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Abstract

We consider stochastic dynamics for the Matching Pennies game,
which behave, in expectation, like the best-response dynamics (i.e., the
continuous fictitious play). Since the corresponding vector field is not
continuous, we cannot apply the deterministic approximation results
of Benäım and Weibull [2003]. Nevertheless, we prove such results for
our dynamics by developing the notion of a “leading coordinate.”

1 Introduction

Benäım and Weibull [2003] provide deterministic approximations for stochas-

tic processes that arise from evolutionary games. They establish a precise

connection between the stochastic process and the system of ordinary differ-

ential equations derived from a suitable averaging of the transition probabil-

ities of the Markov chain.

However, in Benäım and Weibull [2003], as well as in other approxima-

tions results,1 continuity of the corresponding vector field is crucial, and so

these results cannot be used to analyze the long-run behavior of stochastic

∗This paper is part of a Ph.D. thesis to be submitted to the Hebrew University of
Jerusalem. The author wishes to thank Sergiu Hart for his supervision.

†Center for the Study of Rationality, Department of Mathematics, The Hebrew Uni-
versity of Jerusalem, 91904 Jerusalem, Israel. E-mail: zivg@math.huji.ac.il

1See, e.g., Ljung [1977], and, for processes with constant step size, Benäım [1998],
Benäım and Hirsch [1999], and Fort and Pagès [1999].

1



processes with non-continuous transitions. Since many models in evolution-

ary games use best- (or better-) response dynamics, which are not continuous,

we need to develop different tools in order to analyze such dynamics.

We will show how a deterministic approximation can be obtained for such

dynamics by applying the approximation to only one of the coordinates.

Specifically, we use the fact that at each point where the vector field is

discontinuous, it is nevertheless Lipschitz in one coordinate, and it is that

coordinate that “leads” the process through the discontinuity.

We start with the simplest game, the Matching Pennies game, and we con-

sider stochastic best-response dynamics for this game. In Gorodeisky [2005]

we analyzed a specific dynamic model, and estimated the transition times

of the Markov chain to prove convergence of the stochastic process to the

unique mixed Nash equilibrium. Here, however, we consider a more general

class of best-response dynamics, and develop deterministic approximations

for these processes. The deterministic approximation is the continuous fic-

titious play, which we describe in Section 2. Using the approximation, we

show that any stochastic dynamic that behaves, on average, like the deter-

ministic best-response dynamic converges (like the best-response dynamic)

to the unique equilibrium.

In Section 2 we present the dynamics and the Main Theorem. In Section 3

we give an example of the use of the Main Theorem. In Section 4 we prove

the Main Theorem and the deterministic approximation, and describe the

idea of the proof of the deterministic approximation.

2 The Model and the Main Result

In this section we describe the dynamics we use and present the main re-

sult. We start with the deterministic dynamic, which is used to approximate

the stochastic dynamics. The deterministic dynamic is the best-response dy-

namic for the Matching Pennies game, which, after an appropriate rescaling

of time — which does not change the orbits — is equivalent to the continuous

time fictitious play.

Thus, the dynamic is of the form ξ(t) = (ξ1(t), ξ2(t)), where ξi(t) is a
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mixed strategy of player i, and satisfies

ξ̇1 ∈ BR1(ξ2)− ξ1, ξ̇2 ∈ BR2(ξ1)− ξ2, (2.1)

where BRi(p) is the set of best responses of player i against the strategy p

of the other player (−i).

For convenience, we shift and normalize the dynamic. Let Ω = [−1, 1]2,

and let2 F : Ω → IR2 be defined as F = (F1, F2), where

F1(x, y)=





1
2
(1− x) if y > 0,

−1
2
(1 + x) if y < 0,

0 if y = 0.

F2(x, y)=





1
2
(1− y) if x < 0,

−1
2
(1 + y) if x > 0,

0 if x = 0.

(2.2)

Given the deterministic process ξ̇ = F (ξ), we use it to approximate

stochastic processes that behave “like” ξ. A discrete stochastic process

X = {Xn} behaves like the deterministic process when its step size is small,

and its expected difference per step size is given by F , the change of the

deterministic process. Thus, X can be written as

Xn+1 −Xn = δ(F (Xn) + Un+1), (2.3)

where Un+1 is a random variable with zero expectation (“noise”), and δ is

the step size (δ is assumed to be small and Un+1 is assumed to be bounded).

