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Abstract

We examine incentive-compatible mechanisms for fair financing

and efficient selection of a public budget (or public good). A mecha-

nism selects the level of the public budget and imposes taxes on indi-

viduals. Individuals’ preferences are quasilinear. Fairness is expressed

as weak monotonicity (called scale monotonicity) of the tax imposed

on an individual as a function of his benefit from an increased level

of the public budget. Efficiency is expressed as selection of a Pareto-

optimal level of the public budget. The budget deficit is the difference

between the public budget and the total amount of taxes collected

from the individuals.

We show that any efficient scale-monotonic and incentive-compatible

mechanism may generate a budget deficit. Moreover, it is impossible
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to collect taxes that always cover a fixed small fraction of the total

cost.

1 Introduction

The Pareto-optimal social states depend on individuals’ preferences, which

are private information. Therefore, a collective choice that aims at select-

ing Pareto-optimal alternatives requires input from the individuals, and the

input of the individuals should convey sufficient information regarding their

preferences. For instance, if the input of each individual is his own preference

over the alternatives, a collective choice mechanism can select an outcome

that is Pareto optimal with respect to the reported preferences. However,

a mechanism that selects the social state as a function of the individuals’

input (e.g., the individuals’ preferences) may be subject to manipulation.

The individuals’ selfish incentives may lead to input that does not convey

sufficient information for the selection of an optimal outcome with respect to

the individuals’ true preferences. A common exception to this dilemma is a

dictatorial collective choice that selects an alternative that is most preferred

by the dictator.

In the most general setup, the result of Gibbard (1973) and Satterth-

waite (1975) precluded the possibility of finding a non-dictatorial determin-

istic mechanism for choosing social states in which individuals do not have

the possibility of manipulating the mechanism to their own advantage. In

the more specialized context of quasilinear preferences, Groves (1973), Clarke
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(1971), and Vickrey (1961) found a class of mechanisms, called VCG mech-

anisms, in which stating one’s true preferences is a dominant strategy and a

Pareto optimum is selected, i.e., a class of strategy-proof and efficient direct

mechanisms.

We recall the classical model to which the VCG mechanisms applies. The

model consists of a society of n individuals and a set S of public alternatives.

A public alternative s is a vector (k, t1, . . . , tn), where k is an element of a set

K of public projects, and ti is a real number representing the monetary trans-

fer from individual i. Individual i’s preferences are described by a function

ui : S → R that is of the form ui(k, t1, . . . , tn) = vi(k) − ti, where vi, called

agent i’s valuation functions, is the private information of agent i. If the cost

of project k is c(k) then the budget deficit of the alternative (k, t1, . . . , tn) is

c(k) −
∑

i ti, and the project k is efficient with respect to v1, . . . , vn if and

only if
∑

i vi(k)− c(k) ≥
∑

i vi(k
′)− c(k′) for all k′ ∈ K.

A VCG mechanism maps a list of valuation functions v = (v1, . . . , vn)

to the outcome s(v) = (k∗, t1(v), . . . , tn(v)) where k∗ = k(v) is efficient with

respect to v1, . . . , vn and

ti(v) = c(k∗)−
∑
j 6=i

vj(k
∗)) + ci(v−i)

where v−i is the vector of valuations with the i-th coordinate vi omitted.

The VCG mechanisms are truthfully implementable in dominant strate-

gies and select an efficient outcome. Green and Laffont (1977, 1979) and

Holmstrom (1979) provide sets of conditions under which these are the only

social choice functions that are truthfully implementable in dominant strate-
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gies and select an efficient outcome. Holmstrom’s conditions hold in our

model and therefore we focus in the Introduction on VCG mechanisms.

Another desirable property of a mechanism is balancing the budget, namely,∑
i ti(v) = c(k(v)). Unfortunately, in many cases it is impossible. Green and

Laffont (1979) show that when every valuation function is possible, then

there is no VCG mechanism that balances the budget.

However, there are VCG mechanisms that do not generate a deficit, for

example, when there are finitely many projects. Another example is when the

cost of all projects is bounded from below by a constant B, and the valuation

functions are bounded from above by a constant C, in which case the VCG

mechanisms with ci(v−i) = (n − 1)C − B(n − 1)/n cover the cost of the

selected public project. More generally, if there is a constant D (the previous

example corresponds to D = B − nC) such that c(k)−
∑n

j=1 vj(k) ≥ D for

all projects k and all valuation functions v1, . . . , vn, the VCG mechanisms

with ci(v−i) = −D(n− 1)/n cover the cost of the selected public project.

In Section 7.4 we show that also in the model where K = R+, c(k) = k,

and Vi consists of all nondecreasing concave functions v (normalized with

v(0) = 0 and with v′(x) → 0 as x → ∞), there are VCG mechanisms that

never generate a deficit. Note that in our model a valuation function need not

be bounded. Even if we consider only bounded valuation functions, there is

no single constant that bounds all valuation functions. Thus, even for a fixed

k, the terms c(k)−
∑n

j=1 vj(k) are not bounded from below when v1, . . . , vn

ranges over all valuation functions.

One possible interpretation of our model is that a point in K = R+
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stands for the society’s total budget. Once the budget is specified, a known

mechanism or bargaining allocates (either deterministically or stochastically)

the budget to public projects. Thus, an individual preference over the final

bundle of projects transforms into a preference over the budget, represented

by a valuation function v : R+ → R, with the normalization v(0) = 0. An

alternative interpretation is that K = R+ stands for the possible levels of a

public good, rescaled so that the cost of level x is x. In both interpretations,

ti stands for the tax imposed on individual i. We assume that the valuation

functions v are nondecreasing concave functions with v′(x) → 0 (where v′(x)

stands for the right-hand derivative of v at x) as x→∞.

A natural desirable fairness property of the taxation is monotonicity: if

individual i’s benefit from any increment in the public budget is never less

than that of individual j, i.e., v′i(x) ≥ v′j(x) for all x ≥ 0, then ti(v) ≥ tj(v).

