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Abstract

The existence of a value and optimal strategies is proved for the class of two-
person repeated games where the state follows a Markov chain independently
of players’ actions and at the beginning of each stage only player one is
informed about the state. The results apply to the case of standard signaling
where players’ stage actions are observable, as well as to the model with
general signals provided that player one has a nonrevealing repeated game
strategy. The proofs reduce the analysis of these repeated games to that of
classical repeated games with incomplete information on one side.



1 Introduction

The class of two-person zero-sum repeated games where the state follows a
Markov chain independently of players’ actions, and at the beginning of each
stage only player 1 is informed about the state, and players’ stage actions are
observable, is termed in [2] Markov chain games with incomplete information
on one side.

The play of a Markov chain game with incomplete information on one
side proceeds as follows. Nature chooses the initial state z1 in the finite set
of states M according to an initial probability q0. At stage t player 1 observes
the current state zt ∈ M and chooses an action it in the finite set of actions I
and (simultaneously) player 2 (who does not observe the state zt) chooses an
action jt in the finite set of actions J . Both players observe the action pair
(it, jt). The next state zt+1 depends stochastically on zt only; i.e., it depends
neither on t, nor current or past actions, nor on past states. Thus the states
follow a Markov chain with initial distribution q0 and transition matrix Q
on M . The payoff at stage t is a function g of the current state zt and the
actions it and jt of the players.

Formally, the game Γ is defined by the 6-tuple 〈M, Q, q0, I, J, g〉 where
M is the finite set of states, Q is the transition matrix, q0 is the initial
probability of z1 ∈ M , I and J are the state-independent action sets of
player 1 and player 2 respectively, and g : M × I ×J → R is the stage payoff
function.

The transition matrix Q and the initial probability q0 define a stochastic
process on sequences of states by P (z1 = z) = q0(z) and P (zt+1 = z |
z1, . . . , zt) = Qzt,z.

A pure, respectively behavioral, strategy σ of player 1 in the game Γ =
〈M, Q, q0, I, J, g〉, or Γ(q0) for short, is a sequence of functions σt : (M × I ×
J)t−1 × M → I (σt : (z1, i1, j1, . . . , it−1, jt−1, zt) 7→ I), respectively 7→ ∆(I)
(where for a finite set D we denote by ∆(D) all probability distributions on
D). A pure, respectively behavioral, strategy τ of player 2 is a sequence of
functions τt : (I × J)t−1 → J , respectively 7→ ∆(J).

A pair σ, τ of pure (mixed, or behavioral) strategies (together with the ini-
tial distribution q0) induces a stochastic process with values z1, i1, j1, . . . , zt, it,
jt, . . . in (M×I×J)∞, and thus a stochastic stream of payoffs gt := g(zt, it, jt).

A strategy σ∗ (respectively, τ ∗) of player 1 (respectively, 2) guarantees v if
for all sufficiently large n, Eq0

σ∗,τ
1
n

∑n
t=1 gt ≥ v (respectively, Eq0

σ,τ∗
1
n

∑n
t=1 gt ≤

v) for every strategy τ (respectively, σ) of player 2 (respectively, 1). We say
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that player 1 (respectively, 2) can guarantee v in Γ(q0) if for every ε > 0 there
is a strategy of player 1 (respectively, 2) that guarantees v − ε (respectively,
v + ε).

The game has a value v if each player can guarantee v. A strategy of
player 1 (respectively, 2) that guarantees v − ε (respectively, v + ε) is called
an ε-optimal strategy, and a strategy that is ε-optimal for every ε > 0 is
called an optimal strategy.

Renault [2] proved that the game Γ(q0) has a value v(q0) and player 2
has an optimal strategy. The present paper 1) shows that Renault’s result
follows1 from the classical results of repeated games with incomplete infor-
mation [1]; and 2) proves the existence of an optimal strategy for player 1.
Thus,

Theorem 1 The game Γ(q0) has a value v(Γ(q0)) and both players have
optimal strategies.

In addition, these results are extended in the present paper to the model
with signals.

Section 2 introduces a class of auxiliary repeated games with incomplete
information that serves in the proof of Theorem 1 as well as in approximat-
ing the value of Γ(q0). Section 3 couples the Markov chain with stochastic
processes that consist of essentially independent blocks of Markov chains.
Section 4 contains the proof of Theorem 1.

Section 5 extends the model and the results to Markov games with incom-
plete information on on side and signals, where players’ actions are unobserv-
able and each player only observes a signal that depends stochastically on the
current state and actions. The proof for the model with signals requires only
minor modification. In order to simplify the notation and the exposition,
albeit at the cost of some repetition, we introduce the games with signals
only after completing the proof of Theorem 1.

