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Abstract

Let A be a finite set of m alternatives, let N be a finite set of n players and let RN be

a profile of linear preference orderings on A of the players. Let uN be a profile of utility

functions for RN . We define the NTU game VuN that corresponds to simple majority voting,

and investigate its Aumann-Davis-Maschler and Mas-Colell bargaining sets.

The first bargaining set is nonempty for m ≤ 3 and it may be empty for m ≥ 4. However,

in a simple probabilistic model, for fixed m, the probability that the Aumann-Davis-Maschler

bargaining set is nonempty tends to one if n tends to infinity.

The Mas-Colell bargaining set is nonempty for m ≤ 5 and it may be empty for m ≥ 6.

Furthermore, it may be empty even if we insist that n be odd, provided that m is sufficiently

large. Nevertheless, we show that the Mas-Colell bargaining set of any simple majority voting

game derived from the k-th replication of RN is nonempty, provided that k ≥ n + 2.
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1 Introduction

The Voting Paradox prevents us from applying the majority voting rule to choice problems

with more than two alternatives. The standard way to avoid the paradox is to assume that

the preferences of the voters are restricted so that the method of decision by majority yields

no cycles (see Gaertner (2001) for a recent comprehensive survey). In this paper we follow a

different path. It is well-known that the Voting Paradox is equivalent to the emptiness of the

core of the corresponding cooperative majority voting game. We investigate two bargaining sets

which contain the core.

We shall now review our results. At the end of the review we shall present our main conclusions.

In Section 2 we derive the exact form of the cooperative NTU games which correspond to simple

majority voting.1 We also recall the definitions of the Aumann-Davis-Maschler and Mas-Colell

bargaining sets of cooperative NTU games.

The Voting Paradox with three voters and three alternatives is analyzed in Section 3 with respect

to these two bargaining sets.

Section 4 addresses the existence question for the Aumann-Davis-Maschler bargaining set of

a simple majority voting game. We show that it is nonempty when there are at most three

alternatives, but may be empty when there are four or more alternatives.

The same question for the Mas-Colell bargaining set is addressed in Section 5. It turns out that

the boundary between existence and non-existence is somewhat higher in this case: We prove

existence for up to five alternatives, and give examples of emptiness for six or more alternatives.

In these examples, there is an even number of voters. This raises the question, addressed in

Section 6, of whether the Mas-Colell bargaining set of a simple majority voting game with an

odd number of voters may be empty. This indeed turns out to be the case, but showing this

requires a much more elaborate construction and huge numbers of alternatives and voters.

We conclude in Section 7 with existence results for two models in which there are many voters,

whose preferences are drawn in a specified way. In one of them, a simple probabilistic model,

we show that both bargaining sets are nonempty with probability tending to one as the number

of voters tends to infinity. In the other, a replication model, we prove that the Mas-Colell

bargaining set is nonempty for any k-fold replication with k sufficiently large.

An individually rational payoff vector belongs to the bargaining set if (i) it is (weakly) Pareto

optimal and (ii) for every objection (in the sense of the bargaining set under consideration) there
1Similar derivations may be carried out for other voting rules. Here we concentrate on the most natural voting

rule, simple majority. We refer the reader to an earlier version of this manuscript (available as Discussion Paper

# 376, Center for the Study of Rationality, The Hebrew University of Jerusalem) for a treatment of plurality

voting and approval voting.
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is a counter objection. Our study proves that the tension between (i) and (ii) is so strong that

for six or more alternatives both bargaining sets may be empty. This is our first conclusion.

Our second conclusion is more vague: If the number of players tends to infinity and the number

of alternatives is held fixed, then the bargaining sets of simple majority voting games are likely

to be nonempty.

2 Preliminaries

Let N = {1, . . . , n}, n ≥ 2, be a set of voters, also called players, and let A = {a1, . . . , am},
m ≥ 2, be a set of m alternatives. For S ⊆ N we denote by RS the set of all real functions on

S. So RS is the |S|-dimensional Euclidean space. (Here and in the sequel, if D is a finite set,

then |D| denotes the cardinality of D.) If x, y ∈ RS , then we write x ≥ y if xi ≥ yi for all i ∈ S.

Moreover, we write x > y if x ≥ y and x 6= y and we write x À y if xi > yi for all i ∈ S. Denote

RS
+ = {x ∈ RS | x ≥ 0}. A set C ⊆ RS is comprehensive if x ∈ C, y ∈ RS , and y ≤ x imply

that y ∈ C. An NTU game with the player set N is a pair (N, V ) where V is a function which

associates with every coalition S (that is, S ⊆ N and S 6= ∅) a set V (S) ⊆ RS , V (S) 6= ∅, such

that

(1) V (S) is closed and comprehensive;

(2) V (S) ∩ (x + RS
+) is bounded for every x ∈ RS .

We shall now assume that each i ∈ N has a linear preference Ri on A. Thus, for every i ∈ N ,

Ri is a complete, transitive, and antisymmetric binary relation on A. Moreover, let ui, i ∈ N ,

be a utility function that represents Ri. We shall always assume that

min
α∈A

ui(α) = 0 for all i ∈ N. (2.1)

We consider a situation in which every player votes for some alternative in A. If a strict

majority of voters agrees on α ∈ A, then the outcome is α, and every voter i gets utility ui(α).

