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Abstract

In the context of survival analysis, we define a covariate X as protective (detrimen-
tal) for the failure time T if the conditional distribution of [T |X = x] is stochastically
increasing (decreasing) as a function of x. In the presence of another covariate Y ,
there exist situations where [T |X = x, Y = y] is stochastically decreasing in x for each
fixed y, but [T |X = x] is stochastically increasing. When studying causal effects and
influence of covariates on a failure time, this state of affairs appears paradoxical and
raises the question of whether X should be considered protective or detrimental. In
a biomedical framework, for instance when X is a treatment dose, such a question
has obvious practical importance. Situations of this kind may be seen as a version of
Simpson’s paradox.

In this paper we study this phenomenon in terms of the well-known Cox model.
More specifically, we analyze conditions on the parameters of the model and the type of
dependence between X and Y required for the paradox to hold. Among other things,
we show that the paradox may hold for residual failure times conditioned on T > t even
when the covariates X and Y are independent. This is due to the fact that independent
covariates may become dependent when conditioned on the failure time being larger
than t.

AMS 2000 Subject Classification: Primary 62N99, Secondary 62P10.

Keywords: Detrimental covariate, protective covariate, proportional hazard, omitting
covariates, positive dependence, total positivity.
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1 Introduction

Consider a failure time T and a covariate X. We say that X is detrimental for T if P (T >
t|X = x) is decreasing in x, and protective if it is increasing, that is, T is stochastically
decreasing, or increasing in X, respectively. In the framework of survival analysis framework,
data sometimes show situations where a certain covariate X appears to be detrimental to
life in each subgroup defined by the values of another covariate Y , but seems protective
when there is no conditioning on Y . This may be puzzling, and one may then find it hard to
understand the nature of the influence of X on the failure time T . In fact this is an important
case of the well-known Simpson paradox. In this paper we analyze this phenomenon in terms
the classical Cox regression model and obtain conditions under which the paradox is natural,
rather than being a surprising pathology.

A huge body of literature exists on Simpson’s paradox (Simpson (1951)) and related
phenomena. An early example concerning survival appears in Cohen and Nagel (1934), who
cited actual death rates from tuberculosis in 1910 in two cities (Richmond, Virginia, and
New York, New York):

• The death rate for African-Americans was lower in Richmond than in New York.

• The death rate for Caucasians was lower in Richmond than in New York.

• The death rate for the total combined population of African-Americans and Caucasians
was higher in Richmond than in New York.

In the above terms, living in New York is detrimental for each ethnic subgroup, but protective
for the combined population.

The paradox, which in some form goes back to Yule (1903), was examined more recently
by Blyth (1972a,b, 1973) in connection with some principles of decision theory. Necessary
conditions for the paradox were studied by Lindley and Novick (1981), and Mittal (1991).
Good and Mittal (1987) studied conditions for related paradoxes, called amalgamation para-
doxes. Cohen (1986) showed some implications of the paradox in demography.

Blyth (1973) gave a simple description of Simpson’s paradox in terms of conditional
probabilities. Given three events E,F,H, the paradox is the simultaneous occurrence of the
following three inequalities

P (E|F ∩H) ≥ P (E|F c ∩H),

P (E|F ∩Hc) ≥ P (E|F c ∩Hc), (1.1)

P (E|F ) < P (E|F c).

Samuels (1993) extended the consideration of the paradox from events to random variables
and explained it as a particular case of the association reversal or of the association distortion
phenomena. This idea has been further extended by Scarsini and Spizzichino (1999) who de-
termined necessary conditions for the paradox when different notions of positive dependence
are considered. Rinott and Tam (2003) described conditions under which an instance of the
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paradox is natural rather than surprising. The above list of papers on Simpson’s paradox is
by no means exhaustive.

This problem is related to the issue of ignoring latent variables. In biostatistics latent
heterogeneity is modelled by means of an individual frailty variable: frailer individuals tend
to die earlier, thus introducing a crucial diversity in the population. For frailty models see
e.g., Hougaard (1984, 1986), Andersen et al. (1993). Neglecting unobserved covariates could
result in misleading and ambiguous interpretation of the the role of an observable covariate
on the failure times distribution (see, e.g., Di Serio (1997, 2003), Everitt and Dunn (1998)).