2 The auxiliary repeated games Γ(p, `)

The analysis of the game Γ(q0) is by means of auxiliary repeated games
with incomplete information on one side, with a finite state space K, initial

1I would have hoped that a reference to the theory of repeated games with incomplete
information accompanied by a short sketch would have sufficed. However, as one expert
failed to realize the derivation, it may be helpful here to put it in writing.
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probability p, and stage game Gk. The support of a probability distribution
k ∈ ∆(M) is denoted S(k).

Let m be a positive integer such that all ergodic classes of the Markov
chain with state space M and transition matrix Qm are aperiodic. In what
follows Qn

z,z′ stands for the more explicit (Qn)z,z′ . Let K ⊂ ∆(M) be the set
of all2 invariant distributions of an ergodic class of Qm. Obviously, every two
distinct elements of K have disjoint support. For every k ∈ K, the subspace
RS(k) of RM is invariant under the linear transformation Qm and therefore
the event znm+1 ∈ S(k) is a subset of the event z(n+1)m+1 ∈ S(k). Therefore,
for every k ∈ K, P (znm+1 ∈ S(k)) is monotonic nondecreasing in n. Define
p ∈ ∆(K) by p(k) = limn→∞ P (znm+1 ∈ S(k)).

The stage game Gk,`, or Gk for short, is a game in extensive form. More
explicitly, it is an `-stage game with incomplete information on one side. Na-
ture chooses r = (z1 = z, . . . , z`) ∈ M ` where z ∈ M is chosen according to
the probability k, and z1 = z, . . . , z` follow the law of the Markov chain with
transition matrix Q; before player 1 takes his action at stage t ≤ ` he is in-
formed of zt, but player 2 is not informed of zt. Stage actions are observable.3

Note that Gk is a finite game with finite strategy sets A for player 1 and B for
player 2. An element a ∈ A, respectively, b ∈ B, is a sequence of functions
at, respectively, bt, 1 ≤ t ≤ `, where at : (z1, i1, j1, . . . , it−1, jt−1, zt) 7→ I,
respectively, bt : (i1, j1, . . . , it−1, jt−1) 7→ J . The triple (r, a, b) defines a play
(z1, i1, j1, . . . , z`, i`, j`). Therefore, the triple (k, a, b) induces a probability
distribution on the plays (z1, i1, j1, . . . , z`, i`, j`). The payoff of the game Gk

equals Gk(a, b) = Ek
a,b

1
`

∑`
t=1 g(zt, it, jt).

2.1 The game Γ(p, `)

Nature chooses k ∈ K with probability p(k). Player 1 is informed of k;
player 2 is not. The play proceeds in stages. In stage n, nature chooses
r = (z1, . . . , z`) ∈ M ` with probability k(z1)

∏
1≤t<` Qzt,zt+1 , player 1 chooses

a ∈ A, and player 2 chooses b ∈ B. The payoff to player 1 is Gk(a, b).
The signal s2 to player 2 is the function s2 that assigns to the triple

2The set K is defined here independently of q0. For a given initial distribution q0 there
may exist ergodic classes k ∈ K such that P (znm+1 ∈ S(k)) = 0. In that case we can
have carried out our analysis by means of the repeated game with incomplete information
where the set of states equals {k ∈ K : ∃n s.t. P (znm+1 ∈ S(k)) > 0}.

3The case of imperfect monitoring where each player observes a signal that depends
stochastically on the current state and actions is covered in Section 5.
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(r, a, b) the sequence of realized stage actions i1, j1, . . . , i`, j`. The signal s1

to player 1 is the function s1 that assigns to the triple (r, a, b) the play
(z1, i1, j1, . . . , z`, i`, j`).

The value of Γ(p, `) exists by [1, Theorem C, p. 191], and is denoted
by v(p, `). Set v̄(p) := lim sup`→∞ v(p, `m) and v(p) := lim inf`→∞ v(p, `m).
Obviously v̄(p) ≥ v(p). We will show in Lemma 2 Section 4 that player 1
can guarantee v̄(p) and player 2 can guarantee v̄(p). Thus v̄(p) = v(p) is the
value of Γ(q0) (Corollary 2). Lemma 3, respectively Lemma 4, demonstrates
the existence of an optimal strategy of player 2, respectively, player 1.

