows that in any struturesatisfying those propositions, the relation � is a partial order. In Setion 5.2,we shall present propositions that deal with :, laim that they are valid inHilbert Spae Quantum Logi (proof postponed) and show that any struturethat satis�es those propositions and those of Setion 5.1 and is ommutative(or assoiative, or monotoni) is a Boolean algebra. In Setion 5.3 we shallpresent valid propositions whih, at this stage, annot be proven to followfrom the propositions of Setions 5.1 and 5.2. The reader should notie thatall the propositions presented below have a natural avor and represent waysof proving properties of quanti systems.5.1 Properties of and thenOur �rst set of propositions deal with � only. We shall say that x and yommute if x � y = y � x.Theorem 1 The following onditional quanti propositions are valid in HilbertSpae Quantum Logi.1. Global Cautious Commutativity if x � y � x then x � y = y � x,2. Cautious Assoiativity if x � y = y � x, then, for any z 2M , z � (x � y) =(z � x) � y,3. Loal Cautious Commutativity if (z � x) � y � x and (z � y) � x � y,then (z � x) � y = (z � y) � x,4. Z 0 � x = 0 = x � 0,5. N 1 � x = x = x � 1, 9



6. Left Monotony if x � y, then, x � z � y � z.Remarks:� the binary operation � is not assumed to be assoiative or ommutative.� Taking M to be a Boolean algebra, 0 to be the bottom element, 1the top element, : to be omplementation and � to be greatest lowerbound, one obtains a model of all of the properties above, in whih �is assoiative and ommutative, as well as a model of the properties ofTheorems 3 and 6.� Global Cautious Commutativity (GCC) is a weak ommutativityproperty, it laims that, under ertain irumstanes, � is ommutative.The ommutativity property asserted x � y = y � x represents a globalommutation property: x and y ommute in any ontext. Commuta-tion in a spei� ontext z, a loal ommutation property, is expressedas (z � x) � y = (z � y) � x and appears in the property of Loal Cau-tious Commutativity (LCC) below. Theorem 2, item 9) shows thattwo propositions that ommute globally, ommute loally in any on-text.� Cautious Assoiativity (CA) is a weak assoiativity property: underertain irumstanes, i.e., if x and y ommute, we have assoiativityfor z, x and y.� LCC is a weak ommutativity property, it laims that, under ertainirumstanes, propositions x and y ommute loally, i.e., in the ontextof z.� Z expresses the fat that 0 is a zero for the operation �.� N expresses the fat that 1 is a neutral element for the operation �.� Left Monotony (LM) expresses the fat that the operation � is mono-tone, with respet to �, in its left argument. A symmetri property ofright monotony would imply ommutativity sine x � 1 would implyy � x � y � 1 = y and GCC would then imply x � y = y � x.Proof: One ould prove diretly, without muh diÆulty, that the propertiesof Theorem 1 are valid in Hilbert Spae Logi. Sine a stronger result, validity10



in Orthomodular Logi, will be proved in Theorem 8, we postpone the proof.We may now prove that any struture satisfying the properties of Theo-rem 1 has many interesting properties.Theorem 2 The following properties hold in any struture that satis�es theproperties GLC, CA, LCC, Z, N, and LM of Theorem 1:1. 0 � x � 1,2. x � y � y,3. x � x, i.e., the relation � is reexive, i.e., x � x = x,4. if x � y then x and y ommute,5. the relation � is antisymmetri,6. the relation � is transitive,7. the relation � is a partial order,8. if x � y = y � x, then, for any z 2 M we have: z � (y � x) = z � (x � y) =(z � x) � y = (z � y) � x,9. if x � y = y � x, then, for any z 2M we have: (z � x) � y � x (and(z � y) � x � y),10. if x � y, then for any z 2M : z � x = (z � y) � x.Proof:1. By Z and N.2. By 1) above, x � 1. By LM, x � y � 1 � y. By N, x � y � y.3. By 2) above, 1 � x � x and now, by N, x � x.4. If x � y = x, by 3) of this Lemma, x � y � x and, by (GCC), x and yommute.5. Assume x � y and y � x. By 4) above, x and y ommute. Butx � y = x and y � x = y. We onlude that x = y.11



