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Abstract

We consider a multi-period auction with a seller who has a single

object for sale, a large population of potential buyers, and a mediator

of the trade. The seller and every buyer have independent private

values of the object. The mediator designs an auction mechanism

which maximizes her revenue subject to certain constraints for the

traders. In each period the seller auctions the object to a set of buyers

drawn at random from the population. The seller can re-auction the

object (in�nitely many times) if it is not sold in previous interactions.

We characterize the class of mediator-optimal auction mechanisms.

One of such mechanisms is a Vickrey auction with a reserve price where

the seller pays to the mediator a �xed percentage from the closing price.
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1 Introduction

This paper considers the model of Internet-style trade which can be de-

scribed as follows. There are a mediator, a large population of buyers, and

a seller who has a single object for sale. We assume that the seller cannot

deal directly with buyers, instead, the trade must be mediated. At the initial

period 0, the mediator establishes a trade procedure (conventionally called

�auction mechanism�) through which she is allowed to collect some part of

the trade surplus.1 The seller observes the auction mechanism and decides

either to consume the object, or to put it for sale. If the object is consumed,

the games ends. If the object is put for sale at period t � 1, a set of n buyers
is drawn randomly from the buyers�population and the auction takes place.

There are two important features in our model. First, whenever the seller

fails to sell the object, he is allowed to o¤er it for (re-)sale again, as many

times as he wants. Secondly, in every trade the seller faces a di¤erent set of

bidders drawn from a large population.

We characterize the class of mediator-optimal mechanisms, where the

mediator commits to a mechanism in advance and is not allowed to change

it during the game. Moreover, we demonstrate how to implement an optimal

mechanism. It turns out that the closing-fee Internet auction is one of such

mechanisms. In the closing-fee Internet auction, the seller (repeatedly) sells

the object via a Vickrey auction. In every auction he selects a reserve price

and, if the object is sold, pays to the mediator a closing fee (a percentage

of the closing price). The fee is selected by the mediator in advance, it is

commonly known and �xed through the entire trade process.

There are important implications of our results. The mediated trade can

1By an auction mechanism we understand a game with incomplete information set

up by the mediator and played by the traders in which a desirable outcome occurs as a

Bayesian Nash equilibrium.
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be viewed as a principal-agent model, where the mediator (the principal) de-

signs an incentive mechanism for the seller (the agent) such that behavior of

the seller maximizes the mediator�s payo¤. The standard principal-optimal

solution of the principal-agent model is that the principal collects a �xed fee

from the agent, and after that the agent maximizes his payo¤. If there is

uncertainty of the agent�s type, then the principal prefers to use a more so-

phisticated mechanism which makes the agent to report her type truthfully

and which discriminates between the agents of di¤erent types. In contrast,

in our model the mediator-optimal solution is to collect a percentage of the

seller�s payo¤ rather than a �xed fee, and, even though there is uncertainty

of the seller�s type, the only discrimination in e¤ect is that the sellers are

divided into two groups with respect to their use values: Those who are

willing to auction the object and those who are not.

Surprisingly, the existence of an auction mediator, an independent player

whose in�uence on strategic behavior of traders is essential, is not illumi-

nated in the literature. The up-to-date research concentrates on mechanisms

which achieve ex-post e¢ ciency or which maximize the seller�s revenue (for

overview see, e.g., Krishna 2002, Chapter 5). In contrast, we focus on the

question of optimal mechanisms for the mediator. This question has a pro-

found relevance to the problem of maximizing pro�t by giant commercial

trade-mediating institutions which run internet auctions (e.g., eBay, Yahoo,

Amazon).

Our two main assumptions are consistent with the real-life observations.

Indeed, a seller has the re-sale option in real life and this option has essential

impact on players�strategic behavior, as noted, for example, by Fudenberg

at al. (1985), Milgrom (1987), Gupta and Lebrun (1999), Haile (2000, 2003).

Our second assumption: the seller faces a di¤erent set of bidders drawn from

a large population in each period - is new and crucial for our analysis. We
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think that it is a realistic assumption for Internet auctions. In contrast, the

existing literature on auctions with resale assumes that there is the same

set of bidders in all auctions, which implies that the optimal reserve price

declines due to Bayesian updating of the bidders�private values distribution

after every auction (see Fudenberg at al., 1985; McAfee and Vincent, 1997).

