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Abstract

We consider a bargaining problem where one of the players, the

bureaucrat, has the power to dictate any outcome in a given set. The

other players, the agents, negotiate with him which outcome to be

dictated. In return, the agents transfer some part of their payo¤s to the

bureaucrat. We state �ve axioms and characterize the solutions which

satisfy these axioms on a class of problems which includes as a subset all

submodular bargaining problems. Every solution is characterized by a

number � in the unit interval. Each agent in every bargaining problem

obtains a weighted average of his individually rational level and his

marginal contribution to the set of all players, where the weights are �

and 1 � �, respectively. The bureaucrat obtains the remaing surplus.
The solution when � = 1=2 is the nucleolus of a naturally related game

in characteristic form.
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1 Introduction

This paper considers bargaining problems between a bureaucrat and a few

individuals (or agents). The bureaucrat has the power to dictate any out-

come in a given set of feasible outcomes. An outcome is characterized by

the payo¤s it yields to the bureaucrat and to the agents. The agents may

transfer some of their payo¤s to the bureaucrat if he dictates a desirable

outcome. The bureaucrat negotiates with the agents the outcome to be

dictated and their transfers.

This setup can be applied to a broad class of problems where a decision-

maker (a �bureaucrat�) allocates resources among agents through rationing.

For example, a bureaucrat has to make a policy choice which may bene�t

some lobby groups and may hurt others. It could also be applied to a patent-

holder of an innovation in an oligopolistic market. The patent holder has a

right to sell a licence to any subset of �rms in the industry, thus increasing

their competitive edge (see, e.g. Kamien and Tauman, 1986; Kamien, 1992;

Kamien, Oren, and Tauman, 1992). Another application has to do with the

value of information to its holder. An information holder exclusively owns a

piece of information relevant to players engaged in a strategic con�ict. The

information holder has many ways to sophisticatedly transmit part of his

information (or all of it) to some (or all) players (see Kamien, Tauman, and

Zamir, 1990). He bargains with the players about the amount of information

to be transmitted and the transfers to be received from the agents in return.

A solution is a mapping which associates with every bargaining problem

a vector of net payo¤s to all players. Indirectly, a solution determines the

outcome to be dictated and the agents�transfers to the bureaucrat.

We study solutions which satisfy certain requirements (axioms). The

framework resembles that of Buch and Tauman (1992) (thereafter, BT) who

deal with similar bargaining problems. Their work, however, is con�ned to

the special case where the bureaucrat has no payo¤ by himself, and his only

source of income is the agents�transfers. The extension of BT to general
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bargaining problems turns out to be a nontrivial task. The BT problems

do not apply, for instance, to patent licensing problems where the patent

holder is an incumbent �rm. Our axiomatic approach is very di¤erent from

that of BT, and we argue that our solution is more appealing.

We state the following �ve axioms for a solution to satisfy. Our �rst ax-

iom asserts that a solution should be undominated. Namely, for every subset

of players including the bureaucrat, there is no outcome that makes every

member of this subset strictly better o¤. The second axiom requires that a

solution should not be a¤ected by net payo¤ vectors which are dominated.

That is, if two bargaining problems have the same sets of undominated

payo¤ vectors, then they must have the same solution. The third axiom

states that a solution should not depend on the unit of measurement. The

fourth axiom requires that a solution should not depend on the names of the

agents. The last axiom deals with bargaining problems that are composed

of two independent problems with two di¤erent sets of agents. The axiom

requires that in this case the net payo¤ of an agent should depend only on

her bargaining problem.

We characterize the solutions which satisfy these �ve axioms on a cer-

tain class of bargaining problems, X SM . The property of every bargaining
problem in X SM is that the marginal contribution of every agent to a coali-

tion is minimized for the grand coalition. This class includes, for instance,

bargaining over a split of a cake where the bureaucrat has the exclusive

power to dictate allocation, or problems involving a limited capacity tech-

nology. If some of the inputs are limited, a small coalition of players can

increase its output by adding a player, more than a large coalition which

has already used most of the available capacity. The special case where the

marginal contribution of every agent decreases with the size of a coalition

(with respect to inclusion) is the standard diminishing returns assumption.

An example of such a bargaining problem is an interaction of a patent holder

of a cost reducing innovation (or a quality innovation) and the �rms in a
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oligopoly industry. The patent holder can sell licenses to use his technology

to any number of �rms via up-front fees, royalties, or combinations of the

two. An additional licensee �rm increases the total industry pro�t, but in a

decreasing rate. The larger is the number of licenses sold, the smaller is the

marginal value of an additional license.

We show that in every solution on X SM the bureaucrat dictates an ef-

�cient outcome and every agent is awarded a weighted average of his indi-

vidually rational level and his marginal contribution to the grand coalition.

The bureaucrat obtains the remaining surplus. Furthermore, the weights

are the same across all agents and across all bargaining problems in this

class. The weights therefore can be used to measure the bargaining power

of the bureaucrat. In other words, the bargaining power of the bureaucrat

(and the agents) is endogenously characterized by the axioms. In fact, it

is completely determined by the simple one agent problem, where the bu-

reaucrat can dictate one out of two outcomes: In both cases the bureaucrat

by himself can get only zero, and the agent can get one or zero, depending

on the decision of the bureaucrat. Namely, the only source of income of

the bureaucrat is the transfer that he obtains from the agent. This can be

regarded as a symmetric problem: The bureaucrat and the agent can each

achieve zero by themselves but could obtain one together. If the solution of

this speci�c problem is symmetric, where the bureaucrat and the agent split

the unit equally, then the weights are equal. That is, the solution of every

bargaining problem with any number of agents awards every agent the sim-

ple average of his individually rational level and his marginal contribution to

the grand coalition. It is shown that on X SM this solution coincides with the

nucleolus (Schmeidler, 1969) of a naturally related game in a characteristic

form.

As for the general class of bargaining problems, we �nd that a solution

which satisfy our �ve axioms is not unique. We construct a natural extension

of our solution, which is based on a weighted average of the lexicographically
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maximal payo¤vectors to players with respect to some random order of their

locations on the unit interval. However, the nucleolus is also a solution which

is di¤erent from the above.