We formalize the paradox for residual failure times as follows. Given a failure time T
and two covariates X,Y , Simpson’s paradox at (t, s) is the simultaneous occurrence of the
following two conditions:

P (T > t+ s|T > t,X = x, Y = y) is decreasing in x for all y (1.2a)

P (T > t+ s|T > t,X = x) is strictly increasing in x. (1.2b)

In words, (1.2a) means that conditionally on every value of the covariate Y , higher values
of X stochastically reduce the survival time (i.e., X is detrimental for T given Y ), whereas
(1.2b) means that, unconditionally, the opposite is true (i.e., X is protective for T ). In a
similar way one may consider situations where all monotonicities are reversed.

To see the relation between (1.2) and (1.1), define E = {T > t + s}, F = {X = x},
H = {Y = y}, and

G = {X ∈ {x, x′}} ∩ {Y ∈ {y, y′}} ∩ {T > t}, (1.3)

The inequalities (1.1) applied to the conditional probability P (·|G) for all x′ > x, y′ > y,
become (1.2). Conditioning on G amounts to treating X and Y as dichotomous, and looking
at T only after time t. Indeed the dichotomous case will receive special attention, since the
problem essentially reduces to this case.

In this paper we show that under certain conditions the paradox occurs, and in fact it is
quite natural. We study the range of values of (t, s) for which the paradox (1.2) holds, and
show that under some circumstances it holds for all s, t > 0, and that in general the sets of
s and t where it holds must be intervals.

It is clear that the classical Simpson’s paradox (1.1) can arise only if the conditioning
events exhibit some form of dependence, that is, if F and H are independent then the
paradox of (1.1) is impossible. However, our analysis shows that we can have Simpson’s
paradox even if the covariates X and Y are independent. This surprising phenomenon is
due to the fact that conditioning destroys independence, so, as time goes by, the covariates
may become dependent, and, for suitable values of the parameters, the paradox may arise.

The paper is organized as follows. Section 2 describes the model. Section 3 deals with
dichotomous covariates. We show the possibility of the paradox for independent covariates
in Section 4. Section 5 considers the case of continuously distributed covariates. Section 6
deals with the issue of omitting relevant covariates in a Cox model. In Section 7 a biomedical
example of the paradox is shown within a gene therapy context. Data from failure times
of mice are examined conditional on two covariates which describe properties of the cancer
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treatment they receive. The existence of Simpson’s paradox in such data raises the question
whether a particular outcome of a treatment is desirable or not, since its influence on failure
times in the whole population and within subpopulations is inconsistent. All proofs are
contained in Section 9.

2 The model

The conditional survival function of T will be modeled via the following well-known propor-
tional hazard Cox model (see Cox (1972))

h(t|x, y) = h0(t) exp{βXx+ βY y}, (2.1)

where h is the conditional hazard function defined by

h(t|x, y) := lim
ε↘0

P (t+ ε > T > t|T > t,X = x, Y = y)

ε
,

and h0 is the underlying baseline hazard rate. We assume that h0 is a positive function such
that

∫ τ

t
h0(u) du is finite if and only if τ <∞ for all t > 0, that is

∞ >

∫ τ

t

h0(u) du→∞ as τ →∞ . (2.2)

This condition on h0 corresponds to assuming that the failure time T is finite, but cannot
be bounded with probability 1 by any finite constant. The latter assumption is technically
useful, since it simplifies the presentation, but can be avoided.

By standard calculations the conditional survival function for the Cox model can be
written as

P (T > t+ s|T > t,X = x, Y = y) = exp

{(
−

∫ t+s

t

h0(u) du

)
exp{βXx+ βY y}

}
. (2.3)

To avoid trivialities we will assume that both βX , βY 6= 0. Note that when βX > 0
the probability in (2.3) is decreasing in x for all t, s > 0. In fact, under the Cox model the
monotonicity of (2.3) and the monotonicity condition (1.2a) are both equivalent to assuming
βX > 0. This assumption will be made throughout the paper.

Notice that for all values x1, y1, x2, y2 the difference

P (T > t+ s|T > t,X = x1, Y = y1)− P (T > t+ s|T > t,X = x2, Y = y2)

cannot change sign as a function of s. This is due to proportionality of the conditional
hazard function (2.1), which implies that changing the value of some covariates moves the
whole conditional hazard function up or down, but does not allow any crossing.

