האוניברסיטה העעברית בירושלים

 THE HEBREW UNIVERSITY OF JERUSALEM
EXISTENCE OF OPTIMAL STRATEGIES IN MARKOV GAMES WITH INCOMPLETE INFORMATION

 byABRAHAM NEYMAN

Discussion Paper \# 413 December 2005

ערכז לחקר הרציונליות
CENTER FOR THE STUDY
OF RATIONALITY

[^0]
Existence of Optimal Strategies in Markov Games with Incomplete Information

Abraham Neyman ${ }^{1}$

December 29, 2005

[^1]
Abstract

The existence of a value and optimal strategies is proved for the class of twoperson repeated games where the state follows a Markov chain independently of players' actions and at the beginning of each stage only player one is informed about the state. The results apply to the case of standard signaling where players' stage actions are observable, as well as to the model with general signals provided that player one has a nonrevealing repeated game strategy. The proofs reduce the analysis of these repeated games to that of classical repeated games with incomplete information on one side.

1 Introduction

The class of two-person zero-sum repeated games where the state follows a Markov chain independently of players' actions, and at the beginning of each stage only player 1 is informed about the state, and players' stage actions are observable, is termed in [2] Markov chain games with incomplete information on one side.

The play of a Markov chain game with incomplete information on one side proceeds as follows. Nature chooses the initial state z_{1} in the finite set of states M according to an initial probability q_{0}. At stage t player 1 observes the current state $z_{t} \in M$ and chooses an action i_{t} in the finite set of actions I and (simultaneously) player 2 (who does not observe the state z_{t}) chooses an action j_{t} in the finite set of actions J. Both players observe the action pair $\left(i_{t}, j_{t}\right)$. The next state z_{t+1} depends stochastically on z_{t} only; i.e., it depends neither on t, nor current or past actions, nor on past states. Thus the states follow a Markov chain with initial distribution q_{0} and transition matrix Q on M. The payoff at stage t is a function g of the current state z_{t} and the actions i_{t} and j_{t} of the players.

Formally, the game Γ is defined by the 6 -tuple $\left\langle M, Q, q_{0}, I, J, g\right\rangle$ where M is the finite set of states, Q is the transition matrix, q_{0} is the initial probability of $z_{1} \in M, I$ and J are the state-independent action sets of player 1 and player 2 respectively, and $g: M \times I \times J \rightarrow \mathbb{R}$ is the stage payoff function.

The transition matrix Q and the initial probability q_{0} define a stochastic process on sequences of states by $P\left(z_{1}=z\right)=q_{0}(z)$ and $P\left(z_{t+1}=z \mid\right.$ $\left.z_{1}, \ldots, z_{t}\right)=Q_{z_{t}, z}$.

A pure, respectively behavioral, strategy σ of player 1 in the game $\Gamma=$ $\left\langle M, Q, q_{0}, I, J, g\right\rangle$, or $\Gamma\left(q_{0}\right)$ for short, is a sequence of functions $\sigma_{t}:(M \times I \times$ $J)^{t-1} \times M \rightarrow I\left(\sigma_{t}:\left(z_{1}, i_{1}, j_{1}, \ldots, i_{t-1}, j_{t-1}, z_{t}\right) \mapsto I\right)$, respectively $\mapsto \Delta(I)$ (where for a finite set D we denote by $\Delta(D)$ all probability distributions on $D)$. A pure, respectively behavioral, strategy τ of player 2 is a sequence of functions $\tau_{t}:(I \times J)^{t-1} \rightarrow J$, respectively $\mapsto \Delta(J)$.

A pair σ, τ of pure (mixed, or behavioral) strategies (together with the initial distribution q_{0}) induces a stochastic process with values $z_{1}, i_{1}, j_{1}, \ldots, z_{t}, i_{t}$, j_{t}, \ldots in $(M \times I \times J)^{\infty}$, and thus a stochastic stream of payoffs $g_{t}:=g\left(z_{t}, i_{t}, j_{t}\right)$.

A strategy σ^{*} (respectively, τ^{*}) of player 1 (respectively, 2) guarantees v if for all sufficiently large $n, E_{\sigma^{*}, \tau}^{q_{0}} \frac{1}{n} \sum_{t=1}^{n} g_{t} \geq v$ (respectively, $E_{\sigma, \tau^{*}}^{q_{0}} \frac{1}{n} \sum_{t=1}^{n} g_{t} \leq$ v) for every strategy τ (respectively, σ) of player 2 (respectively, 1). We say
that player 1 (respectively, 2) can guarantee v in $\Gamma\left(q_{0}\right)$ if for every $\varepsilon>0$ there is a strategy of player 1 (respectively, 2) that guarantees $v-\varepsilon$ (respectively, $v+\varepsilon)$.

The game has a value v if each player can guarantee v. A strategy of player 1 (respectively, 2) that guarantees $v-\varepsilon$ (respectively, $v+\varepsilon$) is called an ε-optimal strategy, and a strategy that is ε-optimal for every $\varepsilon>0$ is called an optimal strategy.

Renault [2] proved that the game $\Gamma\left(q_{0}\right)$ has a value $v\left(q_{0}\right)$ and player 2 has an optimal strategy. The present paper 1) shows that Renault's result follows ${ }^{1}$ from the classical results of repeated games with incomplete information [1]; and 2) proves the existence of an optimal strategy for player 1. Thus,

Theorem 1 The game $\Gamma\left(q_{0}\right)$ has a value $v\left(\Gamma\left(q_{0}\right)\right)$ and both players have optimal strategies.

In addition, these results are extended in the present paper to the model with signals.

Section 2 introduces a class of auxiliary repeated games with incomplete information that serves in the proof of Theorem 1 as well as in approximating the value of $\Gamma\left(q_{0}\right)$. Section 3 couples the Markov chain with stochastic processes that consist of essentially independent blocks of Markov chains. Section 4 contains the proof of Theorem 1.

Section 5 extends the model and the results to Markov games with incomplete information on on side and signals, where players' actions are unobservable and each player only observes a signal that depends stochastically on the current state and actions. The proof for the model with signals requires only minor modification. In order to simplify the notation and the exposition, albeit at the cost of some repetition, we introduce the games with signals only after completing the proof of Theorem 1.

2 The auxiliary repeated games $\Gamma(p, \ell)$

The analysis of the game $\Gamma\left(q_{0}\right)$ is by means of auxiliary repeated games with incomplete information on one side, with a finite state space K, initial

[^2]probability p, and stage game G^{k}. The support of a probability distribution $k \in \Delta(M)$ is denoted $S(k)$.