6. Assume x � y and y � z. We have x = x � y = x � (y � z). But, by 4)above, y and z ommute and, therefore, by CA we have x � (y � z) =(x � y) � z = x � z.7. Obvious from the above.8. From the assumption: z � (y � x) = z � (x � y). By CA (z � x) � y =z � (x � y) and also (z � y) � x = z � (y � x).9. By 8) above, and then 2) above, (z � x) � y = z � (y � x) � y � x � x.By 6) above, we onlude that (z � x) � y � x.10. By 4) x and y ommute and by 8) (z � y) � x = z � (x � y) = z � x.5.2 Properties of negationWe shall now deal with properties that involve both � and :. We shall writex ? y for x � y = 0.Theorem 3 The following onditional quanti propositions are valid in HilbertSpae Quantum Logi.1. NP x � :x = :x � x = 0, i.e., x ? :x and :x ? x,2. RNL if x � z � y and x � :z � y, then x � y.Remarks:� NP, and RNL may be onsidered to be the proof rules that de�ne nega-tion. NP parallels a left introdution rule. RNL is a non-ommutativeleft elimination rule.� The property LNL, dual to RNL and expressed: if z � x � y and :z � x � y,then x � y is also valid in Hilbert Spae Quantum Logi. It will be de-sribed and disussed in Setion 5.3.� The properties RNL and LNL are an important novelty of this paper.All the properties of Theorems 1 and 3, exept RNL, are satis�ed inHilbert spae when � is interpreted as intersetion and : as orthogonalomplement, the interpretation proposed by [1℄. Neither RNL nor its12



dual LNL are satis�ed in this interpretation. Both are very naturalrules that express a very basi rule of reasoning, reasoning by ases: toprove � it is enough to prove that � holds if � holds and that � holdsif :� holds. Suh reasoning by ases is valid in lassial logi. It is alsovalid in many (preferential) non-monotoni logis [5℄. It is also used inQuantum Physis. The following presents a use of RNL. To prove thata system prepared in a ertain way has a ertain quanti property, itis enough to show that, after some measurement, all possible resultingsystems have the property. Suppose, for example, that one preparesmany opies of a quanti system and then measures, on eah opy, itsspin along some diretion d0. One �nds many possible values for thespin along the diretion d0. If, then, on eah of the resulting systems(with di�erent values for the spin along d0) one measures the value 0for the spin along a diretion d, this is a proof that the original system(before measuring along d0) had a zero spin along d. Suh a proof-ruleseems to be ruially needed beause, even if one measures the spinalong d immediately (without measuring �rst along d0) one annot, ine�et, exlude the possibility that some interation between the systemand its environment oured, resulting in some unknown measurement.Proof: As for Theorem 1, the proof is postponed to Theorem 8.A series of theorems will now desribe properties of all strutures satisfy-ing the properties above.Theorem 4 The following properties hold in any struture that satis�es theproperties GLC, CA, LCC, Z, N, and LM of Theorem 1 and the propertiesNP and RNL of Theorem 3.1. :(:x) = x,2. 0 = :1 and 1 = :0,3. the relation ? is symmetri,4. x � y i� x ? :y,5. x � y i� :y � :x,6. if x � y and y ? z, then x ? z,7. if y � x and y � :x then y = 0,13



8. if x � y and :x � y, then y = 1,9. if x � y and x � z, then x � y � z,Proof:1. By Theorem 2, item 2) ::x � x � x. By NP and Theorem 2, item 1)::x � :x = 0 � x. We onlude, by RNL, that ::x � x. Similarly wean show that x � ::x. We onlude, by Theorem 2, that x = ::x.2. By NP :1 � 1 = 0. By N :1 � 1 = :1. Therefore :1 = 0 and, by 1)above, we have :1 = ::0 = 0.3. if x � y = 0, then, by Theorem 2, item 1), x � y � x and, by Theorem 2,item 4) x and y ommute and therefore y � x = 0.4. If x � y, we have x � :y = (x � y) � :y. But, by NP, y and :y om-mute and therefore, by CA and then NP and Z, x � :y = x � (y � :y) =x � 0 = 0.If x � :y = 0, then x � :y � y by Theorem 2, item 1). But x � y � yby Theorem 2, item 2). We onlude, by RNL, that x � y.5. x � y i�, by 4), x ? :y, i�, by 3), :y ? x i�, by 1), :y ? ::x i�,by 4), :y � :x.6. If y ? z, we have, by 1), y ? ::z and, by 6) y � :z. By transitivityof � we have x � :z and therefore x ? ::z and x ? z.7. y � x implies y � :x � 0. y � :x implies y � ::x = 0 and y � x � 0.By RNL, then, y � 0 and sine 0 � y, y = 0 by Theorem 2, item 5).8. Assume x � y and :x � y. By 5) above we have :y � :x and :y �::x = x and, by 7), we have :y = 0, therefore y = ::y = :0 = 1by 2).9. Assume x � y and x � z. By LM, x � z � y � z. But, by 4) x � :z =0 � y � z. By RNL, then, x � y � z.The next lemma deals with ommuting propositions.14