Theorem 1 introduces a symmetric and monotonic VCG mechanism ϕx̄

(that depends on the parameter x̄) that never runs a deficit on the restricted

domain V x̄ of all valuation functions v with v′(x) ≤ 1/n for every x ≥ x̄.

Theorem 2 asserts that there is no VCG mechanism that is monotonic

and never runs a budget deficit. Moreover, we prove a stronger result by

weakening the monotonicity requirement and allowing for some deficit. We

formulate a much weaker fairness property, called scale monotonicity of a

mechanism: if all valuation functions are multiples αiw of a fixed valuation

function w, then ti(α1w, . . . , αnw) ≥ tj(α1w, . . . , αnw) whenever αi ≥ αj.

Theorem 3 asserts that for any scale-monotonic VCG mechanism and every

γ > 0 there is a valuation vector v for which the taxes do not cover even
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the γ fraction of the budget, and moreover such a budget deficit can arise

for a valuation vector v = (w,w, . . . , w) with identical valuations for all

individuals.

2 The Model

Let W be the set of all concave functions w : R+ → R, with w(0) = 0

and limx→∞w
′(x) = 0, where for a nondifferentiable (concave) w we denote

by w′(x) the right-hand derivative, i.e., the limit lim0<ε→0
w(x+ε)−w(x)

ε
. An

element w ∈ W is called a valuation function. The model 〈N, V1, . . . , Vn〉

consists of a set of individuals, N = {1, . . . , n}, and a family of valuation

functions, V1, . . . , Vn ⊂ W . If V1 = V2 = . . . = Vn = V ⊂ W we denote by

〈N, V 〉 the model 〈N, V1, . . . , Vn〉.

The interpretation is as follows. The set N is the set of individuals. The

set Vi is the set of player i’s possible valuation functions of a level/quantity

of the public budget/good. Each individual has a valuation function vi ∈ Vi.

The n-member society chooses x ∈ R+, interpreted as the level/quantity of

the public budget/good, and assigns taxes to each individual in the amount

of ti. The resulting outcome is then expressed as a vector (x, t1, . . . , tn) in

R+ ×Rn. Thus the set of outcomes associated with this public budget/good

model is

Ω = {(x, t1, . . . , tn) | x ∈ R+, ti ∈ R}.

The preference of individual i over the set of outcomes is given by a utility
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function

ui(x, t1, . . . , tn) = vi(x)− ti

where vi ∈ Vi. The valuation function vi of individual i is private information.

A social choice mechanism for such a public goods economy is an N -

person game form (N ; (Si)i∈N ;ϕ) where

ϕ = (ϕ0, ϕ1, . . . , ϕn) : ×i∈NSi → Ω.

I.e., a mechanism is a collection of n strategy sets S1, . . . , Sn and an outcome

function ϕ : S1 × . . .× Sn → Ω. It can be viewed as a procedure for making

the collective choice. The feasible actions of individual i are summarized by

his strategy set Si, and the rule for how agents’ actions specify the collective

choice is given by the outcome function ϕ. The selected level/quantity of

the public budget/good, as a function of the profile of actions/strategies

(s1, . . . , sn), is given by ϕ0(s1, . . . , sn), and the tax imposed on individual i is

given by ϕi(s1, . . . , sn). A mechanism is called a direct revelation mechanism

if for every individual i in N , Si = V .

The interpretation of the first coordinate x of a point in the outcome space

Ω is the level of the public budget (or the expenditure on the public good,

or the level/quantity of the public good when we assume unit cost). Thus,

the budget deficit associated with the outcome (x, t1, . . . , tn) is x−
∑

i∈N ti.

A VCG mechanism is a direct revelation mechanism where for a vector

of valuation functions v = (v1, . . . , vn) we have

n∑
i=1

vi(ϕ0(v))− ϕ0(v) ≥
n∑
i=1

vi(x)− x for all x ≥ 0
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and

ϕi(v) = ϕ0(v)−
∑
j 6=i

vj(ϕ0(v)) + ci(v−i)

where v−i is the vector of valuation v without its i-th coordinate vi.

3 Desirable Properties of a Mechanism

In this section we introduce a list of properties that are used in the statements

of our results.

3.1 Efficiency

An outcome (x, t1, . . . , tn) is called efficient with respect to a list of valuations

v = v1, . . . , vn with vi ∈ V , if there is no other outcome (y, s1, . . . , sn) such

that for every i ∈ N

vi(y)− si > vi(x)− ti

and

y −
n∑
i=1

si < x−
n∑
i=1

ti.

The first list of inequalities implies that all individuals prefer the outcome

(y, s1, . . . , sn) to the outcome (x, t1, . . . , tn) and the second one guarantees

further that the budget deficit of the outcome (x, t1, . . . , tn) is greater than

the budget deficit of the outcome (y, s1, . . . , sn).

The next (straightforward) result characterizes the efficient outcomes.
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Proposition 1 An outcome (x, t1, . . . , tn) is efficient w.r.t. v1, . . . , vn if and

only if

x ∈ arg max
x

[
n∑
i=1

vi(x)− x].

Proof. If y ≥ 0 with
∑n

i=1 vi(y)− y >
∑n

i=1 vi(x)− x, for sufficiently small

ε > 0 and si = ti + vi(y) − vi(x) − ε, we have vi(y) − si > vi(x) − ti and

y −
∑n

i=1 si < x −
∑n

i=1 ti and therefore (x, t1, . . . , tn) is not efficient. On

the other hand, assume that (x, t1, . . . , tn) is an outcome such that for every

y ≥ 0,
∑n

i=1 vi(y)− y ≤
∑n

i=1 vi(x)− x. If (y, s1, . . . , sn) is an outcome with

y −
∑n

i=1 si < x−
∑n

i=1 ti then
∑n

i=1 vi(y)−
∑n

i=1 si <
∑n

i=1 vi(x)−
∑n

i=1 ti

and therefore there is an individual i with vi(y)− si < vi(x)− ti. Therefore

(x, t1, . . . , tn) is efficient.