Let m be a positive integer such that all ergodic classes of the Markov chain with state space M and transition matrix Q^{m} are aperiodic. In what follows $Q_{z, z^{\prime}}^{n}$ stands for the more explicit $\left(Q^{n}\right)_{z, z^{\prime}}$. Let $K \subset \Delta(M)$ be the set of all ${ }^{2}$ invariant distributions of an ergodic class of Q^{m}. Obviously, every two distinct elements of K have disjoint support. For every $k \in K$, the subspace $\mathbb{R}^{S(k)}$ of \mathbb{R}^{M} is invariant under the linear transformation Q^{m} and therefore the event $z_{n m+1} \in S(k)$ is a subset of the event $z_{(n+1) m+1} \in S(k)$. Therefore, for every $k \in K, P\left(z_{n m+1} \in S(k)\right)$ is monotonic nondecreasing in n. Define $p \in \Delta(K)$ by $p(k)=\lim _{n \rightarrow \infty} P\left(z_{n m+1} \in S(k)\right)$.

The stage game $G^{k, \ell}$, or G^{k} for short, is a game in extensive form. More explicitly, it is an ℓ-stage game with incomplete information on one side. Nature chooses $r=\left(z_{1}=z, \ldots, z_{\ell}\right) \in M^{\ell}$ where $z \in M$ is chosen according to the probability k, and $z_{1}=z, \ldots, z_{\ell}$ follow the law of the Markov chain with transition matrix Q; before player 1 takes his action at stage $t \leq \ell$ he is informed of z_{t}, but player 2 is not informed of z_{t}. Stage actions are observable. ${ }^{3}$ Note that G^{k} is a finite game with finite strategy sets A for player 1 and B for player 2. An element $a \in A$, respectively, $b \in B$, is a sequence of functions a_{t}, respectively, $b_{t}, 1 \leq t \leq \ell$, where $a_{t}:\left(z_{1}, i_{1}, j_{1}, \ldots, i_{t-1}, j_{t-1}, z_{t}\right) \mapsto I$, respectively, $b_{t}:\left(i_{1}, j_{1}, \ldots, i_{t-1}, j_{t-1}\right) \mapsto J$. The triple (r, a, b) defines a play $\left(z_{1}, i_{1}, j_{1}, \ldots, z_{\ell}, i_{\ell}, j_{\ell}\right)$. Therefore, the triple (k, a, b) induces a probability distribution on the plays $\left(z_{1}, i_{1}, j_{1}, \ldots, z_{\ell}, i_{\ell}, j_{\ell}\right)$. The payoff of the game G^{k} equals $G^{k}(a, b)=E_{a, b}^{k} \frac{1}{\ell} \sum_{t=1}^{\ell} g\left(z_{t}, i_{t}, j_{t}\right)$.

2.1 The game $\Gamma(p, \ell)$

Nature chooses $k \in K$ with probability $p(k)$. Player 1 is informed of k; player 2 is not. The play proceeds in stages. In stage n, nature chooses $r=\left(z_{1}, \ldots, z_{\ell}\right) \in M^{\ell}$ with probability $k\left(z_{1}\right) \prod_{1 \leq t<\ell} Q_{z_{t}, z_{t+1}}$, player 1 chooses $a \in A$, and player 2 chooses $b \in B$. The payoff to player 1 is $G^{k}(a, b)$.

The signal s^{2} to player 2 is the function s^{2} that assigns to the triple

[^3](r, a, b) the sequence of realized stage actions $i_{1}, j_{1}, \ldots, i_{\ell}, j_{\ell}$. The signal s^{1} to player 1 is the function s^{1} that assigns to the triple (r, a, b) the play $\left(z_{1}, i_{1}, j_{1}, \ldots, z_{\ell}, i_{\ell}, j_{\ell}\right)$.

The value of $\Gamma(p, \ell)$ exists by [1, Theorem C, p. 191], and is denoted by $v(p, \ell)$. Set $\bar{v}(p):=\limsup _{\ell \rightarrow \infty} v(p, \ell m)$ and $\underline{v}(p):=\liminf _{\ell \rightarrow \infty} v(p, \ell m)$. Obviously $\bar{v}(p) \geq \underline{v}(p)$. We will show in Lemma 2 Section 4 that player 1 can guarantee $\bar{v}(p)$ and player 2 can guarantee $\bar{v}(p)$. Thus $\bar{v}(p)=\underline{v}(p)$ is the value of $\Gamma\left(q_{0}\right)$ (Corollary 2). Lemma 3, respectively Lemma 4, demonstrates the existence of an optimal strategy of player 2 , respectively, player 1 .

3 Auxiliary coupled processes

An admissible pair of sequences is a pair of increasing sequences, $\left(n_{i}\right)_{i \geq 1}$ and $\left(\bar{n}_{i}\right)_{i \geq 1}$, with $n_{i}<\bar{n}_{i}<n_{i+1}$ and such that n_{i} and \bar{n}_{i} are multiples of m. For a given admissible pair of sequences and a stochastic process $\left(x_{t}\right)$ we use the notation $x[i]=\left(x_{n_{i}+1}, \ldots, x_{\bar{n}_{i}}\right)$.

3.1 A Coupling result

Let $\left(n_{i}\right)_{i \geq 1}$ and $\left(\bar{n}_{i}\right)_{i \geq 1}$ be an admissible pair of sequences with $\left(n_{i}-\bar{n}_{i-1}\right)_{i>1}$ nondecreasing and with n_{1} sufficiently large so that for every $k \in K$ and $z \in S(k)$ we have $P\left(z_{n_{1}+1}=z\right) \geq p(k) k(z) / 2$ (and thus $P\left(z_{n_{1}+1} \in S(k)\right) \geq$ $p(k) / 2)$. Let $X, X_{1}, Y_{1}, X_{2}, Y_{2} \ldots$ be a sequence of iid random variables that are uniformly distributed on $[0,1]$ and so that the process $\left(z_{t}\right)_{t}$ (that follows the Markov chain with initial distribution q_{0} and transition matrix Q) and the random variable $\left(X, X_{1}, Y_{1}, \ldots\right)$ are independent. Let \mathcal{F}_{i} denote the σ algebra of events generated by X_{1}, \ldots, X_{i} and $z_{1}, \ldots, z_{n_{i}+1}$.

For $k \in K$ and $z \in S(k)$ the event $z_{n_{i}+1}=z$ is denoted $A_{k z}^{i}$. Let A_{k}^{i} be the event that $z_{n_{i}+1} \in S(k)$, i.e., $A_{k}^{i}=\cup_{z \in S(k)} A_{k z}^{i}$, and $A^{i}=\cup_{k \in K} A_{k}^{i}$. As $P\left(A_{k z}^{i}\right) \rightarrow p(k) k(z)$ and $P\left(A_{k z}^{1}\right)>p(k) k(z) / 2$ by assumption, there exists a strictly decreasing sequence $\varepsilon_{j} \downarrow 0$ such that $P\left(A_{k z}^{i}\right) \geq\left(1-\varepsilon_{i}\right) p(k) k(z)$ for every $k \in K$ and $2 \varepsilon_{1}<1$. Moreover, as each $k \in K$ is invariant under Q^{m}, we can choose such a sequence for any $\varepsilon_{1}>1-\inf _{k \in K, z \in S(k)} \frac{P\left(A_{k z}^{1}\right)}{p(k) k(z)}$ and thus we can assume that $\varepsilon_{1}=\varepsilon_{1}\left(n_{1}\right) \rightarrow_{n_{1} \rightarrow \infty} 0$.

