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Implementation with a Bounded Action Space

Liad Blumrosen and Michal Feldman
∗

Abstract

While traditional mechanism design typically assumes isomorphism between the agents’
type- and action spaces, in many situations the agents face strict restrictions on their action
space due to, e.g., technical, behavioral or regulatory reasons. We devise a general frame-
work for the study of mechanism design in single-parameter environments with restricted
action spaces. Our contribution is threefold. First, we characterize sufficient conditions
under which the information-theoretically optimal social-choice rule can be implemented in
dominant strategies, and prove that any multilinear social-choice rule is dominant-strategy
implementable with no additional cost. Second, we identify necessary conditions for the
optimality of action-bounded mechanisms, and fully characterize the optimal mechanisms
and strategies in games with two players and two alternatives. Finally, we prove that for
any multilinear social-choice rule, the optimal mechanism with k actions incurs an expected
loss of O( 1

k2 ) compared to the optimal mechanisms with unrestricted action spaces. Our
results apply to various economic and computational settings, and we demonstrate their
applicability to signaling games, public-good models and routing in networks.

1 Introduction

Mechanism design is a sub-field of game theory that studies how to design rules of games resulting
in desirable outcomes, when the players are rational. In a standard setting, players hold some
private information – their “types” – and choose “actions” from their action spaces to maximize
their utilities. The social planner wishes to implement a social-choice function, which maps
each possible state of the world (i.e., a profile of the players’ types) to a single alternative. For
example, a government that wishes to undertake a public-good project (e.g., building a bridge)
only if the total benefit for the players exceeds its cost.

Much of the literature on mechanism design restricts attention to direct revelation mecha-
nisms, in which a player’s action space is identical to his type space. This focus is owing to the
revelation principle that asserts that if some mechanism achieves a certain result in an equi-
librium, the same result can be achieved in a truthful one – an equilibrium where each agent
simply reports his private type [15].

Nonetheless, in many environments, direct-revelation mechanisms are not viable since the
actions available for the players have a limited expressive power. Consider, for example, the
well-studied “screening” model, where an insurance firm wishes to sell different types of policies
to different drivers based on their caution levels, which is their private information. In this
model, drivers may have a continuum of possible caution levels, but insurance companies offer
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only a few different policies since it might be either infeasible or illegal to advertise and sell
more then few contracts.

There are various reasons for such strict restrictions on the action spaces. In some situa-
tions, players might be reluctant to reveal their accurate type, but willing to disclose partial
information about it. For example, agents who are engaged in repeated-games will typically be
unwilling to reveal their type, even if it is beneficial for them in the short run, since it might
harm them in future transactions. Agents may also not trust the mechanism to keep their valu-
ations private [16], or not even know their exact type while computing it may be expensive [11].
Limitations on the action space can also be caused by technical constraints, such as severe re-
strictions on the communication lines [5] or from the the need to perform quick transactions
(e.g., discrete bidding in English auctions [13]).

Restrictions on the action space, for specific models, were studied in several earlier papers.
The work of Blumrosen, Nisan and Segal [4, 6, 5] is the closest in spirit to this paper. They
studied single-item auctions where bidders are allowed to send messages with severely bounded
size. They characterized the optimal mechanisms under this restriction, and showed that nearly
optimal results can be achieved even with very strict limitations on the action space. Other work
studied similar models for the analysis of discrete-bid ascending auctions [13, 10, 8, 7], take-
it-or-leave-it auctions [17], or for measuring the effect of discrete “priority classes” of buyers
on the performance of electricity markets [19, 14]. Our work generalizes the main results of
Blumrosen et al. to a general mechanism-design framework that can be applied to a multitude
of models. We show that some main properties proved by Blumrosen et al. are preserved
in more general frameworks (for example, that dominant-strategy equilibrium can be achieved
with no additional cost, and that the loss diminishes with the number of possible actions in a
similar rate), where some other properties do not always hold (for example, that asymmetric
mechanisms are optimal and that players must always use all their action space).

A standard mechanism design setting is composed of agents with private information (their
“types”), and a social planner, who wishes to implement a social choice function, c – a func-
tion that maps any profile of the agents’ types into a chosen alternative. A classic result in
this setting says that under some monotonicity assumption on the agents’ preferences – the
“single-crossing” assumption (see definition below) – a social-choice function is implementable
in dominant strategies if and only if it is monotone in the players’ types. However, in en-
vironments with restricted action spaces, the social planner cannot typically implement every
social-choice function due to inherent informational constraints. That is, for some realizations of
the players’ types, the decision of the social planner will be incompatible with the social-choice
function c. In order to quantitatively measure how well bounded-action mechanisms can ap-
proximate the original social-choice functions, we follow a standard assumption that the social
choice function is derived from a social-value function, g, which assigns a real value for every al-
ternative and realization of the players’ types. The social-choice function c will therefore choose

an alternative that maximizes the social value function, given the type vector
−→
θ = (θ1, .., θn),

i.e., c(
−→
θ ) = argmaxA{g(

−→
θ ,A)}. Observe that the social-value function is not necessarily the

social welfare function – the social welfare function is a special case of g in which g is defined
to be the sum of the players’ valuations for the chosen alternative. Following are several simple
examples of social-value functions:

• Public goods. A government wishes to build a bridge only if the sum of the benefits that
agents gain from it exceeds its construction cost C. The social value functions in a 2-player
game will therefore be: g(θ1, θ2, “build”)=θ1+θ2-C, and g(θ1, θ2, “do not build”)=0.
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• Routing in networks. Consider a network that is composed of two links in parallel.
Each link has a secret probability pi of transferring a message successfully. A sender
wishes to send his message through the network only if the probability of success is
greater than, say, 90 percent - the known probability in an alternate network. That is,
g(p1, p2, “send in network”)=1-(1-p1)·(1-p2), and g(p1, p2,“send in alternate network”)=0.9.

• Single-item auctions. Consider a 2-player auction, where the auctioneer wishes to allocate
the item to the player who values it the most. The social choice function is given by:
g(θ1, θ2, “player 1 wins”) = θ1 and for the second alternative is g(θ1, θ2, “player 2 wins”) =
θ2.

1.1 Our Contribution

In this paper, we present a general framework for the study of mechanism design in environ-
ments with a limited number of actions. We assume a Bayesian model where players have
one-dimensional private types, independently distributed on some real interval.

The main question we ask is: when agents are only allowed to use k different actions, which
mechanisms achieve the optimal expected social-value? Note that this question is actually com-
posed of two separate questions. The first question is an information-theoretic question: what is
the optimal result achievable when the players can only reveal information using these k actions
(recall that their type space may be continuous). The other question involves game-theoretic
considerations: what is the best result achievable with k actions, where this result should be
achieved in a dominant-strategy equilibrium. These questions raise the question about the
“price of truthfulness”: can the optimal information-theoretic result always be implemented
in a dominant-strategy equilibrium? And if not, to what extent does the dominant-strategy
requirement degrades the optimal result? What we call “the price of truthfulness” was also
explored in other contexts in game theory where computational restrictions apply: for example,
is it always true that the optimal polynomial-time approximation ratio (for example, in combi-
natorial auctions) can be achieved in equilibrium? (The answer for this interesting problem is
still unclear, see, e.g., [3, 2, 12].)

Our first contribution is the characterization of sufficient conditions for implementing the
optimal information-theoretic social-choice rule in dominant strategies. We show that for the
family of multilinear social-value functions (that is, polynomials where each variable has a degree
of at most one in each monomial) the dominant-strategy implementation incurs no additional
cost.

Theorem: Given any multilinear single-crossing social-value function, and for any number
of alternatives and players, the social choice rule that is information-theoretically optimal is
implementable in dominant strategies.

Multilinear social-value functions capture many important and well-studied models, and
include, for instance, the routing example given above, and any social welfare function in which
the players’ valuations are linear in their types (such as public-goods and auctions).

The implementability of the information-theoretically optimal mechanisms enables us to use
a standard routine in Mechanism Design and first determine the optimal social-choice rule,
and then calculate the appropriate payments that ensure incentive compatibility. To show this
result, we prove a useful lemma that gives another characterization for social-choice functions
whose “price of truthfulness” is zero. We show that for any social-choice function, incentive
compatibility in action-bounded mechanisms is equivalent to the property that the optimal
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expected social value is achieved with non-decreasing strategies (or threshold strategies).1 In
other words, this lemma implies that one can always implement, with dominant strategies, the
best social-choice rule that is achievable with non-decreasing strategies.