Lemma 2 In any struture that satis�es the properties of Theorems 1and 3:if all three propositions x, y and z ommute pairwise, then x ommuteswith y � z,1.2. if x ommutes with y, then x ommutes with :y,3. if x and y ommute, then x � y is their greatest lower bound and:(:x � :y) their least upper bound,4. if x and y ommute, then :(x � y) � y � :x,5. Robbins equation if x and y ommute then x = :(:(x � y) � :(x � :y)),6. Orthomodularity if x � y, then y is the least upper bound of x and:x � y.Proof:1. By CA x � (y � z) = (x � y) � z sine y and z ommute. Sine x andy ommute (x � y) � z = (y � x) � z. But x and z ommute and, byTheorem 2, item 8) (y � x) � z = (y � z) � x.2. Assume x and y ommute. We have, by Z, NP and Theorem 2, item 8):0 = 0 � y = (:x � x) � y = (:x � y) � x:Therefore :x � y ? x, :x � y ? ::x, :x � y � :x and, by GCC, :xand y ommute.3. For arbitrary x and y, x � y � y by Theorem 2, item 2); also x � y isgreater or equal to any lower bound of x and y, by Theorem 4, item 9).The fat that x and y ommute gives us the last property needed:x � y = y � x � x by Theorem 2, item 2).By 2 :x and :y ommute. Therefore :x � :y is the greatest lowerbound of :x and :y. By Theorem 4, item 5), :(:x � :y) is thereforethe least upper bound of ::x and ::y.
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4. This is property (4) of Finh [3℄. Assume x and y ommute. ByTheorem 2, item 2), we have (:(x � y) � y) � :x � :x. But, by CA, wehave:(:(x � y) � y) � x = :(x � y) � (y � x) = :(x � y) � (x � y) = 0 � :x:By RNL we onlude that :(x � y) � y � :x.5. It is enough to prove that, if x and y ommute :x = :(x � y) � :(x � :y).We have: x � y = y � x � x by Theorem 2, item 2) and therefore, byTheorem 4, item 5) :x � :(x � y). By 2) above, x ommutes with:y and x � :y = :y � x � x by Theorem 2, item 2) and therefore, byTheorem 4, item 5) :x � :(x � :y). By Theorem 4, item 9), we have:x � :(x � y) � :(x � :y).Consider, now that, by 1) and 2) just above x, :(x � y) and :(x � :y)ommute pairwise. By CA, then, we have(:(x�y)�:(x�:y))�x = :(x�y)� (:(x�:y)�x)) � :(x�:y)�x � yby 4) above, but we also have(:(x�y)�:(x�:y))�x = :(x�:y)� (:(x�y)�x) � :(x�y)�x) � :yby 4) above. By Theorem 4, item 7),(:(x � y) � :(x � :y)) � x = 0:Now, by Theorem 4, item 4), (:(x � y) � :(x � :y)) � :x.6. If x � y then learly y is an upper bound for x and for (:x)�y by Theo-rem 2, item 2). Suppose now that x � z and (:x) � y � z. Sine x � y,x and y ommute, and, by just above, y = :(:(y � x) � :(y � :x)).Therefore y = :(:x � :(y � :x)). By 3 above, y is the least upperbound of x and y � :x = :x � y.De�nition 6 A struture is ommutative i� for any x; y 2M , x � y = y � x.A struture is assoiative i� for any x; y; z 2M , (x � y) � z = x � (y � z). Astruture is monotone i� for any x; y 2 M , x � y � x.16