On the other hand the difference

P (T > t+ s|T > t,X = x1)− P (T > t+ s|T > t,X = x2)
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can change sign, since the expression

P (T > t+ s|T > t,X = x) =

∫
P (T > t+ s|T > t,X = x, Y = y) dFY (y|T > t,X = x)

(2.4)
is not a Cox model, but rather a mixture of Cox models, and mixing destroys proportionality
of the hazards. This feature will be fundamental in proving results about Simpson’s paradox
for this model. Mixture of Cox models arise in Bayesian statistics (see, e.g., Gouget and
Raoult (1999), Ibrahim et al. (2001)).

3 Dichotomous covariates

In this section we assume that the covariates X and Y are dichotomous. Although simple,
this case is important in applications and it is rich enough to show the salient features of
the paradox. Other cases will be discussed later.

In Theorem 3.1 below, first we fix t and show that the set of values of s for which the
paradox (1.2) holds, is a single interval. Conditions for this interval to be empty, contain
the origin and/or be unbounded, depend on the joint distribution of the covariates and on
their relative influence. The last part of the theorem shows that the range of t for which the
paradox holds for all s > 0 is an upper interval.

Define

pt
y|x = P (Y = y|T > t,X = x), A = exp{βX}, and B = exp{βY }. (3.1)

Theorem 3.1. Consider the Cox model (2.3) where the covariates X and Y take only two
values, 0, 1 and are not degenerate. Let

βY < 0 < βX . (3.2)

Then

(a) The probability

P (T > t+ s|T > t,X = x, Y = y) is decreasing in x for each y ∈ {0, 1} and s, t > 0,
(3.3)

and there exist some 0 ≤ s1 ≤ s2 ≤ ∞ depending on βX , βY , t and h0 such that inequality

P (T > t+ s|T > t,X = 0) < P (T > t+ s|T > t,X = 1) (3.4)

holds if and only if s ∈ (s1, s2). This interval may be empty. A sufficient condition for
(s1, s2) to be empty is p0

0|0 = 0.

Moreover, for s1, s2 of (a) we have:
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(b) s1 < s2 = ∞ if and only if
βX < −βY (3.5)

and
p0

1|0 = 0 (3.6)

both hold.

(c) 0 = s1 < s2 if and only if

pt
1|1 ≥

A− 1

A− AB
+
pt

1|0

A
. (3.7)

(d) s1 = 0 and s2 = ∞ if and only if (3.6) and

pt
1|1 ≥

A− 1

A− AB
(3.8)

both hold. In this case there exists some 0 ≤ t0 ≤ ∞ such that (3.4) holds for all
t ∈ (t0,∞) and all s > 0.

Note again that the combination of (3.3) and (3.4) is exactly Simpson’s paradox for those
s and t such that (3.4) holds.

Under condition (3.6), it can be shown that X and Y exhibit very strong positive de-
pendence: they are comonotone, that is, they are both increasing functions of some latent
variable. It is easy to see that under (3.2) condition (3.7) implies pt

1|1 ≥ pt
1|0, which can be

proved equivalent to X and Y being positively correlated, which for dichotomous variables
implies most concepts of positive dependence.

From Theorem 3.1 we see that the paradox holds for large values of s only if a very strong
form of dependence exists for the covariates. We will show in the proof of Theorem 3.1 that
p0

1|0 = 0 if and only if pt
1|0 = 0 for any t > 0, so that condition (3.6) means that given X = 0

then Y = 0 at any given time.
Notice that the choice of 0, 1 for the values of X,Y is arbitrary. Theorem 3.1 can be

adapted to any other pair of values. It is essential that Y take only two values, whereas such
a restriction is not needed for X; for each pair of values x1 < x2 we would have an interval
of s-values where the inequality P (T > t+ s|T > t,X = x1) < P (T > t+ s|T > t,X = x2)
holds. Since the intersection of interval is itself an interval, we see that the conclusion of the
theorem holds without restricting X to be dichotomous.

In our formulation, the paradox requires that the covariates exhibit positive dependence.
However, a paradox can hold in a similar way under negative dependence, provided βX and
βY are both positive. If they are both negative, the paradox may hold with all inequalities
reversed.

4 Independent covariates

A straightforward calculation in (1.1) shows that a necessary condition for the existence
of Simpson’s paradox is that the conditioning events E and F be dependent. In the Cox
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model with dichotomous covariates, a necessary condition for the paradox (1.2) is that given
{T > t}, X and Y be dependent. In particular, for the paradox to hold at t = 0 X and Y
cannot be independent. Nevertheless it is possible to have the paradox at some time t > 0
even when the covariates are independent at time 0, due to the fact that independence is
not preserved under conditioning.