The processes we consider here are in fact slightly more general than (2.3),

in that the expected difference is close to δF (Xn) (rather than equal to it).

Therefore, let X = {Xn} be a Markov process on a state space Ω′ ⊂ Ω =

[−1, 1]2 that satisfies

Xn+1 −Xn = δ (F (Xn) + Yn + Un+1) , where

E[Un+1 |Xn] = 0.
(2.4)

We will refer to δ in (2.4) as the step size of {Xn}.
Our main result is that if the stochastic process is close to the determin-

2Fi is the normalized version of BRi(x−i)− xi. F and Ω will be fixed from now on.
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istic process (i.e., δ and {Yn} are small), then any invariant distribution of

it3 is close to the invariant distribution of the deterministic process.

Main Theorem. For each δ > 0, let Xδ = {Xδ
n}n be a discrete-time Markov

process on Ωδ ⊂ Ω satisfying (2.4) with step size δ. Let µδ be an invariant

distribution of Xδ. If supn

∥∥Y δ
n

∥∥ → 0 as δ → 0 and supn,δ

∥∥U δ
n

∥∥ < ∞, then

µδ converge weakly as δ → 0 to 1(0,0), the Dirac measure on the point (0, 0).

Remark 2.1. In the Main Theorem, we assume that for every δ > 0 there

exists a Markov process Xδ. The result holds also for a sequence of Markov

processes {Xk}
k∈IN, that satisfy (2.4), each with step size δk such that δk →

0, when supn

∥∥Y k
n

∥∥ → 0 as k →∞, and supn,k

∥∥Uk
n

∥∥ < ∞.

Remark 2.2. The assumption that supn,δ

∥∥U δ
n

∥∥ < ∞ is not necessary for the

proof of the Main Theorem, and it is sufficient to assume that
√

δ supn

∥∥U δ
n

∥∥ →
0 as δ → 0.

3 An Evolutionary Model with Finite Popu-

lations

As an example of the use of the main result, we describe a natural stochastic

evolutionary process that behaves in a similar manner to the deterministic

best-response dynamic, and we therefore can use the main result to analyze

them. This example is based on the basic model of Hart [2002].

The process is an evolutionary game played by two finite populations.

Each individual in each population plays a pure strategy (an action), i.e.,

T or B for the individual from population 1 and L or R for the individual

from population 2. The actions of the individuals change each period, either

because of selection or because of mutation. The changes that occur in the

populations are in accordance with the payoffs of the Matching Pennies game.

3µ is an invariant distribution of Xδ if for every continuous and bounded function
f : IR2 → IR and every n we have

∫

Ωδ

E[f(Xδ
n) |Xδ

0 = x]dµ(x) =
∫

Ωδ

f(x)dµ(x).
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Let N ∈ IN be the size of the populations, and let r ≥ 0 be the probability

for mutation (the mutation rate). The process is a stationary Markov chain

{Xn = (Xn,1, Xn,2)}n on the state space4 ΩN = {(i/N, j/N) : 0 ≤ i, j ≤ N},
where in a state (i/N, j/N), there are i individuals in population 1 that play

T (and N − i that play B), and j individuals in population 2 that play L

(and N − j that play R).

Each period one randomly chosen individual of each population may

change his action. With probability r there is a mutation, and the action

is changed randomly, and with probability 1 − r there is selection, and the

action is changed to the best-response strategy against the other population.5

This process has the following transition probabilities:

• Only one individual in each population may change his action,

|Xn+1,i −Xn,i| ∈
{

0,± 1

N

}
.

• Xn,1 increases if the chosen individual from population 1 plays B (and

there is a proportion of 1 − Xn,1 of such individuals), and changes

his action to T either because of mutation (with probability r/2), or

because of selection (with probability of 1− r), provided that T is the

unique best reply.