A closely related work, but in a noncooperative setup, is Bernheim

and Whinston (1986) (thereafter, BW). In BW every agent submits to the

bureaucrat (�auctioneer� in their framework) a contingent plan (�menu�)

which speci�es the transfer of the agent to the bureaucrat as a function of

the dictated outcome. The contingent plans are selected simultaneously, and

after observing these plans the bureaucrat dictates an outcome. The truth-

ful1 Nash equilibrium is the focus of BW. It turns out that on every problem

in X SM there is a unique truthful Nash equilibrium. This is one of our so-

lutions, the extreme one, where the bargaining power of the bureaucrat is

minimal. Namely, in the truthful Nash equilibrium every agent obtains his

marginal contribution to the grand coalition (assigning zero weight to his

individually rational level) and the remaining surplus goes to the bureaucrat.

2 Notations and De�nitions

Consider a set of players N0 = N [ f0g, where N = f1; 2; : : : ; ng is a set of
agents and 0 is a bureaucrat. The players in N0 are engaged in a bargaining

problem. Let X � RN0

+ be the set of all possible outcomes of this bargaining

problem, where every outcome x in X is a gross payo¤ vector for the players

in N0. The bureaucrat (and only the bureaucrat) has the ability to dictate

any outcome in X. The agents in N bargain with the bureaucrat about the

outcome to be dictated and, as a result, transfer to the bureaucrat some

parts of their gross payo¤s. Thus, the bargaining is on both: the outcome

1A truthful strategy of an agent in BW is a contingent plan which is characterized by

a real number x. The transfer to the bureaucrat is the di¤erence between the payo¤ of

the agent and x, as long as this di¤erence is positive; otherwise, the transfer is zero. A

truthful Nash equilibrium is a subgame perfect equilibrium of the game where every agent

plays a truthful strategy.
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in X and the transfers of the agents. It is assumed that only agreements

with the bureaucrat are enforceable, and agents are not allowed to transfer

payo¤s from one to another.

For any subset S � N let S0 = S [ f0g. The number of elements of S
will be denoted by s.

An (n + 1)-player bargaining problem is a pair (N0; X) where jN j = n
and N0 = N [f0g is the set of players, and X is the set of outcomes, which

is a nonempty and compact subset of RN0

+ . Denote by Xn+1 the class of all
(n+ 1)-player bargaining problems. Let X =

S1
k=1Xk. For convenience, we

often identify X with the set of all X such that (N0; X) 2 X .
For X 2 X , suppose that an outcome x 2 X, x = (x0; x1; : : : ; xn); is

dictated. Then every agent i 2 N obtains the gross payo¤ xi and pays

zi, 0 � zi � xi, to the bureaucrat, thus receiving the net payo¤ yi =

xi � zi. The bureaucrat receives the net payo¤ y0 = x0 +
P
i2N zi. Let

y = (y0; y1; : : : ; yn).

It is important to note that the bureaucrat must select an outcome in

X no matter if he reaches an agreement with agents or not.

De�nition Let (N0; X) 2 X . An outcome x� 2 X is e¢ cient for S0 � N0

if X
i2S0

x�i = max
x2X

X
i2S0

xi:

It is called e¢ cient if it is e¢ cient for N0.

Let S0 � N0. Denote

ES0(X) = fx 2 X j x is e¢ cient for S0g

and let

E(X) = EN0(X):

By the individually rational level of a player i 2 N0, we shall understand

the gross payo¤ in X that i can guarantee if she decides not to participate in
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negotiations. Formally, let d be a map which associates with every problem

(N0; X) 2 X a payo¤ vector in RN0

+ . We shall call di(X) the individually

rational level of i 2 N0 with respect to X.

One possible de�nition for the individually rational level of the bureau-

crat is the greatest gross payo¤ that he can attain on his own,

�d0(X) = max fx0jx 2 Xg : (1)

As for the individually rational levels for the agents, suppose that whenever

the bureaucrat reaches an agreement with some set of agents S � N (pos-

sibly, S = ?), he will dictate an outcome which is e¢ cient for S0. Thus,
the individually rational level of i 2 N is the gross payo¤ that agent i is

guaranteed to obtain among all outcomes that are e¢ cient for all subsets

S0 � N0 � i. Formally, for every i 2 N let

�di(X) = min
S�N�i

�
min

x2ES0 (X)
xi

�
: (2)

We assume that (1) and (2) are upper bounds on the individually rational

levels of the players, that is, for every (N0; X) 2 X and every i 2 N0

di(X) � �di(X): (3)

The statement of our result will not be a¤ected by a particular choice of

d, as long as it satis�es (3).

De�nition Let (N0; X) 2 X . A net payo¤ vector y = (y0; y1; : : : ; yn) is

feasible for S0 � N0 at x 2 X if

(i) yi � di(X) for every i 2 S0

(ii) yi � xi for every i 2 S and yj = xj for every j 2 N � S,

(iii)
P
i2S0

yi =
P
i2S0

xi.
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A net payo¤ vector y is feasible for S0 if it is feasible for S0 at some

x 2 X . Clearly, if y is feasible for S0, it is feasible for T 0 for all N � T � S.
A net payo¤ vector y is feasible if it is feasible for N0.

Condition (i) requires that every player in S0 obtains at least his individ-

ually rational level; (ii) requires that only transfers from the agents in S to

the bureaucrat are allowed (and agents not in S obtain their gross payo¤s);

condition (iii) requires that the total payo¤ of S0 obtained from an outcome

x is distributed entirely among the players in S0, i.e., nothing is transferred

to an outside party or wasted.

Let (N0; X) 2 X and x 2 X. Denote by Y (x) the set of net payo¤

vectors which are feasible at x and let Y (X) be the set of net payo¤ vectors

which are feasible for X, i.e., Y (X) =
S
x2XY (x).

3 Stability

Let (N0; X) be a bargaining problem in X .
De�nition Let y; y0 2 Y (X). We say that y0 dominates y via S0 � N0 if

y0 is feasible for S0 and y0i > yi for all i 2 S0.

