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Abstract

I analyze a mechanism design of a tournament in which the principal
can strategically enhance the probability of a tie. The principal decides on
a ”tie distance” and announces a rule according to which a tie is declared
if the difference between the two contestants’ performances is within the tie
distance. I show that the contestants’ equilibrium efforts do not depend on
the prizes awarded in case of a tie. I find that there are cases in which the
optimal mechanism has a positive tie distance.
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1 Introduction

I analyze one-stage two-player contests with possible tie outcomes. The principal
chooses a ”tie distance”, d ≥ 0, and does not distinguish between output levels
that are within the distance of d from one another. The principal also chooses
a prize allocation scheme. I find that in some contests a positive tie distance is
optimal. The intuition behind this result is that the principal can ”save money”
by awarding a smaller sum of prizes in case of a tie.

When Lazear and Rosen (1981) published their groundbreaking paper that
broached the topic of contests, they pointed out the following motivation: In labor
contracts, workers are often rewarded according to their ranking relative to other
workers, rather than simply according to their marginal product. For example, it is
likely that the usually high salaries of managers do not reflect their marginal prod-
uct, but rather serve as a prize incentive for competition among workers in a lower
hierarchy. They present a model in which each contestant’s observable output is
the sum of his effort and a random shock which has a continuous distribution. The
implication of this is that the probability of a tie is effectively zero.

However, the mere existence of the concept of ties suggests that the real-world
probability of a tie is greater than zero. Students competing for grades often
receive identical grades. Sports competitions often end in ties. Even the example
cited by Lazear and Rosen (1981) of workers competing for promotions is, in many
ways, an example of a competition with a positive probability of a tie: the decision
to promote one candidate instead of another is often reported to be arbitrary,
since both candidates are ”worthy”. This is a tie outcome since each of the two
applicants is rewarded with the equal prize of a 50% chance to be promoted. Also,
many hierarchal firms have midway promotions which are awarded to a group of
workers, providing them with the equal prize of a higher salary and the opportunity
to compete for further promotions.

Some of the examples above do not strictly demonstrate a positive probability
for a tie outcome, but rather demonstrate the vast popularity of ”tie” policies.
For example, it is possible that the head of the firm has an exact ranking of his
workers, but still decides to reward a group of top workers with equal (midway)
promotions. Another example is the American grading system, in which a fixed
percentage of students receive each grade (A, B, etc.), even if the teacher has a
precise ranking of the students’ performances. In other words, letter grades are a
clear attempt to tie students with similar grades.

While both coarse grading and midway promotions are examples of strategic
ties, the reasoning behind their optimality is different. When choosing a grading
scheme, the principal is faced with a fixed budget constraint: the utility gained by a
student from being ranked above another student is canceled out by the disutility
of the other student from being ranked beneath him. The principal’s problem
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is reduced to the maximization of contestants’ efforts. Dubey and Geanakoplos
(2004) show that, under certain conditions, coarse grading maximizes contestants’
efforts. Choosing a wage scheme is different from choosing a grading scheme in
that the principal’s budget is flexible: The principal is looking to maximize his
profit which is the sum of efforts minus the expected payment of contestants’
salaries. The salaries are chosen by the principal, who has to pay them from his
own budget. In this paper I focus on tournaments in which contestants’ efforts
necessarily decrease with the probability of a tie. I show that a tie may still be part
of an optimal mechanism because it allows the principal to reduce the expected
sum of wages.

The observation that the organizers of a contest may choose to allocate equal
prizes to the few leading contestants relates to the more general problem of prize
allocation in contests. Krishna and Morgan (1998) discuss optimal prize allocation
in contests of two, three and four contestants, subject to a fixed purse, meaning
subject to a constraint that the sum of all prizes is constant. They show that for
contests of two or three contestants, the winner-take-all policy is optimal and that
in the case of four contestants, an optimal policy allows positive prizes only for
the top two rankings, and that the winner’s prize is always strictly larger than the
runner-up’s. Moldevano and Sela (2001) study the case of contests of n contestants
that vary in ability, subject to a zero profit constraint. They show that if the cost
of effort is concave or linear, a winner-take-all policy is always optimal. Though the
prize allocation literature does not relate directly to the topic of ties, it provides
strong intuition regarding their inefficiency as a policy: the frequent optimality
of winner-take-all contests suggests that a contest with a tie is, at best, a ”good
approximation” for an optimal contest. In light of this, the result that a tie can
be part of an optimal mechanism is particularly surprising.