A positive integer-valued random variable T such that for every $i \geq 1$ the event $\{T=i\}$ is \mathcal{F}_{i}-measurable is called an $\left(\mathcal{F}_{i}\right)_{i}$-adapted stopping time.

Define the $\left(\mathcal{F}_{i}\right)_{i}$-adapted stopping time T with $T \geq 1$ by
$T= \begin{cases}1 & \text { on } z_{n_{1}+1}=z \in S(k) \text { and } X_{1} \leq \frac{\left(1-2 \varepsilon_{1}\right) p(k) k(z)}{P\left(A_{k z}^{1}\right)} \\ i \quad \text { if } T \geq i>1, \quad z_{n_{i}+1}=z \in S(k) \text { and } X_{i} \leq \frac{\left(2 \varepsilon_{i-1}-2 \varepsilon_{i}\right) p(k)}{P\left(A_{k z}^{i}\right)-\left(1-2 \varepsilon_{i-1}\right) p(k) k(z)} .\end{cases}$
Lemma $1 \quad$ i) $\forall k \in K$ and $\forall z \in S(k)$, $\operatorname{Pr}\left(z_{n_{T}+1}=z \mid T\right)=p(k) k(z)$ (and thus $\left.\operatorname{Pr}\left(z_{n_{T}+1} \in S(k) \mid T\right)=p(k)\right)$;
ii) Conditional on $z_{n_{T}+1} \in S(k)$, for every fixed $i \geq 0$ the process $z[T+i]$ is a Markov chain with initial probability k and transition Q;
iii) $\operatorname{Pr}(T \leq i)=1-2 \varepsilon_{i}$.

Proof. For $k \in K$ and $z \in S(k)$ let $B_{k z}^{i}$ denote the event that $T \leq i$ and $z_{n_{i}+1}=z \in S(k)$ and $B_{k}^{i}:=\cup_{z \in S(k)} B_{k z}^{i}$. It follows that $P\left(B_{k z}^{1}\right)=P\left(A_{k z}^{1}\right)(1-$ $\left.2 \varepsilon_{1}\right) p(k) k(z) / P\left(A_{k z}^{1}\right)=\left(1-2 \varepsilon_{1}\right) p(k) k(z)$ and thus $P\left(B_{k}^{1}\right)=\sum_{z \in S(k)}(1-$ $\left.2 \varepsilon_{1}\right) p(k) k(z)=\left(1-2 \varepsilon_{1}\right) p(k)$ and $P(T=1)=\sum_{k \in K}\left(1-2 \varepsilon_{1}\right) p(k)=1-2 \varepsilon_{1}$. By induction on i it follows that $P\left(B_{k z}^{i}\right)=\left(1-2 \varepsilon_{i}\right) p(k) k(z)$ and $P(T \leq$ i) $=1-2 \varepsilon_{i}$; indeed, as the distribution k is invariant under Q we have $P\left(A_{k z}^{i} \cap B_{k}^{i-1}\right)=P\left(B_{k}^{i-1}\right) k(z)=\left(1-2 \varepsilon_{i}\right) p(k) k(z)$, and thus for $i>1$ we have $P\left(B_{k z}^{i}\right)=P\left(B_{k}^{i-1}\right) k(z)+P\left(A_{k z}^{i} \backslash B_{k}^{i-1}\right) \frac{\left(2 \varepsilon_{i-1}-2 \varepsilon_{i}\right) p(k) k(z)}{P\left(A_{k z}^{i}\right)-\left(1-2 \varepsilon_{i-1}\right) p(k) k(z)}$. As $P\left(A_{k z}^{i} \backslash B_{k}^{i-1}\right)=P\left(A_{k z}^{i}\right)-\left(1-2 \varepsilon_{i-1}\right) p(k) k(z)$ we deduce that $P\left(B_{k z}^{i}\right)=$ $\left(1-2 \varepsilon_{i}\right) p(k) k(z)$. In particular, $P\left(z_{n_{i}+1}=z \in S(k) \mid T=i\right)=p(k) k(z)$. Set $B^{i}=\cup_{k \in K} B_{k}^{i}$ and note that $P\left(B^{i}\right)=1-2 \varepsilon_{i}$. This completes the proof of (i) and (iii).

As k is invariant under Q^{m} we deduce that for every $i \geq 0$ we have $\operatorname{Pr}\left(z_{n_{T+i}+1}=z \in S(k) \mid z_{n_{T}+1} \in S(k)\right)=k(z)$, which proves (ii).

The next lemma couples the process $\left(z_{t}\right)_{t}$ with a process $\left(z_{t}^{*}\right)_{t}$ where the states z_{t}^{*} are elements of $M^{*}=M \cup\{*\}$ with $* \notin M$. Given $i \geq 1$ we denote by $*[i]$ the sequence of $* \mathrm{~s}$ of length $\bar{n}_{i}-n_{i}$. Let $\delta>0$ be such that for every sufficiently large positive integer j, for every $k \in K$, and $y, z \in S(k)$, we have $Q^{j m}(y, z) \geq\left(1-\delta^{j}\right) k(z)$. Let $\delta: \mathbb{N} \rightarrow \mathbb{R}_{+}$be defined by $^{4} 1-\delta(\ell)=\inf _{j \geq \ell} \min _{k \in K, y, z \in S(k)} Q^{j m}(y, z) / k(z)$. Set $\ell_{i}=\left(n_{i}-\bar{n}_{i-1}\right) / m$ and $\delta\left(\ell_{i} m\right)=\delta_{i}$. Note that for sufficiently large ℓ_{i} we have $\delta_{i} \leq \delta^{\ell_{i}}$. Let B_{i} be the event $Y_{i} \leq\left(1-\delta_{i}\right) k(z) / Q^{\ell_{i} m}(y, z)$ where $z=z_{n_{i}+1} \in S(k)$ and $y=z_{\bar{n}_{i-1}+1}$.

