
 האוניברסיטה העברית בירושלים
THE HEBREW UNIVERSITY OF JERUSALEM 

 
 

 
 
 
 

PERFORMANCE SAMPLING AND  
BIMODAL DURATION DEPENDENCE 

  
 

by 
 
 

JERKER DENRELL and ZUR SHAPIRA 
  
  

Discussion Paper  # 431  September 2006 
 
 
 
  
  

   
 

 
 

 מרכז לחקר הרציונליות  
 

CENTER FOR THE STUDY 
OF RATIONALITY 

 
 

 
 
 

 
 
 

Feldman Building, Givat-Ram, 91904 Jerusalem, Israel 
PHONE:  [972]-2-6584135      FAX:  [972]-2-6513681 

E-MAIL:              ratio@math.huji.ac.il 
     URL:    http://www.ratio.huji.ac.il/ 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Performance Sampling and Bimodal Duration 
Dependence1  
 
 

Jerker Denrell2 and Zur Shapira3 
Stanford University & New York University 
 

                                                 
1This paper has benefited from comments by Bill Barnett, Glenn Carroll, Boyan Jovanovic, Dan 
Levinthal, Jim March, Huggy Rao, and Ezra Zuckerman. 
2Graduate School of Business, Stanford University, 518 Memorial Way, Stanford, CA 94305 USA. 
Email: denrell@gsb.stanford.edu. Phone: +1-650-725 74 57. 
3Stern School of Business, New York University, Department of Management, 44 West 4th Street, 
New York, NY 10012-1126, Phone: (212) 998-0225, Fax: (212) 995-4234, E-mail: 
zshapira@stern.nyu.edu. 



 

 
 
 
 

Performance Sampling and Bimodal Duration Dependence 
 
 
 
 
 
Abstract 

Performance sampling models of duration dependence in employee turnover and firm exit 

predict that hazard rates will initially be low, gradually rise to a maximum, and then fall. As 

we note in this paper, however, several empirical duration distributions have bimodal hazard 

rates. This paper shows that such bimodal hazard rates can be derived from existing models 

of performance sampling by small changes in the assumptions. In particular, bimodal hazard 

rates emerge if the mean or the variance of performances changes over time, which would 

occur if employees or firms face more challenging tasks over time. Using data on turnover in 

law firms, we show that the hazard rate predicted by these models fit data better than 

existing models. 
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Introduction 

Time spent in a social state is often an important determinant of the expected time 

remaining in this state. The longer an individual has been employed within a firm, the longer 

time can this individual be expected to remain. Similarly, firms that have survived for a 

longer time have a higher expected remaining lifetime. 

Several theories have been proposed to explain such duration dependence (Silcock, 

1954; Lancaster, 1972; March and March, 1978; Jovanovic, 1979; Heckman, 1981; Tuma and 

Hannan, 1984; Romanow, 1984; Fichman and Levinthal, 1991; Levinthal, 1991; Carroll and 

Hannan, 2000). Individuals may become better adapted to the state they spend time in and 

thus have a higher probability of remaining (March and March, 1977). Alternative 

opportunities may also diminish over time as individuals or firms become more specialized 

(Becker, 1975 Williamson, 1975; Tuma, 1976). Changes in the probability of leaving a social 

state may also be due to selection within a population of heterogeneous individuals or firms 

with constant hazard rates (Silcock, 1954). Since individuals lacking the skills required for a 

job often leave early, only individuals with the appropriate skills remain and the probability 

that an individual leave declines. 

Duration dependence may also arise in a population of homogenous agents if 

decisions about leaving are made on the basis of gradual accumulation of noisy information 

(Lancaster, 1972; March and March, 1978; Jovanovic, 1979; Romanow, 1984; Levinthal, 

1991). In such a model of "performance sampling" (March and March, 1978), individuals are 

assumed to evaluate the benefits of staying versus leaving on the basis of information 

sampled over time. When assessments of net benefits reach a lower threshold, individuals 

leave. Although simple, such a model explains the eventual decline in the hazard rate of 
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leaving as well as the initial increase often observed in empirical estimates of hazard rates. 

Many empirical studies in job turnover, firm exit, and numerous other business, 

social, and psychological applications found the unimodal hazard rate predicted by this 

model (Atkinson, Bower, and Crothers, 1965; Lancaster, 1972, Romanow, 1984; Luce, 1986; 

Levinthal, 1991; Barron, Hannan, and West, 1994). The distribution of the duration 

predicted from performance sampling models, the so-called inverse Gaussian distribution, 

have also be shown to fit several data sets well, and outperformed alternative models 

(Lancaster, 1972; Whitmore, 1979; Romanow, 1984; Levinthal, 1991). As a result, the 

unimodal hazard rate is considered a "stylized fact" in several areas of research, including job 

turnover, and the sampling model is often suggested as an important base-line model. 

As we detail below, however, there are several studies that have found a bimodal 

rather than a unimodal hazard rate. Such bimodality has usually been dismissed as sampling 

error or perhaps been attributed to differences in cohorts or to differences between two 

naturally occurring groups in the data. Nevertheless, the fact that bimodal hazard rates are 

observed in several different types of applications suggest some more general underlying 

mechanism. 

As we show in this paper, bimodality can in fact be derived from a standard 

performance sampling model by making small changes in the assumptions. For example, we 

show that bimodal hazard rates emerge if the variance of performance increases over time, 

which would occur if employees or firms face more challenging, and thus more informative 

tasks over time. In addition, we show that bimodality can emerge in a performance sampling 

model if we assume that the average performance is declining over time. We estimate these 

models using data on turnover in law firms (Spurr and Sueyoshi, 1994). For these data, we 

find that the models of a changing variance and a changing mean provide a much better fit 



 

 3 

to the empirical hazard rate of turnover than does the standard model of performance 

sampling examined by Romanow (1984) and Levinthal (1991). 

 The significance of employing the right hazard rate model (unimodal or bimodal) can 

be illustrated in the case of promotions in organizations. A firm whose promotion policy 

reflects an underlying bimodal hazard rate model can help both individuals and organizations 

improve their career planning, if this model is the correct one. Individual employees who see 

others get promoted can make better decisions if they know that the hazard rate distribution 

is either unimodal or bimodal. In the former case the individual should weigh the benefits 

and costs of leaving the firm vs. staying and make an informed decision. If on the other 

hand the distribution is bimodal, the individual may examine the skills that early and late 

bloomers posses and make an informed judgment as to the chances that he/she may be 

promoted in the future based on their on these skills and skills they can acquire. Similarly, 

organizations can engage in the same game and figure out which employees who did not 

make it in the first round of promotions are likely to make it in the future, and who are not. 

Encouragement and proper incentives should be given to the former.  

  

Performance Sampling Models 

It is possible to view transitions between social states as decisions made on the basis of 

information accumulated over time. In this perspective it is assumed that the benefits of 

staying versus leaving are not known ex ante, and can only be discovered by through direct 

experience (Fichman and Levinthal, 1991; Jovanovic, 1979, March and March, 1978; Miller, 

1984; Romanow, 1985,). Through experience in a given social state, more information about 

the value of staying or leaving is accumulated. If the accumulated information indicates that 

the value of staying is sufficiently low, compared to some alternatives, a transition out of 
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state will occur. 

Such "performance sampling models" (March and March, 1978; Jovanovic, 1979; 

Romanow, 1984; March, 1988; Levinthal, 1991) provide a reasonable description of the 

underlying decision making process in several contexts. For example, decisions about leaving 

employment are probably influenced by information accumulated over time regarding 

performance on the job. If performance is sufficiently low the employee may decide, or may 

be asked, to leave. In addition, decisions by a firm whether to continue in or exit an industry 

are probably influenced by experiences of sales and profitability. If assessment based on such 

experience is sufficiently negative, investors or other constituents may decide to withdraw 

financial or other contributions, and the organization will dismantle (Fichman and Levinthal, 

1991; Levinthal, 1991). 