Our second contribution is in characterizing the optimal action-bounded mechanisms. We
identify some necessary conditions for the optimality of mechanisms in general, and using these
conditions, we fully characterize the optimal mechanisms in environments with two players and
two alternatives. The optimal mechanisms turn out to be “diagonal” – that is, in their matrix
representation, one alternative will be chosen in, and only in, entries below one of the main diag-
onals (this term extends the concept of “Priority Games” used in [5] for bounded-communication
auctions). We complete the characterization of the optimal mechanisms with the depiction of
the optimal strategies – strategies that are “mutually maximizers”. Since the payments in a
dominant-strategy implementation are uniquely defined by a monotone allocation and a profile
of strategies, this also defines the payments in the mechanism. We give an intuitive proof for the
optimality of such strategies, generalizing the concept of optimal “mutually-centered” strategies
from [4]. Surprisingly, as opposed to the optimal auctions in [4], for some non-trivial social-value
functions, the optimal “diagonal” mechanism may not utilize all the k available actions.

Theorem: For any multilinear single-crossing social-value function over two alternatives, the
informationally optimal 2-player k-action mechanism is diagonal, and the optimal dominant
strategies are mutually-maximizers.

Achieving a full characterization of the optimal action-bounded mechanism for multi-player
or multi-alternative environments seems to be harder. To support this claim, we observe that
the number of mechanisms that satisfy the necessary conditions above is growing exponentially
in the number of players.

Our next result compares the expected social-value in k-action mechanisms to the optimal
expected social value when the action space is unrestricted. For any number of players or
alternatives, and for any profile of independent distribution functions, we construct mechanisms
that are nearly optimal – up to an additive difference of O( 1

k2 ). This result is achieved in
dominant strategies.

Theorem: For any multilinear social-value function, the optimal k-action mechanism incurs
an expected social loss of O( 1

k2 ).

This is the same asymptotic rate proved for specific environments in [19, 13, 5]. Note
that there are social-choice functions that can be implemented with k actions with no loss (for
example, the rule “always choose alternative A”). However, we know that in some settings (e.g.,
auctions [5]) the optimal loss may be proportional to 1

k2 , thus a better general upper bound is
impossible.

Finally, we present our results in the context of several natural applications. First, we
give an explicit solution for a public-good game with k-actions. We show that the optimum is
achieved in symmetric mechanisms (in contrast to action-bounded auctions [5]), and that the
optimal allocation scheme depends on the value of the construction cost C. Then, we study the
celebrated signaling model, in which potential employees send signals about their skills to their
potential employers by means of the education level they acquire. This is a natural application

1The restriction to non-decreasing strategies is very common in the literature. One remarkable result by Athey
[1] shows that when a non-decreasing strategy is a best response for any other profile of non-decreasing strategies,
a pure Bayesian-Nash equilibrium must exist.
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in our context since education levels are often discrete (e.g., B.A, M.A and PhD). Lastly, we
present our results in the context of routing in networks, where it is reasonable to assume that
links report whether they have low or high loss rates, but less reasonable to require them to
report their accurate loss rates.

The rest of the paper is organized as follows: our model and notations are described in
Section 2. We then describe our general results regarding implementation in multi-player and
multi-alternative environments in Section 3, including the asymptotic analysis of the social-
value loss. In Section 4, we fully characterize the optimal mechanisms for 2-player environments
with two alternative. In Section 5, we conclude with applying our general results to several
well-studied models. All proofs can be found in the appendix.

2 Model and Preliminaries

We first describe a standard mechanism-design model for players with one-dimensional types.
Then, in Subsection 2.2, we impose limitation of the action space. The general model studies
environments with n players and a set A = {A1, A2, ..., Am} of m alternatives. Each player
has a privately known type θi ∈ [θi, θi] (where θi, θi ∈ R, θi < θi), and a type-dependent
valuation function vi(θi, A) for each alternative A ∈ A. In other words, player i with type
θi is willing to pay an amount of vi(θi, A) for alternative A to be chosen. Each type θi is
independently distributed according to a publicly known distribution Fi, with an always positive
density function fi. We denote the set of all possible types’ profiles by Θ = ×n

i=1[θi, θi].
The social planner has a social-choice function c : Θ → A, where the choice of alternatives

is made in order to maximize a social-value function g(
−→
θ ) : Θ × A → R. That is, c(

−→
θ ) ∈

argmaxA∈A{g(
−→
θ ,A)}

We assume that for every alternative A ∈ A, the function g(·, A) is continuous and differ-
entiable in every type. Since the players’ types are private information, in order to choose the
optimal alternative, the social planner needs to get the players’ types as an input. The players
reveal information about their types by choosing an action, from an action set B.

Each player uses a strategy for determining the action he plays for any possible type. A
strategy for player i is therefore a function si : [θi, θi] −→ B. We denote a profile of strategies
by s = s1, ..., sn and the set of the strategies of all players except i by s−i. The utility of player
i of type θi from alternative A under the payment pi is ui = vi(θi, A) − pi.

2.1 Dominant-Strategy Implementation

Following is a standard definition of a mechanism. The action space B is traditionally implicit,
but we mention it explicitly since we later examine limitations on B.

Definition 1. A mechanism with an action set B is a pair (t, p) where:

• t : Bn → A is the allocation rule.2

• p : Bn → R
n is the payment scheme (i.e., pi(b) is the payment to the ith player given a

vector of actions b).

2We will show that, w.l.o.g., we can focus on deterministic mechanisms.
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The main goal of this paper is to optimize the expected social value (in action-bounded
mechanisms) while preserving a dominant-strategy equilibrium.

We say that a strategy si is dominant for player i in mechanism (t, p) if player i cannot
increase his utility by reporting a different action than si(θi), regardless of the actions of the
other players b−i.

3

Definition 2. We say that a social-choice function h is implementable with a set of actions B if
there exists a mechanism (t, p) with a dominant-strategy equilibrium s1, ..., sn (where for each i,
si : [θi, θi] −→ B) that always chooses an alternative according to h, i.e., t(s1(θ1), ..., sn(θn)) =

h(
−→
θ ).

A fundamental result in the mechanism-design literature states that under reasonable con-
ditions, monotonicity of the social-choice function is a sufficient and necessary condition for
dominant-strategy implementability (in single-parameter environments). For defining mono-
tonicity, the preferences of the players must exhibit some order on the alternatives. Namely,
each player has a complete, weak transitive order �i over the alternatives in A. If A �i B but
not B �i A, we use the notation A � B. If both A �i B and B �i A we use the notation
A ∼i B.4

Monotonicity also requires defining an order on the actions. In standard settings, the order
is defined by an order on the real numbers (e.g., in direct revelation mechanisms where each type
is drawn from a real interval). When the action space is discrete, the order can be determined by
the names of the actions, for example, “0”, “1”,...,”k-1” for k-action mechanisms. (We therefore
describe this order with the standard relation on natural numbers <,>.)

Given these orders, we can now define the notion of monotonicity:

Definition 3. A deterministic mechanism is monotone if when player i raises his reported
action, and fixing the actions of the other players, the mechanism never chooses an inferior
alternative for i. That is, for any b−i ∈ {0, ..., k − 1}n−1 if b′i > bi then t(b′i, b−i) �i t(bi, b−i).

The last ingredient in the characterization of incentive compatibility in the classic model
requires that the valuations of the players will exhibit the single-crossing property (also known
as Spence-Mirrlees condition). In our model, the single-crossing property implies that for every
player, the effect of an increment in the player’s type on the player’s valuation is greater as the
alternative is higher in this player’s order �i. Throughout the paper we assume that the players
have single-crossing valuations.

Definition 4. A function h : Θ × A → R is single crossing with respect to θi if for any two
alternatives Aj �i Ai we have,

∂h(
−→
θ ,Aj)

∂θi

>
∂h(

−→
θ ,Ai)

∂θi

and if Aj ∼ Ai then h(·, Aj) ≡ h(·, Ai) (i.e., the functions are identical).

Following is a classic result regarding the implementability of social-choice functions in single-
parameter environments. This result can be found in different forms, very often implicit, in

3That is, for every type θi and every action b′i, vi ( θi, t(si(θi), b−i) ) − pi(si(θi), b−i) > vi ( θi, t(b′i, b−i) ) −
pi(b

′
i, b−i)

4For example, in an auction model the alternatives may be A=”player 1 wins”, B=”player 2 wins” and
C=”player 3 wins”. In this case, A �1 B and B �2 A but B ∼1 C.
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almost every paper on mechanism design in one-dimensional domains. This characterization
assumes single-crossing preferences; without this assumption, general sufficient conditions for
implementability are not known (for a survey on this topic see [9]). Note, however, that this
characterization does not hold when the action space is bounded.