[^4]Lemma 2 There exists a stochastic process $\left(z_{t}^{*}\right)_{t}$ with values $z_{t}^{*} \in M^{*}$ such that for $n_{i}<t \leq \bar{n}_{i}$ the (auxiliary) state z_{t}^{*} is a (deterministic) function of z_{1}, \ldots, z_{t} and $X_{1}, Y_{1}, \ldots, X_{i}, Y_{i}$ such that
i) $\forall \bar{n}_{i-1}<t \leq n_{i}$ and $\forall t \leq n_{T}, z_{t}^{*}=*$
ii) Everywhere, either $z^{*}[i]=z[i]$ or $z^{*}[i]=*[i]$
iii) $z^{*}[T]=z[T]$ and thus $\operatorname{Pr}\left(z_{n_{T}+1}^{*}=z \mid T\right)=p(k) k(z)$
iv) $\operatorname{Pr}\left(z^{*}[T+i]=z[T+i] \mid T\right)=1-\delta\left(\ell_{T+i} m\right) \geq 1-\delta_{i}$
v) For $i \geq 1$, conditional on $T, z^{*}[T], \ldots, z^{*}[T+i-1]$, the process $z[T+i]$ on B_{T+i} (and thus with probability $=1-\delta_{T+i}$) is a Markov chain with initial probability k and transition Q, and on the complement of B_{T+i} (and thus with conditional probability $=\delta_{T+i}$) it is $*[T+i]$.

Proof. $\forall \bar{n}_{i-1}<t \leq n_{i}$ and $\forall t \leq n_{T}$, set $z_{t}^{*}=*$; in particular, $z[i]=*[i]$ for $i<T$.

Define $z^{*}[T]=z[T]$ and thus iii) holds, and for $i>T$ set $z^{*}[i]=z[i]$ on B_{i} and $z^{*}[i]=*[i]$ on the complement B_{i}^{c} of B_{i}. It follows that everywhere, either $z^{*}[i]=z[i]$ or $z^{*}[i]=*[i]$ and thus ii) holds. For $i \geq 1$ the conditional probability that $z_{n_{T+i}+1}=z$ given T and $z_{\bar{n}_{T+i-1}+1}=y \in S(k)$ equals $Q^{\ell_{j} m}(y, z)\left(1-\delta_{j}\right) k(z) / Q^{\ell_{j} m}(y, z)=\left(1-\delta_{j}\right) k(z)$, where $j=T+i$. Note the this conditional probability is independent of y. Therefore, the conditional probability that $z^{*}[T+i]=z[T+i]$ given T and $z_{\bar{n}_{T}+1} \in S(k)$ equals $1-\delta_{j}$, which proves iv) and v).

Corollary 1 There exists a stochastic process $\left(\bar{z}_{t}\right)_{t}$ with values $\bar{z}_{t} \in M$ such that for $n_{i}<t \leq \bar{n}_{i}$ the (auxiliary) state \bar{z}_{t} is a (deterministic) function of z_{1}, \ldots, z_{t} and $X_{1}, Y_{1}, \ldots, X_{i}, Y_{i}$ such that
1.1 The probability that $\bar{z}_{n_{T}+1}=z$ equals $p(k) k(z)$ for $z \in S(k)$
1.2 For $i \geq 1$, conditional on $T, \bar{z}[T], \ldots, \bar{z}[T+i-1]$, the process $\bar{z}[T+i]$ is a Markov chain with initial probability k and transition Q
1.3 $\operatorname{Pr}(\bar{z}[T+i]=z[T+i]) \geq 1-\delta_{i}$

Proof. Let \mathbf{k} and $\bar{z}[k, i], k \in K$ and $i \geq 1$, be independent random variables such that $\operatorname{Pr}(\mathbf{k}=k)=p(k)$ and each random variable $\bar{z}[k, i]$ is a Markov chain of length $\bar{n}_{i}-n_{i}$ with initial distribution k and transition matrix Q. W.l.o.g. we assume that \mathbf{k} and $\bar{z}[k, i], k \in K$ and $i \geq 1$, are deterministic functions of X.

Set $\bar{z}_{t}=z_{t}$ for $t \leq n_{T}$ and for $\bar{n}_{i}<t \leq n_{i+1}$. Define $\bar{z}[T+i]=z[T+i]$ on $z^{*}[T+i]=z[T+i]$, and $\bar{z}[T+i]=z[k, T+i]$ on $z^{*}[T+i]=*[T+i]$ and $z_{n_{T}+1} \in S(k)$.

4 Existence of the value and optimal strategies in $\Gamma\left(q_{0}\right)$

Assume without loss of generality that all payoffs of the stage games $g(z, i, j)$ are in $[0,1]$.

Lemma 3 Player 1 can guarantee $\bar{v}(p)$ and Player 2 can guarantee $\underline{v}(p)$.
Proof. Note that for $\ell<\ell^{\prime}$ we have $v\left(p, \ell^{\prime}\right) \geq v(p, \ell) \ell / \ell^{\prime}$ and therefore $\bar{v}(p)=\lim \sup _{\ell \rightarrow \infty} v\left(p, \ell^{2} m\right)$. Similarly, $\underline{v}(p)=\lim _{\inf }^{\ell \rightarrow \infty}, ~ v\left(p, \ell^{2} m\right)$. Fix $\varepsilon>0$. Let ℓ be sufficiently large with $v\left(p, \ell^{2} m\right)>\bar{v}(p)-\varepsilon$, respectively $v\left(p, \ell^{2} m\right)<\underline{v}(p)+\varepsilon, 1 / \ell<\varepsilon$, and so that $\delta(\ell m)<\varepsilon$ and $\operatorname{Pr}\left(z_{\ell m+1}=z\right) \geq$ $(1-\varepsilon) p(k) k(z)$ for every $k \in K$ and $z \in S(k)$.

Set $\bar{n}_{0}=0$, and for $i \geq 1, \bar{n}_{i}=i\left(\ell+\ell^{2}\right) m+\bar{\ell}$ and $n_{i}=\bar{n}_{i-1}+\ell m+\bar{\ell}$ where $\bar{\ell}$ is ${ }^{5}$ a nonnegative integer. Let $\left(z_{t}^{*}\right)_{t}$ be the auxiliary stochastic process obeying 1.1, 1.2, and 1.3 of Corollary 1. Define $g_{t}^{*}=g\left(z_{t}^{*}, i_{t}, j_{t}\right)$ (and recall that $\left.g_{t}=g\left(z_{t}, i_{t}, j_{t}\right)\right)$.

Let σ be a $\frac{1}{\ell}$-optimal (and thus an ε-optimal) strategy of player 1 in $\Gamma\left(p, \ell^{2} m\right)$ and let σ^{*} be the strategy in $\Gamma\left(q_{0}\right)$ defined as follows. Set $h[i, t]=$ $z_{n_{i}+1}^{*}, i_{n_{i}+1}, j_{n_{i}+1}, \ldots, z_{n_{i}+t}^{*}, i_{n_{i}+t}, j_{n_{i}+t}$, and $h[i]=h\left[i, \ell^{2} m\right]$. In stages $\bar{n}_{i}<$ $t \leq n_{i+1}(i \geq 0)$ and in all stages on $T>1$, the strategy σ^{*} plays a fixed action $i^{*} \in I$. On $T=1$, in stage $n_{i}+t$ with $1 \leq t \leq \ell^{2} m$ the strategy σ^{*} plays the mixed action $\sigma\left(h[1], \ldots, h[i-1], h[i, t-1], z_{n_{i}+t}^{*}\right)$ (where $h[i, 0]$ stand for the empty string).