3 Auxiliary coupled processes

An admissible pair of sequences is a pair of increasing sequences, (ni)i≥1 and
(n̄i)i≥1, with ni < n̄i < ni+1 and such that ni and n̄i are multiples of m. For
a given admissible pair of sequences and a stochastic process (xt) we use the
notation x[i] = (xni+1, . . . , xn̄i

).

3.1 A Coupling result

Let (ni)i≥1 and (n̄i)i≥1 be an admissible pair of sequences with (ni− n̄i−1)i>1

nondecreasing and with n1 sufficiently large so that for every k ∈ K and
z ∈ S(k) we have P (zn1+1 = z) ≥ p(k)k(z)/2 (and thus P (zn1+1 ∈ S(k)) ≥
p(k)/2). Let X, X1, Y1, X2, Y2 . . . be a sequence of iid random variables that
are uniformly distributed on [0, 1] and so that the process (zt)t (that follows
the Markov chain with initial distribution q0 and transition matrix Q) and
the random variable (X, X1, Y1, . . .) are independent. Let Fi denote the σ-
algebra of events generated by X1, . . . , Xi and z1, . . . , zni+1.

For k ∈ K and z ∈ S(k) the event zni+1 = z is denoted Ai
kz. Let Ai

k be
the event that zni+1 ∈ S(k), i.e., Ai

k = ∪z∈S(k)A
i
kz, and Ai = ∪k∈KAi

k. As
P (Ai

kz) → p(k)k(z) and P (A1
kz) > p(k)k(z)/2 by assumption, there exists a

strictly decreasing sequence εj ↓ 0 such that P (Ai
kz) ≥ (1 − εi)p(k)k(z) for

every k ∈ K and 2ε1 < 1. Moreover, as each k ∈ K is invariant under Qm,

we can choose such a sequence for any ε1 > 1− infk∈K, z∈S(k)
P (A1

kz)

p(k)k(z)
and thus

we can assume that ε1 = ε1(n1) →n1→∞ 0.
A positive integer-valued random variable T such that for every i ≥ 1

the event {T = i} is Fi-measurable is called an (Fi)i-adapted stopping time.
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Define the (Fi)i-adapted stopping time T with T ≥ 1 by

T =

{
1 on zn1+1 = z ∈ S(k) and X1 ≤ (1−2ε1)p(k)k(z)

P (A1
kz)

i if T ≥ i > 1, zni+1 = z ∈ S(k) and Xi ≤ (2εi−1−2εi)p(k)

P (Ai
kz)−(1−2εi−1)p(k)k(z)

.

Lemma 1 i) ∀k ∈ K and ∀z ∈ S(k), Pr(zn
T

+1 = z | T ) = p(k)k(z) (and
thus Pr(zn

T
+1 ∈ S(k) | T ) = p(k));

ii) Conditional on zn
T

+1 ∈ S(k), for every fixed i ≥ 0 the process z[T + i]
is a Markov chain with initial probability k and transition Q;

iii) Pr(T ≤ i) = 1− 2εi.

Proof. For k ∈ K and z ∈ S(k) let Bi
kz denote the event that T ≤ i and

zni+1 = z ∈ S(k) and Bi
k := ∪z∈S(k)B

i
kz. It follows that P (B1

kz) = P (A1
kz)(1−

2ε1)p(k)k(z)/P (A1
kz) = (1 − 2ε1)p(k)k(z) and thus P (B1

k) =
∑

z∈S(k)(1 −
2ε1)p(k)k(z) = (1− 2ε1)p(k) and P (T = 1) =

∑
k∈K(1− 2ε1)p(k) = 1− 2ε1.

By induction on i it follows that P (Bi
kz) = (1 − 2εi)p(k)k(z) and P (T ≤

i) = 1 − 2εi; indeed, as the distribution k is invariant under Q we have
P (Ai

kz ∩Bi−1
k ) = P (Bi−1

k )k(z) = (1 − 2εi)p(k)k(z), and thus for i > 1

we have P (Bi
kz) = P (Bi−1

k )k(z) + P (Ai
kz \ Bi−1

k ) (2εi−1−2εi)p(k)k(z)

P (Ai
kz)−(1−2εi−1)p(k)k(z)

. As

P (Ai
kz \Bi−1

k ) = P (Ai
kz)− (1− 2εi−1)p(k)k(z) we deduce that P (Bi

kz) =
(1 − 2εi)p(k)k(z). In particular, P (zni+1 = z ∈ S(k) | T = i) = p(k)k(z).
Set Bi = ∪k∈KBi

k and note that P (Bi) = 1− 2εi. This completes the proof
of (i) and (iii).

As k is invariant under Qm we deduce that for every i ≥ 0 we have
Pr(znT+i+1 = z ∈ S(k) | znT +1 ∈ S(k)) = k(z), which proves (ii).