Proposition 1. Assume that the valuation functions vi(θi, A) are single crossing and that the
action space is unrestricted. A social-choice function c is dominant-strategy implementable if
and only if c is monotone.

2.2 Action-Bounded Mechanisms

The set of actions B is usually implicit in the literature, and it is assumed to be isomorphic to
the type space. In this paper, we study environments where this assumption does not hold. We
define a k-action game to be a game in which the number of possible actions for each player is k,
i.e., |B| = k. In k-action games, the social planner typically cannot always choose an alternative
according to the social choice function c due to the informational constraints. Instead, we are
interested in implementing a social-choice function that, with k actions, maximizes the expected

social value: E−→
θ

g
(−→

θ , t (s1(θ1), ..., sn(θn))
)
.

Definition 5. We say that a social-choice function h : Θ → A is informationally achievable
with a set of actions B if there exists a profile of strategies s1, ..., sn (where for each i, si :
[θi, θi] −→ B), and an allocation rule t : Bn → A, such that t chooses the same alternative as

h for any type profile, i.e., t(s1(θ1), ..., t(θn)) = h(
−→
θ ). If |B| = k, we say that h is k-action

informationally achievable.

Note that this definition does not take into account strategic considerations. For example,
consider an environment with two alternatives A = {A,B}, and the following social-choice
function: c̃(θ1, θ2) = A iff θ1 > 1/2 and θ2 > 1/2. c̃ is informationally achievable with two
actions: if both players bid “0” when their value is greater than 1/2 and “1” otherwise, then
the allocation rule “choose alternative A iff both players report 1” derives exactly the same
allocation for every profile of types. In contrast, it is easy to see that the function ĉ(θ1, θ2) = A
iff θ1 + θ2 > 1/2 is not informationally achievable with two actions.

We now define a social-choice rule that maximizes the social value under the information-
theoretic constraints that are implied by the limitations on the number of actions.

Definition 6. A social-choice function is k-action informationally optimal with respect to the
social-value function g, if it achieves the maximal expected social value among all the k-action
informationally achievable social-choice functions.5

Earlier in this section, we defined the single-crossing property for the players valuations.
We now define a single-crossing property on the social-value function g. This property clearly
ensures the monotonicity of the corresponding social choice rule, and we will later show that it
is also useful for action-bounded environments.

Definition 7. We say that the social-choice rule g(
−→
θ ,A) exhibits the single-crossing property

if for every player i, g exhibits the single-crossing property with respect to θi.

5The optimal function is well defined since there is a finite number of such functions.
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Note that the definition above requires that g will be single crossing with respect to every
player i, given her individual order �i on the alternatives.

Finally, we call attention to a natural set of strategies – “non-decreasing” strategies, where
each player reports a higher action as her type increases. Equivalently, such strategies are
threshold strategies – strategies where each player divides his type support into intervals, and
simply reports the interval in which her type lies.

Definition 8. A real vector x = (x0, x1, ..., xk) is a vector of threshold values if x0 ≤ x1 ≤ ... ≤
xk.

Definition 9. A strategy si is a threshold strategy based on a vector of threshold values x =
(x0, x1, ..., xk), if for any action j it holds that si(θi) = j iff θi ∈ [xj , xj+1]. A strategy si is
called a threshold strategy, if there exists a vector x of threshold values such that si is threshold
strategy based on x.

3 Implementation with a Limited Number of Actions

In this section, we study the general model of action-bounded mechanism design. Our first
result is a sufficient and necessary condition for the implementability of the optimal solution
achievable with k actions: this condition says that the optimal social-choice rule is achieved
when all the players use non-decreasing strategies. The basic idea is that with non-decreasing
strategies (i.e., threshold strategies), we can apply the single-crossing property to show that
when a player raises his reported action, the expected value for his high-priority alternatives
increases faster; therefore, monotonicity must hold. The result holds for any number of players
and alternatives, and for any profile of distribution functions on the players’ types, as long as
they are statistically independent. (It is easy to illustrate that this result does not hold if the
players’ types are dependent.)

Lemma 1. Consider a single-crossing social-value function g. The informationally optimal k-
action social-choice function c∗ (with respect to g) is implementable if and only if c∗ achieves
its optimum when the players use non-decreasing strategies.

Next, we show that for a wide family of social-value functions – multilinear functions – the
“price of truthfulness” is zero. That is, the information-theoretically optimal rule is dominant-
strategy implementable. This family of functions captures many common settings from the
literature. In particular, it generalizes the auction setting studied by Blumrosen et al. [4, 6].

Definition 10. A multilinear function is a polynomial in which the degree of every variable in
each monomial is at most 1.6 We say that a social-choice rule g is multilinear, if g(·, A) is
multilinear for every alternative A ∈ A.

The basic idea behind the proof of the following theorem is as follows: for every player, we
show that the expected social welfare when he chooses any action (fixing the strategies of the
other players) is a linear function of his type. This is a result of the multilinearity of the social-
value function and of the linearity of expectation. The maximum over a set of linear functions
is a piecewise-linear function, hence the optimal social value is achieved when the player uses
threshold strategies (the thresholds are the switching points). Since the optimum is achieved

6For example, f = xyz + 5xy + 7.
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with threshold strategies, we can apply Lemma 1 to show the monotonicity of this social-choice
rule. Note that in this argument we characterize the players’ strategies that maximize the social
value, and not the players’ utilities.

Theorem 1. If the social-value function is multilinear and single crossing, the informationally
optimal k-action social-choice function is implementable.

Observe that the proof of Theorem 1 actually works for a more general setting. For proving
that the information-theoretically optimal result is achieved with threshold strategies, it is suffi-
cient to show that the social-choice function exhibits a single-crossing condition on expectation:
given any allocation scheme, and fixing the behavior of the other players, the expected social
value in any two actions (as a function of θi) is single crossing. Theorem 1 shows that this re-
quirement holds for multilinear functions, but we were not able to give an exact characterization
of this general class of functions.

The implementability of the information-theoretically optimal solution makes the character-
ization of the optimal incentive-compatible mechanisms significantly easier: we can apply the
standard mechanism-design technique and first calculate the optimal allocation scheme and then
find the “right” payments.

Observe that if the valuation functions of the players are linear and single crossing, then the
social-welfare function (i.e., the sum of the players’ valuations) is multilinear and single-crossing.
This holds since the single-crossing conditions on the valuations are defined with a similar order
on the alternatives as in the social-value function. Therefore, an immediate conclusion from
Theorem 1 is that the optimal social welfare, which is achievable with k actions, is implementable
when the valuations are linear.

Corollary 1. If the valuation functions vi(·, A) are single crossing and linear in θi for ev-
ery player i and for every alternative, then the informationally optimal k-action social welfare
function is implementable.

3.1 Asymptotic Analysis

In this section we show that the social value loss of multilinear social-value rules diminishes
quadratically with the number of possible actions, k. This is the same asymptotic ratio presented
in the study of specific models in the same spirit [19, 5, 18, 13]. The main challenge here,
compared to earlier results, is in dealing with the general mechanism-design framework, that
allows a large family of social-value functions for any number of players and alternatives. As
opposed to the specific models, the social-value function may be asymmetric with respect to the
players’ types; for instance, the social-value loss may a-priori occur in any “entry” (i.e., profile
of actions).

The basic intuition for the proof is that even for this general framework, we can construct
mechanisms where the probability of having an allocation that is incompatible with the original
social-choice function is O( 1

k
). (This fact holds for all single-crossing social-choice functions, not

only for multilinear functions.) Then, we can use the multilinearity to show that the social-value
loss will always be O( 1

k
) in the mechanisms we construct. Taken together, the expected loss

becomes O( 1
k2 ). Our proof is constructive – we present an explicit construction for a mechanism

that exhibits the desired loss in dominant strategies.

Theorem 2. For any number of players and alternatives, and for any set of distribution func-
tions of the players’ types, if the social-value function g is single crossing and multilinear, then
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the informationally optimal k-action social-choice function (with respect to g) incurs an expected
social-value loss of O( 1

k2 ).