[^5]The definition of σ^{*}, together with the ε-optimality of σ and the properties of the stochastic process $z^{*}[1], z^{*}[2], \ldots$, implies that for all sufficiently large $i>1$ and every strategy τ of player 2 we have

$$
E_{\sigma^{*}, \tau} \sum_{j=1}^{i} \sum_{n_{j}<t \leq \bar{n}_{j}} g_{t}^{*} \geq i \ell^{2} m(\bar{v}(p)-2 \varepsilon-\operatorname{Pr}(T>1))
$$

On $z^{*}[j]=z[j]$, we have $\sum_{n_{j}<t \leq \bar{n}_{j}} g_{t}^{*}=\sum_{n_{j}<t \leq \bar{n}_{j}} g_{t}$. Therefore,

$$
E_{\sigma^{*}, \tau} \sum_{j=1}^{i} \sum_{n_{j}<t \leq \bar{n}_{j}} g_{t} \geq i \ell^{2} m(\bar{v}(p)-4 \varepsilon)
$$

and therefore, as the density of the set of stages $\cup_{i}\left\{t: \bar{n}_{i-1}<t \leq n_{i}\right\}$ is $\ell /\left(\ell+\ell^{2}\right)<\varepsilon$, we deduce that σ^{*} guarantees $\bar{v}(p)-5 \varepsilon$ and therefore player 1 can guarantee $\bar{v}(p)$.

Respectively, if τ is an ε-optimal strategy of player 2 in the game $\Gamma\left(p, \ell^{2} m\right)$, we define the strategy $\tau^{*}\left(=\tau^{*}[\ell, \tau, \bar{\ell}]\right)$ of player 2 in $\Gamma\left(q_{0}\right)$ as follows. Set $h^{2}[i, t]=i_{n_{i}+1}, j_{n_{i}+1}, \ldots, i_{n_{i}+t}, j_{n_{i}+t}$, and $h^{2}[i]=h^{2}\left[i, \ell^{2} m\right]$. In stages $t \leq \bar{n}_{1}$ and in stages $\bar{n}_{i}+t$ with $1 \leq t \leq \ell m$ the strategy τ^{*} plays a fixed action $j^{*} \in J$. In stage $n_{i}+t$ with $i>1$ and $1 \leq t \leq \ell^{2} m$ the strategy τ^{*} plays the action $\tau\left(h^{2}[2], \ldots, h^{2}[i-1], h^{2}[i, t-1]\right)$ (where $h^{2}[n, 0]$ stands for the empty string).

The definition of τ^{*}, together with the ε-optimality of τ and the properties of the stochastic process $z^{*}[1], z^{*}[2], \ldots$ and $z[1], z[2], \ldots$, implies that τ^{*} guarantees $\underline{v}(p)+5 \varepsilon$ and therefore player 2 can guarantee $\underline{v}(p) .{ }^{6}$

Corollary 2 The game $\Gamma\left(q_{0}\right)$ has a value $v\left(\Gamma\left(q_{0}\right)\right)=\underline{v}(p)=\bar{v}(p)$.
Lemma 4 Player 2 has an optimal strategy.
Proof. Recall that the 5ε-optimal strategy τ^{*} appearing in the proof of Lemma 3 depends on the positive integer ℓ, the strategy τ of player 2 in $\Gamma\left(p, \ell^{2} m\right)$, and the auxiliary nonnegative integer $\bar{\ell}$.

Fix a sequence $\ell_{j} \uparrow \infty$ with $v\left(p, \ell_{j}^{2} m\right)<\underline{v}\left(q_{0}\right)+1 / j$ and strategies τ_{j} of player 2 that are $1 / j$-optimal in $\Gamma\left(p, \ell_{j}^{2} m\right)$. Let $d_{j} \geq j$ be a sequence of

[^6]positive integers such that for every strategy σ_{j} of player 1 in $\Gamma\left(p, \ell_{j}^{2} m\right)$ and every $d \geq d_{j}$ we have
$$
\left.E_{\sigma_{j}, \tau_{j}}^{p} \sum_{s=1}^{d} G^{k}(a(s), b(s))\right) \leq d v\left(p, \ell_{j}^{2} m\right)+d / j
$$

Let $N_{0}=0, N_{j}-N_{j-1}=\bar{d}_{j}\left(\ell_{j}^{2}+\ell_{j}\right) m$ where $\bar{d}_{j}>d_{j}$ is an integer, and $(j-1) d_{j} \ell_{j}^{2} m \leq N_{j-1}$. E.g., choose integers $\bar{d}_{j} \geq d_{j}+j d_{j+1} m \ell_{j+1}^{2} / \ell_{j}^{2}$ and let $N_{0}=0$ and $N_{j}=N_{j-1}+\bar{d}_{j}\left(\ell_{j}^{2}+\ell_{j}\right) m$.

By setting $\bar{n}_{0}^{j}=0, \bar{n}_{i}^{j}=N_{j-1}+i\left(\ell_{j}+\ell_{j}^{2}\right)$ for $i \geq 1, n_{1}^{j}=N_{j-1}+\ell_{j} m$, and $n_{i}^{j}=\bar{n}_{i}^{j}-\ell_{j}^{2} m$, we construct strategies $\tau^{*}[j]=\tau^{*}\left[\ell_{j}, \tau_{j}, \bar{\ell}_{j}=N_{j-1}+\ell_{j} m\right]$ such that if τ^{*} is the strategy of player 2 that follows $\tau^{*}[j]$ in stages $N_{j-1}<t \leq N_{j}$ we have for every $N_{j-1}+d_{j}\left(\ell_{j}^{2}+\ell_{j}\right) m<T \leq N_{j}$,

$$
E_{\sigma, \tau^{*}} \sum_{t=N_{j-1}+1}^{T} g_{t} \leq\left(T-N_{j-1}\right)(\underline{v}+2 / j)
$$

and therefore for every $N_{j-1}<T \leq N_{j}$ we have

$$
\left.E_{\sigma, \tau^{*}} \sum_{t=1}^{T} g_{t} \leq T \underline{v}+\sum_{i<j}\left(N_{i}-N_{i-1}\right) 2 / i\right)+\left(T-N_{j-1}\right) 2 / j+d_{j}\left(\ell_{j}^{2}+\ell_{j}\right)
$$