The result illustrates that the efficiency of an outcome (x, t1, . . . , tn) de-

pends on its first coordinate only. Note that the proof does not use the

concavity of the valuation functions v ∈ W . Therefore, the proposition holds

also when the set of valuation functions W is replaced by the set U of all

functions v : R+ → R. If v1, . . . , vn ∈ U are concave and differentiable then

an outcome (x, t1, . . . , tn) with x > 0 is efficient if and only if
∑n

i=1 v
′
i(x) = 1

(and (0, t1, . . . , tn) is efficient if and only if
∑n

i=1 v
′
i(0) ≤ 1). If v1, . . . , vn ∈ U

are continuous and vi(x) = o(x) as x → ∞ (which holds in particular when

vi is differentiable and v′i(x) →x→∞ 0 or vi(x + 1)− vi(x) →x→∞ 0) then an

efficient outcome exists.

A mechanism is efficient if it is a direct revelation mechanism such that

for every list of valuations v = v1, . . . , vn with vi ∈ V , ϕ(v) is an efficient
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outcome with respect to this list, i.e.,

ϕ0(v) ∈ arg max
x

[
n∑
i=1

vi(x)− x].

In that case we also say that ϕ is efficient with respect to V .

3.2 Incentive Compatibility

An incentive-compatible mechanism is a direct mechanism in which stating

one’s true preference is a dominant strategy. It follows from [8, Theorem 2]

that the VCG mechanisms are the only efficient incentive-compatible mech-

anisms whenever the domains of valuation functions V1, . . . , Vn (⊂ W of

i = 1, . . . , n respectively) are convex.

3.3 Feasibility (Budget Balance)

A mechanism is feasible (fully funded) if for every list of valuation functions

v = (v1, . . . , vn) with vi ∈ V ,

n∑
i=1

ϕi(v) ≥ ϕ0(v).

A mechanism balances the budget if for every list of valuation functions v

with vi ∈ V ,
n∑
i=1

ϕi(v) = ϕ0(v).

A mechanism is γ-funded, γ > 0, if for every list of valuation functions v

with vi ∈ V ,
n∑
i=1

ϕi(v) ≥ γϕ0(v).
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It is quite common to observe societies/countries whose budget is not bal-

anced. Many such societies run a budget deficit. However, it is quite common

to observe a budget deficit that is a small fraction of the budget. The concept

of γ-fundedness enables us to quantify the maximal deficit as a fraction of the

budget. For example a .95-funded mechanism translates to never running a

budget deficit of more that 5% of the public expenditure.

3.4 Monotonicity

In this subsection we define various concepts of monotonicity that capture

different equitable constraints by way of the distribution of the total tax

among the individuals.

A mechanism is monotonic (w.r.t. V ) if for every two individuals i, j ∈ N ,

v1, . . . , vn ∈ V , with vi(b)− vi(a) ≥ vj(b)− vj(a) for all b > a,

ϕi(v1, . . . , vn) ≥ ϕj(v1, . . . , vn).

The above monotonicity requires that whenever we are faced with valuation

functions in which the marginal benefits to individual i from an increased

level/quantity of the public budget/good are no less than those to individual

j, the taxes levied on individual i be at least as much as those levied on

individual j.

The next monotonicity property requires the above monotonicity of taxes

only in cases where all valuations are a multiple of one fixed valuation func-

tion.
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A mechanism is scale-monotonic (w.r.t. V ) if for every two individuals

i, j ∈ N , w ∈ V , positive numbers αk, k = 1, . . . , n, with αkw ∈ V and

αi > αj,

ϕi(α1w, . . . , αnw) ≥ ϕj(α1w, . . . , αnw).

We introduce the following notation: given α = (α1, . . . , αn) ∈ Rn
+ and

w ∈ W , α ∗ w denotes the list α1w, . . . , αnw of valuation functions.

A mechanism is strongly scale-monotonic (w.r.t. V ) if for every two indi-

viduals i, j ∈ N , w ∈ V , positive numbers αk, k = 1, . . . , n, with αi > αj,

ϕi(α ∗ w)− αiw(ϕ0(α ∗ w)) ≥ ϕj(α ∗ w)− αjw(ϕ0(α ∗ w)).

The concept of a strongly scale-monotonic mechanism is related to progres-

sive taxation. As αiw(ϕ0(α ∗ w)) represents the utility of individual i from

the level/quantity ϕ0(α∗w) of the public budget/good specified by the mech-

anism ϕ, the difference ϕi(α ∗ w) − αiw(ϕ0(α ∗ w) represents individual i’s

net taxation. A mechanism ϕ is strongly scale-monotonic if whenever all

individuals possess a valuation function that is a multiple of a fixed valua-

tion function w, those with higher valuation and thus also higher marginal

valuation have larger net taxation.

3.5 Symmetry

The symmetric property defined below is a desirable requirement for an eq-

uitable mechanism. It is not, however, an assumption in our impossibility

theorems. Nevertheless, in order to show that the assumptions of the theo-
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rems below are tight, we wish to demonstrate that each condition is necessary,

even if we consider only symmetric mechanisms.

A social choice mechanism ϕ : ×i∈NSi → Ω is called symmetric if Si = Sj

for every i, j ∈ N and for every (σ1, . . . , σn) ∈ ×i∈NSi and every permutation

π : {1, . . . , n} → {1, . . . , n}

ϕ0(σπ(1), . . . , σπ(n)) = ϕ0(σ1, . . . , σn)

and

ϕπ−1(i)(σπ(1), . . . , σπ(n)) = ϕi(σ1, . . . , σn).