Proposition 4.1. There exists a choice of parameters in the Cox model (2.3) such that the
paradox (1.2) holds for some s, t > 0 although the covariates X and Y are independent.

5 Continuous covariates

In this section we consider the case of continuous covariates and provide some sufficient
conditions for the paradox to hold.

Theorem 5.1. Consider the Cox model described in (2.3). Let the covariate Y have a
conditional density

fY (y|X = x) = g(y − µ− bx), (5.1)

where g is a strictly log-concave function and b > 0. Then Simpson’s paradox (1.2) holds for
all t, s > 0 if and only if

βY < 0 < βX , and b >
βX

|βY |
. (5.2)

The assumption on the density of Y given X used in Theorem 5.1 is equivalent to as-
suming Y = X + V with X and V independent, and the density of V log-concave, such as
normal or gamma with shape parameter ≥ 1. Under (5.1) the joint density of (X, Y ) is TP2,
which is a strong notion of positive dependence, see, e.g., Joe (1997). It can be shown that
when (5.2) and (5.1) hold then the joint conditional density of (X, Y ) given T > t is TP2

for all t > 0, so that the TP2 property is preserved in time.
Condition (5.2) is interesting since it intertwines the strength of dependence between X

and Y and their relative influence on T . The first is expressed by the parameter b, the second
by the ratio βX/|βY |.

We further demonstrate the relation between the parameters of the Cox model and the
dependence structure of the covariates in the special case of normal covariates, in which the
dependence is simply captured by the correlation coefficient. We will see that the condition
required is that the correlation be sufficiently large with respect to the ratio of the β’s.

Corollary 5.2. Consider the case where the conditional distribution of Y given X = x
is normal with mean µ + ρx and variance 1 − ρ2, which happens for instance when the
joint distribution of (X,Y ) is bivariate normal with unit variances and correlation ρ. Then
Simpson’s paradox (1.2) holds for all t, s > 0 if and only if βY < 0 < βX , and ρ > βX/|βY |.
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6 Omitting covariates

The problem that we have considered in this paper is related to the issue of omitting co-
variates, but it has different features. It is true that omitting a covariate in a Cox model
may lead to a change in the influence of a remaining covariate. For instance it is possible
that expression (2.3) be decreasing in x, whereas the Cox model obtained by omitting the
covariate Y

exp

{(
−

∫ t+s

t

h0(u) du

)
exp{βXx}

}
(6.1)

is is increasing in x.
The issue of misspecification by omitting covariates in the Cox model has been studied by

several authors (see, e.g., Gail et al. (1984), Solomon (1984), Lagakos and Schoenfeld (1984,
1986), Bretagnolle and Huber-Carol (1985, 1988), Morgan (1986), Struthers and Kalbfleisch
(1986), Lin and Wei (1989), Anderson and Fleming (1995), Gerds and Schumacher (2001),
DiRienzo and Lagakos (2001a,b, 2004), Chen (2002)). Recently Sane and Kharshikar (2001)
have connected the issue to Simpson’s paradox.

As we pointed out before, the class of Cox models is not closed under marginalization,
therefore, if (2.3) holds, then (6.1) does not represent P (T > t+ s|T > t,X = x).

That misspecification of a model can lead to paradoxes is not entirely surprising. What
we showed in our paper is more subtle. We showed that a Simpson-type paradox can arise
even when the model is perfectly specified, just due to marginalization. It is interesting to
see that, due to the proportional hazard feature of the Cox model, two conditional survival
functions of the form (2.3), conditional on two different values of X, never cross. The same
obviously applies to (6.1). Therefore misspecification through omission of a covariate can
lead only to a a very drastic form of Simpson paradox, namely (2.3) is decreasing in x, and
(6.1) is increasing in x for all s and t.

In our model it is possible to have (2.3) decreasing in x, and (2.4) increasing in x for
some values of s and t. Furthermore, the key element of the paradox is the dependence of
the covariates X and Y , and this dependence is explicitly modelled via their joint conditional
distribution at different times t.

7 Example: survival in gene therapy

Gene therapy is a form of molecular medicine which treats genetic diseases by replacing a
defective gene, responsible for the pathology, with a functional one. The basic principle is
to introduce a piece of genetic material into cells via a vector, which is typically a virus.
The virus integrates with the cell DNA and thus delivers the genetic material into the cell
nucleus.