Theorem 5 For a struture A = hM; 0; 1;:; �i satisfying the properties ofTheorems 1 and 3 the following propositions are equivalent:1. A is assoiative,2. A is monotone,3. A is ommutative,4. A is a Boolean algebra.The failure of monotoniity is a hallmark of the approah to Quantum Logitaken in [2℄. Theorem 5 shows that this failure is inherently linked to the fail-ure of assoiativity and ommutativity. It was the feeling of many that, sinethe hallmark of Quantum Mehanis, as opposed to Classial Mehanis, isthe non-ommutativity of operators, Quantum Logi should, in some way, benon-ommutative. Theorem 5 shows why it also has to be non-assoiative, aproperty that is more surprising.Proof: Assume A is assoiative. Consider arbitrary elements x and y. Weshall show that x � y � x. By assoiativity: (x � y) � :x = x � (y � :x).But, by Theorem 2, item 2), y � :x � :x and, by Theorem 4, item 6)and 1): y � :x ? ::x = x. Therefore, by Theorem 4, item 3) we havex � (y � :x) = 0 and (x � y) � :x = 0, x � y ? :x and, by Theorem 4, item 4)x � y � x.If A is monotone, then, by GCC, it is ommutative.Assuming A is ommutative, we ould use any of many di�erent har-aterizations of Boolean algebras to show that it is a Boolean algebra. Weshall use the one onjetured by Robbins. MCune [7℄ proved Robbins on-jeture: any struture in whih � is assoiative, ommutative and satis�esthe Robbins equation, for any elements x and y::(:x � y) � :(:x � :y) = x;is a Boolean algebra. The operation � is ommutative by assumption. It isassoiative by CA. It satis�es the Robbins equation by Lemma 2, item 5).A Boolean algebra is assoiative.De�nition 7 Let M be any NCNAB-algebra and let X �M be a set ofpropositions of M . The sub-algebra generated by X, M(X) is the smallestsub-algebra of M ontaining X. 17



Note that M(X) is an NCNAB-algebra sine the intersetion of a family ofNCNAB-algebras is an NCNAB-algebra due to the onditional-equationalform of the properties de�ning an NCNAB-algebra.Lemma 3 LetM be any NCNAB-algebra and let X �M be a set of pairwiseommuting propositions: i.e., for any x; y 2 X x � y = y � x, then the sub-algebra of M generated by X, M(X) is a ommutative NCNAB-algebra.Proof: By Lemma 2, items 1) and 2).5.3 Additional propositions valid in Hilbert Spae Quan-tum LogiSome additional propositions that are valid in Hilbert Spae Quantum Logiwill be presented here. The question whether these properties follow fromthose of Theorems 1 and 3 is still open.Theorem 6 The following properties hold in any NCNAB-algebra.1. LNL if z � x � y and :z � x � y, then x � y,2. NN if x � y and x � :z � y, then x � z � y.LNL is the dual of RNL. NN is a paradoxial rule of proof: to prove y afterone measures x and z, it is enough to prove . NN is a rule of autiousmonotony and the onverse of RNL.Proof: The proof is postponed to Theorem 8.6 Orthomodular and Modular Quantum LogiA di�erent, weaker, semantis, based on orthoomplemented latties may beonsidered. It was proposed by Finh in [3℄.An interpretation f of QTerms(V ) into an orthoomplemented lattiehX;?;>; 0;�i assoiates with every quanti term an element of M suhthat:� f(1) = >,� f(:x) = f(x)0, 18