Therefore,

Pr[Xn+1,1 −Xn,1 =
1

N
] =





(1−Xn,1)
(
1− r

2

)
if BR1(Xn,2) = {T}

(1−Xn,1)
r
2

otherwise,

and, similarly

Pr[Xn+1,1 −Xn,1 = − 1

N
] =





Xn,1

(
1− r

2

)
if BR1(Xn,2) = {B}

Xn,1
r
2

otherwise.

4For simplicity we describe the process as a process on the space of mixed strategies
and do not normalize it to be a process on Ω = [−1, 1]2.

5When the best response is not unique, we assume that there is no change.
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The transition probabilities for Xn,2 are similar.

Let

Yn+1 = E[N(Xn+1 −Xn)− F (Xn) |Xn], and

Un+1 = N(Xn+1 −Xn)− (F (Xn) + Yn+1),

then E[Un+1 |Xn] = 0, and {Xn} satisfies (2.4) with step size δ = 1/N . As

‖Yn‖ ≤ r/2 and ‖Un‖ ≤ 2 + r, we obtain from the Main Theorem

Proposition 3.1. Let {rk}k be a sequence of mutation rates such that rk ≥ 0

and rk → 0 as k → ∞, and let {Nk} be a sequence of population sizes such

that Nk → ∞ as k → ∞. For each k, let Xk be the evolutionary process

described above with population size Nk and mutation rate rk, and let µk

be an invariant distribution of Xk. Then, µk converges weakly to the Dirac

measure on the equilibrium.

Remarks:

1. If rk = 0 for all k, we obtain Theorem 3.1 of Gorodeisky [2005].

2. If rk > 0, then Xk is an ergodic Markov chain with unique invari-

ant distribution that describes the long-run behavior of the process

independently of the initial state. Therefore, for k large enough, the

evolutionary process will be most of the time near the equilibrium.

4 Proofs

In this section we provide the deterministic approximation of the stochastic

process (Theorem 4.13), and use it to prove the main result. The idea of the

proof is given in Section 4.1. The detailed proof is given in Section 4.4, fol-

lowing some preliminary results on the deterministic dynamic in Section 4.2

and on the stochastic dynamics in Sections 4.3.

6



−1

0 1−1

0

1

ξ(T2)

ξ(0)

ξ(T1)

ξ(T )

Figure 1: The deterministic dynamics

4.1 The Idea of the Proof

As in Benäım and Weibull [2003], we will use the deterministic approximation

to show that the probability that the stochastic process deviates from the

deterministic process, in a given time interval, is small.

Let T > 0, and let ξ(t) be a trajectory of the deterministic dynamic

(see Figure 1 and Section 4.2). As in Benäım and Weibull [2003], for every

time t that F is Lipschitz in a neighborhood of ξ(t), both processes — the

deterministic one and the stochastic one — move in a similar direction near

ξ(t), and with high probability are close to one another.

Take now a time t = T1 where F is not Lipschitz at ξ(T1) (w.l.o.g, ξ1 = 0,

and player 2 is indifferent between his two strategies; again, see Figure 1).

There the two processes may move in different directions. Nevertheless, this

movement in different directions is controlled by the fact that the first co-

ordinate of F is Lipschitz and so it “leads” both processes away from the

non-Lipschitz region (namely, the line x1 = 0).

Thus, the first coordinates of the two processes are close to one another

(Proposition 4.8). Using this result, we next show that, except for a small

time interval around T1, both processes are on the same side of the line x1 = 0

— i.e., in the region where F is Lipschitz — and therefore must in fact be
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close to one another in both coordinates (Proposition 4.9).

In summary, the way we handle the critical lines where F is not Lipschitz

is by using the “L-coordinate” — that one coordinate that is Lipschitz there

— and showing that it leads the stochastic process fast enough so that it

remains close to the deterministic path.

4.2 The Deterministic Best-Response Dynamic

The Matching Pennies game is a zero-sum game, and therefore, the fictitious

play converges to the equilibrium by Robinson [1951] (a proof for the con-

tinuous model can be seen in Berger [2001]; for the geometric structure of

the dynamic see Metrick and Polak [1994]). Moreover, (2.1) has a unique

solution.