The �rst related work that we are aware of is Myerson and Satterthwaite

(1983) who analyze a bilateral trade mediated by a �broker�, assuming that

the traders have independent private values for the traded good. In particu-

lar, Myerson and Satterthwaite describe a direct revelation2 mechanism for

the broker which maximizes her payo¤ subject to individual rationality and

incentive compatibility constraints for the traders. A variety of works ex-

tends Myerson and Satterthwaite (1983) to the study of two-sided markets

mediated by �platforms�, starting with the double auction of Wilson (1985)

and including (but not limited to) Rochet and Tirole (2003), Hagiu (2004),

Reisinger (2004), and Armstrong (2006). Instead, the focus of this paper is

the mediated interaction of one seller and many buyers. In particular, we

generalize Myerson and Satterthwaite�s (1983) model in one of our model

extensions (see Section 5.3).

The paper is organized as follows. The model is described in Section

2. In Section 3 we characterize the mediator-optimal mechanisms. Section

4 describes a simple implementation of the optimal mechanism which has

applications for many Internet auctions. In Section 5 we present some ex-

tensions of our model. Section 6 discusses assumptions of the model. The

Appendix contains omitted proofs.

2A mechanism is direct if the traders are asked to report their �types�, i.e., their private

values. Further, it is revelation (or truthful) if it is a Nash equilibrium for the traders to

reveal their values truthfully.
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2 The Model

We consider a model of repeated auctions where a seller can re-auction the

object in the next period, if the object is not sold in the current period. In

contrast to the standard problem where the seller auctions the object one

and only one time, in our model the seller may decide not to sell the object

at all, or to re-auction it (in�nitely) many times, until it is sold. The model

is designed to capture Internet-style auctions.

Let player 0 be the seller and let N be a large homogeneous population

of bidders. The seller has one object for sale. Let v0 2 [0; 1] be the use
value of the seller and vi be the use value of bidder i 2 N . Assume that all
use values are independent, furthermore, bidders�use values are identically

distributed on the interval [0; 1] according to the distribution function Fb,

and the seller�s use value is distributed on the same interval according to

the distribution function Fs. Let fb and fs be the corresponding density

functions. We assume that fb and fs are strictly positive and continuous on

[0; 1].

At period t = 0, a mediator chooses a trade mechanism which will be

used thereafter in the game.

At period t = 1; 2; : : : a random sample of n buyers is selected from

population N . The seller either consumes the object (and the game ends)
or puts it for sale (and the game proceeds to period t+ 1). At period t+ 1,

the object is allocated and the payments are transferred according to the

selected mechanism. If the object is sold to one of the buyers, the game ends.

Otherwise, a new random sample of n buyers is selected from population N
and the seller either consumes the object (and the game ends) or puts it for

sale and so on.

We make the following assumptions.
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Assumption 1. In every period a new sample N = f1; : : : ; ng of buyers
is drawn. Every buyer plays only once and has no information about past

plays.

Assumption 2. The buyers are anonymous, that is, a buyer�s strategy

depends on her type (use value), but not on her name.

Assumption 3. There is a discount factor �, 0 < � � 1, common for all
players. We assume that if the seller decides to auction the object at period

t, an outcome of the auction is determined in the next period t + 1. Thus,

payo¤s of all players obtained at period t+1 are discounted by � relative to

period t.

Assumption 4. The mediator chooses a mechanism only once at period

t = 0. The mechanism depends only on the current-period reports, i.e., it is

independent of time and the history of play.

Assumption 5. The mediator, the seller and all buyers are risk neutral.

We consider the class of direct mechanisms. In a direct mechanism the

seller and each buyer simultaneously and con�dentially report their use

values to the mediator, and the mediator then determines who gets the

object and how much each buyer must pay as some functions of the vec-

tor of reported use values. Formally, a direct mechanism is a pair (p;x)

where3 p :[0; 1]n+1 ! �n+1 describes probabilities of various outcomes and

x : [0; 1]n+1 ! Rn+1 describes payments of the traders as functions of

their reported use values. Namely, given the vector of reports at period

t, wt = (wt0; w
t
1; : : : ; w

t
n), pi(w

t) is the probability that bidder i gets the

object, i = 1; : : : ; n, p0(wt) = 1 �
Pn
i=1 pi(w

t) is the probability that the

3�n+1 denotes the unit simplex in (n+ 1)-dimensional space.
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seller retains the object; xi(wt) is a payment of bidder i = 1; : : : ; n to the

mediator, and x0(wt) is a payment of the mediator to the seller. Note that

for every i = 1; : : : ; n, xi is allowed to be non-zero even if buyer i does not

receive the object.