4 Monotonic VCG Mechanisms with No Deficit

In this section we demonstrate the existence of monotonic and symmetric

VCG mechanisms that never generate a deficit on some domain of the val-

uation function. For example, let K be a sufficiently large constant, and

let V (K) be the set of all valuations v ∈ W s.t. v(x) ≤ K + x/n. It

follows that for every list of valuations v1, . . . , vn we have
∑n

i=1 vi(x) ≤

x+ nK. Then the VCG mechanism ϕ with ϕi(v1, . . . , vn) = ϕ0(v1, . . . , vn)−∑
j 6=i vj(ϕ0(v1, . . . , vn))+(n−1)K is efficient, feasible (as

∑n
i=1 ϕi(v1, . . . , vn) ≥

ϕ0(v1, . . . , vn)), monotonic and strongly scale-monotonic (moreover, vi ≥ vj,

which follows from v′i ≥ v′j and vi(0) = vj(0), implies ϕi(v1, . . . , vn) ≥

ϕj(v1, . . . , vn) and moreover ϕi(v1, . . . , vn)−vi(ϕ0(v1, . . . , vn)) ≥ ϕj(v1, . . . , vn)−
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vj(ϕ0(v1, . . . , vn)); this last inequality is in fact an equality), and strategy-

proof. Other, more interesting examples follow.

Consider the following special class of valuation functions. Let the valu-

ation function w : R+ → R+ be defined by w(x) = x if x ≤ 1 and w(x) = 1

if x ≥ 1, and set V = Vw. One interpretation is as follows. There are two

public projects. The status quo project k0 needs no further budget and thus

the cost of k0 is 0, and a transition (improvement or replacement) to another

project k1 costs one unit of money. For a cost of 0 < x < 1 one can obtain an

external contractor to build project k1 with probability x, or alternatively, a

budget 0 < x < 1 can be placed in a risky asset yielding 1 (and thus covering

the cost of project k1) with probability x and yielding 0 with probability

1− x. A valuation function αw of an individual represents a valuation of α

to the replacement of the status quo k0 with the project k1.

A VCG mechanism here is of the form

ϕ0(α1w, . . . , αnw) = x∗(α1, . . . , αn)

where

x∗(α1, . . . , αn) =


1 if

∑
i αi > 1

0 if
∑

i αi < 1

where x∗(α1, . . . , αn) is on
∑

i αi = 1 a function of (α1, . . . , αn) with 0 ≤

x∗(α1, . . . , αn) ≤ 1, and for 1 ≤ i ≤ n

ϕi(α1w, . . . , αnw) = x∗(α1, . . . , αn)−
∑
j 6=i

αjx
∗(α1w, . . . , αnw) + ci(α−i)
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The question arises whether one can select the functions ci so that the

corresponding VCG mechanism is feasible and monotonic. The answer is yes.

In fact, we prove a more general result.

Let x̄ > 0 and let V x̄ stand for all valuation functions v ∈ W with

v′(x) ≤ 1/n for x > x̄. It follows that for every list of valuation functions

v : v1, . . . , vn with vi ∈ V x̄ there is an efficient budget x∗ ≤ x̄.

Theorem 1 Assume that Vi = V x̄. There is a symmetric, monotonic, and

strongly scale-monotonic VCG mechanism that never runs a budget deficit

for a list of valuation functions with vi ∈ V x̄.

Proof. Consider the following VCG mechanism where

ϕ0(v) = inf{x :
∑
i

v′i(x) ≤ 1}

(equivalently, ϕ0(v) is the minimal efficient budget) and

ϕi(v) = ϕ0(v)−
∑
j 6=i

vj(ϕ0(v)) +
∑
j 6=i

vj(ϕ0(v−i))− ϕ0(v−i) + x̄/n

where v−i is the list of valuation functions v with its i-th coordinate vi re-

placed by the constant function 0. Obviously, ϕ is symmetric.

Let v = v1, . . . , vn and assume that vi ∈ V x̄. We first demonstrate

that
∑n

i=1 ϕi(v) ≥ ϕ0(v). Note that for every x we have
∑

j 6=i vj(x) −∑
j 6=i vj(ϕ0(v−i)) ≤ x − ϕ0(v−i). Therefore, setting x = ϕ0(v) we have

ϕi(v) ≥ x̄/n, and thus
∑

i ϕi(v) ≥ x̄ ≥ ϕ0(v).

Next we demonstrate monotonicity. By the symmetry of ϕ it suffices to

prove that ϕ1(v) ≥ ϕ2(v) whenever v′1(x) ≥ v′2(x) for every x. Assume that
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v′1(x) ≥ v′2(x) for every x. Set x = ϕ0(v), x1 = ϕ0(v−1), and x2 = ϕ0(v−2).

Then, x1 ≤ x2 ≤ x. Note that for every z we have
∑

j 6=1 v
′
j(z) ≤

∑
j 6=2 v

′
j(z).

Therefore,

∑
j 6=1

vj(x)−
∑
j 6=1

vj(x2) ≤
∑
j 6=2

vj(x)−
∑
j 6=2

vj(x2).

By the efficiency of x1 with respect to v−1 we have
∑

j 6=1 vj(x2)−
∑

j 6=1 vj(x1) ≤

x2 − x1. Therefore,

ϕ1(v) = x−
∑
j 6=1

vj(x) +
∑
j 6=1

vj(x1)− x1 + x̄/n

≥ x−
∑
j 6=1

vj(x2)−
∑
j 6=2

vj(x) +
∑
j 6=2

vj(x2)

+
∑
j 6=1

vj(x1)− x1 + x̄/n

≥ x−
∑
j 6=1

vj(x2)−
∑
j 6=2

vj(x) +
∑
j 6=2

vj(x2)

+
∑
j 6=1

vj(x2)− x2 + x1 − x1 + x̄/n

= ϕ2(v)

5 The Impossibility Results

The main result asserts that it is impossible to find an efficient, scale-monotonic,

and strategy-proof mechanism for 〈N,W 〉 that always collects taxes that

cover at least a fixed fraction of the cost:
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Theorem 2 Assume that the society N = {1, . . . , n} has at least two mem-

bers. For every efficient, scale-monotonic, and strategy-proof mechanism ϕ

on 〈N,W 〉 and every γ > 0, there exists a list of valuation functions v1, . . . , vn

s.t. v1 = v2 = . . . = vn and

∑
i∈N

ϕi(v1, . . . , vn) < γϕ0(v1, . . . , vn).