Otherwise, if no majority forms, a deadlock results and every voter gets utility 0. Given any

utility profile uN = (ui)i∈N that satisfies (2.1), this naturally leads (via α-effectiveness) to the

following definition of the NTU game (N,VuN ) associated with choice by simple majority voting

and called simple majority voting game (see Aumann (1967)):

VuN (S) = {x ∈ RS | x ≤ 0} if S ⊆ N, 1 ≤ |S| ≤ n

2
; (2.2)

VuN (S) = {x ∈ RS | ∃α ∈ A such that x ≤ uS(α)} if S ⊆ N, |S| > n

2
, (2.3)

where uS(α) = (ui(α))i∈S .
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Notation 2.1 In the sequel let L = L(A) denote the set of linear preferences on A. For R ∈ L

and for k ∈ {1, . . . , m}, let tk(R) denote the k-th alternative in the order R. If RN ∈ LN and

α, β ∈ A, α 6= β, then α dominates β (abbreviated α ÂRN β) if |{i ∈ N | α Ri β}| > n
2 . We shall

say that an alternative α ∈ A is a weak Condorcet winner (with respect to RN ) if β 6ÂRN α for

all β ∈ A. Also, if RN ∈ LN , then denote

URN
= {(ui)i∈N | ui is a representation of Ri satisfying (2.1) ∀i ∈ N}.

Let (N, V ) be an NTU game. The pair (N, V ) is zero-normalized if V ({i}) = −R{i}+ for all i ∈ N .

Also, (N, V ) is superadditive if for every pair of disjoint coalitions S, T , V (S)×V (T ) ⊆ V (S∪T ).

It should be remarked that the NTU games defined by (2.2) and (2.3) are zero-normalized and

superadditive.

Now we shall recall the definitions of two bargaining sets introduced by Davis and Maschler

(1967) and by Mas-Colell (1989), following the general approach delineated by Aumann and

Maschler (1964). Let (N, V ) be a zero-normalized NTU game and x ∈ RN . We say that x is

• individually rational if x ≥ 0;

• Pareto optimal (in V (N)) if x ∈ V (N) and if y ∈ V (N) and y ≥ x imply x = y;

• weakly Pareto optimal (in V (N)) if x ∈ V (N) and if for every y ∈ V (N) there exists i ∈ N

such that xi ≥ yi;

• a preimputation if x is weakly Pareto optimal in V (N);

• an imputation if x is an individually rational preimputation.

We also use the natural analogue of the Pareto optimality notion with respect to V (S), where

∅ 6= S ⊆ N .

A pair (P, y) is an objection at x if ∅ 6= P ⊆ N , y is Pareto optimal in V (P ), and y > xP .

An objection (P, y) is strong if y À xP . The pair (Q, z) is a weak counter objection to the

objection (P, y) if Q ⊆ N , Q 6= ∅, P , if z ∈ V (Q), and if z ≥ (yP∩Q, xQ\P ). A weak counter

objection (Q, z) is a counter objection to the objection (P, y) if z > (yP∩Q, xQ\P ). A strong

objection (P, y) is justified in the sense of the bargaining set if there exist players k ∈ P and

` ∈ N \ P such that there does not exist any weak counter objection (Q, z) to (P, y) satisfying

` ∈ Q and k /∈ Q. The bargaining set of (N, V ), M(N, V ), is the set of all imputations x that

do not have strong justified objections at x in the sense of the bargaining set (see Davis and

Maschler (1967)). An objection (P, y) is justified in the sense of the Mas-Colell bargaining set

if there does not exist any counter objection to (P, y). The Mas-Colell bargaining set of (N,V ),

MB(N, V ), is the set of all imputations x that do not have a justified objection at x in the sense

of the Mas-Colell bargaining set (see Mas-Colell (1989)).
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Remark 2.2 The original definition of Mas-Colell considered preimputations, not just imputa-

tions. In restricting our attention to imputations we follow Vohra (1991). In any case, all our

results about existence and non-existence are valid for both variants of the definition.

Remark 2.3 For a given RN ∈ LN , the particular choice of a representation uN ∈ URN
is

essentially immaterial: different representations lead to NTU games that are derived from each

other by ordinal transformations, and so are their bargaining sets.

3 The Voting Paradox

In this section we shall compute the bargaining sets of the Voting Paradox and interpret the

results.

Let A = {a, b, c}, let n = 3, and let RN ∈ LN be given by Table 3.1.

Table 3.1: Preference Profile of the Voting Paradox

R1 R2 R3

a c b

b a c

c b a

For i ∈ N let ui be a utility representation of Ri satisfying (2.1) and let V = VuN (see (2.2) and

(2.3)).

We claim that M(N,V ) = {0}. Indeed, it is straightforward to verify that 0 ∈ M(N, V ). In

order to show the opposite inclusion let x ∈ M(N, V ). Then there exists α ∈ A such that

x ≤ uN (α). Without loss of generality we may assume that α = a. Assume, on the contrary,

that x > 0. If x1 > 0, then ({2, 3}, u{2,3}(c)) is a justified objection of 3 against 1 at x in the

sense of the bargaining set. If x1 = 0 and, hence, x2 > 0, then ({1, 3}, u{1,3}(b)) is a justified

objection of 1 against 2.

In order to compute the Mas-Colell bargaining set, we define x = (u1(b), u2(a), 0) and claim that

x ∈MB(N,V ). Indeed, let (P, y) be an objection at x. Then |P | ≥ 2. As y is Pareto optimal in

V (P ), y ∈ {uP (α) | α ∈ A}. If y = uP (a), then (P, y) is countered by ({2, 3}, u{2,3}(c)). If y =

uP (b), then y > xP implies that P = {1, 3}. In this case (P, y) is countered by ({1, 2}, u{1,2}(a)).