Moreover, as discussed in [4], this bound is asymptotically tight. That is, there exists a
set of distribution functions for the players (the uniform distribution in particular) and there
are social-value functions (e.g., auctions) for which any mechanism incurs a social-value loss of
at least Ω( 1

k2 ). In that sense, auctions are the hardest problems with respect to the incurred
loss. Yet, note that this claim does not imply that the loss of any social-choice function will be
proportional to 1

k2 . For example, in the social choice function that chooses the same alternative
for any type profile, no loss will be incurred (even with 0 actions).

4 Optimal Mechanisms for Two Players and Two Alternatives

In this section, we present a full characterization of the optimal mechanisms in action-bounded
environments with two players and two alternatives, where the social-choice functions are mul-
tilinear and single crossing.

Note that in this section, as in most parts of this paper, we characterize monotone mech-
anisms by their allocation scheme and by a profile of strategies for the players. Doing this,
we completely describe which alternative is chosen for every profile of types of the players. It
is well known that in monotone mechanisms for one dimensional environments, the allocation
scheme uniquely defines the payments in the dominant-strategy implementation. We find this
description, which does not explicitly mention the payments, easier for the presentation.

A key notion in our characterization of the optimal action-bounded mechanism, is the notion
of non-degenerate mechanisms. In a degenerate mechanism, there are two actions for one of the
players that are identical in their allocation. Intuitively, a degenrate mechanism does not utilize
all the action space he is allowed to use, and therefore it cannot be optimal. Using this propery,
we then define “diagonal” mechanisms that turns out to exactly characterize the set of optimal
mechanisms.

Definition 11. A mechanism is degenerate with respect to player i if there exist two actions
bi, b

′
i for player i such that for all profiles b−i of actions of the other players, the allocation

scheme is identical whether player i reports bi or b′i (i.e., ∀b−i, t(bi, b−i) = t(b′i, b−i)).

For example, a 2-player mechanism is degenerate with respect to the “rows” player, if there
are two rows with identical allocation in the matrix representation of the game.

Definition 12. A 2-player 2-alternative mechanism with k-possible actions is called diagonal
if it is monotone, and non-degenerate with respect to at least one of the players.

The term “diagonal” originates from the matrix representation of these mechanisms, in which
one of the diagonals determines the boundary between the choice of the two alternatives (see
Figure 1). Simple combinatorial considerations show that diagonal mechanisms may come in
very few forms. Interestingly, one of these forms is degenerate with respect to one of the players;
that is, it can be described as a mechanism with k − 1 actions for this player.

Proposition 2. Any diagonal 2-player mechanism has one of the following forms:

1. If both players favor the same alternative (w.l.o.g., B �i A for i = 1, 2) then either:

(a) t(b1, b2) = B iff b1 + b2 ≥ k − 1

10



0 1 2 3

0 A A A B

1 A A B B

2 A B B B

3 B B B B

0 1 2 3

0 A A A A

1 A A A B

2 A A B B

3 A B B B

0 1 2 3

0 B B B B

1 A B B B

2 A A B B

3 A A A B

0 1 2 3

0 A A A B

1 A A B B

2 A B B B

Figure 1: The three left tables show all possible diagonal allocation scheme with 4 possible actions

for each player. The rightmost table show an example for a diagonal allocation scheme where one of the

player has only k − 1 possible actions.

(b) t(b1, b2) = B iff b1 + b2 ≥ k.

2. If the two players have conflicting preferences (e.g., A �1 B and B �2 A) then either:

(a) t(b1, b2) = B iff b1 ≥ b2

(b) t(b1, b2) = B iff b1 > b2.

In both cases, the optimal mechanism can also take the form of one of the possibilities de-
scribed, except one of the players is not allowed to choose the “fixed allocation” action.

To complete the description of the optimal allocation scheme, we now move to determine
the optimal strategies in diagonal mechanisms. We define the notion of mutually-maximizer
thresholds, and show that threshold strategies based on such thresholds are optimal. The
reason why mutually-maximizer strategies maximize the expected social value in monotone
mechanisms is intuitive: Consider some action i (“row” in the matrix representation) for player
1. In a monotone mechanism, the allocation in such a row will be of the form [A,A, ..., B,B]
(assuming that B �2 A). That is, the alternative A will be chosen for low actions of player 2,
and the alternative B will be chosen for higher actions of player 2. By determining a threshold
for player 2, the social planner actually determines the minimal type of player 2 from which the
alternative B will be chosen. For optimizing the expected social value, this type for player 2
should clearly be the type for which the expected social value from A equals the expected social
value from B (given that player 1 plays i); for greater values of player 2, the single-crossing
condition ensures that B will be preferred.

Definition 13. Consider a monotone 2-player mechanism g that is non-degenerate with respect
to the two players, where the players use threshold strategies based on the threshold vectors x, y.
We say that the threshold xi of one player (w.l.o.g. player 1) is a maximizer if

Eθ2
( g(xi, θ2, A) | θ2 ∈ [yj, yj+1] ) = Eθ2

( g(xi, θ2, B) | θ2 ∈ [yj , yj+1] )

where j is the action of player 2 for which the mechanism swaps the chosen alternative exactly
when player 1 plays i, i.e., t(i, j) 6= t(i − 1, j) (we denote, w.l.o.g., t(i, j) = A, t(i − 1, j) = B).

The threshold vectors x, y are called mutually maximizers if all their thresholds are maxi-
mizers (except the first and the last).

It turns out that in 2-player, 2-alternative environments, where the social-choice rule is mul-
tilinear and single crossing, the optimal expected social value is achieved in diagonal mechanisms
with mutually-maximizer strategies. In the proof, we start with a k × k allocation matrix, and
show that the mechanism cannot be degenerate with respect to one of the players (we show how

11



to choose this player). If the player, w.l.o.g., the columns player, is degenerate, then there are
two columns with an identical allocation. These two columns can be unified to a single action,
and the mechanism can therefore be described as a k×k− 1 matrix. We then show that we can
insert a new missing column, and an appropriately chosen threshold, and strictly increase the
expected social value in the mechanism. Therefore, the original mechanism was not the optimal
k-action mechanism.

Theorem 3. In environments with two alternatives and two players, if the social-value function
is multilinear and single crossing, then the optimal k-action mechanism is diagonal, and the
optimum is achieved with threshold strategies that are mutually maximizers.

A corollary from the proof of Theorem 1 is that the optimal 2-player k-action mechanism
may be degenerate for one of the players (that is, equivalent to a game where one of the players
has only k − 1 different actions). However, the proof identifies the following sufficient condition
under which the optimal mechanism will be non-degenerate with respect to both players: if the
players’ preferences are correlated (e.g., A �1 B and A �2 B), then the optimal alternative
must be the same under the profiles (θ1, θ2) and (θ1, θ2). Similarly, if the players’ preferences
are conflicting (e.g., A �1 B and B �2 A), then the optimal alternative must be the same under
the profiles (θ1, θ2) and (θ1, θ2). Examples in which this condition holds are the public good
model presented in section 5 and auctions [5].

We do not know how to give an exact characterization of the optimal mechanisms in multi-
player and multi-alternative environments. The hardness stems from the fact that the necessary
conditions we specified before for the optimality of the mechanisms (i.e., non-degenrate and
monotone allocations) are not restrictive enough for the general model. In other words, for
n > 2 players, the number of monotone and non-degenerate mechanisms becomes exponential
in n.

Proposition 3. The number of monotone non-degenerate k-action mechanisms in an n-player
game is exponential in n, even if |A| = 2.

5 Examples

Our results apply to a variety of economic, computational and networked settings. In this
section, we demonstrate the applicability of our results to public-good models, signaling games
and routing applications.

5.1 Example 1: Public Goods

The public-good model deals with a social planner (e.g., government) that needs to decide
whether to supply a public good, such as building a bridge. Let Y es and No denote the
respective alternatives of building and not building the bridge. v = v1, . . . , vn is the vector of
the players’ types – the values they gain from using the bridge. The decision that maximizes the
social welfare is to build the bridge if and only if

∑
i vi is greater than its cost, denoted by C. If

the bridge is built, the social welfare is
∑

i vi−C, and zero otherwise; thus, g(v, Y es) =
∑

i vi−C,
and g(v,No) = 0. The utility of player i under payment pi is ui = vi − pi if the bridge is built,
and 0 otherwise. It is well-known that under no restriction on the action space, it is possible
to induce truthful revelation by VCG mechanisms, therefore full efficiency can be achieved.
Obviously, when the action set is limited to k actions, we cannot achieve full efficiency due
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c ≤ 1 0 1

0
No

p1 = p2 = 0
No

p1 = p2 = 0

1
No

p1 = p2 = 0
Yes

p1 = p2 = 2
3c − 1

3

c ≥ 1 0 1

0
No

p1 = p2 = 0
Yes

p1 = 0; p2 = 2c
3

1
Yes

p1 = 2c
3 ; p2 = 0

Yes

p1 = p2 = 0

Figure 2: Optimal mechanisms in a 2-player, 2-alternative, 2-action public-goods game, when the types

are uniformly distributed in [0, 1]. The mechanism on the left is optimal when c ≤ 1 and the other is

optimal when c ≥ 1.

to the informational constraints. Yet, since g(v, Y es) and g(v,No) are multilinear and single
crossing, we can directly apply Theorem 1. Hence, the information-theoretically optimal k-action
mechanism is implementable in dominant strategies.

