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Abstract
While auction research, including asymmetric auctions, has grown

signi�cantly in recent years, there is still little analytical solutions of
�rst-price auctions outside the symmetric case. Even in the uniform
case, Griesmer et al. (1967) and Plum (1992) �nd solutions only to the
case where the lower bounds of the two distributions are the same. We
present the general analytical solutions to asymmetric auctions in the
uniform case for two bidders, both with and without a minimum bid.
We show that our solution is consistent with the previously known
solutions of auctions with uniform distributions. Several interesting
examples are presented including a class where the two bid functions
are linear. We hope this result improves our understanding of auctions
and provides a useful tool for future research in auctions.

1 Introduction

While auction research, including asymmetric auctions, has grown signi�-
cantly in recent years, there is still little analytical solutions of �rst-price
auctions outside the symmetric case. Surprisingly, the main existing result
goes back to Griesmer et al. (1967) who study the following two distributions
V1 � U [0; 1]; V2 � U [0; �] and �nd solutions

v1(b) =
2b�2

�2 � b2(1� �2)

v2(b) =
2b�2

�2 + b2(1� �2)
�Dept. of Economics, University of Exeter, UK.
yThe Center for the Study of Rationality, The Hebrew University, Jerusalem, Israel.
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This result was later used by Lebrun (1998, 1999), Maskin & Riley (2000),
and Cantillon (2002).
Plum (1992) extends this analytical result to cover the power distribution

F1(x) = x
� and F2(x) =

�
x
�

��
. Note that these again, have the same lower

bound for the support of the two distributions.1

In this paper, we present the general analytical solutions to asymmetric
auctions in the uniform case for two buyers (on an interval), both with and
without a minimum bid. We show that our solution is consistent with the
previously known solutions of auctions with uniform distributions. As we
explain later, our solution also covers the general case of uniform distributions
with atoms at the lower end of the interval. Several interesting examples are
presented including a class where both bid functions are linear. We hope this
result improves our understanding of auctions and provides a useful tool for
future research in auctions.

2 The Model

We consider two general uniform distributions (on intervals): U [v1; v1] for
buyer 1 and the other U [v2; v2] for buyer 2 (where�1 < v1; v1; v2; v2 <1, as
clearly a uniform distribution is of �nite support.) Without loss of generality,
assume that v1 � v2:We allow for the possibility of a minimum bid m which
is assumed to be �nite, to ensure that bids are bounded from below. The
fact that the bids are bounded from below imply that no buyer wins by
bidding less than v1(the argument for that is similar to one made by Kaplan
& Wettstein, 2000).2 In particular, in equilibrium, there is no bid b lower
than v1. Consequently, we shall assume from now on and without loss of
generality, that m � v1:
Notice when m � minfv1; v2g, we have the trivial equilibrium of at most

one buyer placing a bid at m. In addition, if v2 � 2v1 � v1, then any Nash
equilibrium must have buyer 2 always bidding v1 (and hence always wins the

1For presentation purposes, we have normalized here the �rst bidder�s distribution to
be on [0,1]. The key is that for both Griesmer et al. (1967) and Plum (1992) the lower
end of the support of the distributions is the same while the asymmetry is derived from
di¤erent higher end points of the support.

2The argument is along the following lines and by contradiction. Assume that there is
a minimum bid m and that bidding below v1 has strictly positive probability of winning.
From this, bidders must have strictly positive pro�ts for all values including v1. Take b

�

as the minimum possible equilibrium bid. The bidder bidding b� must have a no chance
of winning since if not a slight increase in bid will yield a discrete jump in probability of
winning. Since he has no chance of winning bidding b�, it follows that the bidder has zero
expected pro�ts, providing a contradiction.
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object at price v1). After eliminating these cases, the following conditions
hold for all remaining possibilities are at the intersection of the following
conditions:

(i) v1 < v1

(ii) v1 � v2 < v2

(iii) v2 < 2v1 � v1
(iv) m < minfv1; v2g

In this region, we now look for strictly monotone, di¤erentiable equilib-
rium bid functions b1(v) and b2(v). Denote the inverses of these bid functions
as v1(b) with support [b1; b1] and v2(b) with support [b2; b2]. Assume that (in
equilibrium) a buyer with zero probability of winning bids his value (this in-
cludes any value below m).3 In equilibrium, denote by (b; b] the region where
if a buyer submits a bid, he has a strictly positive probablity of winning. It
must be the case that b1 = b2 � b (otherwise, one buyer can lower the bid
without changing the probability of winning) and that b1 � maxfb2;mg � b:
(Since any bid b is such that b � v1 and no one bids above one�s value we
have b1 = v1. Consequently, b1 � b2 and b1 � maxfb2;mg:)
First, solve for b when m = v1. In the interval [b; b], buyer 2 with value

v2 solves the following maximization problem

max
b
(
v1(b)� v1
v1 � v1

)(v2 � b)

Below b buyer 1 bids his value, thus when v2 = v2(b); the following must
hold for buyer 2�s choice of b. Buyer 2 with value v2(b) must not bene�t from
bidding less than b:

(b� v1)(v2(b)� b) � (b� v1)(v2(b)� b); 8 b � b:

This is true only if b � v1+v2(b)

2
: Similarly buyer 2 with value v2(b) does

not bene�t from bidding more than b:

3Without this assumption a bidder with value v; who in equilibrium, has a zero prob-
ability of winning, can sometimes be bidding more than his value. Formally, this could
still be part of a Bayes-Nash equilibrium and can have a di¤erent allocation than other
Bayes-Nash equilibria. Such equilibria can be eliminated, for example, by a trembling-
hand argument: assuming that each bidder i bids with positive density on [vi; vi]. While
a bidder bidding below his value when he has a zero probability of winning can also be
supported in a Bayes-Nash equilibrium, the allocation is the same as the Bayes-Nash
equilibrium where they bid their value. Hence, we may eliminate these for simplicity.
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(b� v1)(v2(b)� b) � (v1(b)� v1)(v2(b)� b); 8 b � b:
However since v1(b) � b; we have

(b� v1)(v2(b)� b) � (b� v1)(v2(b)� b); 8 b � b:

This can happen only if b � v1+v2(b)

2
, therefore b = v1+v2(b)

2
: Since m = v1;

b2 � v1 = m implying b2 = b; we have v2(b) = v2(b2) = v2: Thus,

b =
v1 + v2
2

: (1)

With a minimum bid m, by de�nition b � m: If m � v1+v2
2
; the above

still holds. If m � v1+v2
2
; then we have b = m (the �rst constraint from above

is not necessary and the second constraint is satis�ed). Therefore,

b = maxfv1 + v2
2

;mg: (2)

In the interval [b; b], the functions v1(b) and v2(b) must satisfy (by the
�rst-order conditions of the maximization problems)

v01(b)(v2(b)� b) = v1(b)� v1 (3)

v02(b)(v1(b)� b) = v2(b)� v2

Adding these equations together yields

v01(b)v2(b) + v
0
2(b)v1(b) = [(v1(b) + v2(b)� (v1 + v2))b]0

v1(b) � v2(b) = b(v1(b) + v2(b))� (v1 + v2) � b+ c (4)

Let us look now at the boundary conditions. As we noted above, b belongs
to [v1; v1]: Furthermore, ifm � v2; then b = m. We must have, in equilibrium,
the following

B1 v1(b) = b (recall that a buyer bids his value when his probability of
winning is zero).

B2 v2(b) = maxfv2;mg (this is the mininum value giving buyer 2 a positive
probability of winning).
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B3 v1(b) = v1 and v2(b) = v2 (the highest bid of each buyer is reached for
his highest value.)