Let ht = (w1; : : : ;wt) be the history of play up to time t. A symmetric

bidding strategy of a bidder, ! : [0; 1] ! [0; 1], is her bid as a function of

her actual use value.4 A seller�s strategy
��
�1; q1

�
; :::
�
�t; qt

�
; :::
�
speci�es

the probability, �t+1, that the seller auctions the object at period t + 1

and his bid, qt+1, as a function of history ht and his use value v0. Denote

qt(v0) = q(h
t�1; v0), and �t(v0) = �(ht�1; v0).

A seller�s strategy pro�le (qt; �t)1t=1 is stationary if q
t = q1 and �t = �1

for all t = 1; 2; : : :. Since the mechanism (p;x) does not vary with t, there

exists a stationary seller�s strategy (q�; ��) and a bidders�strategy !� which

constitute a subgame perfect equilibrium.

Lemma 1 (Revelation Principle) Given a mechanism (p;x) and a sta-

tionary equilibrium (!�; (q�; ��)) of the correspondent game, there exists a

direct revelation mechanism (p0;x0) which has a payo¤-equivalent stationary

equilibrium (!0; q0; ��) such that !0(vi) = vi and q0(v0) = v0.

Proof. For every v 2 V de�ne p0(v0; v1; : : : ; vn) := p(q(v0); !(v1); : : : ; !(vn))
and de�ne x0(v0; v1; : : : ; vn) := x(q(v0); !(v1); : : : ; !(vn)). End of proof.

Without loss of generality we assume that (p;x) is a direct revelation

mechanism. Fix (p;x) and consider period t. Let N = f1; : : : ; ng be the
set of bidders drawn at random from the population N at period t. Let

vt = (v0; v
t
1; : : : ; v

t
n) be the vector of use values of the seller and buyers at

period t (the seller�s use value does not vary with time). Denote by f the

4By Assumption 2 we consider only symmetric bidding strategies. By Assumption 1,

a bidding strategy cannot depend on the history of play.
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joint density of vt; by vt�i and f�i the vector of use values and its joint

densities without i�s coordinate, i = 0; : : : ; n. Let V = [0; 1]n+1 be the space

of use value vectors and let V�i be the space value of use vectors without

i�s coordinate.

For every i = 0; 1; : : : ; n denote by �pi(w) the probability of i to obtain

(retain for i = 0) the object, conditional on i�s value vi,

�pi(vi) =

Z
V�i

pi(vi;v�i)f�i(v�i)dv�i:

Also, for every i = 0; 1; : : : ; n denote by �xi(vi) the expected payment of buyer

i to the mediator (from the mediator to the seller for i = 0) conditional on

i�s value vi,

�xi(vi) =

Z
V�i

xi(vi;v�i)f�i(v�i)dv�i:

Then, the expected utility of bidder i = 1; : : : ; n is de�ned by

U ti (v
t
i) = �(v

t
i �pi(v

t
i)� �xi(vti)): (1)

The discount factor � appears here because of our assumption that if an

auction starts at period t, the players are �locked in� until period t + 1,

when the auction outcome is realized. Thus, payo¤s of the bidders are

discounted by one period.

The expected seller�s gain from the auction is de�ned by

U t0(v0) = �v0 + �
�
�x0(v0) + �p0(v0)(v0 + �

t+1(v0)U
t+1
0 (v0))

�
: (2)

That is, at period t the seller gives up the object of value v0 (the �rst term

of the right-hand side of (2)) and at period t+ 1 he obtains the discounted

payo¤, the sum of the expected payment �x0(v0) and, if the object is not

sold, the value of the object v0 and the next-period expected gain from the

auction �(v0)U t+10 (v0).
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Finally, the expected utility of the mediator is de�ned by

U tM = �

Z
V

 
nX
i=1

xi(v)� x0(v) + p0(v)�t+1(v0)U t+1M

!
f(v)dv: (3)

A direct revelation mechanism is feasible if it satis�es the following con-

straints:

(a) Individual rationality. For each period t = 1; 2; : : : and each buyer

i = 1; : : : ; n, and each vi 2 [0; 1]

U ti (vi) � 0; (4)

and for each v0 2 [0; 1]
�t(v0)U

t
0(v0) � 0: (5)

The constraint (5) means that the seller expects to obtain a non-negative

gain whenever he assigns a positive probability on auctioning the object,

�t(v0) > 0.