Finally, if y = uP (c), then y > xP implies that P = {2, 3} and that (P, y) is countered by

({1, 3}, u{1,3}(b)).
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In order to show that every x̂ ∈ RN satisfying 0 ≤ x̂ ≤ x is an element of MB(N, V ), it

should be noted that each objection at x̂ is also an objection at x if x̂1 > 0 and x̂2 > 0. If

x̂1 = 0 and x̂2 > 0, then the additional objections are of the form (P, uP (c)) for some P ⊆ N

and these objections can be countered by ({1, 3}, u{1,3}(b)). Similarly, if x̂1 > 0 and x̂2 = 0,

then the additional objections can be countered by ({1, 2}, u{1,2}(a)). Finally, if x̂ = 0, then

each additional objection can be countered by one of the foregoing pairs ({1, 3}, u{1,3}(b)) or

({1, 2}, u{1,2}(a)).

Similarly, for y = (u1(b), 0, u3(c)) and z = (0, u2(a), u3(c)) we have that every ŷ ∈ RN satisfying

0 ≤ ŷ ≤ y and every ẑ ∈ RN satisfying 0 ≤ ẑ ≤ z is in MB(N, V ).

We shall show now that there are no other elements in MB(N, V ). Indeed, any remaining indi-

vidually rational x̃ ∈ V (N) must have a coordinate that is higher than the utility of that voter’s

second best alternative. Say, without loss of generality, that x̃1 > u1(b). Then ({2, 3}, u{2,3}(c))

is a justified objection in the sense of the Mas-Colell bargaining set at x̃. We conclude that

MB(N, V ) is the intersection of RN
+ and the comprehensive hull of {x, y, z}.

Discussion: The singleton M(N, V ) tells us that in order to achieve (coalitional) stability the

players have to give up any profit above their individually protected levels of utility. There

is no hint how an alternative of A will be chosen. The message of MB(N, V ) is much more

detailed. For example, the element x = (u1(b), u2(a), 0) tells us that the alternative a may be

chosen provided player 1 disposes of u1(a)−u1(b) utiles. Thus, we also see here that lower utility

levels guarantee stability. Actually, x implies that there is an agreement between 1 and 2, the

alternative a is chosen as a result of the agreement, and the utility of 1 is reduced (because of

the agreement) from u1(a) to u1(b). Note that cooperative game theory does not specify the

details of agreements that support stable payoff vectors.

In this example (and indeed in many other examples) the Mas-Colell bargaining set is much

larger than the Aumann-Davis-Maschler one. However, it is intersting to note that MB(N,V )

need not contain M(N, V ) in general, as shown by the following example.

Example 3.1 Let n = 4 and let RN be given by Table 3.2.

Then x = (min{ui(b), ui(a)})i∈N ∈ M(N, V ), because there is no strong objection at x. How-

ever, x /∈ MB(N, V ) because (N, uN (a)) is a justified objection in the sense of the Mas-Colell

bargaining set at x.

Nevertheless, it can be shown that when the number of alternatives is three and there is no weak

Condorcet winner, then in the associated NTU game (N, V ) we have M(N,V ) ⊆MB(N, V ).2

2We refer the reader to an earlier version of this manuscript (available as Discussion Paper # 376, Center for

the Study of Rationality, The Hebrew University of Jerusalem), where this fact is derived from a detailed (though

incomplete) description of the bargaining sets of simple majority voting games in the case of three alternatives.
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Table 3.2: Preference Profile of a 4-Person Voting Problem

R1 R2 R3 R4

a a c c

b b b b

c c a a

4 The Bargaining Set

Throughout this section let RN ∈ L(A)N , Â = ÂRN , uN ∈ URN
(see Notation 2.1), V = VuN

(see (2.2) and (2.3)).

Theorem 4.1 If |A| ≤ 3, then M(N, V ) 6= ∅.

Proof: If there exists a weak Condorcet winner α ∈ A, then uN (α) ∈ M(N,V ). So we may

assume that |A| = 3 and for every α ∈ A there exists β ∈ A such that β Â α. We claim that for

any α ∈ A there exists i ∈ N such that t3(Ri) = α. Indeed, if α ∈ {t1(Ri), t2(Ri)} for all i ∈ N

and if β Â α, then |{i ∈ N | β = t1(Ri)}| > n
2 and β is a Condorcet winner which was excluded.

We conclude that 0 ∈ RN is weakly Pareto optimal. Hence 0 ∈M(N, V ). q.e.d.

Example 4.2 Let A = {a, b, c, d}, let n = 3, and let RN be given by Table 4.1.

Table 4.1: Preference Profile of a 4-Alternative Voting Problem

R1 R2 R3

a c b

b a c

d d d

c b a

We claim that M(N, V ) = ∅. Let x be an imputation of (N, V ). In order to show that

x /∈ M(N, V ) we may assume without loss of generality that x1 ≥ u1(d). We distinguish the

following possibilities:
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(1) x ≤ uN (a) or x ≤ uN (d). Then
({2, 3}, u{2,3}(c)

)
is a justified objection (in the sense of

the bargaining set) of 3 against 1.

(2) x ≤ uN (b). If x3 < u3(c), then we may use the same justified strong objection as in the

first possibility. If x3 ≥ u3(c), then
({1, 2}, u{1,2}(a)

)
is a justified objection of 2 against

3.

Example 4.2 shows the tension between (weak) Pareto optimality and stability may result in an

empty bargaining set.

Example 4.2 may be generalized to any number m ≥ 4 of alternatives. Indeed, let A =

{a, b, c, d1, . . . , dk}, where k = m− 3, and define RN by

R1 = (a, b, d1, . . . , dk, c),

R2 = (c, a, d1, . . . , dk, b),

R3 = (b, c, d1, . . . , dk, a),

and note that M(N, V ) = ∅. More interestingly, Example 4.2 can be generalized to yield an

empty bargaining set for simple majority voting games on four alternatives with infinitely many

numbers of voters.