For our result, we need more than just the convergence of the dynamic.

We need to analyze the behavior of the dynamics in points where it is dis-

continuous, i.e., points where the best response changes. We therefore show

a few more properties of the dynamic.

F (defined in (2.2)) is Lipschitz in each open quadrant (or “best-response

region”) of Ω (e.g., Ω ∩ {x1 > 0, x2 > 0}), and Fi is Lipschitz in each open

half space (e.g., Ω ∩ {xi > 0}). Let λ be the maximum of all these Lipschitz

constants. F is not continuous at each point at the boundary between two

best-response regions (i.e., at all (x, y) 6= (0, 0) ∈ Ω such that xy = 0), where

the best response changes. We call such points discontinuity points.

W.l.o.g. let x = (x1, x2) ∈ Ω be such that x1 < 0 and x2 ≥ 0, and let

ρ > 0 be such that ‖x‖1 > ρ. Let ξ(t) = (ξ1(t), ξ2(t)) be a best-response

path starting at x; i.e., ξ(t) satisfies ξ̇ = F (ξ) and ξ(0) = x. A discontinuity

time of ξ is t > 0 such that ξ(t) is a discontinuity point of F . Let T1 > 0

be the minimal discontinuity time of ξ (so ξ1(T1) = 0; see Figure 1). Solving

ξ̇ = F (ξ) yields for all 0 ≤ t ≤ T1,

ξ1(t) = 1− (1− x1)e
−t/2,

ξ2(t) = 1− (1− x2)e
−t/2, and

T1 = 2 ln(1− x1).

(4.1)
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Define Tn as the n-th discontinuity time of ξ.

Lemma 4.1. Let ξ(t) be a best-response path starting at x with ‖x‖1 ≥ ρ > 0.

Then

1. ‖ξ(t)‖1 is strictly decreasing in t.

2. Let i(n) = 1 for n odd and i(n) = 2 for n even. Then

ξi(n)(Tn) = ± ‖ξ(0)‖1

1− x1 + (n− 1) ‖ξ(0)‖1

, and ξ−i(n)(Tn) = 0.

3. Tn+1 − Tn ≥ ρ/(1 + n + ρ) for all n.

4. Tn+1 ≥ 2ρ ln(n/2) for all n.

Proof. 1. Follows from (4.1) and the symmetry of (2.2).

2. From (4.1), we get ξ2(T1) = ‖ξ(0)‖1 /(1− x1), and by induction we get

the equality for all n.

3. As in (4.1), it is easy to check that

Tn+1 − Tn = 2 ln
(
1 +

∣∣ξi(n)

∣∣) = 2 ln

(
1 +

‖ξ(0)‖1

1− x1 + (n− 1) ‖ξ(0)‖1

)

≥ 2 ln

(
1 +

ρ

2(1 + n)

)
>

2ρ

2(1 + n) + ρ
.

4. From (3) we have

Tn+1 =
n∑

i=0

Ti+1 − Ti ≥
n∑

i=0

2ρ

2(1 + i) + ρ
≥ 2ρ ln

(n

2

)
.

Definition 4.2. Let x 6= (0, 0) and T > 0, and let ξ(t) be a best-response

path starting at x. Define n(x, T ) as the number of discontinuity times of

ξ(t) for 0 ≤ t ≤ T , and define ∆(x, T ) = min0≤t≤T ‖ξ(t)‖1.

With these notations and Lemma 4.1 we have
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Lemma 4.3. Let ρ > 0 and T > 0 and let C = C(ρ, T ) = 2eT/(2ρ) + 1; then

for every x ∈ Ω such that ‖x‖1 ≥ ρ, we have n(x, T ) ≤ C, and ∆(x, T ) ≥
ρ/(2C).

Proof. Let n = C − 1; then Tn+1 ≥ 2ρ ln(n/2) = T , and therefore n(x, T ) ≤
n + 1. The second part is true as

∆(x, T ) = ‖ξ(T )‖1 ≥ ‖ξ(Tn+1)‖1 =
‖ξ(0)‖1

1− x1 + n ‖ξ(0)‖1

≥ ρ

2 + 2n
.