De�nition A payo¤ vector y 2 Y (X) is stable if it is undominated, that
is, if for every S0 � N0 there is no y0 2 Y (X) which dominates y via S0.

In other words, a payo¤ vector y is stable if the bureaucrat cannot �nd

a subset S of agents and a feasible payo¤ vector y0 for S0 so that everyone

in S0 is strictly better o¤.

De�nition A payo¤ vector y 2 Y (X) is e¢ cient if it is feasible at some
e¢ cient outcome in X, i.e., if there is x� 2 E(X) such that y 2 Y (x�).

Proposition 1 Let (N0; X) 2 X . A payo¤ vector y 2 Y (X) is stable if and
only if for every S0 � N0 X

i2S0
yi � max

x2X

X
i2S0

xi:
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Proof. Let y 2 Y (X) be non-stable, that is, there is S � N and y0 feasible

for S0 such that yi < y0i for all i 2 S0. Hence, there is x 2 X such thatX
i2S0

yi <
X
i2S0

y0i =
X
i2S0

xi:

Conversely, let y 2 Y (X) be stable. Suppose to the contrary thatX
i2S0

yi <
X
i2S0

x̂i (4)

for some S0 � N0 and some x̂ 2 ES0(X). Let T = fj 2 S0 j yj < x̂jg.
Clearly, T 6= ? and 0 62 T (if y0 < x̂0, then y is dominated by y0 2 argmax

x2X
x0

for f0g) and de�ne z 2 RN0

+ by

zj =

8>><>>:
yj + "; j 2 T;
x̂j ; j 2 N � T;
x̂0 +

P
j2S(x̂j � yj � "); j = 0:

Since dj(X) � zj � x̂j for all j 2 T and " small enough, and
P
j2T 0 zj =P

j2T 0 x̂j , z is feasible for T
0 at x̂. But zj > yj for all j 2 T , and by (4) we

have for " small enough

z0 = x̂0 +
X
j2S
(x̂j � yj)� jSj " > y0:

Hence, y is dominated by z for T 0, a contradiction.

Corollary 1 If y 2 Y (X) is stable, then it is e¢ cient.

Note that if y is stable, then y0 � maxfx0jx 2 Xg = �d0(X), namely, y

is also individually rational for the bureaucrat.

Denote by ST (X) the set of all payo¤ vectors which are stable for X.

An immediate consequence of Proposition 1 is the following characterization

of ST (X).

Proposition 2 Let (N0; X) 2 X and y 2 RN0
. Then y 2 ST (X) if and

only if
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(i)
P
i2N0

yi = max
x2X

P
i2N0

xi,

(ii)
P
i2S0

yi � max
x2X

P
i2S0

xi for all S0 � N0, and

(iii) yi � di(X) for all i 2 N0.

Note that (i) is implied by (ii) for every y 2 Y (X) (see Corollary 1).
Proof. If y 2 ST (X), then (i) and (ii) are satis�ed by Proposition 2 and (iii)
is satis�ed because y 2 Y (X). Conversely, if y 2 Y (X) satis�es (i) �(iii),
then y 2 ST (X) by Proposition 2. The only part which is left to prove is that
y 2 Y (X) if it satis�es (i) �(iii). Let x� 2 E(X) and xN0�i 2 EN0�i(X).

By (i) and (ii), for all i 2 N ,

yi =
X
j2N0

x�j �
X

j2N0�i
yj �

X
j2N0

x�j �
X

j2N0�i
xN

0�i
j

= x�i +
X

j2N0�i
x�j �

X
j2N0�i

xN
0�i

j � x�i :

Hence, y 2 Y (x�) � Y (X):

Proposition 3 For every X 2 X , ST (X) is nonempty.

Proof. De�ne

zj =

8<: dj(X); j 2 N;P
i2N0

x�i �
P
i2N

di(X); j = 0:

Let x� 2 E(X), S0 � N0, and x̂ 2 ES0(X). ThenX
j2S0

zj =
X
i2N0

x�i �
X

j2N�S
dj(X) �

X
j2N0

x̂j �
X

j2N�S
dj(X):

By de�nition, �dj(X) � x̂j , and by assumption, dj(X) � �dj(X), j 2 N � S,
hence, X

j2S0
zj �

X
j2S0

x̂j +
X

j2N�S
(x̂j � dj(X)) �

X
j2S0

x̂j ;
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and, thus, z satis�es conditions (i) and (ii) of Proposition 2. Note that these

conditions imply that z0 � �d0(X) � d0(X), hence z also satis�es condition
(iii) of Proposition 2.

Corollary 2 For every X 2 X the set ST (X) is nonempty, compact, and

convex.

The proof follows from Propositions 2 and 3.

4 An Axiomatic Approach

Let X 0 be any subset of X . In this section we de�ne a solution on X 0 and
present �ve axioms for a solution to satisfy.

De�nition A solution on X 0 is a mapping, �, which associates with every
problem (N0; X) in X 0 a payo¤ vector �(X) in Y (X).

We impose the following �ve axioms on �.

The �rst axiom requires that a solution of every problem is stable.

Axiom 1 (Stability) For every (N0; X) 2 X 0, �(X) 2 ST (X).

This assumes that the bureaucrat will reject a payo¤ vector y if he can

reach another settlement y0 with some subset of agents S � N such that

every member of S0 is strictly better o¤ with y0 than with y.

The second axiom asserts that only stable net payo¤ vectors are relevant

for the solution. That is, any net payo¤ vector which is not stable is con-

sidered note to be a credible settlement for the bureaucrat, thus it should

be ignored in negotiations.

Axiom 2 (Stability Dependence (STD)) For every (N0; X) and (N0; X 0)

in X 0, if ST (X) = ST (X 0), then �(X) = �(X 0).

Next, we require that a solution does not depend on the unit of mea-

surement.
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Axiom 3 (Scale Covariance) For every (N0; X) 2 X 0, every b = (b0; b1; : : : ; bn) 2
RN0

, and every scalar c > 0, if (N0; cX + b) 2 X 0, then

�(cX + b) = c�(X) + b:

The next axiom requires that a solution does not depend on the names of

the agents. Let (N0; X) 2 X 0 and let � be a permutation of N = f1; : : : ; ng.
For every x 2 Rn, let �x 2 Rn be such that (�x)i = x�(i) for all i 2 N and

let �X = f�x j x 2 Xg.