Corollary 2. The k-action informationally optimal social welfare in the n-player public-good
game is implementable in dominant strategies.

Moreover, as Theorem 3 suggests, in the k-action 2-player public-good game, we can fully
characterize the optimal mechanisms. In the proof of Theorem 3, we saw that when g(θ i, θi, A) =
g(θi, θi, B), the mechanism is non-degenerate with respect to both players. This condition clearly
holds here (1 + 0 − C = 0 + 1 − C), therefore the optimal mechanisms will use all k actions.

Corollary 3. The optimal expected welfare in a 2-player k-action public-good game is achieved
with one of the following mechanisms:7

1. Allocation: Build the bridge iff b1 + b2 ≥ k.

Strategies: Threshold strategies based on the vectors −→x ,−→y where for every 1 ≤ i ≤ k-1,

xi = c − E[v2|v2 ∈ [yk−i, yk−i+1]] ; yi = c − E[v1|v1 ∈ [xk−i, xk−i+1]]

2. Allocation: Build the bridge iff b1 + b2 ≥ k − 1.

Strategies: Threshold strategies based on the vectors −→x ,−→y where for every 1 ≤ i ≤ k-1:

xi = c − E[v2|v2 ∈ [yk−i−1, yk−i]] ; yi = c − E[v1|v1 ∈ [xk−i−1, xk−i]]

Recall that we define the optimal mechanisms by their allocation scheme and by the optimal
strategies for the players. It is well known, that the allocation scheme in monotone mechanisms
uniquely defines the payments that ensure incentive-compatibility. In public-good games, these
payments satisfy the rule that a player pays his lowest value for which the bridge is built, when
the action of the other player is fixed. Therefore, the payments for the players 1 and 2 reporting
the actions b1 and b2 are as follows: in mechanism 1 from Proposition 3, p1 = xb2 and p2 = yb1 ;
in mechanism 2 from Proposition 3, p1 = xb2−1 and p2 = yb1−1.

We now show a more specific example that assumes uniform distributions. The example
shows how the optimal mechanism is determined by the cost C: for low costs, mechanism
of type 1 is optimal, and for high costs the optimal mechanism is of type 2. An additional
interesting feature of the optimal mechanisms in the example is that they are symmetric with
respect to the players. This come as opposed to the optimal mechanisms in the auction model
[5] that are asymmetric (even when the players’ values are drawn from identical distributions).

7We denote x0 = y0 = 0 and xk = yk = 1.
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Example 1. Suppose that the types of both players are uniformaly distributed on [0, 1]. Then,
the welfare-maximizing mechanisms are (Figure 2 illustrates the optimal mechanisms for k = 2):

• If the cost of building is at least 1:

Allocation: Build iff b1 + b2 ≥ k

Strategies: The thresholds of both players are (for i = {1, . . . , k−1}), xi = 2(k−i)·c
2k−1 − 2k−4i+1

2k−1

• If the cost of building is smaller than 1:

Allocation: Build iff b1 + b2 ≥ k − 1

Strategies: The thresholds of both players are (for i = {1, . . . , k − 1}), xi = 2ic
2k−1

5.2 Example 2: Signaling

We now study a signaling model in labor markets. In this model, the type of each worker,
θi ∈ [θ, θ], describes the worker’s productivity level. The firm wants to make her hiring decisions

according to a decision function f(
−→
θ ). For example, the firm may want to hire the most

productive worker (like the auction model), or hire a group of workers only if their sum of
productivities is greater than some threshold (similar to the public-good model). However, the
worker’s productivity is invisible to the firm; the firm only observes the worker’s education level
e that should convey signals about her productivity level. Note that the assumption here is
that acquiring education, at any level, does not affect the productivity of the worker, but only
signals about the worker’s skills.

A main component in this model, is the fact that as the worker is more productive, it is easier
for him to acquire high-level education. In addition, the cost of acquiring education increases
with the education level. More formally, a continuous function C(e, θ) describes the cost to
a worker from acquiring each education level as a function of his productivity. The standard
assumptions about the cost function are: ∂c

∂e
> 0, ∂c

∂θ
< 0, ∂c

∂e∂θ
< 0, where the last requirement

is the single-crossing property (when both variables are differentiable). The utility of a worker
is determined according to the education level he chooses and the wage w(e) attached to this
education level, that is, ui(e, θi) = −C(θi, e) + w(e).

An action for a worker in this game is the education level he chooses to acquire. In standard
models, this action space is continuous, and then a “fully separating equilibrium” exists (under
the single-crossing conditions on the cost function). That is, there exists an equilibrium in
which every type is mapped into a different education level; thus, the firm can induce the exact
productivity levels of the workers by this signaling mechanism. However, it is hard to imagine
a world with a continuum of education levels. It is usually the case that there are only several
discrete education levels (e.g., BSc, MSc, PhD).

With k education levels, the firm may not be able to exactly follow the decision function f .
For achieving the best result in k actions, the firm may want the worker to play according to
a certain threshold strategy based on the thresholds x0, x1, ..., xk. Our first claim is that the
standard condition, the single-crossing condition on the cost function, suffices for a dominant-
strategy k-action implementation.

Proposition 4. Consider a worker with a single-crossing cost function, and a k-action threshold
strategy s. There are education levels and wages such that s is a dominant strategy.
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Figure 3: An example of a series-parallel network, where each link has a probability pi for transmission
success. We show that the overall probability of sucess in such netwroks is multilinear and monotone in
pi, and thus the optimal k-action social-choice function is dominant-strategy implementable.

We can now apply Theorem 2, and show that if the decision function f of the firm is
multilinear (i.e., the decisions are made to maximize a set of multilinear functions), then the
firm can design the education system such that the expected incurred loss will be O( 1

k2 ).

Corollary 4. Consider a multilinear decision function f , and a single-crossing cost function for
the players. With k education levels, the firm can implement in dominant strategies a decision
function that incurs a loss of O( 1

k2 ) compared with the decision function f .

5.3 Example 3: Routing

In our last example, we show the applicability of our results to routing in lossy networked
systems. In such systems, a sender needs to decide which network to transmit his message
through. In this setting, it is natural to assume that the agents (i.e., links) cannot report
their accurate probabilities of success, but may be able to report, e.g., whether it is “low”,
“intermediate”, or “high”. In this example, we focus on parallel-path networks.

Let N1 denote an n-edge network that is composed of multiple parallel paths of variable
lengths from a given source to a given sink (as in Figure 3), where the edges are controlled by n
different selfish agents. Suppose that the sender, who wishes to send a message from the source
to the sink, knows the topology of the network, but the probability of success on each link, pi, is
the link’s private information. The problem of the sender is to decide whether to send a message
through the network N1 or through an alternate network, N2, with a known success probability
of p′. Obviously, the sender wishes to send the message through N1 only if the total probability
of success in N1, is greater than p′. Let fN(−→p ) denote the probability of success in network N
with a success-probability vector −→p .

In this example, the sender’s set of alternatives is A = {N1, N2}, and we assume that every
agent on N1 wishes the message to be sent, and has a single-crossing valuation function over
the alternatives. The social choice function is: c(−→p ) ∈ argmaxA∈{N1,N2}{g(−→p ,A)}, where:

g(−→p ,N1) = fN1(−→p ), and g(−→p ,N2) = p′.

Proposition 5. Given a parallel-path network, the social-choice function c(−→p ) is multilinear
and single crossing.

Based on the above proposition, we can apply Theorem 1 and get the following corollary.