Models based on ideas of performance sampling were introduced in the organization 

literature by March and March (1978), and were later elaborated by Romanow (1984), 

Romanow and Selke (1985), and Levinthal (1991). Similar models, however, have been 

developed in economics (Jovanovic, 1979) and have been used, for some time in different 

domains in the social sciences (Lancaster, 1972; Bartholomew, 1973; Whitmore, 1979; 

Morrison and Schmittlein, 1980). The main attraction of such models is that they provide 

specific empirical predictions about the hazard rate of exit, based on an explicit model of the 

underlying decision and learning process.  

The basic formal model of performance sampling can be easily described.  Consider 

an individual who performs some task. The individual or the firm he or she works for can 

observe his or her level of performance in every period. The performance in period t is 

modeled as a random variable, tX , with mean µ  and variance 2σ . Furthermore, 

performance levels at different points in time, tXX K1 , are assumed to be independent. 
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Individuals (or firms) do not know the value of µ  but have to estimate it based on past 

performance. Suppose the estimate is the average of all performances observed so far: tSt / , 

where tS  is the sum of all performances up to and including time t. Based on the estimate 

individual (or the firm) has to decide whether the individual should stay or leave. Because the 

estimate is based on noisy observations of performance, individuals might not leave 

immediately even if their initial performance is negative. If the estimated performance is still 

negative even after many observations, however, the individual (or the firm) might decide 

that it is better to leave than to stay. To model this, suppose that individuals decide to leave 

whenever the observed average performance, tSt / , is below a gradually rising threshold: 

ta /− . An example of such a decision process is provided in Figure 1. In this example, there 

are initially large variations in the average. Eventually, the average settles down and 

converges to µ . In the example depicted in Figure 1, however, the average falls below the 

threshold and the individual leaves before learning about the true value ofµ . 

--- Insert Figure 1 Around Here --- 

This model implies that the hazard rate of leaving will be unimodal, as illustrated in 

Figure 2 (e.g. Romanow, 1984; Lancaster, 1990; Levinthal, 1991).4 Because the performance 

sampling models provide empirical predictions about duration dependency, based on a 

                                                 
4 More formally, suppose that cumulative performance, )(tS , develops over time according to a 

Brownian motion process, which is the continuous time analogue of a random walk. In particular, we 

assume that ),()( tWttS σµ += where )(tW  is the standard Brownian motion ( 1,0 == σµ ). 

Here, )(tWσ  is the cumulative noise and µ  is the drift, determined by the capability of the 

individual (or firm). Again, we assume that individuals leave whenever tttS //)( α−< , or 

equivalently, at the first time when α−<)(tS . The distribution of the duration in this social state is 

thus the distribution of the time until a Brownian motion, with drift µ  and standard deviation σ  

first hits a lower barrier, α− . This distribution is well-known. As noted by Lancaster (1973), 
Romanow (1984), and Levinthal (1991), this distribution is called the "inverse Gaussian" distribution. 

The hazard rate of this distribution, for 2=α , 0=µ , and 12 =σ , is plotted in Figure 2. 
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simple yet reasonable model of the underlying decision making process, it has attracted the 

attention of scholars in different disciplines. Estimates of the model have shown that it is 

capable of reproducing several regularities found in empirically observed hazard rates. In 

particular, a number of empirical studies of hazard rates have found the inverse u-shaped 

hazard rate predicted by the model. For example, as illustrated by March and March (1977; 

1978) and Romanow (1984), performance sampling models can explain the unimodal shape 

of the hazard rate for the time to promotion, as they illustrated  in the case of  time to 

promotion for Wisconsin schools’ superintendents. In addition, as shown by Levinthal 

(1991) performance sampling models can account for the unimodal shape of age dependence 

in organizational mortality. 

--- Insert Figure 2 Around Here --- 

A unimodal hazard rate consistent with performance sampling models has also been 

found in studies of the duration of strikes (Lancaster, 1972; Morrison and Schmittlein, 1980), 

marriages (Diekkeman and Mitter, 1983), inter-organizational relationships (Fichman and 

Levinthal, 1991), organizational mortality (Singh, Tucker, and House, 1986; Fichman and 

Levinthal, 1991; Levinthal, 1991; Bruderl and Schussler, 1990; Barron, Hannan, and West, 

1994), job turnover (March and March, 1977, 1978; Whitmore, 1979; Konda and Stewman, 

1980; Morrison and Schmittlein, 1980; Romanow, 1984), and browsing activity on the 

Internet (Huberman, 2001). Models of information accumulation have also been used in 

psychology to explain unimodal distributions response times in decision making (Luce, 

1986).  
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Bimodal Hazard Rates 

Although several studies of duration dependence have found the unimodal hazard rate 

predicted by performance sampling models, there are several studies that deviate from this 

pattern. In any single study such deviations may be dismissed as sampling error. However, 

the deviations form a consistent pattern. In particular, the empirically estimated hazard rate 

in several studies of job turnover and termination, as well as studies of firm exit and 

government agencies’ survival, are bimodal. Below we examine several examples of such 

bimodality. 

The first example comes from a study of turnover among partners in accounting 

firms (Lane and Parkin, 1998), a study that tried to test the predictions of Jovanovic's 

performance sampling model. Specifically, the data consists of 2123 partners with Earnst 

and Young and covers the period from October 1989 to March 1991. Both terminations as 

well as voluntary leaves were studied. The hazard rate, as a function of time, for termination 

is shown in Figure 3 (based on Figure 1 in Lane and Parkin, 1998: 708). As illustrated, it is 

bimodal, with a small initial increase, followed by a decline during years 3-6. After this, the 

hazard rate increases substantially and then falls. Due to small numbers, the estimated hazard 

rate varies substantially during years 10-16. Although it is possible that this apparent 

bimodality might be due to sampling error, it should be noted that the number of 

observations is quite large during years 5 and 6, when the first decline occurs. In addition, 

there are three observations (years 5, 6, and 7), which are below the first local maximum in 

year 4. This bimodal pattern, however, only holds for terminations. The hazard rate for 

voluntary leavers is much closer to the unimodal pattern predicted by Jovanovic (1979), 

although there are some small deviations. 

--- Insert Figure 3 Around Here --- 
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A second example is taken from a study of turnover and promotions within law 

firms (Spurr and Sueyoshi, 1994). This study examined the promotion time to partner as well 

as the time to leaving before reaching partner for 2587 lawyers in several different law firms 

in New York and Chicago, based on data from the annual Martindale-Hubbell Law 

directory. Two cohorts were examined, with the first cohort entering between 1969 to 1973 

and the second entering during 1980-1983. The aggregate hazard rate (Kaplan-Meier 

estimates) for promotion to partner and the hazard rate for turnover (i.e., leaving before 

reaching partner) is shown in Figure 4 (based on data in Table 1, Spurr and Sueyoshi, 1994: 

820). As illustrated, the hazard rate for turnover is bimodal and follows a pattern similar for 

the hazard rate of termination in the study of the accounting firm discussed above. Again, 

there are several observations below the first local maxima, suggesting that sampling error is 

unlikely to explain the deviation from a unimodal pattern. However, the hazard rate of 

promotion is much closer to a unimodal form for promotions. Because a promotion implies 

that the promoted individual is not at risk for leaving the firm before promotion, one might 

imagine that the bimodality observed in turnover is caused by the pattern in promotion rates. 

Promotion rates do help to explain turnover rates in this data set. The correlation between 

promotion rates in period t and turnover rates in period t+1 is 0.33.5 Thus, promotion and 

turnover rates are clearly linked, although it is difficult to discern the direction of causality 

and the underlying mechanism.  