Axiom 4 (Anonimity) Suppose that (N0; X) 2 X 0. For every permuta-
tion � of N , if (N0; �X) 2 X 0, then

�i(X) = ��(i)(�X
_), i 2 N .

Finally, we require that in a solution the agents�payo¤s are not a¤ected

if an independent (payo¤-orthogonal) agent is added to the bargaining prob-

lem.

Axiom 5 (Separability) Let (N0; X) 2 X 0, where N0 = f0; 1; : : : ; ng.
Denote N 0 = N0 [fn+1g and X 0 = X � [a; b], 0 � a � b, If (N 0; X 0) 2 X 0,
then �i(X

0) = �i(X) for all 1 � i � n.

Proposition 4 Axioms 1 �5 are independent on X .

Proof. Appears in the Appendix.

5 Related Games in Characteristic Form

A game (N0; V ) in characteristic (or coalitional) form consists of the set N0

of players and a function V : 2N
0 ! R such that V (?) = 0. Every S � N0

is called a coalition and N0 is called the grand coalition. A game (N0; V )

is monotonic if V (S) � V (T ) for all S � T � N0.
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Denote by G the class of all monotonic games (N0; V ) where 0 is a veto

player. That is, for every S � N0, if S 63 0 then V (S) = 0.
Two games, (N0; V ) and (N0; V 0), are called strategically equivalent if

there exist numbers a > 0, b0; : : : ; bn, such that V 0(S) = aV (S) +
P
i2S bi

for all S � N0.

The core of (N0; V ) is denoted by CV and is de�ned to be the set of all
x 2 RN0

such that
P
i2S xi � V (S) for all S � N0 and

P
i2N0 xi = V (N

0).

Let (N0; X) be a bargaining problem in X . We associate with X the

game VX in characteristic form, for which the worth of every coalition S is

the highest total payo¤ it can guarantee to its members,

VX(S) =

8><>:
max
x2X

P
i2S
xi; S 3 0;P

i2S
di(X); S 63 0:

(5)

Proposition 5 For every (N0; X) 2 X ,

(i) the game (N0; VX) is strategically equivalent to a game in G,

(ii) CVX = ST (X) 6= ?.

Proof. Part (i) follows from (5) and the de�nition of G. Part (ii) is an
immediate consequence of Propositions 2 and 3.

6 Submodular Bargaining Problems

In this section we deal with bargaining problems where the marginal contri-

bution of every agent i 2 N to a coalition S 3 i is the smallest for S = N .
Formally, let (N0; X) 2 X and for every i 2 N and every S0 3 i, denote

MCi(S
0; X) = VX(S

0)� VX(S0 � i).

Let X SM be the set of all bargaining problems (N0; X) such that for all

13



S � N and all i 2 S

MCi(N
0; X) �MCi(S0; X): (6)

Bargaining problems where the smallest marginal contribution of a player

is to the grand coalition include splitting a cake, awarding licenses where the

marginal value of an additional license decreases with the number of licenses,

and the problems involving a limited capacity technology. The special case

where the marginal contribution decreases with the size of a coalition (with

respect to inclusion) is the standard diminishing returns assumption. Bar-

gaining problems (N0; X) for whichMCi(S0; X) is monotonically decreasing

in S, namely,

MCi(S
0; X) �MCi(T 0; X);

for all i 2 N and all S � T 3 i, are called submodular (SM). Obviously,
X SM contains among others all the submodular bargaining problems.

We next characterize the solution on X SM which satis�es the above �ve

axioms.

Theorem 1 A solution � on X SM satis�es Axioms 1 � 5 if and only if

there exists �, 0 � � � 1, such that for all (N0; X) in X SM

�i(X) = �
�
i (X) = �di(X) + (1� �)MCi(N0; X) for all i 2 N; (7)

�0(X) = �
�
0 (X) = max

x2X

X
i2N0

xi �
X
i2N

�i(X): (8)

Proof. Appears in the Appendix.

The solution of every bargaining problem in X SM awards every agent

in N a weighted average of her individually rational level and her marginal

contribution to the grand coalition. The bureaucrat extracts the remaining

surplus. The weights, (�; 1 � �), are the same across all agents and across
all bargaining problems in X SM . Thus, it is su¢ cient to determine � for one
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bargaining problem. The same � then applies to all bargaining problems in

X SM . The parameter � measures the bargaining power of the bureaucrat:
The larger is �, the larger is the payo¤ of the bureaucrat.

Example. Consider the following one-agent bargaining problem X̂2 =

f(0; x) 2 R2+ j 0 � x � 1g. The bureaucrat and the agent, each can guaran-
tee 0 on his own, and together they can achieve 1. By Theorem 1,

��0 (X̂2) = �;

��1 (X̂2) = 1� �:

The theorem asserts that the bargaining power of the bureaucrat is com-

pletely determined by this simple bargaining problem. If for this example

� = 1, then the bureaucrat obtains the entire surplus of every bargaining

problem, leaving the agents only with their individually rational levels. On

the other hand, if for this example � = 0, every agent in every bargaining

problem in X SM obtains his marginal contribution to the grand coalition,

while the bureaucrat collects the smallest payo¤ in ST (X). In X̂2 the bu-

reaucrat and the agent may be regarded as symmetric players: Each can

obtain zero by himself and together they can obtain one. Therefore, � = 1
2

could be regarded as a proper division of the surplus. In this case, by The-

orem 1, � = 1
2 for all problems in X

SM . The proposition below shows that,

for all X 2 X SM , �1=2(X) is actually the nucleolus of VX .
Let (N0; V ) be a game in characteristic form. Denote by IV the set of

imputations of V ,

IV =

(
x 2 RN0

�����
P
i2N0 xi = V (N

0),

xi � V (i), all i 2 N0:

)
:

The nucleolus of V is de�ned as follows (Schmeidler, 1969). For every

nonempty S  N0 and every y 2 IV de�ne the excess of coalition S by

eV (S; y) = V (S)�
X
j2S

yj : (9)
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Given y 2 IV de�ne the excess vector �(y) 2 R2N
0�2 whose components

are the excesses eV (S; y), S 6= N0 and S 6= ?, arranged in an increasing
order. The nucleolus of the game is the set of payo¤ vectors NV � IV which
lexicographically minimizes �(y) over y. The nucleolus is a singleton and it

is in the core of V if the core is nonempty (Schmeidler, 1969).