Substituting the lower boundary conditions B1 into (4), yields

v2(b)b = b(v2(b) + b)� (v1 + v2)b+ c

c = (v1 + v2)b� b2 (5)

From b = maxfv1+v2
2
;mg; we have

c =

�
(v1+v2)

2

4
if v1+v2

2
� m

(v1 + v2)m�m2 otherwise
(6)

(Note that c, as a function of m, reaches its peak at m =
v1+v2
2
). Using

B3 and (4) we have

v1 � v2 = b(v1 + v2)� (v1 + v2) � b+ c

b =
v1 � v2 � c

(v1 � v1) + (v2 � v2)
(7)

We can use (4) to �nd v2(b) in terms of v1(b) as follows.

v2(b) =
bv1(b)� (v1 + v2)b+ c

v1(b)� b
Finally, we can rewrite the di¤erential equation (3) as

v01(b) � (
bv1(b)� b(v1 + v2) + c

v1(b)� b
� b) = v1(b)� v1

or
v01(b) � (�b(v1 + v2) + c+ b2) = (v1(b)� v1)(v1(b)� b) (8)

This equation and boundary condition v1(b) = v1 is su¢ cient to �nd a
solution for v1(b); which we will do now.

2.1 Auction without a mimimum bid.

The auction without a minimum bid has the same solution as an auction
with a minimum bid m that satis�es m � v1+v2

2
.

In this case, we can solve the di¤erential equation as follows.
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As (by (6) and (7)) c = (v1+v2)
2

4
and

b =
v1 � v2 � (v1+v22

)2

(v1 � v1) + (v2 � v2)
; (9)

we can rewrite equation (8) as

v01(b) � (v1 + v2 � 2b)2 = 4(v1(b)� v1)(v1(b)� b)
We now de�ne � � v1 + v2 � 2v1 = v2 � v1; x � b � v1 and D(x) such

that

v1(b) =
�2

D(x)
+ v1: (10)

We then have v01(x) = � �2

D(x)2
D0(x), and equation (8) becomes

D0(x) � (�� 2x)2 = 4(D(x)x� �2)
D0(x) � (�� 2x)2 = 4D(x)x� 16x(�� x)� 4(�� 2x)2

(D0(x) + 4) � (�� 2x)2 = 4x(D(x)� 4(�� x))

D0(x) + 4

D(x)� 4(�� x) =
4x

(�� 2x)2

=
2�

(�� 2x)2 �
2

�� 2x

By integrating both sides, we obtain

ln(D(x)� 4(�� x)) = �

�� 2x + ln(�� 2x) + ln c1;

and taking the exponent of both sides yields

D(x)� 4(�� x) = (�� 2x)c1e
�

��2x

D(x) = (�� 2x)c1e
�

��2x + 4(�� x) (11)

The upper boundary condition v1(b) = v1 determines c1:When b = b, we
have x = x � b� v1.
From our de�nition we have D(x) = �2

v1�v1
: Hence our boundary condition

becomes

c1 =

�2

v1�v1
� 4(�� (b� v1))
(�� 2(b� v1))

e
� �
��2(b�v1)
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which can be rewritten as (recall that in this case b = v1+v2
2
)

c1 =

(v2�v1)2
v1�v1

+ 4(b� v2)
�2(b� b)

e
v2�v1
2(b�b)

Note that this depends only on the constants of the game vi; vi, since

b� v2 =
v1 � v2 � (v1+v2)

2

4

(v1 + v2)� (v1 + v2)
� v2

and

b� b =
v1 � v2 � (v1+v2)

2

4

(v1 + v2)� (v1 + v2)
� v1 + v2

2

From our de�nitions of �; x and equations (10) and (11), we �nd v1(b)

v1(b) =
(v2 � v1)2

(v2 + v1 � 2b)c1e
v2�v1

v2+v1�2b + 4(v2 � b)
+ v1 (12)

where

c1 =

(v2�v1)2
v1�v1

+ 4(b� v2)
�2(b� b)

e
v2�v1
2(b�b) (13)

Note that v2(b) is obtained from v1(b) by reversing the roles of v1; v1 with
those of v2; v2. Hence,

v2(b) =
(v2 � v1)2

(v1 + v2 � 2b)c2e
v1�v2

v1+v2�2b + 4(v1 � b)
+ v2 (14)

where

c2 =

(v2�v1)2
v2�v2

+ 4(b� v1)
�2(b� b)

e
v1�v2
2(b�b) (15)