We now show that the time the dynamic spends in a neighborhood of a

discontinuity point is small. Let ξ(t) be a best-response path, and let td > 0

be a discontinuity time. W.l.o.g. assume that ξ1(td) = 0 and ξ2(td) > 0. Let

T > td, and assume that ξ2(t) > 0 for all 0 ≤ t ≤ T . Thus, we have ξ1(t) < 0

for all 0 ≤ t < td, and ξ1(t) > 0 for all td < t ≤ T .

Let r > 0, and define

τ−(r) =





min {τ : ξ1(td − τ) < −r} if ξ1(0) < −r,

td otherwise,

and

τ+(r) =





min {τ : ξ1(td + τ) > r} if ξ1(T ) > r,

T − td otherwise.

Let τ(r) = max{τ−(r), τ+(r)}; then ξ1(t) < −r for all 0 ≤ t < td − τ(r),

and ξ1(t) > r for all td + τ(r) < t ≤ T ; i.e., the time the dynamic spends in

the r-neighborhood of the discontinuity point is less than 2τ(r).

Lemma 4.4. For all 0 < r < 1/2 we have τ(r) ≤ 4r.

Proof. For all td ≤ t < td + τ+(r) we have ξ1(t) ≤ r < 1/2 and therefore

ξ̇1 = F1(ξ(t)) > 1/4. Since ξ1(td + τ+(r)) − ξ1(td) ≤ r, we have τ+(r) ≤ 4r.

The same holds for τ−(r).
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4.3 The Stochastic Dynamics

Let X = {Xn}n be a Markov process on Ω′ ⊂ Ω that satisfies (2.4) with step

size δ > 0. We now define some notations and show some properties of X.

1. Let X̄(t), for t ≥ 0, be the continuous-time step process generated by

X, i.e., X̄(t) = Xn for nδ ≤ t < (n + 1)δ.

2. Let X̂(t), for t ≥ 0, be the interpolated continuous-time process defined

by the piecewise affine interpolation of X, i.e.,

X̂(t) = Xn +
(t− nδ)

δ
(Xn+1 −Xn) , (4.2)

for nδ ≤ t < (n + 1)δ.

3. Let Y (t) = Yn and U(t) = Un+1 for nδ ≤ t < (n + 1)δ, and let6

Ψ(t) = max0≤s≤t

∥∥∫ s

0
U(τ)dτ

∥∥.

4. Let

y = sup
n
‖Yn‖ ,

∆x = sup
n
‖Xn+1 −Xn‖ , and

u = sup
n
‖Un‖2

2 .

(4.3)

Lemma 4.5.
∥∥∥X̄(t)− X̂(t)

∥∥∥ ≤ ∆x for all t ≥ 0.

Lemma 4.6. For every t ≥ 0 we have

X̂(t)− X̂(0) =

∫ t

0

(
F (X̄(s)) + Y (s) + U(s)

)
ds.

Proof. For any n we have

Xn+1 −Xn =

∫ (n+1)δ

nδ

(
F (X̄(s)) + Y (s) + U(s)

)
ds.

6We use ‖·‖ for ‖·‖∞.
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Let n be such that nδ ≤ t < (n + 1)δ. Then

∫ t

0

(
F (X̄(s)) + Y (s) + U(s)

)
ds =

n−1∑

k=0

(Xk+1 −Xk)

+

∫ t

nδ

1

δ
(Xn+1 −Xn) ds = X̂(t)− X̂(0).

As in the proof of Lemma 1 in Benäım and Weibull [2003], we have

Lemma 4.7. For every ε > 0 and T > 0 we have

Pr[Ψ(T ) ≥ ε] ≤ 4 exp

(
− ε2

2δTu

)
.

4.4 The Deterministic Approximation

F is not continuous at all the discontinuity points, and it is not clear that

deterministic trajectories passing through such points can be used to approx-

imate the stochastic process. We will show here that, outside the rest point

of the deterministic process (0, 0), the approximation can be made. To show

this, we start with simple trajectories that pass through a single discontinu-

ity point. By the symmetry of the system, we look, w.l.o.g. at trajectories

passing through a discontinuity point (0, ξ2) with ξ2 > 0.