� f(x � y) = (f(x) _ f(y)0) ^ f(y).Quanti propositions are given the obvious interpretation. Validity is de�nedas usual, for diferent families of orthoomplemented latties: orthomodular,modular, and Boolean algebras. Orthomodular (resp. modular, Boolean)Quantum Logi is the set of all onditional propositions valid in orthomodular(resp. modular, Boolean) latties. It is easy to see that in Boolean latties,one has: x � y = x ^ y and therefore Boolean Quantum Logi is lassial logi.But even in modular latties � is di�erent from ^: onsider the modularlattie of all subspaes of a Hilbert spae.Let us now sort out the relations between all those logis we onsid-ered: Hilbert Spae Quantum Logi (HSQL), Orthomodular Quantum Logi(OQL), Modular Quantum Logi (MQL) and Boolean Logi (BL).Theorem 7 OQL �MQL � HSQL � BL:The rightmost inlusion is strit. It is not known whether OQL and HSQLare di�erent.In [1℄, Birkho� and von Neumann proposed modular latties as the stru-ture of Quantum Logi. The researh ommunity did not hose this pathand pursued the orthomodular path. Theorem 7 shows that, for the limitedlanguage onsidered in this paper, one may go the modular way.Proof: Orthomodular Quantum Logi is a subset of Modular Quantum Logisine any modular lattie is orthomodular. We do not know whether theinlusion is strit. To see that Modular Quantum Logi is a subset of HilbertSpae Quantum Logi onsider that any P-family is part of a modular lattie:the lattie of all subspaes ofH. Complementation in the lattie is orthogonalomplementation in Hilbert spae. We are left to show that, in a P-family,the lattie operation de�ned by Finh is projetion. In other terms, thatgiven any two losed subspaes A and B of the P-family, the projetion of Aon B, bB(A), is (A+B?) \ B.Lemma 4 Let H be Hilbert. If A is any (not neessarily losed) linear sub-spae of H and B is any losed subspae of H, then bB(A) = (A+B?) \ B.Proof: ~u 2 bB(A) i� there is some ~v 2 A suh that ~u = bB(~v) i� ~u 2 B andthere is some ~v 2 A suh that ~v � ~u ? B i� ~u 2 B and there are some ~v 2 Aand ~w 2 B? suh that ~u = ~v + ~w i� ~u 2 (A+B?) \B.19



It is not known whether Hilbert Spae Quantum Logi is di�erent fromModular Quantum Logi, or even whether it is di�erent from OrthomodularLogi. The orthoarguesian law of [4℄ that traditionally separates Hilbertspae logi from orthomodular logi is not obviously expressible in terms of� and : only.Hilbert Spae Quantum Logi is a strit subset of Boolean Logi. Indeedany Boolean Algebra is a �eld of subsets of some set X. Consider now theHilbert spae whose orthonormal basis is X. The elements of the �eld arelosed subspaes and they form a P-family. MQL is therefore a subset ofBoolean Logi. It is a strit subset sine HSQL is not ommutative.We shall now prove that all the properties of HSQL that were mentionedin Setion 5 are part of OQL, the weakest of our logis, therefore provingTheorems 1, 3 and 6.Let us assume an orthomodular lattie and de�ne a � b = (a _ b0) ^ b.First, note that the relation � we de�ne in NCNAB-algebras oinides withthe ordering of the lattie. If we use � to represent the order of the lat-tie: x � y i� x � y = x. Proof: Assume x � y, then, by orthomodularityx = y ^ (x _ y0), i.e., x = x � y. Conversely, if x = y ^ (x _ y0), then x � y.Lemma 5 If z � x � y, then z � x � z � (x ^ y).Proof: By de�nition z � x � z _ x0. Therefore z � x � z _ x0 _ y0 = z _ (x ^ y)0.But, by de�nition z � x � x and, by assumption, z � x � y. We onlude thatz � x � (z _ (x ^ y)0) ^ x ^ y = z � (x ^ y).Lemma 6 If x � y, then for any z, z � x = (z � y) � x.Proof: By orthonormality z � (z _ y0) ^ y _ y0. By assumption, y0 � x0 andtherefore z � (z _ y0) ^ y _ x0 = (z � y) _ x0. Therefore z _ x0 � (z � y) _ x0and z � x � (z � y) � x.But y0 � x0 implies: z _ y0 � z _ x0, and (z _ y0) ^ y � z _ x0. Thereforez � y � z _ x0, ((z � y) _ x0) ^ x � (z _ x0) ^ x, i.e., (z � y) � x � z � x.Lemma 7 If (z � x) � y � x, then (z � x) � y = z � (x ^ y).Proof: Assume (z � x) � y � x. We have (z � x) � y � x ^ y and (z � x) � y =((z � x) � y) � (x ^ y). By Lemma 6, ((z � x) � y) � (x ^ y) = (z � x) � (x ^ y) =z � (x ^ y).The next lemma shows that orthomodular strutures satisfy some limitedform of distributivity. 20