2.2 A limit case where buyer 2�s value is known.

As a test of the above result let us relate it to the asymmetric situation
treated by Kaplan and Zamir (KZ) (2000), namely the situation in which
the valuation of one of the two buyers is common knowledge. For instance,
assume that [v1; v1] = [0; 1] and v2 = v2 = � where 0 < � < 2 (when � > 2;
the equilibrium is that buyer 2 bids 1 and wins with certainty).
For this situation, KZ found that in the equilibrium of the �rst-price

auction, buyer 1�s inverse bid function is
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v1(b) =
�2

4(� � b)

while buyer 2, whose value is known to be � uses a mixed strategy given
by the following cummulative probability distribution (with support from
b = �

2
to b = � � �2

4
) :

F (b) =
(2� �)�
(2b� �)2e

� �
2b���

2
��2 (16)

Let us view this situation as a limiting case of our model where [v1; v1] =
[0; 1],[v2; v2] = [�; � + "] and " ! 0. Now, the probability distribution of
the bids of buyer 2 is given by (we use V2 for the random valuation of buyer
2, denote bi(v; ") as the bid function for bidder i when the distribution is
[�; � + "], and denote vi(b; ") as the respective inverse bid function).

P (b2(V2; ") � b) = P (V2 � v2(b; ")) =
v2(b; ")� �

"

If the bid distribution is continuous in this limiting process, we should
have

lim
"!0

v2(b; ")� �
"

= F (b):

First, we observe that for [v1; v1] = [0; 1] and v2 = v2 = � we obtain
from our above equations for b and b ((1) and (9)) the correct range of
bids: b = �

2
and b = � � �2

4
. Next notice, that b > b whenever � � �2

4
>

�
2
or � < 2. Assuming this is indeed the case, we have a range of bids

even when one buyer�s value is known with almost certainty. (This makes
sense since it converges to a mixed-strategy equilibrium.) Now using our
analytical solution for buyer 1�s inverse bid function , (12) and (13), with the
distributions of [v1; v1] = [0; 1],[v2; v2] = [�; � + "], we have

v1(b; ") =
�2

(� � 2b)c1e
�

��2b + 4(� � b)

c1(") =
�2 � 4(� � b)
(� � 2b)

e
� �

��2b

where b = b(") = �+"��2

4

1+"
:
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We have

lim
"!0

v1(b; ") =
�2

(� � 2b) lim"!0 c1(")e
�

��2b + 4(� � b)
=

�2

4(� � b)

since

lim
"!0

c1(") = lim
"!0

�2 � 4(� � b("))
(� � 2b("))

e
� �

��2b(") = 0

Furthermore, using the analytical solution for buyer 2�s inverse bid function,
(14) and (15), we have

v2(b; ") =
�2="�

4��+�
"

1
2
��1

�
(� � 2b) e�

�
��2b e�

2
2�� � 4b

(17)

And �nally it can be veri�ed (by straightforward calculation using (17)
and (16)) that indeed

lim
"!0

v2(b; ")� �
"

= F (b):

2.3 Auction with a minimum bid

When the minimum bid is binding, as in the case whenm � (v1+v2)=2; equa-
tion (6) becomes c = (v1+v2)m�m2 and (7) becomes b = v1�v2�(v1+v2)m+m2

(v1�v1)+(v2�v2)
.

Now, we can rewrite the di¤erential equation (8) as

v01(b) � (b�m)(b+m� v1 � v2) = (v1(b)� v1)(v1(b)� b) (18)

Notice that since b � m and 2m � v1 + v2; the coe¢ cient of v01(b) on the
left hand side of the above equation is positive.
The solution to this equation is

v1(b) = v1 +
(m� v1)(m� v2)

b� v2 + (b�m)
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
(m�v2)

(m�v1)+(m�v2) c1
(19)

c1 = �
(v1 �m)(v2 � v2)

�
(m�v2+v1�v1)(m�v1+v2�v2)

(v1�m)(v2�m)

� m�v1
(m�v1)+(m�v2)

(v1 � v1)(m� v1 + v2 � v2)
(20)

The derivation of this solution is in the appendix. Again v2(b) is obtained
from v1(b) by interchanging the roles of v1; v1 and v2; v2:

9



Example 1 v1 = 0; v2 = 0:

Substituting these values into our solution yields

v1(b) =
m2

b+
p
b2 �m2c1

c1 = �
(v1 �m)(v2)

�
(m+v1)(m+v2)
(v1�m)(v2�m)

�1=2
v1(m+ v2)

Taking limm!0 v1(b) and applying L�Hopital�s rule yields

v1(b) =
2bv21v

2
2

v21v
2
2 + b

2(v22 � v21)
Reversing the roles of v1 and v2 gives us

v2(b) =
2bv21v

2
2

v21v
2
2 � b2(v22 � v21)

Setting v1 = 1 and v2 = � to �nd v1(b) and v2(b) yields the Griesmer et
al. (1967) result.
Furthermore setting v1 = v2 = 1 yields

v1(b) =
m2

b+
p
b2 �m2c1

c1 = �
(1�m) (m+1)

(1�m)

(m+ 1)
= �1

The limit as m! 0 is v1(b) = 2b which agrees with the standard result.

2.4 Limit when m& (v1 + v2)=2:

So far we found the equilibrium bidding functions on two regions of the
minimum bid m:
(1) For m � (v1 + v2)=2: This was the case of �no minimum bid�, that is

the minimum bid is not binding in equilibrium. This equilibrium thus does
not depend upon m.
(2) For m > (v1 + v2)=2. The minimum bid is binding in equilibrium

which in fact does depend upon m.
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Here we check the continuity of the equilibrium as a function of the min-
imum bid m at the critical value of m = (v1 + v2)=2 (when m approaches
this value from above). First we verify that:

lim
m&(v1+v2)=2

(b�m)
m�v1

(m�v1)+(m�v2) (b+m�v1�v2)
(m�v2)

(m�v1)+(m�v2) =
1

2
e
� v2�v1
2b�v1�v2 (2b�v1�v2)

lim
m&(v1+v2)=2

�
(m� v2 + v1 � v1)(m� v1 + v2 � v2)

(v1 �m)(v2 �m)

� m�v1
(m�v1)+(m�v2)

= e
2
(v1�v1+v2�v2)(v2�v1)
(2v1�v2�v1)(2v2�v2�v1)

Using these in our solution for v1(b) and c1 in equations (19) and (20),
we have

lim
m&(v1+v2)=2

v1(b) = v1+

lim
m&(v1+v2)=2

(m� v1)(m� v2)

b� v2 + 1
2
e
� v2�v1
2b�v1�v2 (2b� v1 � v2) limm&(v1+v2)=2 c1

= v1 +
�(v2 � v1)2=4

b� v2 + 1
2
e
� v2�v1
2b�v1�v2 (2b� v1 � v2) limm&(v1+v2)=2 c1

(21)

lim
m&(v1+v2)=2

c1 = �
(2v1 � (v1 + v2))(v2 � v2)e

2
(v1�v1+v2�v2)(v2�v1)
(2v1�v2�v1)(2v2�v2�v1)

(v1 � v1)(2v2 � (v1 + v2))
(22)

We now see that indeed this limit yields the equilibrium bid functions for
the case of no minimum bid. Note that the range of bids is as follows:

b =
v1 � v2 � (v1+v2)

2

4

(v1 + v2)� (v1 + v2)

b =
v1 + v2
2

Notice by (9) and (1), we have b� b = 1
4

(2v1�v2�v1)(2v2�v2�v1)
(v1+v2)�(v1+v2)

and that

(v2 � v1)2
v1 � v1

+ 4(b� v2) =
(v2 � v2)(2v1 � (v1 + v2))
(v1 � v1) (v1 � v1 + v2 � v2)

Using these two in equations (21) and (22) yields the equilibrium bid
function without a minimum bid; namely, it establishes the equality between
(21), (22) and (12), (13), respectively.