--- Insert Figure 4 Around Here --- 

Nevertheless, this observation does not explain the bimodal pattern found for 

turnover. In particular, a unimodal promotion pattern does not necessarily produce a 

bimodal pattern of turnover. In addition, models of competing risk, based on ideas of 

                                                 
5The correlation between exit rates in period t and promotion rates in period t+1 is 0.09 and the 
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performance sampling, do not necessarily produce a bimodal hazard rates for turnover. 

Suppose, following March and March (1978), that we introduce a higher threshold in the 

above model of performance sampling. Whenever this threshold is reached, individuals are 

promoted, while they leave (or are forced to leave) if they reach the lower threshold. Such a 

model still produces a unimodal hazard rate, for both promotion and turnover.6 

The bimodal pattern could also be caused by differences between cohorts or 

differences between two groups, such as women and men. Fortunately, the data in this study 

makes it possible to calculate the hazard rate for each cohort and for both women and men. 

Figure 5 shows the result, based on Table 1 in Spurr and Sueyoshi (1994: 820). As illustrated, 

none of the graphs, except for women in the 1980-1983 cohort, are unimodal. Although 

there is much variation, bimodality seems to capture the tendencies in the data better than 

unimodality.7 It should also be noted that most of the data cover men in the cohort starting 

in 1969-1973, which is the graph that is most clearly bimodal.  

Although hardly conclusive, these graphs suggest that a bimodal pattern could 

possibly be caused by some other mechanism than differences between two subpopulations 

or differences between two cohorts. At least it suggests that in this specific case bimodality is 

not the result of mixtures of unimodal distributions for men, women, and different cohorts. 

Further evidence for this comes from disaggregated hazard rates of turnover (i.e. leaving) in 

an earlier study of law firms (Spurr, 1990). In this study the hazard rates for men and women 

were not unimodal (Spurr, 1990, Figures 2 and 3, p. 412), but rather bi- or multi-modal. 

                                                                                                                                                 
contemporaneous correlation is 0.24. 
6For a discussion of performance sampling models with competing risks (an upper as well a lower 
absorbing barrier) see Romanow and Selke (1985). They note that Anderson (1960) derived the 
distribution of the first passage time for such a process. 
7Note that for women, in the 1969-73 cohort, there are several observations of zero departures. This 
makes the graph look multimodal. However, since sample sizes are low there, one may need to 
interpolate to get an estimate of the hazard rate in this region. Doing so would most likely produce a 
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--- Insert Figure 5 Around Here --- 

The third example also concerns the duration of employment, in this case the 

duration of careers for players in the National Football League (Atkinson and Tschirhart, 

1986). This study selected a random sample of players that entered the league between 1971 

and 1980, and examined the duration of their career. Figure 6 shows the empirically 

estimated hazard rate as a function of the number of years in the league. As illustrated, it is 

clearly not unimodal, but rather bimodal. The purpose of the study was to test a more 

flexible model of hazard rates, the so-called Burr model, compared to a Weibull 

specification. Although their proposed model provided a better fit than the Weibull, the 

empirical hazard rate suggests that the Burr model (which is unimodal) did not capture the 

form of the hazard rate, at least not in the aggregate.8 

--- Insert Figure 6 Around Here --- 

The next examples examine the lifetime of organizations. The first example is taken 

from Singh, House, and Tucker's (1986) study of 389 voluntary social service organizations 

that emerged in metropolitan Toronto in the period 1970-1980. The empirical hazard rate of 

exit (based on Figure 3, Singh, House, and Tucker, 1986, p. 598) is shown in Figure 7. As 

noted by Fichman and Levinthal (1991: 459-461), this hazard rate is Figure 7 is hardly 

monotonically decreasing, as suggested by the idea of a liability of newness (Stinchcombe, 

1965). Rather, in this setting, there seems to be a liability of adolescence. Fichman and 

Levinthal (1991, see also Levinthal and Fichman, 1988) argued that initial assets, goodwill by 

investors, or positive initial beliefs may contribute to a "honeymoon period" (March and 

March, 1978) during which the probability of exit would be low. As a result, hazard rates of 

failure among organizations should be unimodal, rather than monotonically declining, as 

                                                                                                                                                 
bimodal hazard rate. 
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suggested by the liability of newness argument (Stinchcombe, 1965; Freeman, Carroll, and 

Hannan, 1983). Although it is true that this graph is clearly not monotonically decreasing, 

bimodality is a potentially a better description than uni-modality. Notice that the decline in 

the hazard rate occurs relatively early during years 3-5. This suggests that the sample sizes on 

which these estimates are based on are not small. In other words, it is difficult to dismiss the 

decline as sampling error.9  Note also that the hazard rate in this figure has a pattern that is 

quite similar to the hazard rates illustrated above for turnover in accounting and law firms. 

--- Insert Figure 7 Around Here --- 

Our second example of organizational survival comes from a study of survival of 398 

U.S. federal governmental agencies created between 1946 and 1997 (Carpenter and Lewis, 

2004). This study develops a formal model, similar to the performance sampling models 

discussed above, of the termination of governmental agencies, in which principals are 

assumed to learn about the quality of agencies over time. The model predicts a unimodal 

hazard rate of termination. Nevertheless, as illustrated in Figure 8 (based on Figure 2 in 

Carpenter and Lewis, 2004: 215), the empirically estimated hazard rate10 is bimodal. The 

authors argue that the final mode, with a maximum at year 30, may be due to small samples. 

However, no statistical test is presented to support this.11 

--- Insert Figure 8 Around Here --- 

As this list illustrates, in several situations when performance sampling models 

predict a unimodal hazard rate, the empirical hazard rates are in fact bimodal. Of course, this 

                                                                                                                                                 
8The hazard rate for NFL players eventually has to increase, since careers are of finite length. 
9Nevertheless, it would probably be difficult to reject a model that specified that there is a plateau. 
10The hazard rate is estimated by taking numerical derivatives of the Nelson-Aalen martingale 
estimator of the cumulative hazard function. 
11It is also difficult to evaluate this claim since no information is provided about the precise number 
of government agencies that were in the risk set in years 25-35. In addition, the graph only displays 
the smoothed hazard rate, and does not show the underlying variation in the data. 
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list of selected graphs of empirical estimates of hazard rates is hardly conclusive evidence for 

bimodality.  

First, it might be argued that these examples of bimodality are due to sampling errors 

and that true hazard rate is unimodal. After all, we have not presented any statistical tests 

showing that deviations from uni-modality are significant and are not the result of sampling 

error. Formulating such tests is complicated. In particular, one cannot test if the differences 

between a local maximum and a local minimum are significant, since this would involve 

using the data as a guide to which hypotheses that should be tested. Rather, a null hypothesis 

of unimodality has to be formulated, with distributional assumptions about sampling errors. 

This null-hypothesis has to be compared to an alternative model, which allows for 

bimodality. Below we follow this procedure and show that the deviations from unimodality 

are significant.12  

Examining aggregate hazard rates, without controlling for time-varying covariates 

can also be misleading if such covariates follow a systematic pattern. It is possible that 

changes in time-varying covariates lead to a bimodal aggregate hazard rate. As we noted 

above, bimodality in aggregate hazard rates may also be due to differences between cohorts 

or changes in rules and processes. Although we tried to examine this in one case, we cannot 

exclude this possibility in the other cases without detailed data on individual or firm 

characteristics.  

Perhaps more important, it is possible that organizations have rules which imply that 

turnover can only occur, or is more likely to occur, at certain points in time. For example, 

individuals might be reviewed once every third year or so. Since some people might be asked 

to leave before the review, or stay around for some time after it even if they get a bad review 

                                                 
12A further complication is that the above graphs were found during a search for deviations from 
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or even if it has been decided that they would have to leave (the organization may allow 

them some time to search for another job), this may produce a bimodal pattern.  