Let ξ(t) satisfy ξ̇ = F (ξ), and let T > 0 be such that ξ2(t) > 0 for

all 0 ≤ t ≤ T . Let 0 < td < T be a discontinuity time. Let {Xn} be a

Markov process on Ω′ ⊂ Ω that satisfies 2.4 with step size δ. Let ρ > 0 be

such that ξ2(t) > ρ for all 0 ≤ t ≤ T , and assume that X0 ∈ Ω′ satisfies

‖ξ(0)−X0‖ ≤ d for some d ≤ ρ.

Let T = inf{t ≥ 0 |X̂2(t) = 0}, and define t = min{t,T} for every t > 0.

Define D(t) = max0≤s≤t

∥∥∥ξ(s)− X̂(s)
∥∥∥, D(t) = max0≤s≤t

∥∥∥ξ(s)− X̂(s)
∥∥∥, and

D1(t) = max0≤s≤t

∣∣∣ξ1(s)− X̂1(s)
∣∣∣.

Using the notations defined above and in Sections 4.2 and 4.3, define for
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every ε > 0

p(ε) = 4 exp

(
− ε2

2δTu

)
,

H(ε) = eλT (ε + d + T (y + λ∆x)) , and

G(ε) = eλT (ε + d + T (y + λ∆x) + 16(H(ε) + ∆x)) .

Proposition 4.8. For every ε > we have Pr[D1(T ) ≥ H(ε)] ≤ p(ε).

Proof. Let 0 ≤ t ≤ T . Since ξ(t) − ξ(0) =
∫ t

0
F (ξ(s))ds, we obtain, by

Lemma 4.6,

∣∣∣X̂1(t)− ξ1(t)
∣∣∣ ≤

∣∣∣X̂1(0)− ξ1(0)
∣∣∣ +

∫ t

0

|Y1(s)| ds +

∥∥∥∥
∫ t

0

U(s)ds

∥∥∥∥

+

∫ t

0

∣∣∣F1(X̄(s))− F1(X̂(s))
∣∣∣ ds +

∫ t

0

∣∣∣F1(X̂(s))− F1(ξ(s))
∣∣∣ ds.

For every 0 ≤ s ≤ t, we have ξ2(s), X̂2(s), X̄2(s) > 0. Therefore, by

Lemma 4.5, we have

∣∣∣F1(X̄(s))− F1(X̂(s))
∣∣∣ ≤ λ

∣∣∣X̂1(s)− X̄1(s)
∣∣∣ ≤ λ∆x, and

∣∣∣F1(X̂(s))− F1(ξ(s))
∣∣∣ ≤ λ

∣∣∣X̂1(s)− ξ1(s)
∣∣∣ .

Therefore,

∣∣∣X̂1(t)− ξ1(t)
∣∣∣ ≤ d + Ty + λT∆x + Ψ(T ) + λ

∫ t

0

∣∣∣X̂1(s)− ξ1(s)
∣∣∣ ds.

By Grönwall’s inequality we obtain

D1(T ) ≤ [d + Ty + λT∆x + Ψ(T )] eλT = H(ε) + Ψ(T )eλT − εeλT ,

and therefore

Pr[D1(T ) ≥ H(ε)] ≤ Pr[Ψ(T ) ≥ ε].
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By Lemma 4.7, we have

Pr[Ψ(T ) ≥ ε] ≤ 4 exp

(
− ε2

2δTu

)
= p(ε).

Proposition 4.9. If H(ε) + ∆x < 1/2 then Pr[D(T ) ≥ G(ε)] ≤ 2p(ε).

Proof. Let 0 ≤ t ≤ T , and let r=H(ε)+∆x. Define t−d = td−τ−(r) and t+d =

td + τ+(r). W.l.o.g. assume that t ≥ t+d . Let A be the event D1(T ) < H(ε).