Independent of this work, Cohen and Sela (2005) analyze a tournament in
which there is a positive probability for a tie resulting from discrete efforts and
no random shock to output. They focus on one-stage contests as well as multi-
stage contests from the mechanism-designer’s point of view. Though the topic of
that paper is closely related to the topic of this one, the papers are different in
an important way: while Cohen and Sela (2005) concentrate on exogenous ties, I
analyze a case in which there is not a real tie, but rather a strategic decision to
label the outcome a tie when the contestants’ output levels are close. There are
technical differences as well: Cohen and Sela (2005) assume discrete efforts and
no random shock to output, whereas I assume continuous efforts and a continuous
shock to output.

A different approach to strategic ties can be found in the discussion of tour-
naments with midterm reviews (see, for example, Gershkov and Perry (2006)).
Though there is no direct discussion of strategic tie breaks or even a model ex-
plaining how a tie outcome could come about, there is an interesting and relevant
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result: in two-stage tournaments with midterm reviews, the contestants will exert
a higher effort in the second stage if there is a tie-break in the first stage. Given
this result, the principal has an incentive to enhance the probability of a tie in the
first stage. Though the focus of the current paper is ties in one-stage tournaments,
it provides a setup that could model strategic ties in two stage tournaments by
allowing the principal to control the probability of a tie in the first stage through
the mechanism of the ”tie distance”.

The rest of the paper is organized as follows: in section 2, I present the basic
setup and assumptions of the model. In section 3, I characterize the optimal
mechanism and discuss cases in which the optimal mechanism has a positive tie
distance. In section 4, I offer conclusions and discuss possible generalizations.

2 Basic Setup

There are two identical contestants i = 1, 2 and a principal. The two contestants
are asked to exert non-negative efforts e1 and e2 respectively. The principal views
a noisy difference in efforts, z = e1 − e2 + x where x is a random variable with a
symmetric and differentiable density function f and a cumulative density function
F , satisfying xf ′(x) ≤ 0 for all x and E(x) = 0.

The principal has to decide on a symmetric tournament with a possible tie.
The principal’s choices variables are:

1. W1: The prize awarded to the winner

2. W2: The prize awarded to both contestants in case of a tie

3. W3: The prize awarded to the loser

4. d: The ”tie distance”

If the (noisy) difference between the contestants’ output levels is larger than d, a
”win” is declared and the winner receives W1 while the loser receives W3. If the
difference between the contestants’ output levels is smaller than d, a tie is declared
and both contestants receive W2. All prizes are constrained to be non-negative.1

In other words, the principal has to decide on a compensation scheme that is a
function g(z) = (g1(z), g2(z)), where gi(z) is the payment to contestant i following
the outcome z, and g(z) is a of the following form:

1It is enough to constrain the prizes to be lower-bounded, and I have decided on 0 as a lower-
bound only for simplicity of notation. However, if the prizes are not lower-bounded, the problem
is not interesting since the principal can make infinite profits by awarding infinitely negative
prizes.

4



g(z) =

⎧⎨
⎩

(W1, W3) if z > d;
(W2, W2) if |z| < d;
(W3, W1) if z < −d.

(1)

The principal is risk neutral and profit maximizing. His profit is given by:

π(e1, e2, W1, W2, W3, d) = e1 + e2 − E(payment) (2)

The cost of effort, C(e), is strictly convex, twice differentiable and satisfies
C(0) = 0. The contestants have identical vNM utility functions:

U(ei|e¬i, W1, W2, W3, d) =
∑

j=1,2,3

P (j|ei, e¬i)u(Wj) − C(ei) (3)

Where P (j|ei, e¬i) denotes the probability that contestant i will win the prize j
given his own effort ei and his opponent’s effort e¬i), and u is a monotone function
of Wj that satisfies u(0) = 0 (no risk preferences are assumed). The contestants
choose their effort levels simultaneously and are not aware of the realization of x,
though they are familiar with its distribution.

3 Solving for the Optimal Mechanism

I analyze the contestants’ behavior in symmetric equilibria, and derive the optimal
mechanism that satisfies the restrictions specified in the previous section. Before
specifying a sufficient condition for the existence of a symmetric equilibrium, I
assume its existence to discuss several important properties.

Since the focus is on symmetric equilibria, it is enough to analyze the behavior
of contestant 1. Denote:

P (z > d|e1, e2) = a(e1, e2) = a (4)

P (|z| < d|e1, e2) = b(e1, e2) = b (5)

P (z < −d|e1, e2) = c(e1, e2) = c (6)

Graphically, a, b and c are given by:
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d-d

a

b

c

f(x)

x

0

-d-e1+e2 d-e1+e2

Where a is the integral from d − e1 + e2 to ∞, b is the integral from −d − e1 + e2

to d − e1 + e2 and c is the integral from −∞ to −d − e1 + e2 (in this particular
illustration, −e1 + e2 < 0).