Such rules may be important to explain turnover in professional firms, such a law 

and accounting firms. As discussed by, e.g., Sherer & Lee (2003), many large law firms used 

to follow the so called “Cravath” system. Essentially, this is an “up or out” system, similar to 

academic tenure, wherein entering lawyers have a limited period of time to either make 

partner or be fired. If we assume an entering cohort of new lawyers with heterogeneous 

skills and some lower bound on acceptable performance this could explain the observed 

bimodality. The lower part of the skill distribution will leave (or be fired) as soon after their 

hiring as their lack of skills discovered, producing a peak in the hazard rate. Since everyone 

else is at least satisfactory in their performance, turnover will decline. When the "up or out" 

time (usually, six years) is reached, turnover will again spike as those who don't make partner 

are let go. 

Notwithstanding these caveats, the above catalogue of bimodal hazard rates is at 

least suggestive of the possibility that some more systematic underlying mechanism, rather 

than idiosyncratic details of the context is at work. 

 

Accounting for Bimodality in Hazard Rates 

Given that bimodal hazard rates have been found in several different contexts, it is 

interesting to search for a general mechanism that could explain it. Such a mechanism could 

potentially also provide additional insight into the underlying process influencing transitions 

between social states. Although a wide variety of possible explanations can be imagined, we 

follow the approach of extending existing models, by making small changes in the 

                                                                                                                                                 
uni-modality, which increases the chances of rejection.  
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assumptions they make. In particular, we build on the standard model of performance 

sampling. 

 

Bimodal Heterogeneity 

An obvious explanation of bimodality in hazard rates is that individuals in the underlying 

population belong to two groups with different hazard rates. Both groups may be 

characterized by a performance sampling model, but with different parameters. If the 

difference between the groups is sufficiently large, this would generate a bimodal 

distribution. 

Figure 9 shows one example. In this example, there are two, initially equally large 

groups. For individuals in each group, the decision to leave is assumed to follow a 

performance sampling model. In particular, we assume that the distribution of the duration 

follows the inverse Gaussian distribution for each group.13 However, the duration 

distribution differs among groups. As illustrated, the resulting distribution is bimodal.14 

--- Insert Figure 9 Around Here --- 

Although such an explanation is simple and direct, it faces a number of challenges. 

First, a bimodal hazard rate only emerges from an assumption of bimodal heterogeneity if 

the difference in the hazard rates between the two groups is substantial. If the difference is 

small, the aggregate hazard rate will not be bimodal but remains unimodal. Second, in many 

contexts it is not clear that there is bimodal heteroegeity. Often there is a continuous rather 

than binary distribution of heterogeneity. It is true, of course, that several binary 

                                                 
13 For the first group we assume that 1=α , 0=µ , and 222.02 =σ , while for the second group 

we assume that 1=α , 0583.0=µ , and 00694.02 =σ . 
14It does not seem to be possible to create a bimodal aggregate hazard rate by mixing two inverse 

Gaussian distributions both of which have 0=µ . Moreover, the aggregate hazard is not always 
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classifications exist, with significant implications for duration in employment, say. For 

example, hazard rates may differ between women and men and between members of 

majorities and minorities. Nevertheless, the study of turnover and promotion to partner in 

law firms discussed above (Spurr and Sueyoshi, 1994), clearly show that bimodality in the 

aggregate did not result from a mixture unimodal distributions in cohorts or for women and 

men. Moreover, because there are many binary classifications, bimodality would require that 

only one of these binary classification had a dominant influence. For example, if there are 2 

important binary classifications, we have four groups, and the hazard rate might be expected 

to be multimodal rather than bimodal. 

Although there are situations where bimodality could be explained by bimodal 

heterogeneity situations, in many other situations it is more reasonable to argue that there is 

a more or less continuous distribution of heterogeneity. For example, it is difficult to explain 

why NFL players, voluntary social service organizations, or government agencies would all 

naturally fall into two groups with very different hazard rates. For this reason it seems 

worthwhile to seek a more general explanation for bimodal hazard rates. 

 

Changing Variance 

It is also possible to generate a bimodal hazard rate with only small modifications of the 

basic performance sampling model. In particular, bimodal hazard rates emerge if the 

variance in performances increase over time, which would occur if employees or firms face 

increasingly face more challenging and ambiguous tasks, where performance is more difficult 

to evaluate and measure. 

The standard performance sampling model assumes that the standard deviation of 

                                                                                                                                                 
bimodal. It actually requires a delicate choice of parameters to get a bimodal distribution. 
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task performance, σ , is independent of time. This implies that the variability in task 

performances for any given individual does not change over time. In several contexts, 

however, such an assumption may not be realistic. Rather, here are several reasons to expect 

that the variability in task performance will increase. Most important, the tasks individuals 

perform typically change over time. Initially individuals may perform simple tasks, which 

most people can handle well and which can be easily evaluated. As a result, there may be 

little variation in performance, since differences in capabilities as well as measurement errors 

are small. After some time on the job however, people are often given harder and more 

challenging tasks. For example, software engineers at Microsoft typically start out by writing 

fairly simple code, supervised by others. This job only requires basic programming skills and 

most people tend to perform at similar levels. If they continue in their job, employees are 

eventually given more substantial programming tasks, with more impact on the final 

program (Cusumano and Seelby, 1995, pp. 118-122).  

Typically, it is more difficult to evaluate performance on more challenging tasks. Part 

of the reason is that performance may depend on contingencies outside the control of 

employees, which adds measurement error to performance evaluations. For example, the 

performance of trial lawyers depends on the number of cases won, which depends on 

several uncontrollable factors. As employees advance in firms, they also take on tasks with 

more long-term implications, for which performance is more difficult to evaluate. Moreover, 

at later stages in careers successful evaluations may require demonstration of leadership 

abilities and social skills. Since it is difficult to evaluate such dimensions, there is 

considerable variation in evaluations of the performance of employees. Finally, as employees 

advance they often work on fewer and bigger projects. As a result, the performance of such 

employees is based on a few important projects, which implies that chance events do not 
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average out. 

Similar reasons suggest that the “organizational capital” (Levinthal, 1991) of a firm 

should be subject to small shocks initially. In the beginning a firm might only serve a few 

customers. The real test of the strategy or the capabilities of the firm comes when the firm 

expands and tries to attract a more substantial share away from existing firms. For example, 

Sam Walton writes in his biography that while Wal-Mart were initially successful many 

analysts still wondered if they “could stand up to real competition” (Walton, 1992, p. 247), 

which would occur when Wal-Mart grew bigger and threatened Sears and other large 

retailers. If the organizational capital represents the faith of owners, managers, and the 

capital market in the ability of the firm, this argument suggests that large shocks to the 

organizational capital of firms are more likely to happen later in time, when they are faced 

with stronger competition. While some firms will survive this competition and prove their 

worth, others will fail. Again, this suggests that the standard deviation of the change in the 

organizational capital for a given firm, given that it survives, should increase over time. 

To model such a change in the standard deviation, we assume that the standard 

deviation of task performance, )(tσ , is a function of time.15 According to the above 

arguments we would expect that )(tσ will rise slowly in the beginning (when tasks are not 

very challenging), faster after some time, and gradually reach some limit. A flexible way of 

modeling such a process is to assume that  

)(1

1
)(

tNke
rqt −+

+=σ      (1) 

                                                 
15 Formally, we assume that ),()()( tWtttS σµ += where )(tσ  is a continuous function of time, 

and )(tW  is the standard Brownian motion. Here )(tσ  is the infinitesimal standard deviation of task 

performance, defined as [ ]{ }0)0(|)()(lim 21
0 =−∆+∆→∆ StSttSEtt  (e.g. Karlin and Taylor, 

1981).  
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Thus, the standard deviation starts at, approximately, q, and then gradually rises towards q+r. 