The next lemma couples the process (zt)t with a process (z∗t )t where the
states z∗t are elements of M∗ = M ∪ {∗} with ∗ /∈ M . Given i ≥ 1 we
denote by ∗[i] the sequence of ∗s of length n̄i − ni. Let δ > 0 be such
that for every sufficiently large positive integer j, for every k ∈ K, and
y, z ∈ S(k), we have Qjm(y, z) ≥ (1 − δj)k(z). Let δ : N → R+ be defined
by4 1 − δ(`) = infj≥` mink∈K,y,z∈S(k) Qjm(y, z)/k(z). Set `i = (ni − n̄i−1)/m
and δ(`im) = δi. Note that for sufficiently large `i we have δi ≤ δ`i . Let
Bi be the event Yi ≤ (1 − δi)k(z)/Q`im(y, z) where z = zni+1 ∈ S(k) and
y = zn̄i−1+1.

4As each k ∈ K is invariant under Qm, mink∈K,y,z∈S(k) Qjm(y, z)/k(z) is monotonic
nondecreasing in j and thus the inf appearing in the definition of δ(`) is in fact redundant.
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Lemma 2 There exists a stochastic process (z∗t )t with values z∗t ∈ M∗ such
that for ni < t ≤ n̄i the (auxiliary) state z∗t is a (deterministic) function of
z1, . . . , zt and X1, Y1, . . . , Xi, Yi such that

i) ∀n̄i−1 < t ≤ ni and ∀t ≤ nT , z∗t = ∗

ii) Everywhere, either z∗[i] = z[i] or z∗[i] = ∗[i]

iii) z∗[T ] = z[T ] and thus Pr(z∗nT +1 = z | T ) = p(k)k(z)

iv) Pr(z∗[T + i] = z[T + i] | T ) = 1− δ(`T+im) ≥ 1− δi

v) For i ≥ 1, conditional on T , z∗[T ], . . . , z∗[T + i−1], the process z[T + i]
on BT+i (and thus with probability = 1− δT+i) is a Markov chain with
initial probability k and transition Q, and on the complement of BT+i

(and thus with conditional probability = δT+i) it is ∗[T + i].

Proof. ∀n̄i−1 < t ≤ ni and ∀t ≤ nT , set z∗t = ∗; in particular, z[i] = ∗[i] for
i < T .

Define z∗[T ] = z[T ] and thus iii) holds, and for i > T set z∗[i] = z[i] on
Bi and z∗[i] = ∗[i] on the complement Bc

i of Bi. It follows that everywhere,
either z∗[i] = z[i] or z∗[i] = ∗[i] and thus ii) holds. For i ≥ 1 the condi-
tional probability that znT+i+1 = z given T and zn̄T+i−1+1 = y ∈ S(k) equals
Q`jm(y, z)(1− δj)k(z)/Q`jm(y, z) = (1− δj)k(z), where j = T + i. Note the
this conditional probability is independent of y. Therefore, the conditional
probability that z∗[T + i] = z[T + i] given T and zn̄T +1 ∈ S(k) equals 1− δj,
which proves iv) and v).

Corollary 1 There exists a stochastic process (z̄t)t with values z̄t ∈ M such
that for ni < t ≤ n̄i the (auxiliary) state z̄t is a (deterministic) function of
z1, . . . , zt and X1, Y1, . . . , Xi, Yi such that

1.1 The probability that z̄nT +1 = z equals p(k)k(z) for z ∈ S(k)

1.2 For i ≥ 1, conditional on T , z̄[T ], . . . , z̄[T + i− 1], the process z̄[T + i]
is a Markov chain with initial probability k and transition Q

1.3 Pr(z̄[T + i] = z[T + i]) ≥ 1− δi

6



Proof. Let k and z̄[k, i], k ∈ K and i ≥ 1, be independent random variables
such that Pr(k = k) = p(k) and each random variable z̄[k, i] is a Markov
chain of length n̄i − ni with initial distribution k and transition matrix Q.
W.l.o.g. we assume that k and z̄[k, i], k ∈ K and i ≥ 1, are deterministic
functions of X.

Set z̄t = zt for t ≤ nT and for n̄i < t ≤ ni+1. Define z̄[T + i] = z[T + i]
on z∗[T + i] = z[T + i], and z̄[T + i] = z[k, T + i] on z∗[T + i] = ∗[T + i] and
znT +1 ∈ S(k).

4 Existence of the value and optimal strate-

gies in Γ(q0)

Assume without loss of generality that all payoffs of the stage games g(z, i, j)
are in [0, 1].