For every $\varepsilon>0$ there is j_{0} such that for $j \geq j_{0}$ we have $\frac{1}{N_{j-1}} \sum_{i<j}\left(N_{i}-\right.$ $\left.\left.N_{i-1}\right) 2 / i\right)<\varepsilon, 2 / j<\varepsilon$, and $\frac{1}{N_{j-1}} d_{j}\left(\ell_{j}^{2}+\ell_{j}\right)<\varepsilon$. Thus for $T>N_{j_{0}}$ we have

$$
E_{\sigma, \tau^{*}} \frac{1}{T} \sum_{t=1}^{T} g_{t} \leq \underline{v}+3 \varepsilon
$$

and therefore τ^{*} is an optimal strategy of player 2 .
Lemma 5 Player 1 has an optimal strategy.
Proof. By [1], for every ℓ there exists $p(0, \ell), \ldots, p(|K|, \ell) \in \Delta(K)$ and a probability vector $\alpha(0, \ell), \ldots, \alpha(|K|, \ell)$ (i.e., $\alpha(i, \ell) \geq 0$ and $\sum_{i=0}^{|K|} \alpha(i, \ell)=1$) such that $\sum_{i=0}^{|K|} \alpha(i, \ell) p(i, \ell)=p$ and $v\left(p, \ell^{2} m\right)=\sum_{i=0}^{|K|} \alpha(i, \ell) u_{\ell}(p(i, \ell))$ where $u_{\ell}(q)$ is the max min of $G_{\ell}^{q}:=\Gamma_{1}\left(q, \ell^{2} m\right)$ where player 1 is maximizing over all nonseparating strategies in G_{ℓ}^{q}, and player 2 minimizes over all strategies.

Let $\ell_{j} \uparrow \infty$ such that $\lim _{j \rightarrow \infty} v\left(p, \ell_{j}^{2} m\right)=\limsup \operatorname{sum}_{\ell \rightarrow \infty} v\left(p, \ell^{2} m\right)$, and the limits $\lim _{j \rightarrow \infty} \alpha\left(i, \ell_{j}\right), \lim _{j \rightarrow \infty} p\left(i, \ell_{j}\right)$ and $\lim _{j \rightarrow \infty} u_{\ell_{j}}\left(p\left(i, \ell_{j}\right)\right)$ exist and equal $\alpha(i), p(i)$ and $u(i)$ respectively. Then

$$
\limsup _{\ell \rightarrow \infty} v\left(p, \ell^{2} m\right)=\sum_{i=0}^{|K|} \alpha(i) u(i)
$$

Let $\bar{p}\left(i, \ell_{j}\right)[k]=p\left(i, \ell_{j}\right)[k] / \sum_{k \in S(p(i))} p\left(i, \ell_{j}\right)[k]$ if $k \in S(p(i))$, and $\bar{p}\left(i, \ell_{j}\right)[k]=$ 0 if $k \notin S(p(i))$. Note that $\bar{p}\left(i, \ell_{j}\right) \rightarrow_{j \rightarrow \infty} p(i)$.

By the definition of a nonseparating strategy it follows that a nonseparating strategy in $\Gamma_{1}(q, \ell)$ is a nonseparating strategy in $\Gamma_{1}\left(q^{\prime}, \ell\right)$ whenever the support of q^{\prime} is a subset of the support of q. Therefore, $u(i) \leq$ $\liminf _{j \rightarrow \infty} u_{\ell_{j}}\left(\bar{p}\left(i, \ell_{j}\right)\right)=\liminf _{j \rightarrow \infty} u_{\ell_{j}}(p(i))$. Let $\theta_{i} \rightarrow_{i \rightarrow \infty} 0$ with $u_{\ell_{j}}(p(i))>$ $u(i)-\theta_{i}$.

By possibly replacing the sequence ℓ_{j} by another sequence where the j-th element of the original sequence, ℓ_{j}, repeats itself L_{j} (e.g., ℓ_{j+1}^{2}) times, we may assume in addition that $\ell_{j+1}^{2} / \sum_{i \leq j} \ell_{i}^{2} \rightarrow_{j \rightarrow \infty} 0$.

Let $\sigma^{j i}$ be a nonseparating optimal strategy of player 1 in the game $\Gamma_{1}\left(p(i), \ell_{j}^{2} m\right)$. Set $\bar{n}_{j}=\sum_{r \leq j}\left(\ell_{r}^{2}+\ell_{r}\right) m$ and $n_{j}=\bar{n}_{j}-\ell_{j}^{2} m$.

We couple the process $\left(z_{t}\right)_{t}$ with a process $\left(z_{t}^{*}\right)_{t}$ that satisfies conditions i)-v) of Lemma 1. Player 1 can construct such a process $\left(z_{t}^{*}\right)_{t}$ as z_{t}^{*} is a function of the random variables X, X_{1}, Y_{1}, \ldots and z_{1}, \ldots, z_{t}.

Define the strategy σ of player 1 as follows. Let $\beta(k, i):=p(i)[k] \alpha(i) / p(k)$ for $k \in K$ with $p(k)>0$. Note that $\sum_{i} \beta(k, i)=1$ for every k, and $\alpha(i)=$ $\sum_{k} p(k) \beta(k, i)$. Conditional on $z_{N_{T}+1} \in S(k)$, choose i with probability $\beta(k, i)$ and in stages $n_{j}<t \leq \bar{n}_{j}$ with $j \geq T$ and $z_{n_{j}+1}^{*}=z_{n_{j}+1}$ (equivalently, $\left.z^{*}[j]=z[j]\right)$ play according to $\sigma^{i j}$ using the states of the process $z[j]\left(=z^{*}[j]\right)$, i.e., by setting $h[j, t]=z_{n_{j}+1}, i_{n_{j}+1}, j_{n_{j}+1}, \ldots, i_{n_{j}+t-1}, j_{n_{j}+t-1}, z_{n_{j}+t}$,

$$
\sigma\left(z_{1}, \ldots, z_{n_{j}+t}\right)=\sigma^{i j}(h[j, t])
$$

In all other cases, σ plays a fixed ${ }^{7}$ action i^{*}, i.e., in stages $t \leq \bar{n}_{T}$ and in stages $\bar{n}_{j-1}<t \leq n_{j}$ as well as in stages $n_{j}<t \leq \bar{n}_{j}$ with $z^{*}[j]=*[j] \sigma$ plays a fixed ${ }^{8}$ action i^{*}.