We will actually state and prove a stronger result. Note that if V ⊂ W ,

the restriction of any efficient, scale-monotonic, and strategy-proof mecha-

nism for 〈N,W 〉 to 〈N, V 〉 is an efficient, scale-monotonic, and strategy-proof

mechanism for 〈N, V 〉. Given w ∈ W we denote by Vw the set of valuation

functions {aw | a ≥ 0}. The next theorem asserts the existence of a differen-

tiable and strictly concave valuation function w ∈ W s.t. for every n > 1 and

every efficient, scale-monotonic, and strategy-proof mechanism ϕ on 〈N, Vw〉

(where N = {1, . . . , n}) and every γ > 0, there exists a list of valuation

functions v1, . . . , vn in Vw s.t. v1 = v2 = . . . = vn and

∑
i∈N

ϕi(v1, . . . , vn) < γϕ0(v1, . . . , vn).

Theorem 3 There exists a smooth strictly concave function w ∈ W such

that for every society N with at least two members, every positive constant

γ, and every efficient, strategy-proof, and scale-monotonic mechanism ϕ on

〈N, Vw〉, there exists α ∈ R+ s.t.

∑
i∈N

ϕi(αw, . . . , αw) < γϕ0(αw, . . . , αw).
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In Section 7.5 we demonstrate a smooth strictly concave function w ∈

W , w(x) =
√
x, and a symmetric, efficient, feasible, scale-monotonic, and

strategy-proof mechanism for 〈N, Vw〉. However, by replacing scale mono-

tonicity by strong scale monotonicity in Theorem 2, we obtain an impossi-

bility result for 〈N, Vw〉, where w ∈ W is any valuation function:

Theorem 4 Assume n ≥ 2 and w ∈ W . Then there is no efficient, strategy-

proof, feasible, and strongly scale-monotonic mechanism for 〈N, Vw〉.

6 Proofs

Assume that w ∈ W . Let Vw be the set of all valuation functions v ∈ W of

the form v = αw. Define the map ψ : Rn
+ → R+ × Rn by

ψ(α1, . . . , αn) = ϕ(α1w, . . . , αnw).

Given α = (α1, . . . , αn) ∈ Rn
+, we denote by α−i the n − 1 dimensional

vector (α1, . . . , αi−1, αi+1, . . . , αn). The first lemma states a property of a list

of functions ψi (0 ≤ i ≤ n) that corresponds to an efficient and strategy-

proof mechanism ϕ for 〈N, Vw〉. The domain Vw is convex and therefore, as

mentioned earlier, by applying [8, Theorem 2] to the restricted domain Vw

we have

Lemma 1 Assume that ϕ is an efficient and strategy-proof mechanism. Then

ψi(α) = ψ0(α)−
∑
j 6=i

αjw((ψ0(α))) + ci(α−i)

where ci is an arbitrary function.
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Proof of Theorem 3. Assume that ϕ is an efficient, feasible, strategy-proof,

and strongly scale-monotonic mechanism for 〈N, Vw〉. Set ψ(α1, . . . , αn) =

ϕ(α1w, . . . , αnw).

As ϕ is feasible,
∑n

i=1 ψi(α) ≥ ψ0(α), and therefore

n∑
i=1

ψ0(α)−
n∑
i=1

∑
j 6=i

αj(w ◦ ψ0)(α) +
n∑
i=1

ci(α−i) ≥ ψ0(α),

implying that for every α ∈ Rn
+,

∑
j 6=i

cj(α−j) ≥ (n− 1)

[
n∑
j=1

αj(w ◦ ψ0)(α)− ψ0(α)

]
− ci(α−i)

= (n− 1)q(α)− ci(α−i)

where q is the function defined by q(α) =
∑n

j=1 αj(w ◦ ψ0)(α)− ψ0(α).

We next prove that q(α) → ∞ as αi → ∞. We first provide a proof in

the case that ψ0 and w are differentiable. Differentiating the function q with

respect to αi we obtain

∂q

∂αi
(α) = (w ◦ ψ0)(α) +

n∑
j=1

αjw
′(ψ0(α))

∂ψ0

∂αi
(α)− ∂ψ0

∂αi
(α).

As
∑n

j=1 αjw
′(ψ0(α)) = 1 by the efficiency of ϕ,

∂q

∂αi
(α) = (w ◦ ψ0)(α).

Therefore, ∂q
∂αi

(α) is positive and nondecreasing in αi, implying that q(α) →

∞ as αi → ∞. We now prove that q(α) → ∞ as αi → ∞ without the

differentiability assumption on ψ0.

Fix x0 > 0 with w′(x0) > 0 and thus w(x0) > 0. In the remainder of

the present proof w′(x) stands for the left-hand derivative w at x. By the
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concavity of w, w′(x) ≤ w(x)−w(x0)
x−x0

for every x > x0, and w(x)−w(x0)
x−x0

> 0 for

every x 6= x0. Therefore, for every x > x0,

w(x0)
w(x)−w(x0)

x−x0

− x0 =
w(x)

w(x)−w(x0)
x−x0

− x ≤ w(x)

w′(x)
− x.

The assumptions on w – concavity and w′(y) →y→∞ 0 – imply that w(x)−w(x0)
x−x0

→

0 as x→∞. Therefore

w(x)

w′(x)
− x ≥ w(x0)

w(x)−w(x0)
x−x0

− x0 →x→∞ ∞.

Assume ψ0(α) > 0, which holds for sufficiently large αi. As
∑n

j=1 αjw
′(ψ0(α))

is ≥ 1 by efficiency, it follows that
∑n

j=1 αjw(ψ0(α)) ≥ w(ψ0(α))
w′(ψ0(α))

. Therefore,

either there is x with w′(x) = 0 and then ψ0(α) is bounded, or ψ0(α) →αi→∞

∞ and then q(α) ≥ w(ψ0(α))
w′(ψ0(α))

− ψ0(α). In either case, q(α) →∞ as αi →∞.