Lemma 3 Player 1 can guarantee v̄(p) and Player 2 can guarantee v(p).

Proof. Note that for ` < `′ we have v(p, `′) ≥ v(p, `)`/`′ and therefore
v̄(p) = lim sup`→∞ v(p, `2m). Similarly, v(p) = lim inf`→∞ v(p, `2m). Fix
ε > 0. Let ` be sufficiently large with v(p, `2m) > v̄(p) − ε, respectively
v(p, `2m) < v(p) + ε, 1/` < ε, and so that δ(`m) < ε and Pr(z`m+1 = z) ≥
(1− ε)p(k)k(z) for every k ∈ K and z ∈ S(k).

Set n̄0 = 0, and for i ≥ 1, n̄i = i(` + `2)m + ¯̀ and ni = n̄i−1 + `m + ¯̀

where ¯̀is5 a nonnegative integer. Let (z∗t )t be the auxiliary stochastic process
obeying 1.1, 1.2, and 1.3 of Corollary 1. Define g∗t = g(z∗t , it, jt) (and recall
that gt = g(zt, it, jt)).

Let σ be a 1
`
-optimal (and thus an ε-optimal) strategy of player 1 in

Γ(p, `2m) and let σ∗ be the strategy in Γ(q0) defined as follows. Set h[i, t] =
z∗ni+1, ini+1, jni+1, . . . , z∗ni+t, ini+t, jni+t, and h[i] = h[i, `2m]. In stages n̄i <
t ≤ ni+1 (i ≥ 0) and in all stages on T > 1, the strategy σ∗ plays a fixed
action i∗ ∈ I. On T = 1, in stage ni + t with 1 ≤ t ≤ `2m the strategy
σ∗ plays the mixed action σ(h[1], . . . , h[i− 1], h[i, t− 1], z∗ni+t) (where h[i, 0]
stand for the empty string).

5The dependence on ¯̀ enables us to combine the constructed ε-optimal strategies of
player 2 into an optimal strategy of player 2.
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The definition of σ∗, together with the ε-optimality of σ and the properties
of the stochastic process z∗[1], z∗[2], . . ., implies that for all sufficiently large
i > 1 and every strategy τ of player 2 we have

Eσ∗,τ

i∑
j=1

∑
nj<t≤n̄j

g∗t ≥ i`2m(v̄(p)− 2ε− Pr(T > 1))

On z∗[j] = z[j], we have
∑

nj<t≤n̄j
g∗t =

∑
nj<t≤n̄j

gt. Therefore,

Eσ∗,τ

i∑
j=1

∑
nj<t≤n̄j

gt ≥ i`2m(v̄(p)− 4ε)

and therefore, as the density of the set of stages ∪i{t : n̄i−1 < t ≤ ni} is
`/(` + `2) < ε, we deduce that σ∗ guarantees v̄(p)− 5ε and therefore player
1 can guarantee v̄(p).

Respectively, if τ is an ε-optimal strategy of player 2 in the game Γ(p, `2m),
we define the strategy τ ∗ (= τ ∗[`, τ, ¯̀]) of player 2 in Γ(q0) as follows. Set
h2[i, t] = ini+1, jni+1, . . . , ini+t, jni+t, and h2[i] = h2[i, `2m]. In stages t ≤ n̄1

and in stages n̄i + t with 1 ≤ t ≤ `m the strategy τ ∗ plays a fixed action
j∗ ∈ J . In stage ni + t with i > 1 and 1 ≤ t ≤ `2m the strategy τ ∗ plays the
action τ(h2[2], . . . , h2[i− 1], h2[i, t− 1]) (where h2[n, 0] stands for the empty
string).

The definition of τ ∗, together with the ε-optimality of τ and the proper-
ties of the stochastic process z∗[1], z∗[2], . . . and z[1], z[2], . . ., implies that τ ∗

guarantees v(p) + 5ε and therefore player 2 can guarantee v(p).6

Corollary 2 The game Γ(q0) has a value v(Γ(q0)) = v(p) = v̄(p).

Lemma 4 Player 2 has an optimal strategy.

Proof. Recall that the 5ε-optimal strategy τ ∗ appearing in the proof of
Lemma 3 depends on the positive integer `, the strategy τ of player 2 in
Γ(p, `2m), and the auxiliary nonnegative integer ¯̀.