Example 4.3 (Example 4.2 generalized) Let

R1 = (a, b, d, c), R2 = (a, c, d, b), R3 = (b, a, d, c),

R4 = (b, c, d, a), R5 = (c, a, d, b), R6 = (c, b, d, a),

and let k ∈ N. Let N = {1, . . . , 6k − 3} and let RN ∈ LN satisfy

|{j ∈ N | Rj = Ri}| =





k , if i = 1, 4, 5,

k − 1 , if i = 2, 3, 6.

Then M(N, V ) = ∅. Indeed, k = 1 coincides with Example 4.2. The reader may check e.g. the

case k = 2 (see Table 4.2) by repeating the arguments of Example 4.2.

5 The Mas-Colell Bargaining Set

We shall show that MB is nonempty for any simple majority voting game on less than six

alternatives. Also, we shall show that there is a simple majority voting game on six alterna-

tives whose Mas-Colell bargaining set is empty. We shall always assume that RN ∈ L(A)N ,

Â = ÂRN , uN ∈ URN
, and V = VuN . We start with the following simple lemma.
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Table 4.2: Preference Profile for k = 2

R1 R2 R3 R4 R5 R6 R7 R8 R9

a a b b c c a c b

b c a c a b b a c

d d d d d d d d d

c b c a b a c b a

Lemma 5.1 Assume that there is no weak Condorcet winner. If x ∈ RN
+ satisfies xi ≤

ui
(
tm−1(Ri)

)
for all i ∈ N and if x is weakly Pareto optimal in V (N), then x ∈MB(N,V ).

Proof: If (S, y) is an objection at x, then |S| > n/2 and there exists α ∈ A such that uS(α) = y.

Choose β ∈ A such that β Â α. Then there exists T ⊆ N , |T | > n/2 such that uT (β) À uT (α).

Thus, (T, uT (β)) is a counter objection. q.e.d.

Theorem 5.2 If |A| ≤ 5, then MB(N,V ) 6= ∅.

Proof: If |A| ≤ 3, the proof that we gave for M (Theorem 4.1) works for MB, too. In order

to prove the theorem for m = 4 we may assume that there is no weak Condorcet winner. Then,

for each α ∈ A,

there exists i ∈ N such that α ∈ {t3(Ri), t4(Ri)}. (5.1)

Indeed, if for some α ∈ A, α ∈ {t1(Ri), t2(Ri)} for all i ∈ N , then β Â α implies that β is a

Condorcet winner which was excluded. For α ∈ A, define xα =
(
min{ui(α), ui(t3(Ri))})

i∈N
.

By Lemma 5.1, xα ∈ MB(N, V ), if xα is weakly Pareto optimal. Hence, in order to complete

the proof for m = 4, it suffices to show that there exists α ∈ A such that xα is weakly Pareto

optimal. Two possibilities may occur: If there exists α ∈ A such that α 6= t4(Ri) for all i ∈ N ,

then, by (5.1), xα is weakly Pareto optimal. Otherwise, any xα is weakly Pareto optimal.

Now, let m = 5, let A = {a1, . . . , a5}, and assume that MB(N,V ) = ∅. Then, for each α ∈ A

(1) there exists β ∈ A such that β Â α;

(2) uN (α) is Pareto optimal (because MB is nonempty when we restrict our attention to the

game corresponding to the restriction of uN to A \ {α}).

For α ∈ A denote `(α) = max{k ∈ {1, . . . , 5} | ∃i ∈ N : tk(Ri) = α}. Let `min = minα∈A `(α).

We distinguish cases:
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(i) `min ≥ 4: Then there exists a weakly Pareto optimal x ∈ V (N) such that xi ≤ ui(t4(Ri)) for

all i ∈ N which is impossible by Lemma 5.1.

(ii) `min ≤ 2: Let α, β ∈ A such that `(α) = `min and β Â α. Then β is a Condorcet winner,

which is impossible by (1).

(iii) `min = 3: Let B = {β ∈ A | `(β) = 3}. If |B| = 3, then any α ∈ A\B violates (2). If |B| = 2,

let us say B = {α, β}, then we may assume without loss of generality that α 6Â β. Let γ ∈ A

such that γ Â β. Then none of the remaining δ ∈ A \ ({γ} ∪B) dominates any of the elements

α, β, γ. By (1) we conclude that γ Â β Â α Â γ. Then (min{ui(α), ui(β)})i∈N ∈MB(N, V ).

Now we turn to the case |B| = 1, let us say B = {a3}. Let Ŝ = {i ∈ N | t3(Ri) = a3}.
For any k ∈ Ŝ there exists xk ∈ RN such that xk is weakly Pareto optimal, xk

k = uk(a3), and

xi
k ≤ ui(t4(Ri)) for all i ∈ N \ {k}. As xk /∈ MB(N,V ), there exists a justified objection

(S, uS(α)) for some S ⊆ N , |S| > n/2, and some α ∈ A. Let β ∈ A such that β Â α. Then

there exists T ⊆ N , |T | > n/2, such that uS∩T (β) À uS∩T (α) and uT\S(β) ≥ (ui(t4(Ri)))i∈T\S .

As (T, uT (β)) is not a counter objection, we conclude that k ∈ T , t4(Rk) = β, and t5(Rk) = α.