(b) Incentive compatibility. For each trader i = 0; 1; : : : ; n, each period

t = 1; 2; :::; and each use value vi; wi 2 [0; 1]

U ti (vi) � U ti (wijvi); (6)

where U ti (wijvi) is the expected utility of trader i = 0; 1; : : : ; n if she reports
wi when her true use value is vi, that is, for each i = 1; : : : ; n

U ti (wijvi) = �(vi�pi(wi)� �xi(wi)) (7)

and

U t0(w0jv0) = �v0 + �
�
�x0(w0) + �p0(w0)(v0 + �

t+1(v0)U
t+1
0 (v0))

�
:

Note that by Assumption 2 the next-period expected payo¤ U t+10 (v0) does

not depend on the current report w0.
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3 Mediator-optimal Mechanisms

3.1 Seller�s Decision to Auction the Object

Let CV � be the discounted continuation value of the seller who always auc-

tions the object,

CV � = max
w0

� (�x0(w0) + �p0(w0)CV
�) : (8)

Note that CV � is independent from v0, because the object is never consumed.

Lemma 2 In equilibrium, the seller�s decision to auction the object at pe-

riod t depends on the discounted continuation value, CV �, in the following

way

�t(v0) =

8<: 0; if v0 > CV �;

1; if v0 < CV �;
(9)

and for each v0 < CV � and each t = 1; 2; : : :

U t0(v0) = CV
� � v0 > 0: (10)

Proof. By stationarity, U t0(v0) = U
t+1
0 (v0) for all t. Clearly, if U t0(v0) >

0, then �t(v0) = 1 in equilibrium. By (8), U t0(v0) > 0 if and only if CV
� �

v0 > 0, thus we obtain (10) and �t(v0) = 1 if v0 < CV �. Similarly, we

obtain �t(v0) = 0 if v0 > CV �. End of proof.

Note that CV � = v0 is a zero probability event, thus without any e¤ect

on the result we can assume �t(v0) = 1 for this case.

The game ends in the �rst period, if the sellers�use value is higher than

the discounted continuation value from the auction, v0 > CV �. In the

next subsection we analyze the situation where v0 � CV �, when the seller
auctions the object until it is sold.
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3.2 Analysis of a Stage Game

Fix the seller�s realized use value v0 � CV � and period t. Denote by U�M , the
expected payo¤ of the mediator at any period t, conditional on v0 � CV �.
Then

U�M = �

Z
V�0

 
nX
i=1

xi(v)� x0(v) + p0(v)U�M

!
f(v�0)dv�0: (11)

Note that U tM = U t+1M = U�M .

We now characterize the set of all feasible mechanisms as a function of

U�M and CV �. Denote by Cb(vi) the virtual value of bidder i, i = 1; : : : ; n,

Cb(vi) = vi �
1� Fb(vi)
fb(vi)

: (12)

The di¤erence vi�Cb(vi) is the information rent of bidder i (see discussion
by Krishna 2002, Section 5.2.3). We assume that function Cb (�) is strictly
increasing. This condition is known as the Myerson�s regularity condition

(Myerson, 1981). Let

Q(p; z) = �

 
z +

Z
V�0

"
nX
i=1

(Cb(vi)� z) pi(v)
#
f�0(v�0)dv�0

!
:

We have the following result.

Theorem 1 Suppose that the seller�s realized use value v0 satis�es v0 �
CV �. Then at any period t � 1, every feasible mechanism (p;x) satis�es

U�M + CV � +
nX
i=1

U ti (0) = Q(p; U
�
M + CV �); (13)

and

U�M + CV � � Q(p; U�M + CV �): (14)

Proof. See the Appendix.
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Theorem 1 characterizes the mediator-optimal mechanisms for a given

CV �. Denote by Z� the joint expected gain of the seller and the mediator,

Z� = U�M + CV �. Clearly, in order to maximize U�M for a given CV �, it

su¢ ces to maximize Z�.

Let

Q�(z) = �

 
z +

Z
V�0

max

�
0; max
i=1;:::;n

Cb(vi)� z
�
f�0(v�0)dv�0

!
:

Note that

Q�(z) = max
p0:V!�n+1

Q(p0; z):

Lemma 3 The equation z = Q�(z) has a unique solution on [0; 1].

Proof. Let

T (z) =

Z
V�0

max

�
0; max
i=1;:::;n

Cb(vi)� z
�
f�0(v�0)dv�0:

Then we can rewrite z = Q�(z) as follows,

(1� �)z = �T (z): (15)

We have T (0) > 0 and T (1) = 0 (because Cb(�) � 1). Note that function

(1 � �)z strictly increases and function �T (z) (weakly) decreases on the
interval [0; 1]. Hence, there is a unique solution of the equation (15). End

of Proof.