The conditional probability that $z^{*}[j]=z[j]$, given $T \leq j$, is $1-\delta_{j}$. Therefore, it follows from the definition of σ that for every strategy τ of

[^7]player 2 and every j we have on $T \leq j$
\[

$$
\begin{aligned}
E_{\sigma, \tau}\left(\sum_{t=1}^{\ell_{j}^{2} m} g_{n_{j}+t} \mid T\right) & \geq \ell_{j}^{2} m \sum_{i} \alpha(i) u_{\ell_{j}}(p(i))-\ell_{j}^{2} m \delta_{j} \\
& \geq \ell_{j}^{2} m \sum_{i} \alpha(i) u(i)-\ell_{j}^{2} m\left(\theta_{j}+\delta_{j}\right)
\end{aligned}
$$
\]

As $P(T>j)=2 \varepsilon_{j}$, we have

$$
E_{\sigma, \tau} \sum_{t=1}^{\ell_{j}^{2} m} g_{n_{j}+t} \geq \ell_{j}^{2} m \bar{v}(p)-\ell_{j}^{2} m\left(\theta_{j}+2 \varepsilon_{j}+\delta_{j}\right)
$$

and thus for $\bar{n}_{j}<n \leq \bar{n}_{j+1}$ we have

$$
E_{\sigma, \tau} \sum_{t=1}^{n} g_{t} \geq n \bar{v}(p)-\sum_{s \leq j} \ell_{s}^{2} m\left(\theta_{s}+2 \varepsilon_{s-1}+\delta_{s}+1 / \ell_{s}\right)-\left(n-\bar{n}_{j}\right)
$$

As $\left(\theta_{s}+\varepsilon_{s-1}+\delta_{s}+1 / \ell_{s}\right) \rightarrow_{s \rightarrow \infty} 0$ we deduce that $\sum_{s \leq j} \ell_{s}^{2} m\left(\theta_{s}+\varepsilon_{s}+\right.$ $\left.\delta_{s}\right) / \bar{n}_{j} \rightarrow_{j \rightarrow \infty} 0$. In addition, $\left(\bar{n}_{j+1}-\bar{n}_{j}\right) / \bar{n}_{j} \rightarrow_{j \rightarrow \infty} 0$. Thus for every $\varepsilon>0$ there is N sufficiently large such that for every $n \geq N$ and for every strategy τ of player 2 , we have

$$
E_{\sigma, \tau} \frac{1}{n} \sum_{t=1}^{n} g_{t} \geq \bar{v}(p)-\varepsilon .
$$

5 Markov chain games with incomplete information on one side and signals

The game model Γ with signals is described by the 7 -tuple

$$
\left\langle M, Q, q_{0}, I, J, g, R\right\rangle
$$

where $\left\langle M, Q, q_{0}, I, J, g\right\rangle$ is as in the model without signals and observable actions and $R=\left(R_{i, j}^{z}\right)_{z, i, j}$ describes the distribution of signals as follows. For every $(z, i, j) \in M \times I \times J, R_{i, j}^{z}$ is a probability distribution over $S_{1} \times S_{2}$.

Following the play z_{t}, i_{t}, j_{t} at stage t, a signal $s_{t}=\left(s_{t}^{1}, s_{t}^{2}\right) \in S_{1} \times S_{2}$ is chosen by nature with conditional probability, given the past $z_{1}, i_{1}, j_{1}, \ldots, z_{t}, i_{t}, j_{t}$, that equals $R_{i_{t}, j_{t}}^{z_{t}}$, and following the play at stage t player 1 observes s_{t}^{1} and z_{t+1} and player 2 observes s_{t}^{2}.

Assume that for every $z \in M$ player 1 has a mixed action $x_{z}^{*} \in \Delta(I)$ such that for every $j \in J$ the distribution of the signal s_{2} is independent of z; i.e., for every $j \in J$ the marginals on S_{2} of $\sum_{i} x_{z}^{*}(i) R_{i, j}^{z}$ are constant as a function of z.

Define m and the games $\Gamma(p, \ell)$ as in the basic model but with the natural addition of the signals. Let $v(p, \ell)$ be the value of $\Gamma(p, \ell)$. Set $\bar{v}=\lim \sup _{\ell \rightarrow \infty} v(p, \ell m)$ and $\underline{v}=\liminf _{\ell \rightarrow \infty} v(p, \ell m)$.

Let A and B denote the pure strategies of player 1 and player 2 respectively in $\Gamma_{1}(p, \ell m)$. A pure strategy $a \in A$ of player 1 in $\Gamma_{1}(p, \ell m)$ is a sequence of functions $\left(a_{t}\right)_{1 \leq t \leq \ell m}$ where $a_{t}:\left(M \times S_{1}\right)^{t-1} \times M \rightarrow I$. A pure strategy $b \in B$ of player 2 in $\Gamma_{1}(p, \ell m)$ is a sequence of functions $\left(b_{t}\right)_{1 \leq t \leq \ell m}$ where $b_{t}:\left(S_{2}\right)^{t-1} \rightarrow J$. A triple $(x, k, b) \in \Delta(A) \times K \times B$ induces a probability distribution, denoted $s^{2}(x, k, b)$, on the signal in $S_{2}^{\ell m}$ to player 2 in $\Gamma_{1}(p, \ell m)$. For every $q \in \Delta(K)$ we define $N S(q)$ as the set of nonseparating strategies of player 1 in $\Gamma_{1}(p, \ell m)$, i.e., $x \in N S(q)$ iff for every $b \in B$ the distribution $s^{2}(x, k, b)$ is independent across all k with $q(k)>0$.

Theorem 2 The game Γ has a value and both players have optimal strategies. The limit of $v(p, \ell m)$ as $\ell \rightarrow \infty$ exists and equals the value of Γ.

Proof. The proof that player 1 has a strategy σ^{*} that guarantees $\bar{v}-\varepsilon$ for every $\varepsilon>0$ is identical to the proof (in the basic model) that player 1 has an optimal strategy.

Next, we prove that player 2 can guarantee \underline{v}. Let γ_{n}, or ε for short, ${ }^{9}$ be a positive number with $0<\varepsilon<1 / 2$, and let ℓ_{n}, or ℓ for short, be a sufficiently large positive integer such that 1) for every $k \in K$ and $z, z^{\prime} \in S(k)$ we have $\left.Q_{z, z^{\prime}}^{\ell m}>(1-\varepsilon) k\left(z^{\prime}\right), 2\right) v(p, \ell m)<\underline{v}+\varepsilon$, and 3) for every $k \in K$ and $z \in S(k)$ $\operatorname{Pr}\left(z_{\ell m+1}=z\right) \geq(1-\varepsilon) p(k) k(z)$.