We conclude that for any k ∈ Ŝ the alternative t5(Rk) is only dominated by t4(Rk). If n is odd,

we may now easily finish the proof by the observation that α dominates all other alternatives

except β, and therefore (min{ui(α), ui(β)})i∈N ∈ MB(N, V ). Hence we may assume from now

on that n is an even number. As a3 6Â α, {i ∈ N | ui(α) > ui(a3)}∩{i ∈ N | ui(β) > ui(α)} 6= ∅.
Thus, there exists j ∈ Ŝ such that t1(Rj) = β and t2(Rj) = α. So far we have for any k ∈ Ŝ,

where α = t5(Rk), β = t4(Rk):

α is only dominated by β; (5.2)

There exists j ∈ Ŝ such that t1(Rj) = β, t2(Rj) = α; (5.3)

|{i ∈ N | ui(α) > ui(a3)}| ≥ n
2 . (5.4)

Now, let k, j ∈ Ŝ have the foregoing properties, let us say k = 1 and j = 2. We also may assume

that t4(R1) = a4, t5(R1) = a5, t4(R2) = a1, t5(R2) = a2 (hence R2 = (a4, a5, a3, a1, a2)). So, for

any k ∈ Ŝ, we have

{t4(Rk), t5(Rk)} = {a4, a5} ⇒ t4(Rk) = a4 (5.5)

t5(Rk) = a5 ⇒ t4(Rk) = a4 (5.6)

{t4(Rk), t5(Rk)} = {a1, a2} ⇒ t4(Rk) = a1 (5.7)

t5(Rk) = a2 ⇒ t4(Rk) = a1 (5.8)

We are now going to show that there exists k ∈ Ŝ such that t5(Rk) /∈ {a5, a2}. Assume the

contrary. Then {i ∈ N | ui(a5) > ui(a3)} ∩ {i ∈ N | ui(a2) > ui(a3)} = ∅ and, by (5.4),

a5 6Â a3 and a2 6Â a3. Hence, by (1), a1 Â a3 or a4 Â a3. However, note that by our assumption

ui(a1) > ui(a3) implies ui(a1) > ui(a5) for all i ∈ N . Thus, if a1 Â a3, then a1 Â a5 which

contradicts (5.2). Similarly, a4 Â a3 can be excluded.
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Hence, we may assume without loss of generality, that there exists k ∈ Ŝ such that t5(Rk) = a1.

We now claim that there exists j ∈ Ŝ such that t5(Rj) = a4. By (5.2) and the fact that a1 Â a2,

t4(Rk) ∈ {a4, a5}. If t4(Rk) = a4, then by (5.3) there exists j ∈ Ŝ such that {t4(Rj), t5(Rj)} =

{a2, a5}. By (5.6), a5 6= t5(Rj), and by (5.8), a2 6= t5(Rj). Hence this possibility is ruled out.

We conclude that t4(Rk) = a5. By (5.3) there exists j ∈ Ŝ such that {t4(Rj), t5(Rj)} = {a2, a4}.
By (5.8), t5(Rj) = a4. So our claim has been shown.

So far we have deduced there exist kj ∈ Ŝ, j = 1, 2, 4, 5, such that t5(Rkj ) = aj . By (5.4),

|{i ∈ N | ui(aj) > ui(a3)}| ≥ n
2 for all j = 1, 2, 4, 5. We conclude that a3 = t3(Ri) for all i ∈ N

and |{i ∈ N | ui(aj) > ui(a3)}| = n
2 for all j = 1, 2, 4, 5. Therefore a3 is not dominated by any

alternative, which contradicts (1). q.e.d.

We shall now present an example of a simple majority voting game on six alternatives whose

Mas-Colell bargaining set is empty.

Table 5.1: Preference Profile leading to an empty MB

R1 R2 R3 R4

a1 a4 a3 a2

a2 a1 a4 a3

c c c b

b b b a4

a3 a2 a1 c

a4 a3 a2 a1

Example 5.3 Let n = 4, A = {a1, . . . , a4, b, c}, and let RN ∈ LN be given by Table 5.1. We

claim that MB(N, V ) = ∅. Note that the proof below is similar to the proof of the emptiness of

an extension of the Mas-Colell bargaining set of a game derived from a 4-person voting problem

on ten alternatives (see Section 3 of Peleg and Sudhölter (2005)).

Assume that there exists x ∈MB(N, V ). Let α ∈ A such that x ≤ uN (α). Let

S1 = {1, 2, 3}, S2 = {1, 2, 4}, S3 = {1, 3, 4}, S4 = {2, 3, 4}.

We distinguish the following possibilities:

(1) x ≤ uN (a1). In this case (S4, u
S4(a4)) is an objection at x. As there must be a counter

objection to this, we conclude that (S3, u
S3(a3)) is a counter objection, and therefore also

11



an objection at x. Hence, x1 ≤ u1(a3). To this objection, too, there must be a counter

objection. We conclude that (S2, u
S2(a2)) is a counter objection. Hence, x2 ≤ u2(a2) and

therefore x ¿ uN (b) and the desired contradiction has been obtained in this case.

(2) The possibilities x ≤ uN (α) for α ∈ {a2, a3, a4} may be treated similarly.

(3) x ≤ uN (b). Then (S1, u
S1(c)) is an objection at x. There are several possibilities for a

counter objection to this. Each of them involves player 4 and one of the alternatives a1, a4,

or c. We conclude that, in any case, x4 ≤ u4(a4). Hence, (S4, u
S4(a4)) is an objection at x.

Now we conclude that (S3, u
S3(a3)) must be a counter objection and, hence, an objection

at x. We continue by concluding that (S2, u
S2(a2)) must be an objection and that, hence,

(S1, u
S1(a1)) is a counter objection. Therefore, x ¿ uN (b) and the desired contradiction

has been obtained.

(4) x ≤ uN (c). We consecutively deduce that (S4, u
S4(a4)), . . . , (S1, u

S1(a1)) are objections.

The desired contradiction again is obtained by the observation that x ¿ uN (b). q.e.d.