Given A, for all 0 ≤ s < t−d , we have ξ1(s) < −r, X̂1(s) < ξ1(s)+H < −∆x,

and (by Lemma 4.5) X̄1(s) < X̂1(s) + ∆x < 0. Similarly, for all t+
d < s < t,

we have ξ1(s), X̂1(s), X̄1(s) > 0. Since ξ2(s), X̂2(s), X̄2(s) > 0 for all 0 < s <

t, for all 0 ≤ s < t−d and t+
d < s < t, we have

∥∥∥F (X̄(s))− F (X̂(s))
∥∥∥ ≤ λ∆x, and

∥∥∥F (X̂(s))− F (ξ(s))
∥∥∥ ≤ λ

∥∥∥X̂(s)− ξ(s)
∥∥∥ .

As in the proof of Proposition 4.8, by dividing the integrals into the

segments [0, t−d ], [t−d , t+
d ] and [t+

d , t], we obtain (given A)

∥∥∥X̂(t)− ξ(t)
∥∥∥ ≤

∥∥∥X̂(0)− ξ(0)
∥∥∥ + Ty + λT∆x + Ψ(T )

+λ

∫ t

0

∥∥∥X̂(s)− ξ(s)
∥∥∥ ds +

∫ t+d

t−d

∥∥F (X̄(s))− F (ξ(s))
∥∥ ds

≤ d + Ty + λT∆x + 4 ‖F‖ τ(r) + Ψ(T ) + λ

∫ t

0

∥∥∥X̂(s)− ξ(s)
∥∥∥ ds,

and, by Lemma 4.4 and Grönwall’s inequality, we obtain

D(T ) ≤ G(ε) + Ψ(T )eλT − εeλT .

Therefore,

Pr[D(T ) ≥ G(ε) |A] ≤ Pr[Ψ(T ) ≥ ε |A].
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Let Ac be the complement of A; then, by Proposition 4.8, we obtain

Pr[D(T ) ≥ G(ε)] = Pr[D(T ) ≥ G(ε) |A]Pr[A]

+Pr[D(T ) ≥ G(ε) |Ac]Pr[Ac] ≤ Pr[Ψ(T ) ≥ ε |A]Pr[A] + Pr[Ac]

≤ Pr[Ψ(T ) ≥ ε] + p(ε) ≤ 2p(ε).

Corollary 4.10. If G(ε) ≤ ρ ≤ 1, then Pr[D(T ) ≥ G(ε)] ≤ 2p(ε).

Proof. Notice first that G(ε) ≤ 1 implies that H(ε) + ∆x < 1/2. We have

ξ2(t) > ρ for all 0 ≤ t ≤ T ; therefore
∥∥∥X̂(t)− ξ(t)

∥∥∥ < G(ε) ≤ ρ implies that

X̂2(t) > 0 and, therefore, t = min{t,T} = t, and
∥∥∥X̂(t)− ξ(t)

∥∥∥ ≤ G(ε).

Therefore, Pr[D(T ) ≥ G(ε)] ≤ Pr[D(T ) ≥ G(ε)].

Let α = 17eT (1 + T ); then we have7 G(ε) ≤ α(ε + d + y + ∆x). Let

β = α(ε + y + ∆x) and define gε : IR → IR as gε(x) = αx + β; then

G(ε) ≤ gε(d).

Therefore, Corollary 4.10 can be stated as follows.

Proposition 4.11. Let ξ(0) ∈ Ω and T > 0 such that ξ2(t) > ρ for all

0 ≤ t ≤ T . Then, for all d such that gε(d) < ρ, we have

Pr
[
D(T ) ≥ gε(d)

∣∣∣
∥∥∥X̂(0)− ξ(0)

∥∥∥ ≤ d
]
≤ 2p(ε).

We now extend Proposition 4.11 to a general best-response path that

passes through discontinuity points more than once.

Proposition 4.12. Let ξ(0) 6= (0, 0), T > 0, and ε > 0. Let n ≥ n(ξ(0), T )

and let ρ ≤ ∆(ξ(0), T )/2. Then, for any Markov process X, d, and ε′ such

that gn+2
ε′ (d) ≤ min{ε, ρ}, we have

Pr
[
D(T ) ≥ ε

∣∣∣
∥∥∥X̂(0)− ξ(0)

∥∥∥ ≤ d
]
≤ 2(n + 2)p(ε′).