11



2.5 Limit when m! v2.

Looking at the solution for the case of a minimum bid, the expressions (m�
v1) and (m� v2) appear in the denominator (in the constant). Since we are
in the case when m � (v1 + v2)=2 and v2 � v1; we have m = v1 only when
v1 = v2 = m which reduces to the case of no minimum bid. This leaves us
to check the limit of our solution with a minimum bid as m! v2: By doing
so we �nd that the limit of our solution is

v1(b) =

�
�v1c1 + v2

(v2�v1)
(b�v2)

�
+ v1(log(

b�v1
b�v2

))

�c1 � v1 + v2 � (log(
b�v1
b�v2

))

c1 =
(v2 � v1)
(v1 � v1)

+
(v2 � v1)
(v2 � v2)

� log
�
(v1 � v1)(v2 � v1)
(v1 � v2)(v2 � v2)

�
which is precisely the solution to the di¤erential equation (18) (for m =

v2)
v01(b) � (b� v2)(b� v1) = (v1(b)� v1)(v1(b)� b)

with boundary condition B3.

2.6 Some New Examples

In this section, we provide a few examples of interest that were not solved
analytically before. In looking at these examples, we note the minimum
bid m provides a way to model distribution of values with atoms at the
lower end of the intervals. In fact when Vi � U [vi; vi] and m is in (vi; vi)
then this is equivalent to a distribution with an atom �i =

(m�vi)
(vi�vi)

at m and
uniform distribution on [m; vi] with the remaining probability. (For that, in
the distribution with atoms, we have to relax the assumption that a buyer
bids his value when he has zero probability of winning.)
Thus, our analytical solution for the general uniform case with a minimum

bid covers also the case with two buyers with distribution which are uniform
on an interval with an atom at the lower end of the interval.
In this section, we generated the examples using the solution with a min-

imum bid given by equations (19) and (20).

Example 2 v1 = 0; v2 = 1;m = 2; v2 = 3; v1 = 4:

Here, we have

v1(b) =
2

b� 1 + (b� 2) 23 (b+ 1) 13 c1

12



c1 =
(10)

2
3

(�4)
and

v2(b) =
2

b+ (b� 2) 13 (b+ 1) 23 c2
+ 1

c2 =
2 (10)

1
3

(�5)

43.532.52

2.35

2.3

2.25

2.2

2.15

2.1

2.05

2

value

bid

value

bid

Figure 1: Solution when v1 = 0; v2 = 1;m = 2; v2 = 3; v1 = 4. The thick
line is v1(b).

We note that conditional distribution of V1 above the minimum bidm = 2
stochastically dominates that of V2. Nevertheless, there is no dominance of
the bid functions in this region (see Figure 1). As a matter fact, this is the
�rst case of interstecting bid functions that we are aware of.
It is interesting to compare this with the same conditional value distri-

butions above 2 (without the atoms at m = 2), namely V1 � U [2; 4] and
V2 � U [2; 3]: This is given in Figure 2 (and it is a shift of the Griesmer et
al. (1967) result).
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43.532.52

2.625

2.5

2.375

2.25

2.125

2

value

bid

value

bid

Figure 2: Solution when v1 = 2; v2 = 2; v2 = 3; v1 = 4. The thicker line is
v1(b).

As we see, the presence of a minimum bid, even though it is at the center
of both distributions, changes the equilibrium qualitatively by introducing
the crossing of the bid functions. This example generalizes to whole range of
minimum bids.

Example 3 v1 = 0; v2 = 1; 1=2 < m < 3; v2 = 3; v1 = 4

By (19) and (20), we have

v1(b) =
m(m� 1)

b� 1 + (b�m)
m

2m�1 (b+m� 1)
m�1
2m�1 c1

c1 = �
(4�m)( (m+3)(m+2)

(3�m)(4�m))
m

2m�1

2(m+ 2)

b =
v1 � v2 +m2 �m(v1 + v2)
(v1 + v2)� (v1 + v2)

=
12 +m2 �m

6

v2(b) = 1 +
m(m� 1)

b+ (b�m)
m�1
2m�1 (b+m� 1)

m
2m�1 c2

c2 = �
2(3�m)

�
(m+2)(m+3)
(3�m)(4�m)

� m
2m�1

m+ 3

14



We have found by numerical computation of the solution that the crossing
occurs for all values of m in the range.