The slope of the rise is controlled by k and the period with the maximum slope is N. To 

illustrate how )(tσ  changes over time, Figure 10 shows an example where it is assumed that 

5.0=q , 3=r , 5.0=k , and 20=N . As illustrated )(tσ  is relatively constant in periods 1-

10, with a standard deviation of 0.5, and then starts to rise towards 3.5, with a maximum 

slope at 20=N . 

--- Insert Figure 10 Around Here --- 

Given this specification of how the standard deviation changes over time, it is 

possible to derive an explicit formula for the hazard rate of termination (see Appendix A). 

Figure 11 shows the hazard rate, under the assumption that the standard deviation changes 

as specified in Figure 10 and when 1=α . As illustrated, the hazard rate is bimodal. Note 

also that the second mode is centered around t = 20, i.e., the period in which the change in 

the standard deviation is at a maximum. 

--- Insert Figure 11 Around Here --- 

To explain why this process results in a bimodal hazard rate, note first that the 

standard deviation is almost flat in periods 1-10. Thus, during this period the process can be 

modeled as a standard Brownian motion with an (approximately) constant standard 

deviation. As we have seen above, the first passage distribution of such a process has a 

unimodal hazard rate. This unimodal hazard rate is reflected in the first mode. Note also that 

the reason why the hazard rate declines after this maximum is reached in the standard 

model, is that those left (in the organization) have a high value of )(tS  and are thus unlikely 

to reach the threshold of α− . If the standard deviation increases, however, the probability 

of a large shock, positive or negative, increases. Thus, some individuals with a high value of 

)(tS  may receive sufficiently large shock, to make )(tS  fall below the threshold. As a result, 
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the hazard rate tends to increase during the period when the standard deviation increases. 

Those who do not reach the lower threshold, however, have now a very high value of )(tS  

and are thus unlikely to fall below zero. As a result, the hazard rate eventually declines. 

Note that this explanation of the bimodal hazard rate has an important empirical 

implication: the second mode should correspond to the time when the standard deviation 

increases the most. In other words, relying on our interpretation of why the standard 

deviation changes, the second mode should be found during periods when individuals 

transition from less to more challenging tasks. This probably implies that this model cannot 

explain the bimodality found in the government agencies’ study discussed above, where the 

second mode occurred around year 30. It is difficult to imagine that a shift in the tasks facing 

a government agency would occur this late. Note also that a bimodal hazard rate would not 

emerge if the increase in the standard deviation was very gradual and approximately linear. In 

addition, a bimodal hazard rate requires that the increase in the standard deviation occurs 

after the period in which the maximum hazard rate have occurred when there was no change 

in the standard deviation.16 

 

Changing Drift Rates 

In the standard model of performance sampling average performance was also assumed to 

be constant and identical for all individuals. If average performance reflects the capability of 

individuals or firms, this assumption implies that capabilities are constant and identical for all 

individuals and firms. In many situations, such an assumption of constant and identical 

capabilities may not be realistic. Rather, capabilities may be a function of either duration (the 

                                                 
16It is also possible to derive the hazard rate if we assume, following Jovanovic (1979), that the 
estimate is not the average performance but instead follows Bayes rule. 



 

 20 

time spent in the social state) or of time (aging). Capabilities may also differ between 

individuals and firms. 

     Even if the average performances of individual are different, and picked from some 

distribution such as the normal, the hazard rate of the first passage time would still be 

unimodal (e.g. Lancaster, 1990). However, a model assuming both differences in capabilities 

and changing capabilities can produce a bimodal hazard rate. In particular, suppose that 

individuals differ in their capabilities but that such differences in capabilities are not apparent 

immediately. If the tasks individuals engage in initially are quite simple, most individuals 

might have the same average performance. As tasks become more challenging, however, 

differences among individuals will become more apparent. 

     In such a model individual capabilities initially start from some baseline, but 

eventually diverge, as individuals converge towards their potentials. Formally, we assume 

that each individual has some potential, ir  which determines the average performance for 

her. Initially, the average performance (or drift rate in a model with continuous time) rate for 

all individuals is identical and is equal to zero. As time passes, however, individuals converge 

towards their potential. One way of modeling such convergence towards the potential is to 

assume that mean performance for individual i , )(tui , changes as follows:  

)(1
)(

tNk
i

i e

r
tu −+

=      (2) 

That is, the drift starts from, approximately, zero and then gradually rises towards ir . The 

slope of the rise is controlled by k and the period with the maximum slope is N.17  

This model assumes that the capabilities of individuals (or, in terms of the formal 
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model, their drift rates) initially do not change much. After some time, however, they start to 

converge to their potentials. The rate of change, however, eventually declines. This pattern 

of learning is consistent with the Luce beta-strength model of learning (Luce, 1959), which is 

based on the assumptions that learning is proportional to how much has already been 

learned and that there is some individual limit.  

The second assumption of the model is that the potential of individuals, ir ,  differ. 

In particular, the potential of individual i is drawn from a normal distribution with zero 

mean and variance v. Thus, 50% of all individuals are assumed to have a positive potential, 

while 50% have a negative potential (negative potentials may not be sensible in some 

context, but a simple change in scale, i.e., taking the exponential of the potentials, would 

make all potentials positive).  

Given this specification of how the drift rates change over time, it is possible to 

derive an explicit formula for the hazard rate of termination (see Appendix B). Figure 12 

shows the hazard rate, under the assumption that 6.1=v , 1=k , 7=N , 46.02 =σ , and 

assuming that 1=α . As illustrated, the hazard rate is bimodal. The reason for this result is, 

again, that the initial phase of the process is similar to a standard Brownian motion with a 

constant drift rate and constant standard deviation. As we have seen above, the first passage 

distribution of such a process has a unimodal hazard rate. This unimodal hazard rate is 

reflected in the first mode. Note also that the reason why the hazard rate declines after 

reaching this maximum in the standard model, is that those left in the organization have a 

high value of )(tS  and are thus unlikely to reach the threshold of ( α− ). When the drift 

                                                                                                                                                 
17 Formally, we assume that Formally, we assume that ),()()( tWtttS ii σµ += where the 

instantaneous drift rate, )(tui , is a continuous function of time, and )(tW  is the standard Brownian 

motion. 
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rates start to change more significantly, however, some of those individuals will end up with 

a negative drift rate. As a result, those individuals will become more and more likely to exit, 

which explains the increase toward the second mode. After some time, however, most 

individuals with negative drift rate have departed and only individuals with a positive drift 

rate remain. Since those individuals are unlikely to exit, the hazard rate starts to fall again 

towards zero.  

--- Insert Figure 12 Around Here --- 

 

Two Dimensions of Performance 

A different explanation of bimodal hazard rates is that there are two aspects of performance 

and failure on any of these two dimensions lead to termination.18 Such a process might 

generate a bimodal hazard rate of termination if it is assumed that it takes a lot of time to 

learn about one of these dimensions of performance, while learning about the other 

dimension is easy and takes only a little time. For example, it may be easy to learn about 

whether new employees have the technical skills required for the job. It may take longer time 

to learn about whether they have the necessary leadership skills etc. Some individuals may 

leave early if they discover that their estimated capability is low on the dimension for which 

learning is easy. Later some individuals will leave since they discover that their estimated 

capability is low on the dimension for which learning is slow.  

If we assume that failure on each of these dimensions can be modeled using the 

standard performance sampling model developed in section 2, and that performance of the 

two dimensions are independent, it is quite easy to derive the aggregate hazard rate of 

termination. Specifically, if )(thi  is the hazard rate of the first passage time for process i, and 
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the two processes are independent, then the hazard rate for the first time that one of the two 

processes reaches the threshold is )()( 21 thth +  (Luce, 1986, p. 24). In other words, the 

aggregate hazard rate is simply the sum of the two inverse Gaussian hazard rates.  

As illustrated in Figure 13, such a process could also generate a bimodal hazard rate. 