Corollary 1 Let CV � be given and suppose that v0 � CV �. A feasible

mechanism (p;x) is mediator-optimal w.r.t. CV � if and only if

(i) Z� is a unique solution of z = Q�(z),

(ii) p 2 argmax
p0:V!�n+1

Q(p0; Z�), and
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(iii) x is selected to make U0(v0) = CV �� v0 and U ti (0) = 0 for each buyer
i = 1; : : : n and any period t = 1; 2; :::. Namely,

�x0(v0) = CV
�
�
1

�
� �p0(v0)

�
and

�xi(v
t
i) = v

t
i �pi(v

t
i)�

Z vti

0
�pi(z)dz; i = 1; : : : ; n:

Proof. By Theorem 1, Z� = U�M + CV � is maximized if

Z� = max
p0:V!�n+1

Q(p0; Z�) � Q�(Z�): (16)

By Lemma 3, there exists a unique solution of (16). Since by Lemma 2,

U0(v0) + v0 = CV � whenever v0 � CV �, parts (ii) and (iii) follow from

Theorem 1. End of Proof.

Note that by (ii) every mediator-optimal mechanism allocates the object

according to the same rule p which grants the object to the bidder with

the highest use value vi, if Cb(vi) > Z�. If Cb(vi) < Z�, the object is not

sold in the current period and the seller will re-auction it in the following

period. Hence, Corollary 1 implies that any mediator-optimal mechanism

is equivalent to the Vickrey auction with the reserve price r� = C�1b (Z�),

where C�1b (�) denotes the inverse function of Cb(�). Also note that the seller
always receives the same expected return CV � from the auction for any use

value v0 � CV �.

3.3 Expected Payo¤ of the Mediator

In the previous section we described the mediator-optimal mechanism as

a function of the continuation value CV �. We shall now select CV � which

maximize the (unconditional) expected payo¤of the mediator, UM , and then

derive the desired optimal mechanism (p;x).

13



Since for v0 > CV � the seller does not auction the object, and thus the

mediator receives zero, we have

UM =

Z CV �

0
U�Mfs(v0)dv0 = U

�
MFs(CV

�):

The mediator�s expected unconditional payo¤ UM is equal to the product

of the mediator�s expected gain conditional on v0 � CV �, U�M , and the

probability that v0 � CV �, Fs(CV �). We have U�M = Z� � CV �, where
Z�, the highest joint gain of the mediator and the seller, is independent

from the mechanism (p;x). Hence, CV � must be a solution of the following

optimization problem,

max
CV �2[0;1]

(Z� � CV �)Fs(CV �): (17)

That is, the expected revenue of the mediator U�M conditional on the

event that the auction occurs will balance two opposite forces: The higher

the (conditional) mediator revenue, U�M = Z� � CV �, the lower the proba-
bility that the seller is willing to auction the object, Fs(CV �).

From (17) and Corollary 1 we obtain the following theorem.

Theorem 2 A feasible mechanism (p;x) is mediator-optimal if and only if

(i) The expected joint gain of the mediator (conditional on v0 � CV �) and
the seller is a unique solution of equation Z� = Q�(Z�),

(ii) The expected payo¤ of the mediator is given by

UM = max
CV �2[0;1]

(Z� � CV �)Fs(CV �); (18)

(iii) Mechanism (p;x) satis�es conditions (ii) � (iii) of Corollary 1 with

respect to CV � as in (18).
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4 Implementation

In this section we demonstrate that a mediator-optimal mechanism is im-

plementable by a repeated Vickrey auction with a reserve price, where the

mediator collects her payo¤ via a simple fee scheme.

Consider the following mechanism, the Closing-fee Internet auction. In

every period, the mediator runs a Vickrey auction with a reserve price. The

seller submits a reserve price, r, and every bidder submits a bid equal to her

true use value. The winning bidder (if any) pays the greater of the second

highest bid and the reserve price. If the object is sold, the mediator collects

a closing fee (a percentage from the closing price),

� =
U�M

U�M + CV �
2 [0; 1]: (19)

where U�M = Z� � CV �, Z� and CV � are de�ned in Theorem 2.

Theorem 3 The Closing-fee Internet auction is optimal for the mediator.