It has been observed that when the virus integrates in certain gene regions (close to
the starting point of the transcription), deregulation of the gene transcription may induce
insertional mutagenesis. In this case genotoxicity occurs and as a consequence a subject
may develop cancer. The integration process is then defined unsafe. Searching for a so
called safety vector is now a major goal in gene therapy.
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In the application considered here identically inbred mice are made tumor prone by
knocking out the oncosuppressor related gene Cdkn2a. These mice develop a variety of
tumors with a predictable onset time of 300 days. Bone marrow cells are then extracted
from the mice and different vectors are inoculated in them. These cells are transplanted
back in the mice, whose survival is then observed. One goal of this study is to investigate
the influence of some covariates related to the integration process on the survival of mice.
For details see Montini et al. (2006).

We consider two covariates which are related to how much and where the vector inte-
grates in the genome. These variables are: Y = CIS (common integration sites) and X =
NUCLEUS.

The value Y = 1 indicates that integration occurred in a low density area, and Y = 0
means that integration occurs in a high integration density area, that is, in a genomic region
that was targeted twice or more in close proximity.

The value X = 0 indicates that integration occurred in a gene which codifies a protein
produced within the cell nucleus. This represents a further risk factor for the integration
process.

In this data set we consider bone marrow cellular DNA integrations of 60 mice classified
with respect to the above two dichotomous variables. Survival time of each mouse is given
in days.

The joint distribution of (X, Y ) is shown in the following table, indicating that in the
present coding they are positively dependent:

X
Y 0 1 Total
0 9 6 15
1 13 32 45

Total 22 38 60

Consider now a Cox Model as in (2.1). The standard estimation procedure that we use
is based on maximizing the partial likelihood as a function of the β parameters and using
the Breslow (1972, 1974) estimator for the cumulative baseline hazard function.

The proportionality-of-hazard assumption of Cox model was tested and was not rejected
(p = 0.23). See Grambsch and Therneau (1994) for details about the test. The β coefficients
of the regression were proved significant by the likelihood ratio test (p = 0.00003). The
estimated coefficients and their 0.95-confidence intervals are

β exp(β) Confidence interval
βX 0.405 1.499 1.01− 2.91.
βY −2.01 0.134 0.056− 0.321.

Therefore condition (3.2) is met.
Note that condition (3.7) at time t = 0 in Theorem 3.1 is now satisfied since P (Y =

1|X = 0) = 13/22 = 0.59 and

P (Y = 1|X = 1) = 0.84 >
exp(0.405)− 1

exp(0.405)(1− exp(−2.01))
+

0.59

exp(0.405)
= 0.78
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Figure 1: Estimated survival functions when CIS = 0

We next provide the survival plots based on the above estimates. Let Ŝ(t, Zij) be the
estimated survival function corresponding to the covariate vector Z = (X = i;Y = j),

with i, j ∈ {0, 1} in the Cox model. Figure 1 compares Ŝ(t, Z00) to Ŝ(t, Z10), whereas

Figure 2 compares Ŝ(t, Z01) to Ŝ(t, Z11). Figure 3 shows the mixture survival functions
(when averaging over CIS). The paradox occurs for values smaller than 290.

8 Discussion

In this paper we consider a Cox regression model and provide conditions on its parameters
for the occurence of a Simpson’s paradox. Our results and the motivating example show
that Simpson’s paradox may occur naturally and the range of values where it occurs can be
described. The paradox is not due to misspecification of the model but just to marginaliza-
tion.

From a biomedical point of view it is fundamental to properly evaluate the role of each
covariate on the distribution of a failure time. Therefore it is important to recognize that
under certain assumptions, such as the Cox model, and the presence of certain dependence
relations among covariates, a reversal of their impact on failure times as expressed by the
model may occur. In such cases, classification of the covariates as protective or detrimental
may be subtle, requiring deeper understanding of causality relations among them.

One can study more complex situations of covariates which assume more than two values,
and similar techniques show that the paradox may occur in disjoint intervals whose number
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Figure 2: Estimated survival functions when CIS = 1
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Figure 3: Mixed survival function
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is directly related to the range of the covariates. Also, different dependence structures of
covariates could be studied.

While the Simpson phenomenon is demonstrated here in the Cox model, it can be inves-
tigated and generalized to other regression models.

It should be clear that interpretation of the model in terms of the nature of the dependence
between covariates, which may change in time, and their influence on failure time, is a delicate
issue, which requires further analysis.