Corollary 5. Given a parallel-path network, the informationally optimal k-action social-choice
function c(−→p ) is implementable.
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For example, in the network presented in figure 3, the probability of success is given by
f(−→p ) = 1 − (1 − p1p2) · (1 − p3) · (1 − p4p5). This function is multilinear and has positive
derivatives with respect to all pi. Therefore, the optimal social-choice function with k actions is
implementable.
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A Missing Proofs from Section 3

Proof of Lemma 1:

Proof. We first show that we can assume, w.l.o.g., that the optimal k-action social-choice func-
tion is deterministic.8 Consider an optimal k-action mechanism that achieves the optimal result
with some set of strategies s = s1, ..., sn. Assume that there is an action vector b1, ..., bn for
which the mechanism randomizes over alternatives. Consider a similar mechanism that de-
terministically chooses an alternative that maximizes the expected social value for the action

vector
−→
b , i.e., t(

−→
b ) ∈ argmaxA′E−→

θ
(g(

−→
θ ,A′)|∀isi(θi) = bi). The expected social value for the

designer clearly has not decreased. We can similarly change the allocation for all the actions
combinations and get a deterministic mechanism with at least the same expected social value.

We now show that when the optimum is achieved with threshold strategies, the optimal
mechanism is monotone (and hence incentive compatible, Prop 1). This will follow from the
single-crossing condition on g. Denote the thresholds used by player i by xi

0, x
i
1, ..., x

i
n. Specifi-

cally, when player i reports an action bi and uses a threshold strategy, her type will lie between
[xi

bi
, xi

bi+1]. Consider a deterministic choice rule as described above, and consider an action
vector b1, ..., bn. Let A and B be two alternatives where player i prefers alternative A to B
(i.e., A �i B). Now consider another action vector b′ = (b′i, b−i), where b′i > bi. For proving
monotonicity, it suffices to show that if choosing A gains a higher social value than choosing B
for the actions vector b, this will also hold for the actions vector b′. That is, if

E−→
θ

(
g(
−→
θ ,A) | ∀j sj(θj) = bj

)
≥ E−→

θ

(
g(
−→
θ ,B) | ∀j sj(θj) = bj

)
(1)

then

E−→
θ

(
g(
−→
θ ,A) | ∀j sj(θj) = b′j

)
≥ E−→

θ

(
g(
−→
θ ,B) | ∀j sj(θj) = b′j

)

To see this, we show that given any profile of types θ−i of the other players, the change in the
expected value of g(·, A) will be greater than the change in g(·, B) when player i bids a higher
bid.

8This result is general and its proof does not require that the players use threshold strategies.
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And indeed,

E−→
θ

“

g(
−→
θ ,A)

˛

˛

˛
∀j sj(θj) = b′j

”

− E−→
θ

“

g(
−→
θ ,B)

˛

˛

˛
∀j sj(θj) = b′j

”

= Eθ
−i

“

Eθi

“

g(
−→
θ , A) − g(

−→
θ , B)

˛

˛

˛
∀ si(θi) = b′i

” ˛

˛

˛
∀j 6= i sj(θj) = bj)

= Eθ
−i

 

1

Fi(xi
bi+2

) − Fi(xi
bi+1

)

Z xi

bi+2

xi

bi+1

“

g(
−→
θ , A) − g(

−→
θ , B)

”

fi(θi)dθi

˛

˛

˛

˛

˛

˛

∀j 6= i sj(θj) = bj

1

A

> Eθ
−i

 

1

Fi(xi
bi+2

) − Fi(xi
bi+1

)

Z xi

bi+2

xi

bi+1

“

g(xi
bi+1

, θ−i, A) − g(xi
bi+1

, θ−i, B)
”

fi(θi)dθi

˛

˛

˛

˛

˛

˛

∀j 6= i sj(θj) = bj)

= Eθ
−i

“

g(xi
bi+1

, θ−i, A) − g(xi
bi+1

, θ−i, B)
˛

˛

˛
∀j 6= i sj(θj) = bj

”

= Eθ
−i

 

1

Fi(xi
bi+1

) − Fi(xi
bi

)

Z xi

bi+1

xi

bi

“

g(xi
bi+1

, θ−i, A) − g(xi
bi+1

, θ−i, B)
”

fi(θi)dθi

˛

˛

˛

˛

˛

˛

∀j 6= i sj(θj) = bj)

> Eθ
−i

 

1

Fi(xi
bi+1

) − Fi(xi
bi

)

Z xi

bi+1

xi

bi

“

g(
−→
θ ,A) − g(

−→
θ , B)

”

˛

˛

˛

˛

˛

˛

∀j 6= i sj(θj) = bj

1

A

= E−→
θ

“

g(
−→
θ ,A)

˛

˛

˛ ∀jsj(θj) = bj

”

− E−→
θ

“

g(
−→
θ ,B)

˛

˛

˛ ∀jsj(θj) = bj

”

≥ 0

The strict inequalities follow from the single-crossing condition on g, and since A �i B.
The other equalities hold since θi is drawn independently from the other types and due to the
linearity of expectation. The last inequality holds since for the action vector b, the alternative
A achieves a higher social value than B (Equation 1).

Therefore, when player i reports a higher message, an optimal mechanism will necessar-
ily choose an alternative with higher priority for player i. The monotonicity of the optimal
mechanism then follows.

We now prove the other direction of the lemma: if a mechanism is monotone, then the
optimum is achieved with threshold strategies. The basic idea: for each player, we consider the
expected social value as a function of her type θi when he chooses a particular action. We show
that for every two actions j1 < j2 this expected social value is single crossing; it suffices here to
show that the single-crossing property holds in the weaker since – if for some θi the expected
social value is equal for the two actions j1, j2 of player i, then for any higher type the expected
value in j2 will be strictly higher.

Let θ∗i be the type for player i for which the expected social value is equal either when he
chooses j1 or j2, that is (we denote the actions of the players except i when their types are θ−i

by s−i(θ−i)):

Eθ−i
( g(θ∗i , θ−i, t(j1, s−i(θ−i) )) = Eθ−i

( g(θ∗i , θ−i, t(j2, s−i(θ−i) )) (2)

We will show that for every ε > 0, the expected social value when player i chooses j2 is
strictly greater than the expected social value in j1 when player i’s type is θ∗i + ε.

Given a profile of actions b−i played by the other players, let A be the chosen alternative when
player i bids j1 and let B be the chosen alternative for j2 (that is, t(j1, b−i) = A, t(j2, b−i) = B).
Since we assumed that the allocation scheme is monotone, then if A 6= B we must have that
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A �i B. The social value function is single crossing, hence the change in the expected social
value when alternative B is chosen should be greater, that is:

Eθ−i
(g(θ∗i + ε, θ−i, B) | s−i(θ−i) = b−i) − Eθ−i

(g(θ∗i , θ−i, B) | s−i(θ−i) = b−i) >

Eθ−i
(g(θ∗i + ε, θ−i, A) | s−i(θ−i) = b−i) − Eθ−i

(g(θ∗i , θ−i, A) | s−i(θ−i) = b−i)

Now, summing over all the possible b−i, we get:9

Eθ−i
(g(θ∗i + ε, θ−i, t(j2, s−i(θ−i)))) − Eθ−i

(g(θ∗i , θ−i, t(j2, s−i(θ−i)))) >

Eθ−i
(g(θ∗i + ε, θ−i, t(j1, s−i(θ−i)))) − Eθ−i

(g(θ∗i , θ−i, t(j1, s−i(θ−i))))

Since for θ∗i the expected social value in j1 and j2 is equal (Equation 2), our claim follows:

Eθ−i
(g(θ∗i + ε, θ−i, t(j2, s−i(θ−i)))) > Eθ−i

(g(θ∗i + ε, θ−i, t(j1, s−i(θ−i))))

Finally, it is easy to see now that the optimal social value can be achieved with threshold
strategies for k-action games: the strategy for player i that maximizes the social value is a
maximum over k pairwise single-crossing functions, and such a function must have at most k−1
switching points.

Proof for Theorem 1

Proof. We will show that for any k-action mechanism, the optimal expected social value is
achieved when all players use threshold strategies. This will be shown by proving that for any
player i and for any action bi of player i, the expected welfare when she chooses the action bi is
a linear function in player i’s type θi. Then, it will follow from Lemma 1 that the social choice
function is implementable.