Let τ be an optimal strategy of player 2 in $\Gamma(p, \ell m)$. Fix a positive integer j_{n} and construct the following strategy $\tau^{*}[n]$, or τ^{*} for short, of player 2 in Γ. Set $N_{i}=\frac{i(i+1)}{2} \ell m$ and $n_{i j}=N_{i}+(j-1) \ell m$ and $\bar{n}_{i j}=n_{i j}+j \ell m$. Let B_{i}^{j} be the block of ℓm consecutive stages $n_{i j}<t \leq \bar{n}_{i j}$. For every $j \geq j_{n}$ consider the

[^8]sequence of blocks $B_{j}^{j}, B_{j+1}^{j}, \ldots$, as stages of the repeated game $\Gamma(p, \ell m)$ and play in these blocks according to the strategy τ; formally, if \hat{s}_{i}^{j} is the sequence of signals to player 2 in stages $n_{i j}<t \leq \bar{n}_{i j}$, then play in stages $n_{i j}<t \leq \bar{n}_{i j}$ the "stage" strategy $\tau\left(\hat{s}_{j}^{j}, \ldots, \hat{s}_{i-1}^{j}\right)$. (In stages $t \notin \cup_{i \geq j} B_{i}^{j} \tau^{*}$ plays a fixed action.) Note that for every $j, n_{i+1, j}-\bar{n}_{i j}=i \ell m$, and therefore there is an event C_{j} with probability $\geq 1-\varepsilon-\frac{\varepsilon^{j}}{1-\varepsilon}>1-3 \varepsilon$ such that on C_{j}^{n}, the stochastic process $z[j, j], z[j+1, j], \ldots, z[i, j], \ldots$, where $z[i, j]:=z_{n_{i j}+1}, \ldots, z_{\bar{n}_{i j}}(i \geq j)$, is a mixture of iid (sub-) stochastic processes of length ℓm : with probability $p(k)$ the distribution $z[i, j]$ is the distribution of a Markov chain of length ℓm with initial distribution $k(z)$ and transition matrix Q.

It follows that $\tau^{*}\left(=\tau^{*}[n]\right)$ guarantees $\underline{v}+2 \varepsilon+3 \varepsilon+\varepsilon$. Indeed, the definition of τ^{*} implies that for every sufficiently large $i^{\prime} \geq j$ we have

$$
E_{\sigma, \tau^{*}}\left(\sum_{i=j}^{i^{\prime}} \sum_{t \in B_{i}^{j}} g_{t} \mid C_{j}\right) \leq\left(i^{\prime}-j+1\right) \ell m(\underline{v}+2 \varepsilon)
$$

and therefore

$$
E_{\sigma, \tau^{*}} \sum_{i=j}^{i^{\prime}} \sum_{t \in B_{i}^{j}} g_{t} \leq\left(i^{\prime}-j+1\right) \ell m(\underline{v}+2 \varepsilon+3 \varepsilon)
$$

Thus, if $i(T)$ is the minimal i such that $N_{i} \geq T$, then for sufficiently large T we have

$$
E_{\sigma, \tau^{*}} \sum_{i=j}^{i(T)} \sum_{t \in B_{i}^{j}} g_{t} \leq(i(T)-j+1) \ell m(\underline{v}+2 \varepsilon+3 \varepsilon)
$$

and therefore $E_{\sigma, \tau^{*}} \sum_{t=1}^{T} g_{t}$ is $\leq E_{\sigma, \tau^{*}} \sum_{j=j_{n}}^{i(T)} \sum_{i=j}^{i(T)} \sum_{t \in B_{i}^{j}} g_{t}$, which is less or equal $\frac{i(T)(i(T)+1)}{2} \ell m(\underline{v}+2 \varepsilon+3 \varepsilon)+j_{n} i(T) \ell m$. As $i(T)=o(T)$ and $\frac{i(T)(i(T)+1)}{2} \ell m-$ $T<i(T) \ell m$, the strategy τ^{*} guarantees $\underline{v}+6 \varepsilon$.

Choose a sequence $0<\gamma_{n} \rightarrow 0$ and a corresponding sequence $\ell_{n} \uparrow \infty$. By properly choosing an increasing sequence $T_{n}\left(T_{0}=0\right)$ and a sequence j_{n} with $\frac{j_{n}\left(j_{n}+1\right)}{2} \ell_{n} m+\left(j_{n}-1\right) \ell_{n} m \geq T_{n-1}$ and playing in stages $T_{n-1}<t \leq T_{n}$ the strategy $\tau^{*}[n]$ we construct an optimal strategy of player 2 .

Remarks

1. The value is independent of the signaling to player 1.
2. If the model is modified so that the state process is a mixture of Markov chains the results about the existence of a value and optimal strategies for the uninformed player remain intact. However, the informed player need not have an optimal strategy.

References

[1] Aumann, R. J. and Maschler, M. (1995) Repeated Games with Incomplete Information, MIT Press.
[2] Renault, J. (2004) The value of Markov chain games with lack of information on one side. Mathematics of Operations Research, forthcoming.

[^0]: Feldman Building, Givat-Ram, 91904 Jerusalem, Israel
 PHONE: [972]-2-6584135 FAX: [972]-2-6513681
 E-MAIL: ratio@math.huji.ac.il
 URL: http://www.ratio.huji.ac.il/

[^1]: ${ }^{1}$ Institute of Mathematics and Center for the Study of Rationality, Hebrew University, 91904 Jerusalem, Israel. aneyman@math.huji.ac.il www.ratio.huji.ac.il/neyman.
 This research was supported in part by Israeli Science Foundation grants 382/98 and $263 / 03$, and by the Zvi Hermann Shapira Research Fund.

[^2]: ${ }^{1}$ I would have hoped that a reference to the theory of repeated games with incomplete information accompanied by a short sketch would have sufficed. However, as one expert failed to realize the derivation, it may be helpful here to put it in writing.

[^3]: ${ }^{2}$ The set K is defined here independently of q_{0}. For a given initial distribution q_{0} there may exist ergodic classes $k \in K$ such that $P\left(z_{n m+1} \in S(k)\right)=0$. In that case we can have carried out our analysis by means of the repeated game with incomplete information where the set of states equals $\left\{k \in K: \exists n\right.$ s.t. $\left.P\left(z_{n m+1} \in S(k)\right)>0\right\}$.
 ${ }^{3}$ The case of imperfect monitoring where each player observes a signal that depends stochastically on the current state and actions is covered in Section 5.

[^4]: ${ }^{4}$ As each $k \in K$ is invariant under $Q^{m}, \min _{k \in K, y, z \in S(k)} Q^{j m}(y, z) / k(z)$ is monotonic nondecreasing in j and thus the inf appearing in the definition of $\delta(\ell)$ is in fact redundant.

[^5]: ${ }^{5}$ The dependence on $\bar{\ell}$ enables us to combine the constructed ε-optimal strategies of player 2 into an optimal strategy of player 2.

[^6]: ${ }^{6}$ An alternative construction of a strategy σ^{*} of player 1 that guarantees $\bar{v}(p)-\varepsilon$ is provided later in this section, and an alternative construction of a strategy τ^{*} that guarantees $\underline{v}(p)+\varepsilon$ is given in Section 5 .

[^7]: ${ }^{7}$ In the model with signals this is replaced by the mixed action $x_{z_{t}}^{*}$.
 ${ }^{8}$ Same comment as in footnote 7 .

[^8]: ${ }^{9}$ The dependence on n enables us to combine the ε-optimal strategies into an optimal strategy.