9 Proofs

Total Positivity

For the proofs of our results we need some background in Total Positivity. We now provide
without proofs the required basic results in this area. The reader is referred to Karlin (1968)
for further definitions, results and proofs, and to Brown et al. (1981) for a useful formulation
for statistical applications of the theory.

Definition 9.1. A function φ : R2 → R is said to be SRk if there exist ε1, . . . , εk ∈ {−1, 1}
such that for all for m = 1, . . . , k and for all for all x1 < · · · < xm, y1 < · · · < ym we have

εm det

φ(x1, y1) · · · φ(x1, ym)
...

...
φ(xm, y1) · · · φ(xm, ym)

 ≥ 0. (9.1)

The condition simply means that all determinants of the above type of any given order up
to k have the same sign. If εm = 1 for m = 1, . . . , k, then φ is said to be TPk, and RRk

if the sign sequence is εm = (−1)m(m−1)/2. SSRk, STPk, and SRRk are defined in the same
way with strict inequalities in (9.1). If φ is SRk for all k = 1, 2, . . . , then φ is said to be SR.
TP, RR, SSR, STP and SRR are defined similarly. In the above SR stands for sign regular,
TP for totally positive, and RR for reverse rule, and when S is added these properties are
said to hold strictly.

Example 9.2. The function ψ(x, y) = exp{xy} is STP, whereas the function φ(x, y) =
exp{−xy} is SRR. Also, g is a strictly log-concave function if and only if φ(x, y) = g(x− y)
is STP2.

Proposition 9.3. If φ(x, y) is SSRk and ζ and ξ are both strictly monotone, then φ(ζ(x), ξ(y))
is SSRk.

If both ζ, ξ are strictly increasing or both strictly decreasing then φ(x, y) and φ(ζ(x), ξ(y))
have the same sign sequence, whereas if one is strictly increasing and the other strictly
decreasing the sign sequence of φ(ζ(x), ξ(y)) is obtained from that of φ(x, y) by multiplying
its m-th sign by (−1)m(m−1)/2. In this case if φ(x, y) is STPk then φ(ζ(x), ξ(y)) is SRRk.
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Proposition 9.4 (Composition formula). If φ and ψ are both SSRk, having sign sequences
εm and ε′m, respectively, and σ is a nonnegative σ-finite measure, then the convolution

ζ(x, y) =

∫
φ(x, z)ψ(z, y) dσ(z)

is SSRk with sign sequence εmε
′
m for m = 1, . . . , k.

Definition 9.5. Let g be a function defined on a totally ordered finite set X = {x1, . . . , xn} ⊂
R, where x1 < x2 < · · · < xn. Then S−(g) denotes the number of sign changes of the sequence
g(x1), . . . , g(xn), when zeros are deleted; S+(g) denotes the maximum number of sign changes
of the sequence g(x1), . . . , g(xn) that can be obtained by counting zeros as either + or −.

If X is any subset of R, not necessarily finite, then S−(g) = supV ∈V(X ) S
−(gV ), where

V(X ) is the class of finite subsets of X , and gV is the restriction of g to V . Analogously for
S+.

The following Proposition is somewhat weaker than Theorem 3.1 p. 233 of Karlin (1968).

Proposition 9.6 (Variation diminishing property). Let g be a real valued function defined
on R, and let σ be a nonnegative sigma-finite measure on R. If φ is SSRk and S−(g) ≤ k−1,
then S+(f) ≤ S−(g) where

f(x) =

∫
g(y)φ(x, y) dσ(y). (9.2)

Proofs of Section 3

In the sequel we will use the following notation

Ct,s =

∫ t+s

t

h0(u) du. (9.3)

Proof of Theorem 3.1. (a) The statement of (3.3) follows readily from (2.3).
Using (2.4), (3.1) and (9.3) we have

P (T > t+ s|T > t,X = 0) = pt
0|0 exp {−Ct,s}+ pt

1|0 exp {−Ct,sB} , (9.4a)

P (T > t+ s|T > t,X = 1) = pt
0|1 exp {−Ct,sA}+ pt

1|1 exp {−Ct,sAB} . (9.4b)

For x, y ∈ {0, 1},

pt
y|x =

p0
y|xP (T > t|X = x, Y = y)

p0
1|xP (T > t|X = x, Y = 1) + p0

0|xP (T > t|X = x, Y = 0)
, (9.5)

and, since the support of T is unbounded, we have

pt
y|x > 0 if and only if p0

y|x > 0. (9.6)
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By (9.4), (3.4) is equivalent to f(s) < 0, where

f(s) := pt
0|0 exp {−Ct,s}+pt

1|0 exp {−Ct,sB}−pt
0|1 exp {−Ct,sA}−pt

1|1 exp {−Ct,sAB} . (9.7)