Lemma 8 If z0 � x and z0 � y then (x _ y) ^ z = (x ^ z) _ (y ^ z). There-fore (x _ y) � z = (x � z) _ (y � z).Proof: In any lattie and without any assumption (x _ y) ^ z � (x ^ z) _ (y ^ z).If z0 � x, we have, by orthomodularity, x = z0 _ z ^ x. Similarly, z0 � yimplies y = z0 _ z ^ y. Therefore (x _ y) ^ z = (z ^ x _ z ^ y _ z0) ^ z. Butz ^ x _ z ^ y � z and, by orthonormality: z ^ x _ z ^ y = z ^ (z ^ x _ z ^ y _ z0).The last laim follows trivially.Lemma 9 (x _ y) ^ (x _ y0) = x _ (x _ y0) ^ y.Proof: Without any hypothesis, in any lattie x _ (x _ y0) ^ y � (x _ y) ^ (x _ y0).By orthomodularity, it is now enough to show that we have:(x _ (x _ y0) ^ y)0 ^ (x _ y) ^ (x _ y0) = 0;i.e., x0 ^ (x0 ^ y _ y0) ^ (x _ y) ^ (x _ y0) = 0:But (x0 ^ y _ y0) ^ (x _ y0) = y0 by orthomodularity sine y0 � x _ y0. There-fore x0 ^ (x0 ^ y _ y0) ^ (x _ y) ^ (x _ y0) = x0 ^ y0 ^ (x _ y) = 0.Theorem 8 Properties GCC, CA, LCC, Z, N, LM, NP, RNL, LNL andNN are valid in Orthomodular Quanti Logi and therefore in Hilbert SpaeQuanti Logi.Proof: Let us show now that GCC holds. Assume x � y � x. We shallshow that x � y = y � x. First, note that, by Lemma 5, x � y � x � (x ^ y) =x ^ y � (x _ y0) ^ y. Therefore x � y � y � x. By orthonormality, now, itis enough to prove that (x � y)0 ^ (y � x) = 0, i.e., (x � y)0 ^ (y _ x0) ^ x = 0.But (x � y)0 ^ x = x ^ (x0 ^ y _ y0) � (x _ y0) ^ (x0 ^ y _ y0 = y0 by orthonor-mality, sine y0 � x _ y0. Therefore (x � y)0 ^ x � x ^ y0 and(x � y)0 ^ (y _ x0) ^ x � x ^ y0 ^ (x0 _ y) = (x0 _ y)0 ^ (x0 _ y) = 0:Let us show that CA holds. Assume x � y = y � x. We have x � y � x ^ y �x � y. Therefore x � y = x ^ y. We have z � (x � y) = z � (x ^ y). By Lemma 6,then, z � (x � y) = (z � x) � (x ^ y) = ((z � x) � y) � (x ^ y). But ((z � x) � y � yand ((z � x) � y � x � y = y � x � x and therefore ((z � x) � y � x ^ y and,as notied above, ((z � x) � y) � (x ^ y) = (z � x) � y.21



The property LCC follows diretly from Lemma 7. Properties Z, N, LMand NP are obvious.Let us show that RNL holds. Assume x � z � y and x � z0 � y. By or-thomodularity: x � ((x _ z0) ^ z) _ z0 and therefore x � y _ z0. Also x �((x _ z) ^ z0) _ z and therefore x � y _ z. Therefore x � (y _ z) ^ (y _ z0) � y.Let us show that LNL holds. By Lemma 8, (z � x) _ (z0 � x) = 1 � x = x.But, by assumption: (z � x) _ (z0 � x) � y.Let us show that NN holds. By Lemma 9 x _ (x � z0) = x _ ((x _ z) ^ z0) =(x _ z0) ^ (x _ z). We see that x � z = (x _ z0) ^ z � (x _ z0) ^ (x _ z) =x _ (x � z0).7 Future WorkHere is a list of open questions and lines of enquiry.� Are the properties of Theorems 1, 3 and 6 independent?� Do they haraterize Hilbert Spae Quantum Logi?� Find other strutures that de�ne NCNAB-algebras.� Study Ideals and Filters in NCNAB-algebras.� Find representation theorems for NCNAB-algebras, generalizing knownsuh results for Boolean algebras.� Consider operations that an be de�ned using : and �. For exam-ple, :((x � :y) � (:x � y)) seems to provide a ommutative exlusivedisjuntion.� Consider introduing additional operations in the syntax. For examplean impliation that would be material impliation in Boolean algebrasand Sasaki hook in Hilbert spae satisfying z � x! y i� z � x � y, ora disjuntion satisfying z � (x _ y) � w i� z � x � w and z � y � w.� What is the right de�nition of morphisms between P-families?� Do those morphisms preserve the lattie struture of the underlyingHilbert spaes? 22
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