Proposition 1 In a symmetric equilibrium, the contestants’ equilibrium efforts do
not depend on W2.

Proof: See Appendix.

In other words, the contestants will not change their effort levels when promised
a higher reward in case of a tie. This result is especially surprising since no risk
preferences were assumed. The intuition behind this result is that in a symmetric
equilibrium, a marginal increase in effort does nothing to the probability of a tie b
(it can easily be seen graphically that the area beneath the curve added on the left
when e1 increases is equal, in limit, to the area subtracted on the right). Therefore,
a small deviation will not take into account the award in case of a tie.

Proposition 2 Any optimal mechanism satisfies W2 = W3 = 0.

Proof: See Appendix.

The proof of this proposition is merely looking at the first order conditions of
the contestants and the principal. However, the intuition behind the analysis is
clear: since the principal is looking to maximize expected profit, a positive reward
will be granted only if it results in a higher equilibrium effort level. The effort level
is decreasing with W3, since a higher compensation to the loser decreases incentive
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to win. According to proposition 1 the equilibrium effort level does not increase
with W2 either. Therefore, the optimal mechanism has to satisfy W2 = W3 = 0.2

Using proposition 2, the contestant’s utility function’s second order condition
can be written compactly. It is written in the appendix and provides a sufficient
condition for the existence of a symmetric equilibrium.

The principal is left with the decision of the first prize, W1, and the tie distance,
d. It will be shown that these decisions depend on the specific variables of the
problem. The main result of this paper follows:

Proposition 3 There are contests in which the optimal mechanism satisfies W1 >
0 and d > 0. This is true for contestants of any risk preference.

Proof: See Appendix.

This proposition is proved by constructing a class of simple examples. However,
to understand the intuition, it is easier to refer to the general case. A formal
analysis of the general case can be found in the appendix, but the idea is presented
here: Increasing d (when W1 is positive and constant) has two opposing effects on
the principal’s expected profit. On the one hand, increasing d lowers the expected
payment, because it decreases the probability of a win in which the principal has
to pay W1. On the other hand, increasing d decreases the equilibrium effort level,3

because the expected return for effort decreases with the drop in expected reward.
Though proposition 3 provides economic motivation only for contests with ties

that satisfy W2 = 0, continuity implies that there are contests in which a positive
probability for a tie and a positive reward in case of a tie guarantee the principal
a higher expected profit than the expected profit in case of a no-tie mechanism.

2Note that propositions 1 and 2 also hold when d is given exogenously - if the principal is
for some reason unable to distinguish between close output levels, he should still reward 0 is
case of a tie, and 0 for a loss. This result is consistent with previous literature: when a tie is
not allowed, Krishna and Morgan (1998) show that in a two-contestant tournament the optimal
compensation in case of a loss is 0. Cohen and Sela (2005) show that when there is an exogenous
probability for a tie due to discrete efforts, the optimal reward in case of a tie is 0.

3An interesting result follows: if the principal is subject to a fixed purse such as in the
Krishna and Morgan (1998) setup, meaning that the sum of all prizes in each scenario must add
up to a constant V , then the optimal mechanism is d = 0, W1 = V , W2 = V

2 and W3 = 0.
This is because the equilibrium effort is decreasing with d for every W2 (this is immediate
from Proposition 1). The principal’s problem is equivalent to the maximization of the contes-
tants’ equilibrium effort. Notice that the optimality of d = 0 is consistent with the findings of
Dubey and Geanakoplos (2004): In Dubey and Geanakoplos, the optimality of coarse grading
(in the case of homogeneous students) results from stochastic dominance of the output resulting
from lower effort over the output resulting from higher effort. The principal can make it less
beneficial to choose a low effort by grouping high output levels into a single grade. This argument
does not apply in this case because the noise term does not vary with the effort level, so there is
no stochastic dominance of low-effort output over high-effort output.
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However, the fact that the sum of prizes in case of a tie is lower than the sum of
prizes in case of a win is a necessary condition for this outcome.

4 Conclusions and Possible Generalizations

The main result of this paper is that there are tournaments in which the optimal
mechanism is not to distinguish between contestants with close output levels. The
intuition behind this result is that the principal lowers the expected sum of prizes
by increasing the probability of paying nothing in case of a tie. The tradeoff is in
the contestants’ equilibrium effort level, which decreases with the probability of a
tie.