Proof. Let 0 < T1 < . . . < Tl < T be the discontinuity times of ξ; then

l ≤ n. It is easy to prove that there are times Li for i = 0, . . . , l + 2, such

7For F defined in (2.2) we have λ = 1/2.
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that T0 = 0 < L1 < T1 < L2 < . . . < Tl < Ll+1 < Ll+2 = T , and for all

i = 0, . . . , l + 1, and for all Li ≤ t ≤ Li+1, we have |ξ1(t)| ≥ ρ or |ξ2(t)| ≥ ρ.

Let di = gi
ε′(d) for i = 1, . . . , n + 2; then di ≤ di+1 ≤ dn+2 < ρ for all i.

Therefore, for all i = 0, . . . , l + 1, we have, by Proposition 4.11,

Pr[D(Li+1) ≥ di+1 |D(Li) < di] ≤ 2p(ε′).

Therefore, we have

Pr[D(Li+1) ≥ di+1] ≤ Pr[D(Li+1) ≥ di+1 |D(Li) ≤ di]

+ Pr[D(Li) ≥ di] ≤ 2p(ε′) + Pr[D(Li) ≥ di],

and by induction we obtain

Pr[D(T ) ≥ ε] ≤ Pr[D(Ln+2) ≥ dn+2] ≤ 2(n + 2)p(ε′),

whenever
∥∥∥X̂(0)− ξ(0)

∥∥∥ ≤ d.

By the properties of the deterministic process, we can use Proposition 4.12

on all trajectories outside a neighborhood of (0, 0), and obtain the determin-

istic approximation of the stochastic process.

Theorem 4.13. For all ρ > 0, ε > 0, and T > 0, there exist constants γ

and C, such that for all Markov processes X on Ω′ ⊂ Ω that satisfy (2.4)

with step size δ and with y, ∆x < γ, we have

Pr

[
max
0≤t≤T

∥∥∥X̂(t)− ξ(t)
∥∥∥ ≥ ε

∣∣∣∣ X0 = ξ(0) = x

]
≤ C exp

(
− γ2

2δTu

)
,

where x ∈ Ω′ satisfies ‖x‖1 > ρ, ξ(t) satisfies ξ̇ = F (ξ), X̂ is given by (4.2),

and y, u, and ∆x are given by (4.3).

Proof. Let n0 = 2eT/(2ρ)+1 and ρ0 = ρ/2(2+4et/(2ρ)); then by Lemma 4.3 we

have n(ξ(0), T ) ≤ n0 and ∆(ξ(0), T )/2 ≥ ρ0 for all ξ(0) such that ‖ξ(0)‖1 > ρ.
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Since

gn0+2
ε′ (0) = β

n0+1∑
i=0

αi ≤ β(n0 + 2)αn0+1 = (n0 + 2)αn0+2 (ε′ + y + ∆x) ,

there exists γ = γ(ρ, ε, T ) such that gn0+2
ε′ (0) ≤ min{ε, ρ0}, whenever ε′ = γ

and y, ∆x < γ. Therefore, the proof follows from Proposition 4.12, with γ

and C = 2(n0 + 2).

We now use Theorem 4.13 to show convergence to the equilibrium.

Proof of the Main Theorem. Let ρ > 0, let Oρ be a ρ-neighborhood of (0, 0),

and let Hρ = Ω r Oρ. By Theorem 4.13, for any T > 0 and ε > 0, we

have limδ→0 Pr[D(T ) ≥ ε | ξ(0) = Xδ(0)] = 0 uniformly for ξ(0) ∈ Hρ. Let

µ be a limit point of {µδ}, when δ → 0, relative to the topology of weak

convergence. By Corollary 3.2 in Benäım [1998], µ is an invariant measure

of the deterministic dynamic on Hρ, i.e., µ(A) = µ({ξ(T ) : ξ(0) ∈ A}) for

every measurable A ⊂ Hρ and T > 0. Therefore, µ(Hρ) = 0, and as ρ is

arbitrary, we have µ(0, 0) = 1. Since the space of probability measures on Ω

is compact, we have µδ w−→ 1(0,0) as δ → 0.

References
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