As ci(α−i) is independent of αi and given αj, j 6= i, q(α) → ∞ as

αi → ∞, the inequality
∑

j 6=i cj(α−j) ≥ (n − 1)q(α) − ci(α−i) implies that∑
j 6=i cj(α−j) → ∞ as αi → ∞. Therefore, for any given αj, j 6= i, there

exists a sufficiently large number αi, such that
∑

j 6=i cj(α−j) > (n−1)ci(α−i)

and for every j 6= i αi > αj. In particular, it implies that there is j 6= i

with αj < αi and cj(α−j) > ci(α−i). As (ψi(α) − αiw(ψ0(α)) − (ψj(α) −

αjw(ψ0(α)) = ci(α−i) − cj(α−j), we deduce that ϕ is not strongly scale-

monotonic.

Proof of Theorem 2. Let w be smooth and strictly concave. Assume

that ϕ is an efficient, scale-monotonic, and strategy-proof mechanism on

〈N, Vw〉. For (α1, . . . , αn) ∈ Rn we set ψ(α1, . . . , αn) := ϕ(α1w, . . . , αnw) and

c(w) =
∑n

i=1 ψi(0, . . . , 0). Note that the mechanism ϕ is defined on 〈N, Vw〉
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and thus c(w) depends on the domain Vw of ϕ and thus it depends indirectly

on w. For every β > 0 let x(β) be the unique point with βw′(x(β)) = 1. For

every s = 1, . . . , n and α > 0, set xs(α) = x(sα), i.e., xs(α) is the unique

point s.t.

sαw′(xs(α)) = 1.

The following lemma bounds from above the total taxes
∑

i∈N ψi(α, . . . , α)

by a sum of three terms: the first term c(w) which depends on w but does not

depend on α, the second term θ = θ(w, α, n) := nα
∑n−1

s=1 w(xs(α)) ≤ n(n−

1)w(xn−1(α)) which is bounded from above by a function of the the restric-

tion of w to the interval [0, xn−1(α)], and the last term d = d(w, n, α) is given

by d(w, n, α) := nxn(α)− n(n− 1)αw(xn(α)). As (n− 1)αw′(xn−1(α)) = 1,

the last term equals n
(
xn(α)− w(xn(α))

w′(xn−1(α))

)
.

Lemma 2 For every α ∈ R+∑
i∈N

ψi(α, . . . , α) ≤ c(w) + θ + n

(
xn(α)− w(xn(α))

w′(xn−1(α))

)
≤ c(w) + n(n− 1)αw(xn−1(α)) + n

(
xn(α)− w(xn(α))

w′(xn−1(α))

)
where c(w) =

∑
i∈N ψi(0, . . . , 0) and θ = nα

∑n−1
s=1 w(xs(α)).

Proof. Given a subset S ⊂ N we define the vectors e(S) ∈ Rn by ei(S) = 1

if i ∈ S and 0 otherwise. For i ∈ N and S ⊂ N we denote by e−i(S) the

vector (e(S))−i, i.e., the vector obtained by eliminating the i-th coordinate of

e(S). Using scale monotonicity, ψi(αe(S))− ψj(αe(S)) ≥ 0 whenever i ∈ S,

j 6∈ S, and α ∈ R+. Assume that i ∈ S and j 6∈ S. Then,

ψi(αe(S)) = ψ0(αe(S))− (|S| − 1)αw(ψ0(αe(S))) + ci(αe−i(S)) (1)
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and

ψj(αe(S)) = ψ0(αe(S))− |S|αw(ψ0(αe(S))) + cj(αe−j(S)).

Therefore, the inequality ψi(αe(S))− ψj(αe(S)) ≥ 0 implies that

cj(αe−j(S)) ≤ ci(αe−i(S)) + αw(ψ0(αe(S))). (2)

For each fixed integer s = 1, . . . , n − 1, the average of cj(αe−j(S)) over

all pairs j 6∈ S with |S| = s is denoted c−(s). Similarly, the average of

ci(αe−i(S)) over all pairs i ∈ S with |S| = s is denoted c+(s). Note that as

w is strictly concave, ψ0(αe(S)) depends only on the cardinality of S and α,

and xs(α) = ψ0(αe(S)), the unique point x with sαw′(x) = 1.

Averaging the inequalities (2) over all triples i, j, S with |S| = s, i ∈ S

and j 6= S we obtain

c−(s) ≤ c+(s) + αw(xs(α)).

Note that c+(s) = c−(s − 1), and therefore
∑n−1

s=2 c
+(s) =

∑n−2
s=1 c−(s), and

thus by summing the above inequalities over s = 1, . . . , n− 1,

c−(n− 1) ≤ c+(1) +
n−1∑
s=1

αw(xs(α)). (3)

By the definition of the functions c− and c+,
∑

i∈N ci(αe−i(N)) = nc+(n) =

nc−(n−1); by the definition of the function x, ψ0(αe(N)) = xn(α); and using

(1),

n∑
i=1

ψi(αe(N)) = nxn(α)− n(n− 1)αw(xn(α)) + nc−(n− 1).
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Therefore, together with (3), we deduce that

∑
i∈N

ψi(αe(N)) ≤ nc+(1) + nα
n−1∑
s=1

w(xs(α)) + nxn(α)− n(n− 1)αw(xn(α)).

(4)

Note that nc+(1) depends on the domain Vw of ϕ, and thus is a function

of n and w. The second summand on the right-hand side of the inequality,

nα
∑n−1

s=1 w(xs(α)), (equals θ by definition and) is ≤ n(n− 1)w(xn−1(α)) by

the monotonicity of w and s 7→ xs(α). Recall that (n− 1)αw′(xn−1(α)) = 1

and thus (n − 1)αw(xn(α)) = w(xn(α))
w′(x(n−1,α))

. This completes the proof of the

lemma.

Let (nk)
∞
k=1 be a sequence of positive integers with nk > 1, 0 < α(k) ↑ ∞

with nkα(k) < α(k + 1), and 0 < γk →k→∞ 0.