Proof. It is su¢ cient to show that � = U�M
U�M+CV

� implies that the allo-

cation rule p satis�es Condition (i) of Corollary 1. In a Vickrey auction, the

optimal reserve price is

r� = C�1b

�
1

1� �CV
�
�
;

see, for example Krishna (2002, Section 5.2.2). Hence

r� = C�1b (U�M + CV �) ;

and the object is retained by the seller if r� > vi for all i = 1; : : : ; n, or,

equivalently, Cb(r�) = U�M + CV � > Cb(vi). End of Proof.

Theorem 3 describes the mediator-optimal Internet auction with just one

fee. However, most of the real-life Internet auctions have two fees: A closing

fee, �, and a listing fee, c 2 R, a �xed fee collected at the beginning of every
auction. In Matros and Zapechelnyuk (2006), we obtain the following result.
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Proposition 1 Consider the class of Internet auctions with a pair of fees,

(c; �). There exists a unique pair of fees (c�; ��) which maximizes the medi-

ator�s expected payo¤ in this class. The fees are

c� = 0 and �� =
U�M

U�M + CV �
2 [0; 1]:

Theorem 3 and Proposition 1 demonstrate that any mechanism with a

non-zero listing fee is not mediator-optimal. That is, the mediator does

not bene�t from asking a positive up-front fee in every auction, or from

subsidizing the seller (i.e., when the listing fee is negative). It is interesting

to note that many Internet auctions charge negligible or zero listing fees,

and, for instance, eBay decreased the listing fee considerably in 2005. See

Matros and Zapechelnyuk (2006) for more examples.

5 Extensions of the model

We discuss several extensions of the model in this section.

5.1 Collusion of the Seller and the Mediator

Suppose that the seller and the mediator collude.5 Then the mediator knows

the seller�s use value and maximizes the joint payo¤, MS�. Similar to

Lemma 2, the mediator auctions the object, if v0 � MS� and consumes

it, if v0 > MS�. The maximization problem (17) becomes

max
MS�2[0;1]

MS� (20)

subject to

MS� = Q�(MS�): (21)

5Equivalently, suppose that there is no mediator, and the seller himself is a mechanism

designer.
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From Lemma 3, we obtain

Z� = Q�(Z�) =MS�:

Therefore, the mediator�s continuation value is Z�. Since Z� > CV �, the

auction occurs with higher probability than in the case of the mediator and

a seller being independent. Hence, the expected joint gain of an independent

seller and the mediator is less than the expected joint gain of them colluding.

5.2 Maintenance Fees

Suppose that the mediator has to pay a �xed maintenance fee � � 0 in

order to run an auction each period. Again, the seller auctions the object,

if v0 � CV � and consumes it, if v0 > CV �. Then the expected payo¤ of the
mediator at any period t, conditional on v0 � CV � is

U�M = �

Z
V�0

 
nX
i=1

xi(v)� x0(v) + p0(v)U�M

!
f(v�0)dv�0 � �: (22)

We have the following result.

Theorem 4 Suppose that the seller�s realized use value v0 � CV �. Then

at any period t � 1, every feasible mechanism (p;x) satis�es

U�M + CV � +
nX
i=1

U ti (0) + � = Q(p; U
�
M + CV �): (23)

The proof is analogous to the proof of Theorem 1 and omitted here.

The mediator-optimal mechanisms w.r.t CV �, if v0 � CV �, is similar to
those one described in Corollary 1.

Corollary 2 Let CV � be given and suppose that v0 � CV �. Let 0 � � �
Q�(0). A feasible mechanism (p;x) is mediator-optimal w.r.t. CV � if

(i) Z� is a unique solution of equation Z� + � = Q�(Z�), and
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(ii) p 2 argmax
p0:V!�n+1

Q(p0; Z�):

Again, the joint seller-mediator gain Z� is maximized �rst, then this

gain is divided between the seller and the mediator. Following the proof of

Lemma 3, we obtain that Z� is the unique solution of the following equation

(1� �)z + � = �T (z): (24)

By assumption, � � �T (0) = Q�(0). It is straightforward to see that the

total gain in this case, Z�, is a decreasing function of the fee �, because

Z� is a unique intersection of the increasing and decreasing functions in the

equation (24).

Hence, CV � must be a solution of the following optimization problem

max
CV �2[0;1]

(Z� � CV �)Fs(CV �):

Thus, we obtain the following result.

Theorem 5 A feasible mechanism (p;x) with maintenance fee �, 0 � � �
Q�(0), is mediator-optimal if and only if

(i) The expected joint gain of the mediator and the seller is a unique solution

of equation Z� + � = Q�(Z�),

(ii) The expected payo¤ of the mediator is given by

UM = max
CV �2[0;1]

(Z� � CV �)Fs(CV �); (25)

(iii) Mechanism (p;x) satis�es conditions (ii) � (iii) of Corollary 2 w.r.t.