Fix a sequence `j ↑ ∞ with v(p, `2
jm) < v(q0) + 1/j and strategies τj

of player 2 that are 1/j-optimal in Γ(p, `2
jm). Let dj ≥ j be a sequence of

6An alternative construction of a strategy σ∗ of player 1 that guarantees v̄(p) − ε
is provided later in this section, and an alternative construction of a strategy τ∗ that
guarantees v(p) + ε is given in Section 5.
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positive integers such that for every strategy σj of player 1 in Γ(p, `2
jm) and

every d ≥ dj we have

Ep
σj ,τj

d∑
s=1

Gk(a(s), b(s))) ≤ dv(p, `2
jm) + d/j

Let N0 = 0, Nj − Nj−1 = d̄j(`
2
j + `j)m where d̄j > dj is an integer, and

(j − 1)dj`
2
jm ≤ Nj−1. E.g., choose integers d̄j ≥ dj + jdj+1m`2

j+1/`
2
j and let

N0 = 0 and Nj = Nj−1 + d̄j(`
2
j + `j)m.

By setting n̄j
0 = 0, n̄j

i = Nj−1 + i(`j + `2
j) for i ≥ 1, nj

1 = Nj−1 + `jm, and

nj
i = n̄j

i −`2
jm, we construct strategies τ ∗[j] = τ ∗[`j, τj, ¯̀

j = Nj−1 +`jm] such
that if τ ∗ is the strategy of player 2 that follows τ ∗[j] in stages Nj−1 < t ≤ Nj

we have for every Nj−1 + dj(`
2
j + `j)m < T ≤ Nj,

Eσ,τ∗

T∑
t=Nj−1+1

gt ≤ (T −Nj−1)(v + 2/j)

and therefore for every Nj−1 < T ≤ Nj we have

Eσ,τ∗

T∑
t=1

gt ≤ Tv +
∑
i<j

(Ni −Ni−1)2/i) + (T −Nj−1)2/j + dj(`
2
j + `j)

For every ε > 0 there is j0 such that for j ≥ j0 we have 1
Nj−1

∑
i<j(Ni −

Ni−1)2/i) < ε, 2/j < ε, and 1
Nj−1

dj(`
2
j + `j) < ε. Thus for T > Nj0 we have

Eσ,τ∗
1

T

T∑
t=1

gt ≤ v + 3ε

and therefore τ ∗ is an optimal strategy of player 2.

Lemma 5 Player 1 has an optimal strategy.

Proof. By [1], for every ` there exists p(0, `), . . . , p(|K|, `) ∈ ∆(K) and a

probability vector α(0, `), . . . , α(|K|, `) (i.e., α(i, `) ≥ 0 and
∑|K|

i=0 α(i, `) = 1)

such that
∑|K|

i=0 α(i, `)p(i, `) = p and v(p, `2m) =
∑|K|

i=0 α(i, `)u`(p(i, `)) where
u`(q) is the max min of Gq

` := Γ1(q, `
2m) where player 1 is maximizing over

all nonseparating strategies in Gq
` , and player 2 minimizes over all strategies.
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Let `j ↑ ∞ such that limj→∞ v(p, `2
jm) = lim sup`→∞ v(p, `2m), and the

limits limj→∞ α(i, `j), limj→∞ p(i, `j) and limj→∞ u`j
(p(i, `j)) exist and equal

α(i), p(i) and u(i) respectively. Then

lim sup
`→∞

v(p, `2m) =

|K|∑
i=0

α(i)u(i)

Let p̄(i, `j)[k] = p(i, `j)[k]/
∑

k∈S(p(i)) p(i, `j)[k] if k ∈ S(p(i)), and p̄(i, `j)[k] =

0 if k 6∈ S(p(i)). Note that p̄(i, `j) →j→∞ p(i).
By the definition of a nonseparating strategy it follows that a nonsep-

arating strategy in Γ1(q, `) is a nonseparating strategy in Γ1(q
′, `) when-

ever the support of q′ is a subset of the support of q. Therefore, u(i) ≤
lim infj→∞ u`j

(p̄(i, `j)) = lim infj→∞ u`j
(p(i)). Let θi →i→∞ 0 with u`j

(p(i)) >
u(i)− θi.

By possibly replacing the sequence `j by another sequence where the j-th
element of the original sequence, `j, repeats itself Lj (e.g., `2

j+1) times, we
may assume in addition that `2

j+1/
∑

i≤j `2
i →j→∞ 0.

Let σji be a nonseparating optimal strategy of player 1 in the game
Γ1(p(i), `2

jm). Set n̄j =
∑

r≤j(`
2
r + `r)m and nj = n̄j − `2

jm.
We couple the process (zt)t with a process (z∗t )t that satisfies conditions

i)-v) of Lemma 1. Player 1 can construct such a process (z∗t )t as z∗t is a
function of the random variables X, X1, Y1, . . . and z1, . . . , zt.