Another result is that the contestants’ equilibrium effort level does not depend
on the prize awarded in case of a tie. Therefore, the optimal prize in case of a tie
must always be 0, or the lowest possible prize.

Though the ideas behind this analysis easily generalize to a contest of n con-
testants, it is hard to think of a formal generalization since the concept of a tie
is hard to generalize. Even when attempting to generalize the problem to three
contestants, three different ”tie distances” are involved: one for denoting a tie
between the first and the second rankings, another for denoting a tie between the
second and third rankings and a third to denote a tie among all three. It is easy
to see that the problem becomes more complicated as n grows.

A different approach is to generalize the concept of a tie. For instance, one
might want to examine the following mechanism: if the two contestants’ output
levels are within d of one another, reward them with equal prizes. If the distance
between their output levels is between d and 2d, reward them with prizes at the
ratios of 1 : 2, and so on (if the distance between their output levels is between
nd and (n + 1)d, reward them with prizes of ratio 1 : n). This is a generalization
of the concept of a tie since the contestants awards do not depend solely on their
rankings, but also on their distance from one another. For a small d, the above
policy is close to a policy in which the ratio between the output levels is equal to
the ratio between the rewards. It would be interesting to compare this policy to
the regular compensation scheme according to piece rates.

A further development of this model is analyzing two-stage tournaments with
strategic ties. As mentioned in the Introduction, an important result in the dy-
namic tournaments literature is that a tie-break in the first stage will increase the
contestants’ efforts in the second stage. An interesting problem would be to solve
for the optimal mechanism while allowing the mechanism designer to decide on a
”tie distance”.
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A Proof of Proposition 1

The first order condition for maximizing contestant 1’s utility is:

∂a

∂e1
u(W1) +

∂b

∂e1
u(W2) +

∂c

∂e1
u(W3) =

∂C

∂e1
(7)

Using the assumption that e1 = e2, it is easy to see graphically that ∂a
∂e1

> 0,
∂b
∂e1

= 0 and ∂c
∂e1

< 0. Formally, we have:

∂b

∂e1

=
∂

∫ d−e1+e2

−d−e1+e2
f(x)dx

∂e1

=
∂(F (d − e1 + e2) − F (−d − e1 + e2))

∂e1

= (8)

= −f(d − e1 + e2) + f(d − e1 + e2) = −f(d) + f(d) = 0 (9)

Therefore, equation 7 can be rewritten as:

∂a

∂e1
u(W1) +

∂c

∂e1
u(W3) =

∂C

∂e1
(10)

The solution for e1 to the above equation does not depend on W2.
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B Proof of Proposition 2

In a similar method to the proof of ∂b
∂e1

= 0 (equation 9), it can be shown that
∂c
∂e1

< 0:

∂c

∂e1
=

∂
∫ −d−e1+e2

−∞ f(x)dx

∂e1
=

∂(F (−d − e1 + e2) − F (−∞))

∂e1
= (11)

= −f(−d − e1 + e2) − 0 = −f(−d) = −f(d) < 0 (12)

Recall the principal’s profit given by equation 2. An increase in W1 or in W2

will obviously increase the expected payment. Seeing that ∂b
∂e1

= 0 and ∂c
∂e1

< 0,
by examining the contestant’s first order condition (equation 7) and using the
assumption that C(e) is strictly convex and u(·) is increasing, it is easy to see
that the equilibrium effort level does not increase with W2 or W3 (in fact, it does
not depend on W2 and decreases with W3). Since any increase in W2 or W3 will
result in an increase in expected payment, and will not result in an increase in the
equilibrium effort level, a profit maximizing principal will choose minimal values
for W2 and W3 - by assumption, these minimal values are 0.

C The Contestant’s Second Order Condition

Using proposition 2 and the assumption u(0) = 0, the contestant’s first order
condition (equation 7) can be written as:

∂a

∂e1
u(W1) =

∂C

∂e1
(13)

Therefore, the second order condition is:

∂2a

∂e2
1

u(W1) − ∂2C

∂e2
1

< 0 (14)

Using simple analysis similar to that in equations 9 and 12 it can be shown
that:

∂a

∂e1
= f(d − e1 + e2) (15)

In a symmetric equilibrium:

∂a

∂e1
= f(d) (16)

Therefore, the second order condition can also be written as:
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− f ′(d) − ∂2C

∂e2
1

< 0 (17)