The shape of the hazard rate is different, however, from several of the empirical examples 

discussed above. In particular, it does not seem to be possible to generate a bimodal hazard 

rate where the hazard rate declines substantially after reaching the second maxima. As 

discussed in the section on Statistical Tests, this also implies that this model fits the empirical 

data worse than the models suggested above.  

--- Insert Figure 13 Around Here --- 

 

Alternative Explanations 

There are probably several other processes that could generate a bimodal hazard rate. One 

possibility is that the threshold for abandonment changes over time.19 Suppose that the 

threshold is initially low. This implies that only individuals with very low performance will 

have substandard performance and leave. Eventually, the threshold may increase, perhaps 

because the performance requirements have changed and become more stringent. This can 

create a bimodal hazard rate since at first only individuals with very low performance would 

leave. After such individuals have left, the hazard rate would drop, as in the basic 

performance sampling model. When the threshold changes the hazard rate would rise. After 

those individuals who could not pass the new threshold have left, the hazard rate would fall 

again. 

                                                                                                                                                 
18This possibility was suggested to us by Boyan Jovanovic. 
19 We are grateful to Dan Levinthal for suggesting this possibility.  
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A change in the difficulty of the tasks employees or firms face would have a similar 

effect. If average performance level is initially high, but eventually drops, perhaps because 

the tasks to be performed have changed and become more difficult, the hazard rate would 

initially rise, but drop after individuals with low performance have exited the population. 

After the increase in task difficulty, the hazard rate might rise again, etc. This generates a 

pattern similar to a model where the threshold changes. Indeed, if only data on survival 

times was available, the two models would not be possible to distinguish since only 

performance relative to the threshold matters.  

Simulations suggest that both of these processes could generate a bimodal hazard 

rate. It is very difficult, however, to analytically derive the hazard rate implied by these 

processes, except in special cases. As a result, it is difficult to fit these models to data. 

Nevertheless, the underlying mechanism behind a model with an increase in the difficulty of 

the task (i.e. a change in average performance, or equivalently, a change in the threshold) is 

similar to the model with changing drift rates. In the model with a changing drift rate it is 

assumed that the task changes and that the average performance of individuals (or firms) 

changes. In contrast to a model where the average performance of all individuals (or firms) 

decrease, however, the model of changing drift rates assumes that average performance 

decreases for some but increases for others.  

 

Statistical Tests 

The above models suggest several reasons for why bimodality, rather than unimodality, is 

expected. To examine whether such bimodality is statistically significant and whether the 

above models can explain the empirical data better than a standard model of performance 

sampling, we fit these models as well as the standard performance sampling model to data 
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on turnover in law firms (Spurr and Sueyoshi, 1994). Comparing the fit of the standard 

performance sampling model with alternative models makes it possible to examine whether 

deviations from unimodality are statistically significant and whether models that allow for 

bimodality provides a statistically significantly better fit. Comparing the fit of the different 

models suggested above provides an indication of which of the above models that best 

explains deviations from unimodality.  

We use the data on turnover among men in the cohort that entered during the 

period 1969 to 1973, provided in Table 1 in Spurr and Sueyoshi (1994, p. 820). Table 1 lists 

the risk set and the percentage of individuals that exit each year. Based on these data it is 

possible to compute the number of censored observations for each duration.20 By using only 

the data from men and for the cohort that entered during 1969 to 1973, we control for both 

gender and cohort effects.  

 

Methodology 

To fit the models we use numerical maximum likelihood methods. The likelihood of an 

observed exit in year t (the data only provides information about the year of exit) is 

== )( tTP  )()1( tFtF −+ , where )(⋅F  is the cumulative distribution function of the time 

to exit, given the model. Similarly, the likelihood of a censored observation that is no longer 

observed after year t is )(1)( tFtTP −=> . The likelihood of an observation in year jt  can 

thus be expressed as (c.f. Tuma and Hannan, 1984): [ ] jj I

j
I

jj tFtFtF ))(1()()1( 1 −−+ −
, 

where 1=jI  if the jth observation is censored and 0=jI  if the jth observation is an exit. 

Thus, assuming independent observations, the total log-likelihood function of a data set with 

                                                 
20The censored observations here consist mainly of those individuals who were promoted to 
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N observation is  
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which is equal to 
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To estimate the different models, we thus only need to know the cumulative distribution 

function of the time to exit, )(⋅F . For the standard performance sampling model, this is 
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(e.g. Lancaster, 1990). For the model with heterogeneity it can be demonstrated that 

)())(1()()()( 21 tFtwtFtwtF −+= , where  
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is the probability that an individual selected at random at time t is of type 1 and q is the initial 

proportion of individuals of type 1.  

For the model assuming a shifting variance, Appendix A shows that 

)
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tmtm

tF
αα −

Φ+Φ−=     (7) 

where m(t) is a complicated function of  t , derived in Appendix A. A similar expression is 

derived in Appendix B for the model with changing drift rates. Finally, if there are two 

dimensions of performance, and the time to abandonment for the two dimensions are 

independently distributed with cumulative distribution functions )(1 tF and )(1 tF , then 

survival function of the combined process is )](1)][(1[)()()(1)( 2121 tFtFtStStFtS −−==−=  

                                                                                                                                                 
partnership. 
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(Luce, 1986, p. 24). 

We use numerical optimization methods to calculate the values of the parameters 

that maximize the log likelihood function, given the model.21 For example, for the standard 

performance sampling model, the parameters to be estimated are the variance ( 2σ ) and the 

drift ( µ ). It is not possible to estimate both 2σ and the threshold parameter (α ), since they 

are linearly dependent (a model where the variance is 
22 /ασ and the drift αµ / is identical 

to a model where the variance is 
2σ , the drift µ , and the threshold α , see, e.g. Whitmore, 

1979; Levinthal, 1991). We therefore chose to set 1=α  in all models.  

 

Results 

Table 1 shows the estimates for the different models, with their log-likelihoods. The first 

model is the standard performance sampling model, which generates an Inverse Gaussian 

duration distribution. Figure 14 compares the hazard rate implied by the estimated 

parameters for the standard performance sampling model with the empirical hazard rate. As 

illustrated, the fit is relatively good for the first years (1-5). The unimodal hazard rate implied 

by this model fits the data poorly, however, in the later years. Nevertheless, since most of the 

data is concentrated in the early years it remains to see whether a model allowing for 

bimodality provides a statistically significant better fit to the data.  

--- Insert Table 1 and Figure 14 Around Here --- 

To examine this, we first fitted a model allowing for heterogeneity. We assumed that 

there were two groups and that the standard performance sampling model applied to each 

                                                 
21 For the numerical optimizations we used both Mathematica and the Solver add-in to Excel. We 
experimented with numerous possible starting values for the parameters, to ensure a global rather 
than a local maximum. We found identical solutions using the different packages.  
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group but that the variance and the drift rate differed between the two groups. The initial 

proportion of the first group, q, was also estimated. As illustrated in Figure 15, the model 

with heterogeneity provides a better fit to the data. In contrast to the standard performance 

sampling model, the model with heterogeneity captures the second as well as the first mode 

in the hazard rate. The better fit of the model with heterogeneity is also reflected in the 

higher log-likelihood. While the model with heterogeneity has more free parameters, the fit 

of the two models can be compared using a likelihood ratio test since they are nested: if we 

constrain the drift rates and the variances for the two groups to be identical, the model with 

heterogeneity is identical to the standard performance sampling model. It is thus possible to 

test whether the improvement of the fit under the assumption of heterogeneity is statistically 

significant. A likelihood ratio test shows that the difference is highly statistically significant, 

at a p-value below 0.0001. This shows that the observed deviations from unimodality are 

indeed statistically significant.  