Define the strategy σ of player 1 as follows. Let β(k, i) := p(i)[k]α(i)/p(k)
for k ∈ K with p(k) > 0. Note that

∑
i β(k, i) = 1 for every k, and α(i) =∑

k p(k)β(k, i). Conditional on zNT +1 ∈ S(k), choose i with probability
β(k, i) and in stages nj < t ≤ n̄j with j ≥ T and z∗nj+1 = znj+1 (equivalently,

z∗[j] = z[j]) play according to σij using the states of the process z[j] (= z∗[j]),
i.e., by setting h[j, t] = znj+1, inj+1, jnj+1, . . . , inj+t−1, jnj+t−1, znj+t,

σ(z1, . . . , znj+t) = σij(h[j, t])

In all other cases, σ plays a fixed7 action i∗, i.e., in stages t ≤ n̄T and in
stages n̄j−1 < t ≤ nj as well as in stages nj < t ≤ n̄j with z∗[j] = ∗[j] σ
plays a fixed8 action i∗.

The conditional probability that z∗[j] = z[j], given T ≤ j, is 1 − δj.
Therefore, it follows from the definition of σ that for every strategy τ of

7In the model with signals this is replaced by the mixed action x∗zt
.

8Same comment as in footnote 7.
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player 2 and every j we have on T ≤ j

Eσ,τ (

`2jm∑
t=1

gnj+t | T ) ≥ `2
jm

∑
i

α(i)u`j
(p(i))− `2

jmδj

≥ `2
jm

∑
i

α(i)u(i)− `2
jm(θj + δj).

As P (T > j) = 2εj, we have

Eσ,τ

`2jm∑
t=1

gnj+t ≥ `2
jmv̄(p)− `2

jm(θj + 2εj + δj)

and thus for n̄j < n ≤ n̄j+1 we have

Eσ,τ

n∑
t=1

gt ≥ nv̄(p)−
∑
s≤j

`2
sm(θs + 2εs−1 + δs + 1/`s)− (n− n̄j).

As (θs + εs−1 + δs + 1/`s) →s→∞ 0 we deduce that
∑

s≤j `2
sm(θs + εs +

δs)/n̄j →j→∞ 0. In addition, (n̄j+1 − n̄j)/n̄j →j→∞ 0. Thus for every ε > 0
there is N sufficiently large such that for every n ≥ N and for every strategy
τ of player 2, we have

Eσ,τ
1

n

n∑
t=1

gt ≥ v̄(p)− ε.

5 Markov chain games with incomplete infor-

mation on one side and signals

The game model Γ with signals is described by the 7-tuple

〈M, Q, q0, I, J, g, R〉

where 〈M, Q, q0, I, J, g〉 is as in the model without signals and observable
actions and R = (Rz

i,j)z,i,j describes the distribution of signals as follows. For
every (z, i, j) ∈ M × I × J , Rz

i,j is a probability distribution over S1 × S2.
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Following the play zt, it, jt at stage t, a signal st = (s1
t , s

2
t ) ∈ S1×S2 is cho-

sen by nature with conditional probability, given the past z1, i1, j1, . . . , zt, it, jt,
that equals Rzt

it,jt
, and following the play at stage t player 1 observes s1

t and
zt+1 and player 2 observes s2

t .
Assume that for every z ∈ M player 1 has a mixed action x∗z ∈ ∆(I) such

that for every j ∈ J the distribution of the signal s2 is independent of z; i.e.,
for every j ∈ J the marginals on S2 of

∑
i x

∗
z(i)R

z
i,j are constant as a function

of z.
Define m and the games Γ(p, `) as in the basic model but with the

natural addition of the signals. Let v(p, `) be the value of Γ(p, `). Set
v̄ = lim sup`→∞ v(p, `m) and v = lim inf`→∞ v(p, `m).

Let A and B denote the pure strategies of player 1 and player 2 respec-
tively in Γ1(p, `m). A pure strategy a ∈ A of player 1 in Γ1(p, `m) is a
sequence of functions (at)1≤t≤`m where at : (M × S1)

t−1 × M → I. A pure
strategy b ∈ B of player 2 in Γ1(p, `m) is a sequence of functions (bt)1≤t≤`m

where bt : (S2)
t−1 → J . A triple (x, k, b) ∈ ∆(A) × K × B induces a prob-

ability distribution, denoted s2(x, k, b), on the signal in S`m
2 to player 2 in

Γ1(p, `m). For every q ∈ ∆(K) we define NS(q) as the set of nonseparating
strategies of player 1 in Γ1(p, `m), i.e., x ∈ NS(q) iff for every b ∈ B the
distribution s2(x, k, b) is independent across all k with q(k) > 0.