Example 5.3 may be generalized to any number m ≥ 6 of alternatives. Also, it may be generalized

to any even number n ≥ 4 of voters: if Ri = Ri for i = 1, . . . , 4, if

R5 = (a2, a1, c, b, a3, a4), R6 = (a4, a3, c, b, a1, a2),

if n = 4 + 2k for some k ∈ N, if R̃N ∈ LN such that

|{j ∈ N | R̃j = Ri}| =





k , if i = 5, 6,

1 , if i = 1, 2, 3, 4,

and if Ṽ = VuN for some uN ∈ U eRN
, then MB(N, Ṽ ) = ∅.

6 The Mas-Colell Bargaining Set for an Odd Number of Voters

The examples that we just gave for emptiness of the Mas-Colell bargaining set have an even

number of voters. The most natural setting for simple majority rule is when the number of voters

is odd. It is therefore desirable to study the existence question for MB in the class of simple

majority voting games with an odd number of voters. Attempts to construct small explicit

counterexamples, similar to those above, seem to fail. We take a different approach, that leads

to the construction of a profile of preferences with an odd number of voters, whose associated

simple majority voting game has an empty Mas-Colell bargaining set. This construction is

difficult to visualize, and its presentation requires several preparatory steps. It also requires

huge numbers of voters and alternatives.
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Throughout this section we shall always assume that A is a finite set of m ≥ 2 alternatives and

that N = {1, . . . , n} for some odd n ∈ N. Recall that T = (A,Â) is a tournament on A if Â
is an irreflexive, asymmetric and complete relation on A (that is, α, β ∈ A,α 6= β implies that

exactly one of α Â β, β Â α holds).

The following lemmata and remarks are useful.

To put our first lemma into context, we recall that McGarvey (1953) proved that every tour-

nament may be obtained as the domination relation ÂRN of some profile of preferences RN .

Our lemma strengthens this result by insisting that the contest between any two alternatives be

tight, i.e., decided by a one-vote difference.3

Lemma 6.1 For every tournament T = (A,Â) there exists a finite set N of voters and a

preference profile RN ∈ L(A)N such that n is odd and for all α, β ∈ A,

α Â β ⇒ |{i ∈ N | α Ri β}| = n + 1
2

. (6.1)

Proof: We proceed by induction on m = |A|. If m = 2, then Â is a linear preference and the

statement is true (with n = 1 and R1 = Â). If m > 2, then select α0 ∈ A, define A0 = A\{α0}
and let Â0 be the restriction of Â to A0. By the inductive hypothesis there is a set N0 with an

odd number of elements and RN0
0 ∈ L(A0)N0 such that

α, β ∈ A0, α Â0 β ⇒ |{i ∈ N0 | α Ri
0 β}| = n0 + 1

2
.

Let n = n0 + 2, B = {β ∈ A0 | α0 Â β}, and let R0 ∈ L(A0) such that, for all α ∈ B and all

β ∈ A0 \ B, α R0 β. Put k0 = |A0 \ B|. Moreover, let R∗
0 be the reverse linear preference of

R0. Now, define Ri ∈ L(A) for all i ∈ N as follows (see Table 6.1). If i ≤ n0+1
2 , then let Ri be

the linear preference that coincides with Ri
0 on A0 and ranks α0 first, that is, t1(Ri) = α0 and

tk+1(Ri) = tk(Ri
0) for k = 1, . . . , m − 1. If n0+1

2 < i ≤ n0, then let Ri be the linear preference

that coincides with Ri
0 on A0 and ranks α0 last, that is, tk(Ri) = tk(Ri

0) for k = 1, . . . ,m − 1

and tm(Ri) = α0. Also, let Rn0+1 be the ordering that coincides with R0 on A0 and ranks α0

last, that is, tk(Rn0+1) = tk(R0) for k = 1, . . . , m − 1 and tm(Rn0+1) = α0. Finally, let Rn be

the ranking that coincides with R∗
0 on A0 and ranks α0 between the elements of A0 \B and the

members of B, that is, ti(Rn) = ti(R∗
0) for i = 1, . . . , k0, tk0+1(Rn) = α0, and tj+1(Rn) = tj(R∗

0)

for j = k0 + 1, . . . , m− 1. The pair (N, RN ) satisfies the desired properties. q.e.d.

Notation 6.2 Let (A,Â) be a tournament and β ∈ A. Denote

A+
Â(β) = A+(β) = {α ∈ A | β Â α}, A−Â(β) = A−(β) = {α ∈ A | α Â β}.

3Incidentally, the smallest number of voters n that is needed for McGarvey’s theorem (as a function of m) has

been studied in the literature. McGarvey’s original proof (which allowed also to prescribe ties between pairs of

alternatives) required n = m(m− 1), and subsequent research (see Stearns (1959) and Erdős and Moser (1964))

has shown that n = O( m
log m

) suffices and is the right order of magnitude. Our proof requires n = 2m− 3.
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Table 6.1: Sketch of a Profile RN

R1 · · · R
n0+1

2 R
n0+3

2 · · · Rn0 Rn0+1 Rn

α0 · · · α0 t1

(
R

n0+3
2

0

)
· · · t1 (Rn0

0 ) t1(R0) tm−1(R0)

t1(R1
0) . . . t1

(
R

n0+1
2

0

)
t2

(
R

n0+3
2

0

)
· · · t2(Rn0

0 ) t2(R0) tm−2(R0)

...
. . .

...
...

. . .
...