--- Insert Figure 15 Around Here --- 

While a model with heterogeneity provides a better fit to the empirical data than a 

standard performance sampling model, thus demonstrating the advantages of a model 

allowing for bimodality, the model with heterogeneity does not offer a persuasive 

explanation of bimodality since it is not clear that there are two, and not more than two, 

groups that follow different processes. In addition, while the model with heterogeneity fits 

the data better than a standard model of performance sampling, the hazard rate implied by 

the model does not track the empirically observed hazard rate very closely. 

As illustrated in Figure 16 and Table 1, a model assuming shifting variance provides 

a better fit. This model has a higher log-likelihood (with fewer parameters) and the hazard 

rate implied by the estimated parameters tracks the empirically observed hazard rate more 
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closely. The model with a shifting variance also fits the data better than the standard 

performance sampling model. If we estimate the parameters of the standard performance 

sampling model under the assumption that 0=µ , the two models are nested (the standard 

performance sampling model assumes that the variance is constant and thus constrains r to 

zero) and it is possible to test whether the improvement of the fit under the assumption of a 

shifting variance is statistically significant. A likelihood ratio test shows that the difference is 

highly statistically significant, at a p-value below 0.0001.22 The standard performance 

sampling model, without the assumption that 0=µ , can also be compared with the model 

with shifting variance by using the Akaike information criteria (AIC) and the Bayesian 

information criteria (BIC), both of which penalizes models with more free parameters. 

Calculations show that the model with a shifting variance fits the data better according to 

both of these criteria. Since the model with a shifting variance has a higher log-likelihood 

and fewer free parameters than the model with heterogeneity, the model with a shifting 

variance also provides a better fit to the data than the model with heterogeneity according to 

both the AIC and BIC criteria.  

--- Insert Figures 16 and 17 Around Here --- 

As illustrated in Table 1 and in Figure 17, a model assuming changing drift rates 

provides an equally good fit to the data. Both the log-likelihood of this model and the hazard 

rate implied by this model are very similar to the model assuming a shifting variance.23 Since 

the model with a changing drift rate has the same number of parameters as the model with 

shifting variance, it follows that the model of changing drift rates also provides a significantly 

better fit to the data than the standard performance sampling model. In particular, the model 

                                                 
22The loglikelihood for the standard performance sampling model is then -3549.91. 
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with changing drift rates fits the data better according to both the AIC and the BIC criteria. 

Moreover, the model with changing drift rates fits the data better than the model with 

heterogeneity according to both the AIC and the BIC criteria.  

Finally, Table 1 shows the estimated parameters and Figure 18 shows the hazard rate 

implied by the parameters for the model assuming two dimensions of performance. The 

estimated parameters imply that that hazard rate for the second process quickly rises, reaches 

a maximum in the first year, and then falls, while the hazard rate for the first process only 

reaches a maximum after considerable time. The first process thus corresponds to the 

dimension that takes time to learn about, while the second process corresponds to the 

dimension that is easy to learn about. As illustrated, the hazard rate implied by the estimated 

parameters provides a good fit to the initial part of the empirical hazard rate (during years 0-

8) but provides a poor fit to the latter part (after year 10). Instead of declining, the hazard 

rate implied by the estimated parameters continues to rise even in years 15-20 (although it 

eventually does decline). Since the empirical data is concentrated to earlier years, the overall 

fit of the model is still good. For example, according to the AIC criteria it provides a better 

fit to the empirical data than the standard performance sampling model. Nevertheless, the fit 

to the data for this model is worse than for the model with a shifting variance or the model 

with changing drift rates, as evaluated both by the AIC or BIC criteria or by visual 

inspection. 

--- Insert Figure 18 Around Here --- 

 

 

 

                                                                                                                                                 
23 As formulated, the models are not identical. It is likely, however, that they would be identical if a 
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Discussion 

The above reasoning and findings may help improve promotion decisions and their 

consequences for both individual employees and employers. Unimodal hazard rate 

performance sampling models imply that individuals end up being promoted, retained or 

leave the organization (see for example March and March, 1978, Figure 1). March and March 

(1978) argued that even though performance samplings are not perfectly reliable, employees 

and employers base categorical decisions such as the above on these data. In contrast, 

bimodal hazard rates assume that the chances of promotion may change in time in line with 

the arguments about shifting mean and variance described in the prior section. We bring two 

examples to illustrate the promotion procedures in line with the differential assumptions. 

 Many universities adopted a two hurdle stages when evaluating non tenured 

professors for tenure. In addition to annual reviews, there are intensive reviews on say a 

candidate's third and sixth years on an eight years tenure clock.  The first hurdle on the third 

year may end with a promotion (sometimes with tenure), retention without promotion, or a 

recommendation to look for another job, or. The sixth year review ends with a tenure 

decision, promotion without tenure, retention without promotion, or a negative decision that 

usually carries a terminal period of employment. This procedure can be described by an 

underlying bimodal hazard rate distribution that emanates from a belief of heterogeneity in 

the time it takes candidates to bloom. Obviously, it is very hard to predict at the third year 

review who will be a true late bloomer, although it is easier at that point in time to identify 

early bloomers. Note also that the effects of dynamic changes and competition among the 

total pool of candidates are very hard to predict. Yet, it appears that a bimodal hazard rate 

model can do a better job than the unimodal hazard rate in this case. 

                                                                                                                                                 
different function was used for the change in the drift rates.  
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 Another example is the practice of assessment centers that has been employed by 

many large corporations such as the former AT&T (See Bray, Campbell and Grant, 1974). In 

employing the assessment center approach, promising young managers from around the 

company are being brought to one location for a short and intensive period (say one week) 

of testing. The outcome of the assessment center is usually the identification of a select sub 

group of managers who are recommended for accelerated promotion. The consequences of 

being singled out, or not, are nicknamed the "crown of prince" effect and the "kiss of death" 

effect, respectively. The application of assessment centers is consistent with a unimodal 

hazard rate model, since for the cohort that have been tested, no second chance is usually 

given. There are many managers who would eventually be classified as late bloomers and 

neither the organization nor they would benefit from being a candidate at the assessment 

center and not being recognized as one of high potential who merits accelerated promotion. 

 We do not argue of course that candidates' chances for promotion are always 

described by a bimodal hazard rate model but if it does, using a procedure that is consistent 

with unimodal hazard rate model may be deficient.  In addition, a side benefit may accrue to 

an organization that employs a procedure consistent with a bimodal hazard rate model 

(when it is right to do so) by having a more transparent promotion policy that makes it clear 

that one can be promoted early or late. Obviously, candidates for promotion, in particular in 

organizations employing an "up or out" policy may be cynical about criteria used for 

promotion, but having the opportunity to observe two waves of promotion for the same 

cohort may provide an understanding and agreement with the policy. 
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Conclusion 

The above models illustrate that bimodal hazard rates can in fact be derived from standard 

performance sampling models by making only small changes in the assumptions. These 

models also seem to capture some important aspects left out in standard models of 

performance sampling. As discussed above, the assumptions of a shifting variance or 

changes in the average performance may be more reasonable than the assumption of a 

constant mean and variance, especially in contexts where the tasks of employees, or firms, 

change over time, from the mundane to the more challenging. We also showed that these 

models did fit well the data, disaggregated by cohort and gender, on turnover in law firms. 

Of course, good fit to the data does not necessarily provide evidence that the data 

have been generated by the postulated process. In many situations models based on different 

assumptions fit the data equally well (Feller, 1943; Coleman, 1964; March and March, 1981). 

In the present case, we cannot rule out the possibility that the observed bimodality is the 

result of idiosyncrasies of the context. As noted above, fitting models to aggregate hazard 

rates, without controlling for time varying covariates, can also be misleading. In terms of the 

underlying theory, it is also unclear why one observes bimodal hazard rates for turnover, but 

not for promotion. If promotion occurs whenever the average performance reaches an 

upper boundary, it would seem that a model of shifting variance would also generate a 

bimodal hazard rate for promotion. 