In the following example we characterize a family of auctions with uniform
distributions with linear equilibrium bid functions.

Example 4 v1 = 0; v1 = m+ z; v2 = 3m=2; v2 = 3m=2 + z (where z > 0):

Here we obtain from (19) and (20),

v1(b) = 2(b�m) +m = 2b�m
v2(b) = 2(b�m) + 3m=2 = 2b�m=2

b1(v) =
v +m

2

b2(v) =
v

2
+
m

4

43.532.52

2.5

2.375

2.25

2.125

2

value

bid

value

bid

Figure 3: Solution when v1 = 0; v2 = 3;m = 2; v1 = 3; v2 = 4. The thicker
line is v1(b).

Notice that these bid functions are independent of z and linear. Further-
more, the measure of values where a bid is submitted above the minimum is
the same for both buyers, namely z. Also notice that when m! 0; this goes
to the standard symmetric uniform case of uniformly distributed values on
[0; z].
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It turns out that linear bid functions appear only in the special case where
m� v1 = 2(v2 �m) and v1 �m = v2 � v2: (See the appendix for the proof.)
We note that in this class of auctions, the revenue for the �rst-price

auction is

RFP =
12m2 + 15mz + 4z2

12(m+ z)

and the revenue for the second-price auction is

RSP =

(
m3+42m2z+60mz2+16z3

48z(m+z)
if z > m=2

2m2+2mz+z2

2(m+z)
if z � m=2

In both cases, the �rst-price auction has higher revenue (it is higher by
m2(6z�m)
48z(m+z)

when z > m=2 and by (3m�2z)z
12(m+z)

when z � m=2):

To illustrate that no other linear solution exists. The following example
demonstrates that this linearity is lost by stretching the upper range.

Example 5 v1 = 0; v1 = 3; v2 = 4; v2 = 6;m = 2;

Here we obtain:

v1(b) =
8(b� 1)

(8 + b(b� 4))

v2(b) = 3 +
10(b� 2)

(4 + 2b� b2)

By inverting the functions, we get the following non-linear bid functions (see
Figure 4):

b1(v) =
2
�
2 + v �

p
4 + 2v � v2

�
v

b2(v) =
v � 8 +

p
5
p
8� 4v + v2

(v � 3)
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65432

2.625
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2

value

bid

value

bid

Figure 4: Solution when v1 = 0; v2 = 3;m = 2; v1 = 3; v2 = 6:The thicker
line is v1(b).

3 Concluding Remarks

In this paper, we have analytically solved the general uniform case for two
bidders. The uniform distribution is one of the simplest and it is useful to
know more than just the existence of the equilibrium but also have an explicit
analytical expression of the bid functions. This may be helpful in comparative
statics and in detecting interesting features of asymmetric auctions. Future
work would be to search for analytical solutions for other environments such
as extending our solution to N bidders. On the other direction of research,
it is useful to �nd environments where simple solutions exist. The simplest
being of course the linear solution. We have work in progress that shows
a linear solution exists when the values are drawn from power distributions
(not necessarily the same) and any risk aversions (also not necessarily the
same) Together these should provide a useful set of examples for researchers
and students as well as suggest a set of parameters for additional experiments
(see Guth et al. 2005) on asymmetric auctions.
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4 Appendix

4.1 Second order conditions.

Here we show that second-order conditions are satis�ed for our solution.
(This is adapted from Wolfstetter, 1996.) Buyer j with value v and bid b has
probility of winning Pwinj(b) and expected pro�t �j(v; b) where

�j(v; b) = Pwinj(b)(v � b)

De�ne bj(v) as a bid function that is monotonic and solves the �rst-order
conditions, namely �jb(v; b) = 0:

18



Assume these bid functions are monotonic. If so, then second-order con-
ditions are satis�ed. Since �jb(v; b) = Pwin

j0(b)(v � b)� Pwinj(b), we have

�jbv(v; b) = Pwin
j0(b) > 0 (23)

Take b� = bj(v�): If bb < b�, then by monotonicity of the bid function, webv � (bj)
�1
(bb) < v�. Hence, by (23) we have �jb(v

�; b) > �jb(bv; b) for all b.
This includes �jb(v

�;bb) > �jb(bv;bb) = 0. Thus, �jb(v;bb) > 0 for all bb < bj(v):

Likewise, �jb(v;bb) < 0 for all bb > bj(v): Hence, second-order conditions are
satis�ed (as long as our solution is monotonic).