For every action bi of player i, let qA denote the probability that alternative A is allocated,

i.e., qA = Pr−→
θ

[
t(s(

−→
θ )) = A|si(θi) = bi

]
. Due to the linearity of expectation, the expected

social value when player i with type θi reports bi is:
∑

A∈A

qA Eθ−i
( g(θi, θ−i, A) | t(bi, s−i(θ−i)) = A )

=
∑

A∈A

qA

∫

θ−i

g(θi, θ−i, A)fA
−i(θ−i)d(θ−i)

where fA
−i(θ−i) equals

Q

j 6=i fj(θj)

qA
for types profiles θ−i such that t(bi, s−i(θ−i)) = A, and 0

otherwise.
Since g is multilinear, every function g(θi, θ−i, A) is a linear function in θi, where the coeffi-

cients depend on the values of θ−i. Denote this function by g(θi, θ−i, A) = αθ−i
θi + βθ−i

. Thus,
we can write Equation 3 as:

∑

A∈A

qA

∫

θ−i

(
αθ−i

θi + βθ−i

)
fA
−i(θ−i)d(θ−i)

=
∑

A∈A

qA

(
θi

∫

θ−i

αθ−i
fA
−i(θ−i)d(θ−i)+

∫

θ−i

βθ−i
fA
−i(θ−i)d(θ−i)

)

9Note that there must be some b−i for which t(j2, b−i) �i t(j1, b−i) otherwise the allocation scheme is identical
in j1 and j2, thus we can ignore one of them,
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In this expression, each integral is a constant independent of θi when the strategies of the
other player are fixed. Therefore, each summand, thus the whole function, is a linear function
in θi. For achieving the optimal expected social value, the player must choose the action that
maximizes the expected social value. A maximum of k linear functions is a piecewise-linear
function with at most k − 1 breaking points. These breaking points are the thresholds to be
used by the player. For all types between subsequent thresholds, the optimum is clearly achieved
by a single action; Since linear functions are single-crossing, every action will be maximal in at
most one interval.

The same argument applies to all the players, and therefore the optimal social value is
obtained with threshold strategies.

Proof of Theorem 2:

Proof. For simplicity, we will assume that all the types are drawn from the support [0, 1] (oth-
erwise, the lengths of the supports only affect the constants in the asymptotic analysis), and
that k is even.

Given a set of n players, we will define a k-action threshold strategy for each player where each
action j is chosen with probability O( 1

k
), and the distance between each consecutive thresholds

is O( 1
k
). Using these strategies, we define a mechanism that achieves an O( 1

k2 ) loss.

Construction of the threshold strategies:
For each player i let Y i = {yi

0 = θ, yi
1, ..., y

i
k
2n

−1
, yi

k
2

= θ} be a set of threshold thresholds that

divide the density function of player i to k
2 equi-mass intervals. That is, for every j, l we have

Fi(y
i
j+1) − Fi(y

i
j) = Fi(y

i
l+1) − Fi(y

i
l) = 2

k
.

In addition, let Z i = {zi
0 = θ, zi

1, ..., z
i
k
2n

−1
, zi

k
2

= θ} be a set of thresholds that divides the

interval [0, 1] to k
2 equi-sized intervals. That is, for every j, l we have yi

j+1 − yi
j = yi

l+1 − yi
l = 2

k
.

Now, let X i = Y i∪Zi be the set of thresholds for player i. Clearly, using a threshold strategy
based on X i (when the thresholds are ordered in increasing order), player i chooses each action
j with probability O( 1

k
), and the distance between each consecutive thresholds is O( 1

k
).

The allocation rule:
For each vector of actions b, the mechanism will choose the alternative that maximize the
expected social-value when the players use the threshold strategies s based on the vectors X i

defined above. That is,

t(b) = argmaxAE
[
g(
−→
θ ,A)

∣∣∣ s(
−→
θ ) = b

]

All the definitions and claims below refer to the mechanism above, where each player plays
according to the threshold strategy si based on the thresholds X i.

We say that an actions vector b is decisive if one alternative maximizes the social value
for every profile of types (otherwise the vector is indecisive). In other words, if the social
planner chooses a particular alternative for this actions’ vector then no loss in social-value is
incurred. More formally, an actions vector b is decisive if there exists an alternative A for which

A ∈ argmaxBg(θ1, ..., θn, B) for every where profile
−→
θ of types such that s∗(θi) = bi for every

player i. Similarly, the vector b is decisive with respect to a pair of alternatives A,B, if one of
these alternatives is always superior to the other when the player choose the actions b.

We will prove that the mechanism incurs an expected loss of O( 1
k2 ) using the two claims

below. Claim 1 shows that the number of indecisive actions vectors is O(kn−1). Since the player
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choose each action with probability O( 1
k
), each indecisive action vector is chosen with probability

O( 1
kn ), and therefore an indecisive vector will be chosen with probability of O(kn−1 · 1

kn ) = O( 1
k
).

Claim 2 proves that the maximal possible social-value loss, compared to the optimal allocation
with unrestricted actions, is O( 1

k
) for each indecisive action vector. Therefore, it follows from the

following claims that the expected social-value loss in the k-action mechanism we constructed
above is O( 1

k2 ).

Claim 1. The number of indecisive actions profile is at most O(kn−1).

Proof. Consider a pair of players 1, 2 and a pair of alternatives A,B and fix the actions b−{1,2}

of the other players. Let (b1, b2, b−{1,2}) be an indecisive vector with respect to alternatives A
and B (assume that A �1 B and B �2 A, the other cases are treated similarly). Since the
action vector is indecisive, there must be types θ1, θ2 for which s(θ1) = b1 and s(θ2) = b2, and
also

Eθ−{1,2}
[g(θ1, θ2, θ−{1,2}, A)] > Eθ−{1,2}

[g(θ1, θ2, θ−{1,2}, B)]

Now consider an action vector b′1, b
′
2 such that b′1 > b1 and b′2 < b2. We will show that for any

pair of types θ′1, θ
′
2 for which S(θ′1) = b′1 and s(θ′2) = b′2 we have:

Eθ−{1,2}
[g(θ′1, θ

′
2, θ−{1,2}, A)] > Eθ−{1,2}

[g(θ′1, θ
′
2, θ−{1,2}, B)]

The formal argument is proved similarly to the proof in Lemma 1, and it follows from the
single-crossing condition: changing the types from θ1, θ2 to θ′1, θ

′
2 clearly increases the type of

player 1 and decreases the type of player 2 – both changes increase the gap between the social
value achieved with the alternative A and the alternative B. We conclude that if b1, b2, b−{1,2} is
indecisive with respect to A,B, then any other indecisive actions vector cannot include a smaller
action for one of the players 1, 2 and a higher action for the other. Thus, there are at most 2k−1
indecisive vectors for any profile b−{1,2} of the other players. Every indecisive actions vector is
clearly indecisive with respect to some pair of alternatives, thus the number of indecisive actions
vectors (given b−{1,2}) is at most

(|A|
2

)
· (2k − 1) = O(k). Therefore, for any pair players (of(

n
2

)
pairs), there are are kn−2 different actions for the other players, each one allows at most a

linear number of indecisive action vectors. The total number of indecisive actions vectors will
therefore be O(kn−2) · O(k) = O(kn−1).

Claim 2. The social-value loss incurred when the players play an indecisive actions vector is
O( 1

k
).

Proof. Consider an indecisive vector of actions b with respect to a pair of alternative A,B.
Given that the players choose the actions b, we show that the difference between the social value
gained by chosing A and B is always at most O( 1

k
). It will follow immediately that the expected

loss incurred given each actions vector is O( 1
k
).

Suppose w.l.o.g that the mechanism chooses the alternative A for the action vector b. Let
θA
1 , θA

2 ∈ argmaxθ1,θ2
g(θ1, θ2, A) and let θB

1 , θB
2 ∈ argminθ1,θ2

g(θ1, θ2, B). Since the vector b is
indecisive with respect to A,B, and since the social value function is continuous, we know that
there are types θ∗1, θ

∗
2 for which g(θ∗1 , θ

∗
2, A) = g(θ∗1, θ

∗
2, B). We will show that g(θA

1 , θA
2 , A) −

g(θ∗1 , θ
∗
2, A) is at most O( 1

k
), and similarly one can show that g(θ∗1 , θ

∗
2, B)− g(θB

1 , θB
2 , B) is O( 1

k
)

and the theorem will follow.
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Since the social-value function g is multilinear, we can write g(θA
1 , θA

2 , A) = aθ1θ2 + bθ1 +
cθ2 + d, where a, b, c, d ∈ R. The social value will increase, when moving from θA

1 , θA
2 to θ∗1, θ

∗
2,

by at most

|a|(θA
1 − θ∗1)(θ

A
2 − θ∗2) + |b|(θA

1 − θ∗1)) + |c|(θA
1 − θ∗1)) ≤ |a|

2n

k

2n

k
+ |b|

2n

k
+ |c|

2n

k

= O(
1

k
)

The inequality holds since in the construction of the threshold strategies, the size of each interval
is O( 1

k
).