Lemma 3 There exists a strictly concave valuation function w in W and

sequences (xk)
∞
k=0 and (zk)

∞
k=1 with x0 = 0 and

(nk − 1)α(k)w′(zk) = 1 and nkα(k)w′(xk) = 1 ∀k ≥ 1 (5)

s.t. for every k ≥ 1 we have

nk(nk − 1)w(zk) + nkzk ≤ γkxk (6)

and

w(xk) = (xk − zk)w
′(zk) (7)

(and thus zk < xk < zk+1).

Proof. We define inductively increasing sequences (xk)k≥0 and (zk)k≥1

with zk = xk−1 + nk − 1 < xk, and smooth and strictly concave functions
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wk : [0, xk] → R+ and vk : [0, zk] → R+ so that: v1(0) = 0, wk coincides

with vk on [0, zk], vk+1 coincides with wk on [0, xk], nkα(k)w′k(xk) = 1, and

jα(k)w′k(xk−1 + j) = 1 (for 1 ≤ j ≤ nk − 1).

Set x0 = 0 and zk = xk−1+nk−1. Let v1 be a smooth and strictly concave

function defined on [0, z1] so that jα(1)v′1(j) = 1 for every 1 ≤ j ≤ n1 − 1.

Assume that wk is a smooth and strictly concave function defined on the

interval [0, xk] with wk(0) = 0 and w′(xk) = 1
nkα(k)

. As α(k + 1) > nkα(k)

we can extend the function wk to a smooth and strictly concave function

vk+1 defined on the interval [0, zk+1] so that v′k+1(xk + s) = 1
sα(k+1)

for every

1 ≤ s < nk+1.

Assume that vk is a smooth and strictly concave function defined on [0, zk]

with (nk − 1)α(k)v′k(zk) = 1. Let xk be sufficiently large so that γkxk >

nk(nk − 1)w(zk) + nkzk and (xk − zk)w
′
k(zk) > wk(zk) + (xk − zk)

nk−1
nk

w′k(zk).

As wk(zk)+(xk−zk)w′k(zk) > (xk−zk)w′k(zk) > wk(zk)+(xk−zk)nk−1
nk

w′k(zk)

there exists a smooth and strictly concave function wk defined on [0, xk] so

that the restriction of wk to [0, zk] coincides with vk, wk(xk) = (yk−zk)w′k(zk),

and nkα(k)w′k(xk) = 1.

The sequence xk is increasing and the restriction of the smooth and

strictly concave function wk, which is defined on [0, xk], to the interval

[0, xk−1] coincides with wk−1. Therefore there is a smooth and strictly con-

cave function w : R+ → R+ that extends all functions wk. This function w

obeys condition (5).

Let (nk)k be a sequence so that for every n there are infinitely many

values of k so that nk = n, 0 < α(k) ↑ ∞ with nkα(k) < α(k + 1), and
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0 < γk ↓ 0. Let w ∈ W satisfy conditions (5), (6), and (7). Fix a society N

with n members (N = {1, . . . , n}), and let ϕ be an efficient, strategy-proof,

and scale-monotonic direct mechanism on 〈N, Vw〉 and Ψ : Rn
+ → R+ × Rn

the associated function.

Fix γ > 0. Let k be sufficiently large so that nk = n, 2γk < γ, and γkxk >

c(w). By Lemma 2 we have
∑n

i=1 Ψi(α(k)e(N)) ≤ c(w) + n(n − 1)w(zk) +

n(xk−w(xk)/w
′(zk)). Using equation (7) we have n(xk−w(xk)/w

′(zk) = nzk

and therefore by using condition (6) we have
∑n

i=1 Ψi(α(k)e(N)) ≤ c(w) +

γkxk ≤ 2γkΨ0(α(k)e(N) ≤ γΨ0(α(k)e(N)). This completes the proof of

Theorem 2.

7 Tightness of the Assumptions

In this section we demonstrate that the conclusions of the theorems break

down whenever we weaken our assumptions.

7.1 Efficiency

The mechanism that sets ϕi(v) = 0 for every 0 ≤ i is strategy-proof, tax-

monotonic, and balances the budget.
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7.2 Strategy-Proofness

The mechanism that chooses an efficient outcome ϕ0(v) and shares the budget

equally, i.e.,

ϕi(v) =
vi(ϕ0(v))∑n
i=1 vi(ϕ0(v))

ϕ0(v),

is an efficient tax-monotonic mechanism that balances the budget.

7.3 Feasibility

The classical Clarke–Groves mechanism that chooses an efficient outcome

ϕ0(v) and

ϕi(v) = ϕ0(v)−
∑
j 6=i

vj(ϕ0(v))

is symmetric, strongly scale-monotonic, strategy-proof, and efficient.

7.4 Scale Monotonicity

The efficient mechanism that selects

ϕi(v) = ϕ0(v)−
∑
j 6=i

vj(ϕ0(v) + 2nmax
j,k 6=i

vj(ϕ0(vk))

where vk stands for the vector of valuation functions (vk, . . . , vk) of length

n, is strategy-proof but is not scale-monotonic. We now prove that it is also

feasible, i.e., that
∑n

i=1 ϕi(v) ≥ ϕ0(v). We distinguish two cases: n ≥ 3 and

n = 2.
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First assume that n ≥ 3. Then

n∑
i=1

ϕi(v) ≥ nϕ0(v)− (n− 1)
n∑
i=1

vi(ϕ0(v)) + 2n
n∑
i=1

max
j,k 6=i

vj(ϕ0(vk))

≥ nϕ0(v)− (n− 1)
n∑
i=1

vi(ϕ0(v)) + 2n(n− 2) max
j,k

vj(ϕ0(vk))

≥ nϕ0(v)− (n− 1)
n∑
i=1

vi(ϕ0(v)) + 2(n− 2)
n∑
i=1

vi(ϕ0(v))

≥ nϕ0(v) ≥ ϕ0(v).