Proposition 6 The solution �1=2 on X SM is the nucleolus of VX for every

(N0; X) in X SM .

Proof. Appears in the Appendix.

7 Properties of the Solution

We discuss here some additional properties of the solution on X SM .

Property 1 (Dummy Agent) In X 2 X SM agent i is dummy if there is

constant c � 0 such that xi = c for all x 2 X. Then for every �, 0 � � � 1,

��i (X) = c:

Property 2 (Additivity) For every �, 0 � � � 1, the solution �� is

additive on X SM . Namely, for (N0; X) and (N0; X 0) in X SM

��(X +X 0) = ��(X) + ��(X 0):

This property follows from Theorem 1 and the additivity of VX and di(X)

on X SM . Since X SM is a cone, Proposition 6 implies that the nucleolus

is additive on the class of games VX , X 2 X SM . Consequently, both the
Shapley value and the nucleolus satisfy the Shapley axioms (Shapley, 1953)

on this class of games. Note that the Shapley value does not constitute a

solution X SM since it violates stability. The nucleolus, on the other hand,

is always an element of the core of VX .
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Next, we show that �� satis�es the consistency property.

De�nition Let X 2 X SM and let S � N . The problem X�S(�) is called

a reduced problem by S with respect to a solution � on X SM if

X�S(�) =

8>><>>:x0 2 RN
0�S

+

��������
x0i = xi; i 2 N � S;
x00 = x0 +

P
j2S

�
xj � �j(X)

�
;

x 2 X:

9>>=>>; (10)

Property 3 (Consistency) For every (N0; X) 2 X SM , every S � N , and
every i 2 N0 � S

�i(X�S(�)) = �i(X):

Proof See the Appendix.

This consistency notion is due to Sobolev (1966).

8 Discussion of the General Case

In this section we extend the solution on X SM to a solution on the general

class of bargaining problems X . First note that for � < 1 the solution ��

de�ned in Theorem 1 does not satisfy the Stability axiom for some problems

in X . Let N0 = f0; 1; : : : ; ng and let Xn = f(0; 1; : : : ; 1); (n � 1; 0; : : : ; 0)g.
Clearly, (N0; Xn) 62 XMG. Note that di(Xn) = 0 and MCi(N0; X) = 1 for

each i 2 N . Hence, ��i (X) = 1 � � for all i 2 N and ��0 (X) = n�. Thus,

whenever n � 1 > n� (or, equivalently, n�1n > �) ��(Xn) is not stable. It

can be easily veri�ed that ��=1 (the solution where the bureaucrat has the

entire bargaining power) is a solution on X which satis�es the �ve axioms.

Let R be the set of all orders of the players in N0 and let Rj be the set
of all orders where the bureaucrat is located in the j�s place, j = 1; : : : ; n+

1. For every (N0; X) 2 X and for every order R 2 R let �R(X) be the

lexicographically maximal element in ST (X) with respect to the order R.
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Notice that, by Proposition 2, for every problem (N0; X) 2 X SM , �Ri (X) =
MCi(N

0; X) if i precedes the bureaucrat in the order R and otherwise

�Ri (X) = di(X). That is, for every (N0; X) 2 X SM , the solution ��(X)
is an average of the lexicographically maximal elements in ST (X). The av-

erage is taken with respect to the distribution on R where the probability

of every order in R1 is �
n! and the probability of every order in Rn+1 is

1��
n! .

Every order in Rj , 2 � j � n, is selected with zero probability. Hence, we
can rewrite ��(X) for every X SM as follows,

��(X) =
�

n!

X
R12R1

�R1(X) +
1� �
n!

X
Rn+12Rn+1

�Rn+1(X). (11)

This distribution on R has two properties: The probability, �, that the

bureaucrat precedes an agent (i) is the same for all agents and (ii) it does

not depend on the number n of agents.

We extend this idea to de�ne solutions on X . We will take the average of
the �R�s with respect to any probability distribution onR which satis�es the
above two properties. These probability distributions are characterized as

follows. The players in N0 will be randomly located on [0; 1]. The location of

the bureaucrat is selected according to a measure � on [0; 1] and the location

of every agent in N is selected uniformly on [0; 1]. The players� locations

are selected independently. Every realization of locations de�nes an order

R 2 R of the players in N0 and thus determines �R. Note that � =
R 1
0 td�

is the probability that an agent is preceded by the bureaucrat.

De�ne now a solution �� on X as follows. For every (N0; X) 2 X

��(X) =
X
R2R

�̂(R)�R(X), (12)

where �̂(R) is the probability of an order R 2 R, given �. By de�nition,
the operator �R, and hence ��, satis�es the axioms of Stability and STD.

Clearly, �� also satis�es the Anonymity axiom. The proof that �� satis�es

the other two axioms is similar to that for �� on X SM . We summarize the
above in the next theorem.
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Theorem 2 For every measure � on [0; 1] the solution �� on X satis�es

Axioms 1 �5.

Remark 1. Generally, the Shapley value of VX is not in CVX and, there-

fore, by Proposition 5, it violates the Stability axiom. To illustrate this,

consider the following example. Let N0 = f0; 1; 2g and X" = f("; 0; 0);
(0; 1; 0); (0; 0; 1)g, where 0 � " � 1. Here, ST (X") = f(1; 0; 0)g. It is easy to
verify that the Shapley value of VX" is

�
2+"
3 ;

1�"
6 ;

1�"
6

�
62 ST (X") for every

0 � " < 1.

Remark 2. The solution �N which is de�ned for every (N0; X) as the

nucleolus of VX satis�es axioms 1 � 5, thus being an alternative to the

solutions �� described above. Axioms 1 and 3 �5 are trivially satis�ed by

�N . The only nontrivial part is the STD axiom, since generally the nucleolus

is not a function of the core (see Maschler, Peleg, and Shapley, 1979). But it

turns out that on G the nucleolus is a function of the core and thus satis�es
the STD axiom as well.