CV � as in (25).
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5.3 The One-Period Model

Let us consider a special case where the seller is constrained to auction

the object at most one time. This one-period model is a direct extension

of Myerson and Satterthwaite�s (1983) bilateral (one seller and one buyer)

trade, mediated by a �broker�, to the n-buyer problem.

Suppose that for any v0 2 [0; 1] the seller auctions the object in the �rst
period (�1(v0) = 1) and never re-auctions it (�t(v0) = 0 for all t = 2; 3; : : :).

For convenience, in all notations of this section we omit the a¢ x referring

to period 1. We normalize payo¤s by selecting � = 1.

In a direct revelation mechanism, given vi, the expected utility of bidder

i = 1; : : : ; n is de�ned by

Ui(vi) = vi�pi(vi)� �xi(vi); (26)

the expected gain from trade for the seller is de�ned by

U0(v0) = �v0 + �x0(v0) + v0�p0(v0); (27)

and the expected utility of the mediator is de�ned by

UM =

Z
V

 
nX
i=1

xi(v)� x0(v)
!
f(v)dv: (28)

Denote by Cb(vi) the virtual value of bidder i, i = 1; : : : ; n, and denote

by Cs(v0) the virtual value of the seller. Namely, Cb is de�ned above in (12)

and Cs is given for every v0 2 [0; 1] by

Cs(v0) = v0 +
Fs(v0)

fs(v0)
: (29)

We assume that Cb (�) is strictly increasing (the Myerson�s regularity condi-
tion) and, in addition, assume that Cs(�) is strictly increasing. De�ne

W (p) =

Z
V

"
nX
i=1

(Cb(vi)� Cs(v0)) pi(v)
#
f(v)dv:
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The following theorem and corollaries are a straightforward generaliza-

tion of Myerson and Satterthwaite�s (1983). We omit the proofs.

Theorem 6 Every feasible mechanism (p;x) satis�es

UM +
nX
i=1

Ui(0) + U0(1) =W (p); (30)

and

UM �W (p): (31)

In particular, Theorem 6 demonstrates that the expected payo¤ of the

mediator depends only on the rule of the object allocation, p, and on the

payo¤s of players with the extreme private use values. This yields the fol-

lowing result of revenue equivalence.

Corollary 3 (Revenue Equivalence) Let (p;x) and (p0;x0) be two fea-

sible revelation mechanisms. Suppose that p = p0 and the expected payo¤s

of traders with extreme use values, U0(1) and Ui(0) = 0 for all i = 1; : : : ; n,

are the same in both mechanisms. Then the mediator�s expected payo¤s are

the same in the two mechanisms.

It follows from Theorem 6 that a mediator-optimal mechanism maxi-

mizes W (p), that is, the allocation rule p grants the object to the trader

with the highest virtual value. Thus, we have the following corollary (see

also Myerson, 1981; and Myerson and Satterthwaite, 1983).

Corollary 4 Every feasible mechanism (p;x) which is optimal for the medi-

ator is equivalent6 to a Vickrey auction with the seller�s reserve price de�ned

for every v0 2 [0; 1] by

r�(v0) = C
�1
b (Cs(v0)) :

6 I.e., the object allocation rule and the expected payo¤s of the players are the same.
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6 Discussion

We conclude with a brief discussion of some model assumptions.

1. It is crucial for our results that in every period the seller faces the

same trade environment and, thus, he has the same expected payo¤. How

the trade environment is modelled is unimportant. Consequently, our results

can be applied to a considerably wider class of problems. For instance, the

number of bidders drawn in every period may be random, as long as it is

identically distributed across periods.

2. The assumption that the mechanism is �xed and stationary is essen-

tial for our results. The real life supports this assumption: in all Internet

auctions the rules and fees are �xed.

3. In our model a winning bidder is not allowed to re-auction the object.

Adding this possibility for a winning bidder would not make any e¤ect on the

mediator-optimal mechanism, since the winning bidder will face the same

stationary environment in the next period. This contrasts our results to

Zheng (2002), who assumes that a �xed, �nite set of bidders is involved

in trade, thus, the initial seller and a winning bidder face di¤erent trade

environments.