...
...

tk0−1(R1
0) . . . tk0−1

(
R

n0+1
2

0

)
tk0

(
R

n0+3
2

0

)
· · · tk0(R

n0
0 ) tk0(R0) tm−k0(R0)

tk0(R
1
0) . . . tk0

(
R

n0+1
2

0

)
tk0+1

(
R

n0+3
2

0

)
· · · tk0+1(Rn0

0 ) tk0+1(R0) α0

tk0+1(R1
0) . . . tk0+1

(
R

n0+1
2

0

)
tk0+2

(
R

n0+3
2

0

)
· · · tk0+2(Rn0

0 ) tk0+2(R0) tm−k0−1(R0)

...
. . .

...
...

. . .
...

...
...

tm−2(R1
0) . . . tm−2

(
R

n0+1
2

0

)
tm−1

(
R

n0+3
2

0

)
· · · tm−1(Rn0

0 ) tm−1(R0) t2(R0)

tm−1(R1
0) . . . tm−1

(
R

n0+1
2

0

)
α0 · · · α0 α0 t1(R0)

Our next lemma asserts the existence of tournaments in which every alternative beats exactly

half of the other alternatives, and it never happens that all the alternatives that beat a given

alternative are in turn beaten by (or equal to) another alternative.

Lemma 6.3 There exist infinitely many positive integers m such that there exists a tournament

T = (A,Â) with |A| = m that satisfies the following properties:

|A+(α)| = |A−(α)| = m−1
2 for all α ∈ A. (6.2)

A−(α) 6= A+(β) for all α, β ∈ A. (6.3)

For all α ∈ A and β ∈ A−(α) there exists γ ∈ A−(α) \ {β} such that γ Â β. (6.4)

Proof: The set Q = {p ∈ N | p is a prime such that p ≡ 3 mod 4} is infinite. Let p ∈ Q, p > 3.

Let Zp = {0, . . . , p− 1} denote the field of residue classes modulo p and let A = Zp. Let Â on A

be defined by α Â β iff α, β ∈ A and α− β is a quadratic residue modulo p (for the definition of

quadratic residues and their basic properties that we use below, see e.g. Chapter VI of Hardy

and Wright (1979)). It suffices to prove that (A,Â) satisfies the desired properties.

The fact that (A,Â) is a tournament that satisfies property (6.2) is an immediate consequence

of the following claim.
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Claim 1: The set of quadratic residues mod p contains exactly one element of every set {t, p−t}
for every t ∈ A \ {0}.

Assume the contrary. As there are p−1
2 quadratic residues mod p, there exists t ∈ A \ {0} such

that t and p− t are both quadratic residues. So, there are a, b ∈ A such that a2 ≡ t mod p and

b2 ≡ −t mod p. Thus, a2 ≡ −b2 mod p. Let c ∈ A be the inverse of b, that is, bc ≡ 1 mod p.

Then (ac)2 ≡ −1 mod p. We conclude that (ac)p−1 ≡ (−1)
p−1
2 mod p. As p ≡ 3 mod 4, p−1

2

is odd and, hence, (ac)p−1 ≡ −1 mod p. On the other hand, by Fermat’s theorem, (ac)p−1 ≡
1 mod p and the desired contradiction has been obtained.

The following claim enables us to show that (6.3) and (6.4) are satisfied.

Claim 2: The prime p divides the sum of all quadratic residues mod p.

If s denotes this sum, then since every quadratic residue is the square of two residues modulo

p, 2s ≡ ∑
a∈Zp

a2 mod p. As Zp is a field and p 6= 2,

4
∑

a∈Zp

a2 =
∑

a∈Zp

(2a)2 ≡
∑

a∈Zp

a2 mod p.

We conclude that 3s ≡ 0 mod p. As p > 3, s ≡ 0 mod p.

In order to show (6.3) we assume, on the contrary, that A−(α) = A+(β). By Claim 2,
∑

γ∈A−(α)

(γ − α) =
∑

γ∈A−(α)

γ − p− 1
2

α ≡ 0 mod p

and ∑

γ∈A+(β)

(β − γ) =
p− 1

2
β −

∑

γ∈A+(β)

γ ≡ 0 mod p.

By the assumption, p−1
2 (β − α) ≡ 0 mod p, which is impossible.

In order to show (6.4) we assume, on the contrary, that there exists β ∈ A−(α) such that β Â γ

for all γ ∈ A−(α) \ {β}. Hence, A−(α) \ {β} = A+(β) \ {α}. Claim 2 yields
∑

γ∈A−(α)\{β}
(γ − α) =

∑

γ∈A−(α)\{β}
γ − p− 3

2
α ≡ (α− β) mod p

and ∑

γ∈A+(β)\{α}
(β − γ) =

p− 3
2

β −
∑

γ∈A+(β)\{α}
γ ≡ (α− β) mod p.

By the assumption, p+1
2 (β − α) ≡ 0 mod p, which is impossible. q.e.d.

For any set A of m alternatives let probA be the uniform probability measure on L(A), that is,

probA : 2L(A) → R is defined by probA(T ) = |T |
m! for all T ⊆ L(A).

The next few lemmata and remarks establish some facts about the relative frequency of linear

preferences that display some desirable patterns. These facts are conveniently expressed in terms

of the uniform probability measure on L(A).
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Remark 6.4 Let α, γ ∈ A, α 6= γ, and let Z ⊆ A \ {α, γ}. Then

probA({R ∈ L(A) | ∃ ζ ∈ Z such that α R ζ and γ R ζ}) =
|Z|

|Z|+ 2
. (6.5)

Indeed, we may assume that A = Z ∪ {α, γ}. Let z = |Z|. There are (m − 1)! elements R of

L(A) such that tm(R) = α. A similar statement is valid for γ. We conclude that

|{R ∈ L(A) | tm(R) ∈ Z}| = m!− 2(m− 1)! = (m− 2)(m− 1)! = z(m− 1)!

and, hence, (6.5) is true.