Proposition 7 (Arin and Feltkamp (1997)) Let (N0; V ) and (N0;W )

be two games in G with the same core. Then their nucleoli coincide.

Example. Consider a problem with n + 1 players, where there are two

groups of symmetric agents, N1 and N2, of the size n1 and n2 respectively,

n1+ n2 = n. Suppose that there are two outcomes: outcome 1 grants every

agent in N1 the payo¤ of a=n1 and the rest obtain zero; outcome 2 grants

every agent in N2 the payo¤ of b=n2 and the rest obtain zero. Assume that

a � b � 0. That is,

X =

��
0;
a

n1
; : : : ;

a

n1
; 0; : : : ; 0

�
;

�
0; 0; : : : ; 0;

b

n2
; : : : ;

b

n2

��
:

This bargaining problem is not in X SM for a > b. Consider three solutions:

the nucleolus, �N , our solution with Lebesgue measure, �L, and our solu-

tion �0 where the bureaucrat�s bargaining power is minimized, namely, the
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solution with the measure which assigns the entire mass to 1, that is, only

the orders where bureaucrat is the last are considered. Then in all solutions

agents in N2 obtain zero, and every agent i 2 N1 obtains

�Ni (X) =

8<: a�b
n1+1

; b � a
2

�
1� 1

n1

�
;

a
2n1
; otherwise

�Li (X) =
a� b
n1 + 1

�
1 +

1

2n1
� a� b

2a

�
;

�0i (X) =
a� b
n1

:

Note that for every i 2 N1 if 0 < b < a
�
1� 1

n1

�
, then �0i (X) > �

N
i (X) >

�Li (X). On the other hand, if a
�
1� 1

n1

�
< b < a, then �0i (X) > �

L
i (X) >

�Ni (X) and if a = b, then �
0
i (X) = �

L
i (X) = �

N
i (X) = 0.

9 A Comparison with the Buch-Tauman Model

Let X 0 � X be the class of bargaining problems where for every X 2 X 0,
x0 = 0 for all x 2 X, that is, the bureaucrat obtains a constant (zero) gross
payo¤ in all outcomes.

Buch and Tauman (1992) (thereafter, BT) deal only with problems

in X 0. By an axiomatic approach BT �nd a unique solution, �BT . Let

(N0; X) 2 X 0. BT de�nes the individually rational level of an agent i 2 N
by

�i(X) = min
x2EN0�i(X)

xi:

That is, �i(X) is the payo¤ that i can guarantee if he unilaterally leaves the

bargaining table (and provided that the ruler induces an e¢ cient outcome

for N0 � i). They proved that

�BTi (X) = �i(X) for all i 2 N ,

�BT0 (X) = VX(N
0)�

X
i2N

�i(X):
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Namely, each agent receives his individually rational level, and the ruler

obtains the surplus. Note that the solution �BT coincides with �� for � = 1

on bargaining problems (N0; X) such that �i(X) = di(X) for all i 2 N . The
BT axiomatic approach omits the stability and STD axioms and instead it

imposes the well known axiom of independence of irrelevant alternatives.

We demonstrate the di¤erence between the BT approach and ours by the

following two examples.

Example 1. Let N0 = f0; 1; 2g and X = f0g � [0; 1] � [0; 1]. That is, the
bureaucrat may dictate any gross payo¤ in [0; 1] for agent i independently

of agent j, i; j = 1; 2, i 6= j. Then �BT0 (X) = 2, �BT1 (X) = �BT2 (X) = 0,

that is, both agents end up with zero net payo¤. This is reasonable only

if the bureaucrat has the entire bargaining power. Our solution varies with

the bargaining power of the bureaucrat �, 0 � � � 1. It is ��0 (X) = 2�,

��1 (X) = ��2 (X) = 1 � �. In a special case when all players have the same
bargaining power, namely, � = 1=2, the solution is

�
1; 12 ;

1
2

�
.

Example 2. Let N0 = f0; 1; 2g and X = f(0; 0; 0); (0; 1; 1)g. The BT
solution is �BT0 (X) = 0, �BT1 (X) = �BT2 (X) = 1, though it is a credible

threat of the bureaucrat to dictate (0; 0; 0). This is reasonable only if the

bureaucrat has no bargaining power, the opposite extreme to Example 1.

Our solution yields ��0 (X) = 2�, �
�
1 (X) = ��2 (X) = 1 � �, the same as in

Example 1.

10 Conclusion

In this paper we provide solutions to general bargaining problems with bu-

reaucrats. We impose �ve axioms and construct solutions which satisfy

these axioms. On a speci�c class of bargaining problems, X SM , we fully
characterize the solution satisfying the �ve axioms. It assigns every agent

an average of her individually rational level and her marginal contribution

to the other players. The weights de�ning this average are the same for all
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agents and for all problems in X SM . Thus, they can be used to measure the
bargaining power of the bureaucrat. The higher is the weight assigned to

the individually rational level of an agent, the higher is the bargaining power

of the bureaucrat. When he has the full bargaining power, every agent ob-

tains her individually rational level only, and the bureaucrat, who dictates

an e¢ cient outcome, obtains the rest of the �cake�. If the bureaucrat has

no bargaining power, every agent obtains her marginal contribution.

We provide various solutions on the general class of bargaining problems

X which satisfy Axioms 1 �5, but we were not able to characterize all the

solutions on X . It is a challenging project.
Another possible direction which we �nd interesting to explore is bar-

gaining with several bureaucrats. The bureaucrats can dictate any outcome

(for instance, by unanimity or by majority vote). Even the case of a single

agent and multiple bureaucrats seems to be nontrivial.

Appendix

Lemmata

We make use of the following four lemmata (the last two are straightfor-

ward).

Lemma 1 Let (N0; X) 2 X SM and y 2 Y (X). If yi �MCi(N0; X) for all

i 2 N , then
P
i2S yi � VX(N0)� VX(N0 � S) for all S � N .