Despite these limitations, we believe that the models presented here provide an 

important extension of existing performance sampling models (March and March, 1978; 

Romanow, 1984; Levinthal, 1991). In particular, we show how departures from the empirical 

predictions of existing models may be accounted for by simple extension of those models. 
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Appendix A: Effect of a changing standard deviation 

Let )()()( tWttS σ= , be a diffusion process where )(tW  is the standard Brownian motion 

and )(tσ  is a continuous function of t. To derive the hazard rate of the first passage time of 

the process S(t), we first derive the hazard rate of the first passage time of a stochastic 

process which is a monotonic transformation of S(t), a technique used in Jovanovic (1979) 

and Lancaster (1990). We can then recover the hazard rate of the first passage time for the 

original process by a simple transformation of the hazard rate of the transformed process. 

The transformation we use changes the time scale t to m(t), where  

.)()( 2 dxxtm
t

ox
σ∫ =

=      (A.1) 

That is, m(t) is equal to the variance of S(t) at time t.24 This transformation implies that we 

measure time in the scale m(t), which is the variance of S(t) at time t. In this time scale, the 

variance of the latter process at time m(t), i.e., [ ]))(( tmSVar , is equal to m(t). Since S(t) was 

assumed to have zero mean we also have that [ ] 0))(( =tmSE . In other words, the 

transformed process is a standard Brownian motion (mean zero and variance equal to t). 

We can now use our knowledge about the first passage time distribution for the 

                                                 
24To see this, note that the assumption that )(2 tσ  is the infinitesimal variance means that  
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e.g. Karlin and Taylor (1981: 159). 

Since the variance of the increment, )()( tSttS −∆+ , during an interval t∆ , is 

[ ]{ }0)0(|)()( 2 =−∆+ StSttSE , and since increments are assumed to be independent, the 

variance of )(tS at time t  is equal to  
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diffusion process measured in time scale m(t), to derive the hazard rate of the first passage 

time of the original process. To do so, note that the hazard rate of the first passage time for 

the original process is  

)(

)(
)(

tTP

tf
th

>
=      (A.2) 

where )(tf  is the density of the time when the process first hits α−  and )( tTP >  is the 

probability that the random time, T, when the process hits α− , is larger than t. Therefore, 

)),(()( tmMPtTP >=> where M is the first time the transformed process hits �☺. Since 

the transformed process is a standard Brownian motion, ))(( tmMP >  equals 

)()(
)()( tmtm

αα −Φ−Φ  (e.g. Lancaster, 1990). Similarly, since )(tm is a monotonic 

transformation of the random variable T, then 

|,
)(

|))(()(
dt

tdm
tmgtf =     (A.3) 

where ))(( tmg is the density of first passage time for the process M (e.g. Gut, 1995). 

Therefore, 
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Thus, we get 
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The hazard rate is therefore 



 

 36 

{ } 2

)()(

)(2)(2

1)()(

exp
)(

2

3









+

+
Φ−Φ

−
= −− kNkt

tmtm

tmtm

ee

r
qth

αα

α
π
α

   (A.7) 

To use this formula, we need to calculate dxxtm
t

ox
)()( 2σ∫ =

= . To do so, note that  
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Thus, 
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Obviously, tqdtq 22 =∫ . From tables of integrals we also get that 
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Collecting terms we get 

|1|ln
2

)1(
)2()(

22
222 kNkt

kNkt
ee

k

rq

k

r

eek

r
rqrqtdtt −

−
+








++

+
−++=∫σ  (A.12) 

or 

|1|ln
2

)1(
)()(

22
22 kNkt

kNkt
ee

k

rq

k

r

eek

r
rqtdtt −

−
+








++

+
−+=∫σ  (A.13) 

It thus follows that 
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Appendix B: Effect of changing drift rates 

Let )()()( tWtutS σ+= , be a diffusion process where )(tW  is the standard Brownian 

motion and )(tu  is a continuous function of t. Given the above assumptions, it follows that 

0)]([ =tSE  for all t. However, the variance of S(t) changes over time, as the capabilities of 

the different individuals start to diverge. Thus, S(t) is a diffusion process with zero mean and 

changing variance. To derive the hazard rate of the first passage time of the process S(t) we 

can thus follow the procedure outlined in Appendix A.  

In particular, if the variance of S(t) is denoted m(t), it follows that the hazard rate is 

{ }
dt
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tmtm

tmtm )(
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exp
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)(2)(2
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3
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π
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−Φ−Φ

−
=     (B.1) 

To obtain an analytical expression for the hazard rate we need to compute m(t) and  

dttdm /)(  .  

Note that, in this case, m(t) can be expressed as 
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Since vrVar =)( , the variance of S(t) at time t is  
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In addition,  
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If we denote dxxNke
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Tables and Figures 
 

 
 

Table 1: Estimates of Models* 
Model Coefficient Estimates Log Likelihood 
Standard Performance 
Sampling 

 76.12 =σ , 17.0=µ   -3519.7 

Bimodal 
Heterogeneity 

 q =0.1909, 0449.02
1 =σ , 1091.01 =µ

4193.02
2 =σ , 1839.02 =µ  

-3477.1 

Shifting Variance  94.2=r ,  67.0=q , 85.0=k ,  

25.8=N  

-3473.6 

Shifting Drift Rates  46.02 =σ , 60.1=v , 59.0=k ,  

20.7=N  

-3473.7 

Two Dimensions of
Performance 

 0178.02
1 =σ , 0883.01 =µ , 

 4595.02
2 =σ , 0001.02 =µ  

-3475.2 

*Number of observations is 1999, of which 786 are censored. 
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Figure 1. 
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Figure 2: The hazard rate generated by the performance sampling model.  

 

 

 

 
Figure 3: The hazard rate for terminees in an accounting firm. Based on Lane and 

Parkin (1998, Figure 1, page 708). 
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Figure 4: The hazard rate for promotion to partner (thick line) and for turnover (i.e., 

leaving before reaching partner, dotted line). Based on data in Table 1, Spurr and 

Sueyoshi, 1994, p.820. 
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Figure 5: The hazard rate of turnover, disaggregated by cohort (starting in 1969-73 

or 1980-83) and by men and women. Based on Table 1 in Spurr and Sueyoshi (1994: 

820). 
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Figure 6: Hazard rate of career retirement of NFL players who entered the league 

between 1971 and 1980. Based on Table 3 in Atkinson and Tschirhart (1986: 564). 

 

 

 

 
 

Figure 7: The hazard rate of failure for voluntary social service organizations that 
emerged in metropolitan Toronto in the period 1970-1980. Based on Figure 3, Singh, 
House, and Tucker, 1986, p. 598. 
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Figure 8: The hazard rate of termination for 398 U.S. Federal governmental agencies 

created in the period 1946-1997. Based on Figure 2 in Carpenter and Lewis (2004: 

215). 
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Figure 9: Bimodal hazard rate from bimodal heterogeneity. 
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Figure 10: Change in the standard deviation 
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Figure 11: Example of bimodal hazard rate from the model with shifting variance. 
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Figure 12: Example of bimodal hazard rate from the model with shifting drift rates. 
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Figure 13: Bimodal hazard rate from bimodal heterogeneity. 
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Figure 14: The hazard rate implied by the estimates of a standard performance 
sampling model (empty circles), compared to the empirical hazard rate (black 
squares).  
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Figure 15: The hazard rate implied by the estimates of a model with two groups 
(empty circles), compared to the empirical hazard rate (black squares).  
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Figure 16: The hazard rate implied by the estimates of a model with a shifting 
variance (empty circles), compared to the empirical hazard rate (black squares).  
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Figure 17: The hazard rate implied by the estimates of a model with changing drift 
rates (empty circles), compared to the empirical hazard rate (black squares).  
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Figure 18: The hazard rate implied by the estimates of a model with two learning 
processes (empty circles), compared to the empirical hazard rate (black squares).  

 

 

 