4. We assume that the auction mediator is a monopolist. It is interesting,

however, to consider the situation with several competing mediators, and

relate the results to the study of two-sided markets mediated by �platforms�

(e.g, Rochet and Tirole, 2003). We are investigating that now and will report

our results elsewhere.
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Appendix

Proof of Theorem 1

We make use of the following two Lemmata (which are modi�ed results of

Myerson, 1981).

Lemma 4 Let (p;x) be a feasible mechanism. Then, for every i = 1; : : : ; n,

�pi are increasing, and for each vi 2 [0; 1]

U ti (v
t
i) = U

t
i (0) + �

Z vti

0
�pi(z)dz: (32)

Proof. Using (1) we can rewrite (4) as

U ti (v
t
i) � U ti (wti jv

t
i) + �(v

t
i � wti)�pi(wti);

for all vti ; w
t
i 2 [0; 1] and i = 1; : : : ; n. Then, using (4) twice (once with the

roles of vti and w
t
i switched), we obtain

�(vti � wti)�pi(wti) � U ti (vti)� U ti (wti jvti) � �(vti � wti)�pi(vti):

It follows for wti = v
t
i � " and arbitrary " > 0 that

��pi(v
t
i � ") �

U ti (v
t
i)� U ti (wti)
"

� ��pi(vti):

Thus, �pi is increasing and Riemann integrable, so, for all vti 2 [0; 1]

�

Z vti

0
�pi(z)dz = U

t
i (v

t
i)� U ti (0);

which yields (32). End of Proof.

Lemma 5 Let (p;x) be a feasible mechanism. Then for every i = 1; : : : ; n

and every vi 2 [0; 1]Z 1

0
xi(v)fb(vi)dvi =

Z 1

0
Cb(vi)pi(v)fb(vi)dvi �

1

�
U ti (0): (33)
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Proof. Using (1) and Lemma 4 we obtain

�xi(v
t
i) = v

t
i �pi(v

t
i)�

Z vti

0
�pi(z)dz �

1

�
U ti (0); i = 1; : : : ; n

and

xi(v
t) = vtipi(v

t)�
Z 1

0

 Z vti

0
pi(z;v�i)dz

!
fb(v

t
i)dv

t
i �

1

�
U ti (0):

Note that Z 1

0

 Z vti

0
pi(z;v�i)dz

!
fb(v

t
i)dv

t
i =Z 1

0

�Z 1

z
fb(v

t
i)dv

t
i

�
pi(z;v�i)dz =

Z 1

0
(1� Fb(z)) pi(z;v�i)dz:

Therefore Z 1

0

 Z
V�i

xi(vi;v�i)f�i(v�i)dv�i

!
fb(vi)dvi =

Z 1

0

 
vi

Z
V�i

pi(vi;v�i)f�i(v�i)dv�i

!
fb(vi)dvi�

Z 1

0
(1� Fb(vi)) pi(vi;v�i)dvi�

1

�
U ti (0) =Z 1

0

�
vi �

1� Fb(vi)
fb(vi)

�
pi(v)fb(vi)dvi �

1

�
U ti (0): (34)

Since Cb(z) = z � 1�Fb(z)
fb(z)

, (34) immediately yields (33). End of Proof.

Proof of Theorem 1.

Using Lemma 5, we obtain from (11)

U�M = �

Z
V�0

 
nX
i=1

xi(v)� x0(v) + p0(v)U�M

!
f(v�0)dv�0 =

�

Z
V�0

 
nX
i=1

Cb(vi)pi(v)� x0(v) + p0(v)U�M

!
f(v�0)dv�0 �

nX
i=1

U ti (0): (35)

From (8), since (p;x) is a direct revelation mechanism, we have

CV � = � (�x0(v0) + �p0(v0)CV
�) :
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Thus

�x0(v0) = CV
�
�
1

�
� �p0(v0)

�
:

We rewrite (35) as follows,

U�M = �

Z
V�0

 
nX
i=1

Cb(vi)pi(v) + (U
�
M + CV �) p0(v)�

CV �

�

!
f(v�0)dv�0�

nX
i=1

U ti (0):

Since p0(v) = 1�
Pn
i=1 pi(v), we obtain

U�M = �CV � �
nX
i=1

U ti (0)+

�

264(U�M + CV �) +

Z
V�0

 
nX
i=1

[Cb(vi)� (U�M + CV �)] pi(v)

!
f(v�0)dv�0

375 =
Q(p; U�M + CV �)� CV � �

nX
i=1

U ti (0);

which immediately yields (13). Since by the IR constraint Ui(0) � 0 for all
i = 1; : : : ; n, we obtain (14). End of Proof.
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