The second inequality uses the fact that for all but two possible values of

i, maxj,k 6=i vj(ϕ0(vk)) ≥ maxj,k vj(ϕ0(vk)); the third inequality uses the in-

equality maxj,k vj(ϕ0(vk)) ≥ vi(ϕ0(v)) which follows from the monotonicity

of each vi together with the inequality maxk ϕ0(vk) ≥ ϕ0(v); the fourth

inequality follows from 2(n− 2) ≥ n− 1 whenever n ≥ 3.

Assume now that n = 2. In this case

ϕ1(v) = ϕ0(v)− v2(ϕ0(v) + 4v2(ϕ0(v2, v2))

ϕ2(v) = ϕ0(v)− v1(ϕ0(v) + 4v1(ϕ0(v1, v1)).

Assume without loss of generality that v1(ϕ0(v)) ≥ v2(ϕ0(v)). We distinguish

two possible cases.

Case 1: v′1(ϕ0(v)) ≥ 1
2
≥ v′2(ϕ0(v)). Thus ϕ0(v1, v1) ≥ ϕ0(v), implying

that 2v1(ϕ0(v1, v1)) ≥ 2v1(ϕ0(v)) ≥ v1(ϕ0(v)) + v2(ϕ0(v)) and thus ϕ1(v)) +

ϕ2(v)) ≥ 2ϕ0(v)− v1(ϕ0(v))− v2(ϕ0(v)) + 2v1(ϕ0(v1, v1)) ≥ ϕ0(v).

Case 2: v′1(ϕ0(v)) <
1
2
< v′2(ϕ0(v)). Thus, ϕ0(v1, v1) < ϕ0(v) < ϕ0(v2, v2).
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Together with the monotonicity of v2 this implies that

v2(ϕ0(v2, v2)) ≥ v2(ϕ0(v)). (8)

As for every x such that ϕ0(v1, v1) ≤ x ≤ ϕ0(v), v
′
1(x) ≤ 1

2
< v′2(x),

v2(ϕ0(v))− v2(ϕ0(v1, v1)) > v1(ϕ0(v))− v1(ϕ0(v1, v1)).

I.e., by rearranging the terms,

v1(ϕ0(v1, v1)) > v1(ϕ0(v))− v2(ϕ0(v)) + v2(ϕ0(v1, v1)). (9)

Summing inequalities (8) and (9), we deduce that

v1(ϕ0(v1, v1)) + v2(ϕ0(v2, v2)) > v1(ϕ0(v)),

which, together with the assumption v1(ϕ0(v)) ≥ v2(ϕ0(v)), implies that

ϕ1(v) + ϕ2(v) ≥ 2ϕ0(v).

7.5 Strong Scale Monotonicity

Theorem 3 shows that there is no efficient, feasible, and strategy-proof direct

mechanism that is strongly scale-monotonic. We next show that it is impos-

sible here to replace strong scale monotonicity with the weaker property of

scale monotonicity.

We first illustrate an example with two members in the society, i.e., N =

{1, 2}, and V = {aw | a > 0, w(x) =
√
x}. Simple calculations show that ϕ

is efficient if and only if

ψ0(α1, α2) =
(α1 + α2)

2

4
.
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Set

ψi(α) = ψ0(α)− αj(w ◦ ψ0)(α) + α2
j/2,

where j 6= i. Then ϕ is strategy-proof. In addition, this mechanism is

symmetric and scale-monotonic. Indeed, ψ1(α) = (α1+α2)2

4
− α1α2

2
= ψ2(α).

In addition, ψ1(α)+ψ2(α) =
α2

1+α2
2

2
≥ (α1+α2)2

4
= ψ0(α), and thus ϕ is feasible.

Next we consider the n-member society, i.e., N = {1, . . . , n}, and V =

{aw | a > 0, w(x) =
√
x}. Simple calculations show that ϕ is efficient if and

only if

ψ0(α1, . . . , αn) =
(
∑n

i=1 αi)
2

4
.

Let fi be the function fi : Rn → R given by

fi(x1, . . . , xn) =

∑
k 6=i x

2
k

2
+

∑
k 6=i

∑
i6=j>k xkxj

2
.

Note that

fi(x1, . . . , xn)− fj(x1, . . . , xn) =
(xj − xi)

2

n∑
k=1

xk

and
n∑
i=1

fi(x) =
(n− 1)

2

n∑
k=1

x2
k +

n− 2

2

∑
j>k

xjxk.

Set

ψi(α) = ψ0(α)−
∑
j 6=i

αj(w ◦ ψ0)(α) + fi(α).

Then ϕ is strategy-proof and symmetric. We next show that it is scale-

monotonic. Indeed,

ψi(α) =
(
∑n

i=1 αi)
2

4
−

n∑
k=1

αk(w ◦ ψ0)(α) + αi

∑n
k=1 αk
2

+ fi(α).

29



Therefore,

ψi(α)− ψj(α) = (αi − αj)

∑n
k=1 αk
2

+ fi(α)− fj(α).

As fi(x)− fj(x) =
(xj−xi)

2

∑n
k=1 xk, we deduce that ψi(α)−ψj(α) = 0, which

proves in particular that ψi(α) ≥ ψj(α) whenever αi ≥ αj, thus ϕ is scale-

monotonic. In addition, one can verify that ϕ is feasible. Indeed,

n∑
i=1

ψi(α)− ψ0(α) = (n− 1)[ψ0(α)−
n∑
k=1

αk(w ◦ ψ0)(α)] +
n∑
k=1

fk(α)

= −(n− 1)
(
∑n

k=1 αk)
2

4
+

n∑
k=1

fk(α)

= −(n− 1)

[∑n
k=1 α

2
k

4
+

∑
j>k αjαk

2

]
+

n∑
k=1

fk(α)

=
n− 1

4

n∑
k=1

α2
k −

1

2

∑
j>k

αjαk

≥ n− 1

4

n∑
k=1

α2
k −

1

4

∑
j>k

(α2
j + α2

k)

=
n− 1

4

n∑
k=1

α2
k −

n− 1

4

n∑
k=1

α2
k

= 0.

Therefore
n∑
i=1

ψi(α) ≥ ψ0(α).
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