This argument easily extends to any (constant) number of players. Since the proof holds for
every two alternatives, the maximal loss is always O( 1

k
).

B Missing Proofs from Section 4

Proof of Theorem 3:

Proof. We will show that the optimal mechanism will be non-degenerate with resepct to (w.l.o.g.)
player 2. In other words, in the matrix representation of the optimal mechanism there will be
no identical columns. Denote the two alternatives as A and B and the two players as 1 and
2. We will prove the theorem for the case where the preferences of the players are conflicting,
that is A �1 B and B �2 A. The case where the preferences are correlated (A �1 B and
A �2 B) can be proved similarly. Assume w.l.o.g. that g(θ1, θ2, A) ≥ g(θ1, θ2, B) (recall that θi

denotes the lower bound of the support of player i). If player 2 has two identical columns, then
monotonicity derives that these columns will be adjacent, so this player will actually have k − 1
possible actions (note that here we only consider the allocation scheme). We will prove that a
mechanism where player 2 has k− 1 possible actions cannot be optimal, since we can add a new
column and strictly increase the expected social value. Let the optimal k-action social value be
achieved when player 1 uses the threshold vector x0, ..., xk and player 2 has k−1 possible actions
and uses the threshold vector y0, ..., yk−1. (Theorem 1 shows that for multilinear social-choice
rules the optimal result is achieved in a monotone mechanism with threshold strategies).

Case 1: the column [A,A, ..., A] does not appear in the allocation matrix.
We will add this column to the game as the first column (action “0”), and add an additional

threshold y′ such that the expected social value strictly improves in the new mechanism when
player 2 uses the threshold vector y0, y

′, y1, ..., yk−1. Consider the expected difference between
the social value of the two alternatives when both players report 0, as a function of the second
threshold of player 2:

diff(y) = Eθ1,θ2
(g(θ1, θ2, A) − g(θ1, θ2, B) | θ1 ∈ [x0, x1], θ2 ∈ [y0, y])

We know that diff(y0) > 0 (since we assumed that g(a1, a2, A) ≥ g(a1, a2, B) and due to the
single-crossing property). We also know that diff(y1) < 0, otherwise alternative A would be
preferred in this entry and the column [A, ..., A] would have existed (monotonicity). Due to the
Inetrmediate-Value theorem, there must be some y∗ for which diff(y∗) = 0 (diff(·) is clearly

continuous since each g(·, ·, < alt >) is continuous). Setting y ′ to be, for example,
yj+1+y∗

2
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ensures that when θ2 is between [y0, y
′] and when player 1 reports “0”, the expected social-value

strictly increases. the allocation in all other cases remains unchanged.

Case 2: when the column [A,A, ..., A] exists.
Since there are k + 1 possible columns of the form [B,B, ..., A,A], it must be the case that

some “internal” column is missing, that is, there are actions i, i + 1 for player 1 and j, j + 1 for
player 2 such that t(i, j) = t(i+1, j) = A and t(i, j +1) = t(i+1, j +1) = B. We will show that
adding an action (column) j ′ for player 2 that is identical to the allocation in column j except
t(i + 1, j′) = B, will strictly increase the expected social value. For the exact construction, we
have to consider two different subcases: If the expectd social value when player 1 reports 0 and
player 2’s type is yj+1 is greater for alternative A than for B, then we will define a new threshold
which is greater than yj+1; Otherwise, the threshold will be smaller than yj+1:
Case 2.1.: When E(g(θ1, yj+1, A)|θ1 ∈ [xi, xi+1])) ≥ E(g(θ1, yj+1, B)|θ1 ∈ [xi, xi+1])):
Due to the (strict) single-crossing condition, clearly E(g(θ1, yj+1, A)|θ1 ∈ [xi+1, xi+2])) > E(g(θ1, yj+1, B)|θ1 ∈
[xi+1, xi+2])). Therefore, due to similar Intermediate-Value considerations, there must be some
threshold y∗ > yj+1 for which E(g(θ1, yj+1, A)|θ1 ∈ [xi+1, xi+2])) = E(g(θ1, yj+1, B)|θ1 ∈
[xi+1, xi+2])). Now, let player 2 use the threshold strategy based on the vector y0, ..., yj+1, y

′, .., yk−1,

for example, y′ =
yj+1+y∗

2 . The expected social value strictly increased when player 2 reports the
new bid (that is when θ2 ∈ [yj+1, y

′]), while the allocation in the other cases remains unchanged.
Case 2.2.: When E(g(θ1, yj+1, A|θ1 ∈ [xi, xi+1])) < E(g(θ1, yj+1, B|θ1 ∈ [xi, xi+1])):

Let y∗ be again the value for which E(g(θ1, y
∗, A|θ1 ∈ [xi, xi+1])) = E(g(θ1, y

∗, B|θ1 ∈
[xi, xi+1])). Clearly, now y∗ < yj+1. Similar arguments show that adding a new threshold

y′ =
yj+1+y∗

2 yields a higher expected social surplus.

Proof of Proposition 3:

Proof. We first prove that when k = 2, the number of monotone non-degenerate (MND) mech-
anisms is exponential in n by induction on the number of players. Suppose the number of
MND n-player mechanisms is at least 2n. We will show that the number of MND (n+1)-player
mechanisms is at least 2n+1. Let M denote the set of MND n-player mechanisms, and suppose
that B �n+1 A. Also, let tM (b) denote the allocation under mechanism M , given the vector of
actions, b.

For each mechanism M ∈ M, construct two (n+1)-player mechanisms, M1 and M2, as fol-
lows. (M1): tM1(b1, . . . , bn, 0) = A , and tM1(b1, . . . , bn, 1) = tM (b1, . . . , bn). (M2): tM2(b1, . . . , bn, 0) =
tM (b1, . . . , bn) , and tM2(b1, . . . , bn, 1) = B. We will show that mechanism M1 is MND. The case
of M2 can be proved similarly.

Monotonicity: It is easy to see that the monotonicity of M1 for the initial n players follows
from the monotonicity of M . In addition, since tM1(b1, . . . , bn, 0) = A, and B �n+1 A, M1 must
be monotone with respect to player n + 1 too.

non-degenerate: From the allocation function of M1, it follows that if M is non-degenerate
with respect to the initial n players, then the same applies to M1. In addition, since M is non-
degenerate, it cannot be the case that ∀bi, tM (b1, . . . , bn) = A. But since ∀bi, tM1(b1, . . . , bn, 0) =
A, M1 is non-degenerate w.r.t. player (n+1).

Similar arguments show that mechanism M2 is MND. To complete the proof, we need to
show that no two mechanisms are identical. Since M is non-degenerate, it cannot be the case
that for all bi, t(b1, . . . , bn) = A or t(b1, . . . , bn) = A. But since tM1(b1, . . . , bn, 0) = A, and
tM2(b1, . . . , bn, 1) = B, there does not exist a vector b for which tM1(b) = tM2(b). In addition,
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since ∀M ∈ M, M is non-degenerate, two mechanisms that are both constructed according to
M1 or both constructed according to M2 cannot be identical. Thus, if the number of MND
n-player mechanisms is 2n, then the number of MND (n+1)-player mechanisms is 2n+1.

C Missing Proofs from Section 5

Proof of Proposition 5:
Let P denote the set of all paths from the source to the destination, and denote Pi = P ∈

P : i ∈ P . For all i, the success probability function can be expressed as:

f(−→p ) = 1 −
∏

P∈P

(1 −
∏

j∈P

pj)

It is easy to see that f(−→p ) is linear in pi for all i, and therefore multilinear. Therefore g is
multilinear. In addition, the derivative of f(−→p ) with respect to pi is positive:

∂f(−→p )

∂pi

=
∏

j∈Pi:j 6=i

pj > 0

Thus, we get:
∂g(−→p ,N1))

∂pi

=
∂f(−→p )

∂pi

=
∏

j∈Pi:j 6=i

pj > 0

while:
∂g(−→p ,N2))

∂pi

= 0

Therefore, ∂g(−→p ,N1))
∂pi

> ∂g(−→p ,N2))
∂pi

for all i, and g is single crossing.
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