We can write f(s) =
∫
g(y)φ(s, y) dσ(y), where σ is the measure assigning unit mass to

each y ∈ {B,AB, 1, A}, g(y) is a function assigning values pt
1|0, −pt

1|1, p
t
0|0, −pt

0|1 to y =

B,AB, 1, A, respectively, and φ(s, y) = exp{−Ct,sy}. Since Ct,s is strictly increasing in s,
and exp{−xy} is SRR, it follows by Proposition 9.3 that φ(s, y) is SRR, hence SRR4.

Our goal is to show that the set where f(s) is negative is an interval. Whatever the order
in the set {B,AB, 1, A}, we have S−(g) ≤ 3. Using the variation diminishing property of φ
(see Proposition 9.6), we conclude that S+(f) ≤ 3.

Consider first the case pt
1|0 > 0. We start by showing that f(s) > 0 for large s. Multiply

(9.7) by exp {Ct,sB} to obtain the expression

pt
0|0 exp {−Ct,s(1−B)}+ pt

1|0 − pt
0|1 exp {−Ct,s(A−B)} − pt

1|1 exp {−Ct,sA(1−B)} . (9.8)

As s → ∞, since B < 1 < A by (3.2), and Ct,s → ∞ by (2.2), the expression (9.8) tends
to pt

1|0 and therefore f(s) > 0 for large s. Using the fact that f(0) = 0, we see that if there
were two or more disjoint intervals where the function f is negative, then we would have
S+(f) > 3, which is a contradiction.

If pt
1|0 = 0, then clearly S−(g) ≤ 2, which implies S+(f) ≤ 2. Then it is easy to see that

having two disjoint intervals where f is negative would imply S+(f) > 2, which again is a
contradiction.

Finally suppose p0
0|0 = 0 and therefore, by (9.6), pt

0|0 = 0, and pt
1|0 = 1. Since exp {−Ct,sB} >

exp {−Ct,sA} , exp {−Ct,sAB}, in the present case (9.7) readily implies f(s) > 0 for all s > 0.

(b) The condition s2 = ∞ is equivalent to f(s) < 0 for large enough s. Suppose (3.5) and
(3.6) hold. Clearly (3.6) implies p0

0|0 = 1 and, since Y is not degenerate, p0
1|1 > 0 also follows.

By (9.6) we have pt
0|0 = 1 and pt

1|1 > 0, and by (9.7) we obtain

f(s) exp{Ct,s} = 1− pt
0|1 exp {Ct,s(1− A)} − pt

1|1 exp {Ct,s(1− AB)} . (9.9)

By (3.5) we have AB < 1 and clearly the expression in (9.9) goes to −∞ and therefore
f(s) < 0 as s→∞.

To prove the converse, suppose f(s) < 0 as s → ∞. Note that by multiplying (9.7) by
exp{Ct,sB} the expression converges to pt

1|0 as s → ∞, and therefore f(s) < 0 as s → ∞
implies pt

1|0 = 0 for all t, and (3.6) holds. We can now use (9.9) in a similar way to show

that if f(s) < 0 as s→∞, then AB < 1, which is (3.5).

(c) Consider the function

R(C) = (1− pt
1|0) exp {−C}+ pt

1|0 exp {−CB} − (1− pt
1|1) exp {−CA} − pt

1|1 exp {−CAB} ,

and note that (3.4) is equivalent to R(Ct,s) < 0. At the origin the value of this function is
R(0) = 0, and its derivative is R′(0) = −(1− pt

1|0)− pt
1|0B + (1− pt

1|1)A+ pt
1|1AB. We have

R′(0) < 0 if and only if pt
1|1 >

A− 1

A− AB
+
pt

1|0

A
. (9.10)
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Since Ct,s is strictly increasing in s and Ct,0 = 0, (9.10) shows that (3.4) holds for s in a right
neighborhood of the origin if and only if (3.7) holds. Thus s1 = 0 is equivalent to (3.7).

(d) If s1 = 0 and s2 = ∞ then (3.5), (3.6), and (3.7) hold by (b) and (c), and (3.8) follows
from (3.7). To prove the converse note that (3.8) implies (3.5), and that (3.6) and (3.8)
imply (3.7).