Proof. Let S = fi1; : : : ; isg � N . Then by (6)

X
i2S

yi �
sX
j=1

MCij (N
0; X)

� MCi1(N
0; X) +MCi2(N

0nfi1g; X) + : : :+MCis(N0nfi1; : : : ; is�1g; X)

= VX(N
0)� VX(N0 � S):
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Lemma 2 Let (N0; X) 2 X SM . Then y 2 ST (X) if and only if

(i) di(X) � yi �MCi(N0; X) for all i 2 N ,

(ii) y0 = VX(N0)�
P
i2N yi.

Proof. Suppose that y 2 ST (X). Then, by Corollary 1, y is e¢ cient,
namely,

P
i2N0 yi = VX(N

0). By Proposition 2, for all i 2 N ,X
j2N0�i

yj � max
x2X

X
j2N0�i

xj = VX(N
0 � i).

Consequently, yi � VX(N0)� VX(N0 � i) =MCi(N0; X).

Conversely, suppose that y satis�es (i) and (ii). To prove that y 2 ST (X)
it su¢ ces to show that for every S � N y0+

P
i2S yi � VX(S0). By (i) and

(ii),

y0 +
X
i2S0

yi = VX(N
0)�

X
j2N�S

yj � VX(N0)�
X

j2N�S
MCj(N

0; X);

and since X 2 X SM we haveX
j2N�S

MCj(N
0; X) � MCj1(N

0; X) +MCj2(N
0 � j1; X)

+ : : :+MCjn�s(N
0 � fj1; : : : ; jn�s�1g; X)

= VX(N
0)� VX(S0);

where fj1; j2; : : : ; jn�sg = N � S.

Lemma 3 Let (N0; X) and (N0; X 0) be in X . Suppose that for some a =
(a0; a1; : : : ; an) 2 RN

0
and c 2 R++, X 0 = cX+a. Then for every K0 � N0;

VX0(K0) = cVX(K
0) +

X
j2K0

aj ; and

EK0(X 0) = cEK0(X) + a:

Lemma 4 Let (N0; X) 2 X , where N0 = f0; 1; : : : ; ng. Let N 0 = N0[fn+
1g and X 0 = X � [a; a0], where 0 � a � a0. Then for every S0 � N0,

VX0(S0) = VX(S
0);

ES0(X
0) = ES0(X)� [a; a0]:
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Proof of Proposition 4

The proof uses notations and de�nitions introduced in Sections 5 � 6. It

su¢ ces to show that Axioms 1 �5 are independent on the class X SM .
If we drop just the requirement that the solution is stable, the following

solution on X

�0(X) = min
y2ST (X)

y0,

�i(X) = di(X) for all i 2 N

satis�es axioms 2 �5 for every (N0; X) 2 X SM .
To show that the STD axiom is independent of the others, consider the

following solution. For every (N0; X) 2 X SM and every i 2 N , �0(X) =
VX(N

0)�
P
i2N �i(X), where

�i(X) =

(
�di(X); MCi(N

0; X) =MCi(N
0 � j;X) for some j 2 N � i

MCi(N
0; X); MCi(N

0; X) < MCi(N
0 � j;X) for all j 2 N � i

Clearly, �(X) 2 ST (X) and it satis�es axioms 3 �5. As for the STD axiom,
consider the following problems. Let N0 = f0; 1; 2g and consider X =

f(0; 3; 0) ; (0; 0; 3); (0; 2; 2)g and X 0 = f(2; 1; 0) ; (2; 0; 1); (2; 1; 1)g. Clearly,
both

�
N0; X

�
and

�
N0; X 0� are in X SM , and ST (X) = ST (X 0) by Lemma

2. Now, MC1(N0; X) = 1 is less than MC1(N0 � f2g ; X) = 3, hence

�1(X) = 1. However, MC1(N0; X 0) = MC1(N
0 � f2g ; X 0) = 1, hence

�1(X
0) = �d1(X

0) = 0, which violates the STD axiom.

Next, we show that the Scale Covariance axiom is independent of the

other axioms. For every (N0; X) 2 X and every i 2 N , de�ne �0(X) =
VX(N

0)�
P
i2N �i(X) and for all i 2 N

�i(X) =

(
di(X); if di(X) = 0;

VX(N
0)� VX(N0 � i); otherwise.

It is easy to verify that � satis�es Axioms 1,2,4, and 5, but not Axiom 3.
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Now, we show that the Separability axiom is independent. For every

(N0; X) 2 X SM , let KX = argmax
j2N

VX(N
0)� VX(N0 � j), and let for every

i 2 N

�i(X) =

(
VX(N

0)� VX(N0 � i); if i 2 KX ,
di(X); otherwise,

and �0(X) = VX(N
0) �

P
i2N �i(X). It is easy to verify that � satis�es

axioms 1 � 4. As for the Separability axiom, consider bargaining prob-

lem (f0; 1g; X) with X = f0g � [0; 1]. Then �1(X) = 1. Consider next

(f0; 1; 2g ; X 0) with X 0 = X � [0; 2]. Here, 1 62 KX0 and hence �1(X) = 0,

which violates the Separability axiom.

Finally, we demonstrate the independence of the Anonymity axiom. Let

(N0; X) 2 X SM . Player n is called separable if X = XN0�1 � Xn, where
XS denotes the projection of X on the coordinates of S. Let �0(X) =

VX(N
0)�

P
i2N �i(X) and let

�i(X) =

(
VX(N

0)� VX(N0 � i); if i = n and i is not separable,

di(X); otherwise.

Clearly, � satis�es Axioms 1 �3 and 5, but not 4. Indeed, consider X =

f(0; 3; 0) ; (0; 0; 3) ; (0; 2; 2)g. A permutation of agents 1 and 2 leaves X un-

changed, so the Anonymity axiom requires �1(X) = �2(X). But we obtain

�1(X) = 0 and �2(X) = 1.