Theorem 2 The game Γ has a value and both players have optimal strate-
gies. The limit of v(p, `m) as ` →∞ exists and equals the value of Γ.

Proof. The proof that player 1 has a strategy σ∗ that guarantees v̄ − ε for
every ε > 0 is identical to the proof (in the basic model) that player 1 has
an optimal strategy.

Next, we prove that player 2 can guarantee v. Let γn, or ε for short,9 be a
positive number with 0 < ε < 1/2, and let `n, or ` for short, be a sufficiently
large positive integer such that 1) for every k ∈ K and z, z′ ∈ S(k) we have
Q`m

z,z′ > (1−ε)k(z′), 2) v(p, `m) < v+ε, and 3) for every k ∈ K and z ∈ S(k)
Pr(z`m+1 = z) ≥ (1− ε)p(k)k(z).

Let τ be an optimal strategy of player 2 in Γ(p, `m). Fix a positive integer
jn and construct the following strategy τ ∗[n], or τ ∗ for short, of player 2 in Γ.

Set Ni = i(i+1)
2

`m and nij = Ni+(j−1)`m and n̄ij = nij+j`m. Let Bj
i be the

block of `m consecutive stages nij < t ≤ n̄ij. For every j ≥ jn consider the

9The dependence on n enables us to combine the ε-optimal strategies into an optimal
strategy.
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sequence of blocks Bj
j , Bj

j+1, . . ., as stages of the repeated game Γ(p, `m) and

play in these blocks according to the strategy τ ; formally, if ŝj
i is the sequence

of signals to player 2 in stages nij < t ≤ n̄ij, then play in stages nij < t ≤ n̄ij

the “stage” strategy τ(ŝj
j, . . . , ŝ

j
i−1). (In stages t 6∈ ∪i≥jB

j
i τ ∗ plays a fixed

action.) Note that for every j, ni+1,j − n̄ij = i`m, and therefore there is an

event Cj with probability≥ 1−ε− εj

1−ε
> 1−3ε such that on Cn

j , the stochastic
process z[j, j], z[j+1, j], . . . , z[i, j], . . ., where z[i, j] := znij+1, . . . , zn̄ij

(i ≥ j),
is a mixture of iid (sub-) stochastic processes of length `m: with probability
p(k) the distribution z[i, j] is the distribution of a Markov chain of length
`m with initial distribution k(z) and transition matrix Q.

It follows that τ ∗ (= τ ∗[n]) guarantees v + 2ε + 3ε + ε. Indeed, the
definition of τ ∗ implies that for every sufficiently large i′ ≥ j we have

Eσ,τ∗(
i′∑

i=j

∑
t∈Bj

i

gt | Cj) ≤ (i′ − j + 1)`m(v + 2ε)

and therefore

Eσ,τ∗

i′∑
i=j

∑
t∈Bj

i

gt ≤ (i′ − j + 1)`m(v + 2ε + 3ε)

Thus, if i(T ) is the minimal i such that Ni ≥ T , then for sufficiently large T
we have

Eσ,τ∗

i(T )∑
i=j

∑
t∈Bj

i

gt ≤ (i(T )− j + 1)`m(v + 2ε + 3ε)

and therefore Eσ,τ∗
∑T

t=1 gt is ≤ Eσ,τ∗
∑i(T )

j=jn

∑i(T )
i=j

∑
t∈Bj

i
gt, which is less or

equal i(T )(i(T )+1)
2

`m(v+2ε+3ε)+jni(T )`m. As i(T ) = o(T ) and i(T )(i(T )+1)
2

`m−
T < i(T )`m, the strategy τ ∗ guarantees v + 6ε.

Choose a sequence 0 < γn → 0 and a corresponding sequence `n ↑ ∞.
By properly choosing an increasing sequence Tn (T0 = 0) and a sequence jn

with jn(jn+1)
2

`nm + (jn − 1)`nm ≥ Tn−1 and playing in stages Tn−1 < t ≤ Tn

the strategy τ ∗[n] we construct an optimal strategy of player 2.

Remarks
1. The value is independent of the signaling to player 1.
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2. If the model is modified so that the state process is a mixture of Markov
chains the results about the existence of a value and optimal strategies for
the uninformed player remain intact. However, the informed player need not
have an optimal strategy.
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