To prove the second part, define

Dt =

∫ t

0

h0(u) du. (9.11)

Then

pt
1|1 =

p0
1|1P (T > t|X = 1, Y = 1)

p0
1|1P (T > t|X = 1, Y = 1) + p0

0|1P (T > t|X = 1, Y = 0)

=
p0

1|1 exp{−DtAB}
p0

1|1 exp{−DtAB}+ p0
0|1 exp{−DtA}

=
p0

1|1

p0
1|1 + p0

0|1 exp{DtA(B − 1)}
.

The latter expression is increasing in t since B < 1. If (3.6) holds, then by (9.6) pt
1|0 = 0 for

all t. Therefore the right hand side of (3.7) is constant, while the left hand side is increasing.
It is easy to see that this implies that (3.7) holds for t in some upper interval.

Proofs of Section 4

Proof of Proposition 4.1. We will show that the paradox can hold for small values of s by
finding parameters in (2.3) that satisfy (3.2) and (3.7) for independent X and Y . The
covariates X and Y are independent at time 0 if and only if p0

1|0 = p0
1|1 =: p1. Hence, using

(9.5), inequality (3.7) becomes

p1P (T > t|X = 1, Y = 1)

p1P (T > t|X = 1, Y = 1) + (1− p1)P (T > t|X = 1, Y = 0)
≥

A− 1

A− AB
+

1

A

p1P (T > t|X = 0, Y = 1)

p1P (T > t|X = 0, Y = 1) + (1− p1)P (T > t|X = 0, Y = 0)
. (9.12)

By (2.3), (3.1), and (9.11), inequality (9.12) can be written as

p1 exp{−DtAB}
p1 exp{−DtAB}+ (1− p1) exp{−DtA}

≥ A− 1

A− AB
+

1

A

p1 exp{−DtB}
p1 exp{−DtB}+ (1− p1) exp{−Dt}

.

(9.13)
An example of values of A,B,Dt , and p1 that satisfy (9.13) and (3.2) is A = 9, B = 0.05,
p1 = 0.3, and any − log 0.5 < Dt < − log 0.3.
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Proofs of Section 5

Proof of Theorem 5.1. Property (1.2a) clearly holds since βX > 0. To see (1.2b) consider

P (T > t+ s|T > t,X = x) =

∫
P (T > t+ s|T > t,X = x, Y = y)fY (y|T > t,X = x) dy,

(9.14)
where

fY (y|T > t,X = x) =
P (T > t|X = x, Y = y)fY (y|X = x)∫
P (T > t|X = x, Y = y)fY (y|X = x) dy

. (9.15)

Using (2.3), (9.3), (9.11), and (9.15), expression (9.14) becomes

P (T > t+s|T > t,X = x) =

∫
exp{−(Ct,s +Dt) exp{βXx+ βY y}}fY (y|X = x) dy∫

exp{−Dt exp{βXx+ βY y}}fY (y|X = x) dy
. (9.16)

We can assume µ = 0 by replacing the function g(·) by g(· − µ). We want to show that
(9.16) is strictly increasing in x, which, by (5.1), is equivalent to

K(D, x) =

∫
exp{−D exp{βXx+ βY y}}g(y − bx) dy (9.17)

being STP2 in (D, x). The substitution −u = βXx+ βY y leads to

K(D, x) = − 1

βY

∫
exp{−D exp{−u}}g

(
− u

βY

−
(
b+

βX

βY

)
x

)
du. (9.18)

The term exp{−D exp{−u}} is of the form exp{ζ(D)ξ(u)}, with ζ, ξ strictly decreasing
functions, and is STP2 in (D, u) by Proposition 9.3, because exp{xy} is STP2 in (x, y).
Since βY < 0, (b+ βX/βY ) > 0, and g is strictly log-concave, we have that

g

(
− u

βY

−
(
b+

βX

βY

)
x

)
(9.19)

is STP2 in (u, x). By Proposition 9.4 we obtain that K(D, x) is STP2 in (D, x).
If (5.2) does not hold, then different possibilities arise. If βX < 0, then (1.2) cannot hold.
If βX > 0 and βY > 0, then (b + βX/βY ) > 0, (9.19) is RR2 in (u, x), and by Propo-

sitions 9.3 and 9.4, K(D, x) is SRR2 in (D, x) rather than STP2. Similarly, if βX > 0
and βY < 0, then in order for (9.19) to be STP2 we must have (b + βX/βY ) > 0, so
b > βX/|βY |.
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