4.2 Solution with minimum bids.

The solution that we presented with minimum bids is

v1(b) = v1 +
(m� v1)(m� v2)

b� v2 + (b�m)
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
(m�v2)

(m�v1)+(m�v2) c1
(24)

c1 = �
(v1 �m)(v2 � v2)

�
(m�v2+v1�v1)(m�v1+v2�v2)

(v1�m)(v2�m)

� m�v1
(m�v1)+(m�v2)

(v1 � v1)(m� v1 + v2 � v2)
To derive this solution we divide both sides of equation (18) by

(v1(b)� v1)2(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
(m�v2)

(m�v1)+(m�v2)

to obtain

v01(b)

(v1(b)� v1)2(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
(m�v2)

(m�v1)+(m�v2)

=

(v1(b)� b)

(v1(b)� v1)(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
(m�v2)

(m�v1)+(m�v2)

(25)

The RHS can be broken into two expressions:

1

(b�m)1+
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
1+

(m�v2)
(m�v1)+(m�v2)

+

(v1 � b)

(v1(b)� v1)(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
(m�v2)

(m�v1)+(m�v2)
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Observe that

Z
1

(b�m)1+
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
1+

(m�v2)
(m�v1)+(m�v2)

db =

1

(b�m)
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
(m�v2)

(m�v1)+(m�v2)

� v2 � b
(m� v1)(m� v2)

+ C

and

R 264
v01(b)

(v1 (b)�v1)2(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m�v1�v2)

1+
(m�v2)

(m�v1)+(m�v2)
�

(v1�b)

(v1 (b)�v1)(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m�v1�v2)

1+
(m�v2)

(m�v1)+(m�v2)

375 db =
� 1

(b�m)
m�v1

(m�v1)+(m�v2) (b+m�v1�v2)
(m�v2)

(m�v1)+(m�v2)
� 1
v1(b)�v1

+ C

Hence, we can integrate (25). From this we can obtain v1(b) as in (19)
and the expression for c1 is obtained by the boundary condition B3.

4.3 Linear solutions.

We know in the symmetric case that linear bid functions are possible for the
uniform distribution. Here we now ask what conditions are necessary for
linear solutions to exist in general (for the uniform asymmetric case).
Recall our two di¤erential equations from the �rst order conditions (3):

v01(b)(v2(b)� b) = v1(b)� v1
v02(b)(v1(b)� b) = v2(b)� v2

Assume a linear solution for both inverse bid functions are as follows

vi(b) = �ib+ �i where �i > 0

This implies that
v0i(b) = �i

Substituting this into our two equations yields

�1(�2b+ �2 � b) = �1b+ �1 � v1
�2(�1b+ �1 � b) = �2b+ �2 � v2

Since this is true for all b, the derivative of both sides must also be equal.
Hence,

�1(�2 � 1) = �1

�2(�1 � 1) = �2
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This implies �1 = �2 = 2: Substituting this into the equations yields

2�2 = �1 � v1
2�1 = �2 � v2

Combining this shows that

�1 = �
1

3
v1 �

2

3
v2

By boundary condition B1, v1(b) = b; we have b = 2b + �1: This implies
�1 = �b and b = 1

3
v1 +

2
3
v2: Since b > (v1 + v2)=2; it must be, by (2), that

there is a binding minimum bid m = b.
Now rewriting, m = 1

3
v1 +

2
3
v2 yields m � v1 = 2(v2 � m) (or v2 =

3
2
m� 1

2
v1): Finally, we use the upper boundary conditions B3,

v1 = 2b�m

v2 = 2b�m=2� v1=2
to �nd that v1 = v2 + v1=2 �m=2 (or v1 �m = v2 � v2): Thus, if de�ne z
such that v1 = m+ z; we have v2 = 3

2
m+ z � v1=2:
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