D Proof of Proposition 3

I construct a class of examples. The noise term, x, is uniformly distributed on
[−1

2
, 1

2
]. A contestant’s utility from a given prize W is u(W ) = W α (α > 0, no

specific risk preferences are assumed). The cost of effort is C(e) = e2.
Recalling equation 16:

∂a

∂e1
= f(d) = 1 (18)

Using equation 7 and proposition 2, the first order condition for maximizing
the contestant’s utility is given by:

W α
1 = 2e1 ⇒ e1 =

W α
1

2
(19)

It is easy to show that the second order condition (equation 17) holds. However,
notice that the above e1 maximizes U(e) only for e1 such that d−e1 +e2 ∈ [−1

2
, 1

2
],

since otherwise f(d − e1 + e2) is 0 and not 1. More accurately, e1 is given by:

e1 =

{
W α

1

2
if U(e1 =

W α
1

2
) ≥ 0;

0 otherwise.
(20)

Since x is distributed uniformly, the probability of a tie is exactly 2d (assuming
that the optimal d satisfies 0 ≤ d ≤ 1

2
, which will indeed prove to be the case).

Therefore the probability of a win is 1 − 2d, and the principal’s maximization
problem is given by:

max
d,W1

(
W α

1

2
− (1 − 2d)W1) (21)

s.t. (U(e1 =
W α

1

2
|W1, d) ≥ 0) (22)

For every W1 the positive utility constraint is binding, since the principal’s
expected profit is upwards sloping in d. Therefore the utility constraint determines
d:

U(e1 =
W α

1

2
|W1, d) ≥ 0 ⇔ (

1

2
− d)W α

1 − (
W α

1

2
)2 ≥ 0 ⇔ (23)

⇔ (
1

2
− d) − W α

1

4
≥ 0 ⇔ 1

2
− W α

1

4
≥ d (24)
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It follows that:

1

2
− W α

1

4
= d (25)

The principal’s maximization problem (equation 22) is reduced to:

max
W1

(
W α

1

2
− (1 − 2(

1

2
− W α

1

4
))W1) = max

W1

(
1

2
W α

1 − 1

2
W α+1

1 ) (26)

The principal’s first order condition is given by:

α

2
W α−1

1 − α + 1

2
W α

1 = 0 ⇒ α

W1

− (α + 1) = 0 ⇒ α

α + 1
= W1 (27)

Note that this result maximizes the principal’s expected profit for every α: W1

is between 0 and 1 which implies a positive profit, and the expected profit is zero
for W1 = 0 and negative for a very large W1. Moreover, the above analysis shows
that there is only one critical point. Therefore the result must be the argument
that maximizes the principal’s expected profit.

Substituting for W1 in equation 25 yields 1
2
− ( α

α+1
)α

4
= d. Since 0 < α

α+1
< 1,

we obtain that 1
4

< d < 1
2
.

E Formal Analysis of the Principal’s Reduced

Maximization Problem

The principal’s maximization problem is given by (rewriting equation 2):

max
d,W1,W2,W3

(2e − 2a(W1 + W3) − bW2) (28)

s.t. (e = arg max(U(e1|e2, W1, W2, W3, d)) (29)

Using proposition 2 and the assumption u(0) = 0, by substituting the constraint
with the contestant’s utility function (equation 3) the above maximization problem
is simplified to:

max
d,W1

(2e − 2aW1) (30)

s.t. (e = arg max(au(W1) − C(e1)) (31)

Recalling the first order condition (equation 7), the equilibrium effort level
satisfies:
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∂a

∂e1
(d)u(W1) =

∂C

∂e1
(32)

Using equation 16, this can also be written as:

f(d)u(W1) =
∂C

∂e1
(33)

The assumption that xf ′(x) ≤ 0 and d ≥ 0 implies that f ′(d) ≤ 0 for every
d. Therefore, d = 0 maximizes the left-hand side. Using the assumption that C
is convex, d = 0 yields the highest equilibrium effort e. However, the principal’s
expected profit is also negatively influenced by the probability that he will have to
pay the reward W1. This probability, a, is decreasing with d:

∂a

∂d
=

∂
∫ ∞

d
f(x)dx

∂d
=

∂(F (∞) − F (d))

∂d
= 0 − f(d) = −f(d) ≤ 0 (34)

Therefore, the principal is faced with two conflicting incentives: On the one
hand, increasing d will decrease the equilibrium effort. On the other hand, a higher
probability for a tie is a lower probability for a win: increasing d will lower the
probability of having to pay the first prize, thus lowering the expected payment.
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