Proof of Theorem 1

Existence. By Lemma 2, � satis�es Stability and STD axioms. To verify

the Scale Covariance axiom, let (N0; X) and (N0; X 0) be in X SM such that

for some b̂ 2 RN0
and ĉ 2 R++, X 0 = ĉX + b̂. By Lemma 3, for all i 2 N ,

di(X
0) = ĉdi(X) + b̂i, bi(X 0) = ĉbi(X) + b̂i, and VX0(N0) = ĉVX(N

0) +P
j2N0 b̂j . Therefore, for all i 2 N , �i(X 0) = ĉ�i(X) + b̂i, and �0(X

0) =

ĉVX(N
0)+

P
j2N0 b̂j�

P
j2N0(ĉ�j(X)+b̂j) = ĉ

�
VX(N

0)�
P
j2N0 �j(X)

�
+

b̂0 = ĉ�0(X)+b̂0. The Anonymity axiom is trivially satis�ed. Finally, we ver-

ify the separability axiom. Let (N0; X) 2 X SM , where N0 = f0; 1; : : : ; ng.
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Let N 0 = N0 [ fn + 1g and X 0 = X � [a; a0], where 0 � a � a0. Clearly,

(N 0; X 0) 2 X SM . By Lemma 4, for all i 2 N , di(X 0) = di(X),MCi(N0; X 0) =

MCi(N
0; X), and VX0(N0) = VX(N

0), implying that for all i 2 N , �i(X 0) =

�i(X).

Uniqueness (up to the parameter �). Let � be a solution on X SM

which satis�es Axioms 1 �5. Let

X̂2 = f(0; x) j 0 � x � 1g

and let �0(X̂2) = �. Since ST (X̂2) = fy 2 R2+ j y0+y1 = 1g, it must be that
�1(X̂2) = 1� �. We shall show that �(X) is uniquely determined, given �,
for all X 2 X SM .

Consider next the bargaining problem in X SM2 de�ned by

X(d;b) = fd0g � [d1; b1];

where d = (d0; d1) 2 R2+ and b1 � d1. Clearly, X(d;b) = d+ (b1 � d1)X̂, and,
by the Scale Covariance axiom,

�(X(d;b)) = d+ (b1 � d1)(�; 1� �);

and �(X(d;b)) is uniquely determined. Next, consider the bargaining problem

(N0; �X(d;b)) 2 X SM , where d = (d0; d1; : : : ; dn) 2 RN
0

+ and b = (b1; : : : ; bn) 2
RN+ such that bi � di for all i 2 N , and

�X(d;b) = fd0g � [d1; b1]� : : :� [dn; bn]:

By the Separability and Anonymity axioms, for every i 2 N ,

�i( �X(d;b)) = �di + (1� �)bi:

This, together with the fact that �( �X(d;b)) is e¢ cient, uniquely deter-

mines �( �X(d;b)). Also observe that

ST ( �X(d;b)) =

(
y 2 RN0

+

����� di � yi � bi for all i 2 N;y0 = d0 +
P
i2N (bi � yi)

)
:
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Let (N0; X) be an arbitrary bargaining problem in X SM . Let d̂i = di(X)
and b̂i =MCi(N0; X) for all i 2 N . Also, let d̂0 = VX(N0)�

P
i2N b̂i. Then,

by Lemma 2,

ST (X) =

(
y 2 RN0

+

����� d̂i � yi � b̂i for all i 2 N;y0 = d̂0 +
P
i2N (b̂i � yi)

)
= ST ( �X(d̂;b̂)):

Since ST (X) = ST ( �X(d̂;b̂)), by the STD axiom, �(X) = �(
�X(d̂;b̂)), and �(X)

is uniquely determined for every X 2 X SM . This completes the proof.

Proof of Proposition 6

Let (N0; X) 2 X SM . Then for every S � N and every i 2 N �S, VX(N0)�
VX(N

0 � i) � VX(N0 � S)� VX(N0 � S � i), orX
j2S

VX(N
0)� VX(N0 � j) � VX(N0)� VX(N0 � S): (1)

For every y 2 Y (X) and every S � N0 de�ne

eX(y; S) = VX(S)�
X
i2S

yi:

First, note that for every S � N , VX(S) =
P
i2S di(X), hence, for all

y 2 Y (X);
eX(y; S) =

X
i2S

eX(y; fig): (2)

Next, for every S � N and every y 2 Y (X), by (1),

eX(y;N
0 � S) = VX(N

0 � S)�
X

i2N0�S
yi = VX(N

0 � S)� VX(N0) +
X
i2S

yi

�
X
i2S

�
VX(N

0 � i)� VX(N0) + yi
�

=
X
i2S

0@VX(N0 � i)�
X

j2N0�i
yj

1A =
X
i2S

eX(y;N
0 � i): (3)
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By (2) and (3), for all y 2 Y (X) and all S � N ,X
i2S

eX(y; fig) � eX(y; S);X
i2S

eX(y;N
0 � i) � eX(y;N

0 � S):

Therefore, the nucleolus y� of VX is de�ned for every i 2 N by

y�i = argmin
y2ST (X)

�
max

�
eX(y; fig); eX(y;N0 � i)

	�
:

Since eX(y; fig) = di(X)�yi and eX(y;N0�i) = VX(N0�i)�VX(N0)+yi,

y�i is the solution of

di(X)� yi = VX(N0 � i)� VX(N0) + yi:

Thus,

y�i =
VX(N

0)� VX(N0 � i) + di(X)
2

=
MCi(N

0; X) + di(X)

2
; i 2 N:

Proof of Property 3

Let X 2 X SM and let S � N . Using (10) we have for every T � N0 � S

VX�S(��)(T ) =

(
VX(N

0)�
P
j2S �

�(X); T 3 0P
j2T dj(X); T 63 0

Clearly, X�S(�) 2 X SM , since VX�S(��)(N0 � S � T )� VX�S(��)(N0 � S �
T � i) = VX(N0 � T )� VX(N0 � T � i) for all T � N � S, and X 2 X SM

by assumption. Then, by Theorem 1, for some x� 2 E(X)

��i (X�S(�
�)) = di(X) + (1� �)MCi(N0; X) = ��i (X) for all i 2 N � S;

��0 (X�S(�
�)) =

0@ X
i2N0�S

x�i �
X

i2N�S
��i (X)

1A+X
i2S
(x�i � ��i (X)) = ��0 (X):
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