Lemma 6.5 Let t ∈ Z such that t ≥ 0 and 2t + 1 ≤ m. Let α, βr, γr ∈ A, r = 1, . . . , t, be 2t + 1

distinct elements and define for any r = 0, . . . , t,

cr = probA({R ∈ L(A) | ∃ k ∈ {1, . . . , r} such that α R γk R βk}).

Then c0 = 0, and

cr =
1

2r + 1

(
2r − 1

2r
+ 2rcr−1

)
for all r = 1, . . . , t. (6.6)

Proof: Clearly c0 = 0. Let r ∈ {1, . . . , t}. We may assume that m = 2r + 1. There are
2r−1
2r (m − 1)! preferences R ∈ L(A) with the properties that t1(R) = α and that γk R βk for

some k = 1, . . . , r. Also, for every k = 1, . . . , r, there are (m − 1)cr−1(m − 2)! preferences

R ∈ L(A) such that t1(R) = βk and α R γ` R β` for some ` ∈ {1, . . . , r} \ {k}, because the rank

of γk is any element of 2, . . . , m. The same number of preferences occurs, if γk is ranked first.

We conclude that there are

dr =
2r − 1

2r
(m− 1)! + 2rcr−1(m− 1)!

preferences R ∈ L(A) such that α R γk R βk for some k = {1, . . . , r}. Equation (6.6) follows,

because cr = dr
m! . q.e.d.

Remark 6.6 Let c0 = 0. Successive computation of c1, . . . , c6 via (6.6) yields that c6 > 1
2 .

Lemma 6.7 For any tournament T = (A,Â) with m ≥ 453 that satisfies (6.2) – (6.4) the

following holds true: For every α ∈ A and every mapping h : A−(α) → A such that h(β) Â β

for all β ∈ A−(α),

probA({R ∈ L(A) | ∃ β ∈ A−(α) such that α R h(β) R β}) >
1
2
. (6.7)

Proof: Two cases may be distinguished.

Case 1: There exists γ ∈ A such that |h−1(γ)| ≥ 23. By Lemma 6.3 there exists β ∈ A−(α)

such that γ /∈ {β, h(β)}. Let Z = h−1(γ). Let

L1 = {R ∈ L(A) | ∃ ζ ∈ Z such that α R γ R ζ} and L2 = {R ∈ L(A) | γ R α R h(β) R β}.
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Then L1 ∩ L2 = ∅. As Z ⊆ A−(α) and as β ∈ A−(α), it suffices to show that probA(L1) +

probA(L2) > 1
2 . Now, probA(L2) = 1

4! and, by Remark 6.4,

probA(L1) =
1
2

|Z|
|Z|+ 2

=
1
2
− 1
|Z|+ 2

≥ 1
2
− 1

25
>

1
2
− 1

4!
,

where |Z| ≥ 23 implies the weak inequality.

Case 2: For all γ ∈ A, |h−1(γ)| ≤ 22. In this case, we may choose pairwise distinct alternatives

β1, γ1, β2, γ2, . . . , β6, γ6 so that βk ∈ A−(α) and γk = h(βk) for k = 1, . . . , 6. Such a choice may

be achieved inductively, by selecting

βk ∈ A−(α) \
k−1⋃

i=1

[{γi} ∪ h−1({βi, γi})] (6.8)

and letting γk = h(βk). By the assumption of this case, the set appearing in square brackets in

(6.8) has at most 45 elements, and therefore the union in (6.8) has at most 225 elements. As we

are assuming that m ≥ 453, we have |A−(α)| = m−1
2 ≥ 226, and therefore the choice indicated

in (6.8) is feasible. Now, the probability in question is at least

probA({R ∈ L(A) | ∃ k ∈ {1, . . . , 6} such that α R γk R βk}).

The proof is complete by Lemma 6.5 and Remark 6.6. q.e.d.

Now we are able to construct simple majority voting games with an odd number of players

whose Mas-Colell bargaining sets are empty. Let T = (A,Â) be a tournament with m ≥ 453

that satisfies (6.2) – (6.4). Lemma 6.3 guarantees the existence of T . Let N0, n0 odd, and

QN0
0 ∈ L(A)N0 be such that (6.1) is satisfied (for N = N0 and RN = QN0

0 ). Lemma 6.1

guarantees the existence of N0 and QN0
0 . Let N be obtained from N0 by adding k · m! new

voters and let QN be obtained from QN0
0 by assigning each preference of L(A) to k of the new

voters. Note that (6.1) remains valid for RN = QN . Moreover, we assume that k is sufficiently

large such that the following condition is satisfied. The empirical distribution of preferences

in QN is close enough to the uniform distribution so that the conclusion of Lemma 6.7 holds

true when probA is replaced by this empirical distribution, that is, by the probability measure

prob on L(A) that is determined by prob({R}) = |{i∈N |R=Qi}|
n for all R ∈ L(A). Lemma 6.7

guarantees the existence of k.

In order to continue our construction, the following definitions and simple lemma are useful.

A vector ~α = (αi)i∈N , αi ∈ A for all i ∈ N , is a position. Let ~α be a position and β ∈ A. We

say that ~α enhances β (at QN ) if for every γ ∈ A such that γ Â β there exists i ∈ N such that

αi Qi γ Qi β and αi 6= γ. Note that the set of positions is partially ordered. Indeed, let ~α and
~β be positions. Then define ~α ≥ ~β iff αi Qi βi for all i ∈ N . Note that if ~α ≥ ~β and ~β enhances

an alternative γ, then ~α enhances γ as well.
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We call a position ~α non-enhancing (at QN ) if it does not enhance any β ∈ A. If, in addition,

every position ~β ≥ ~α, ~β 6= ~α, enhances some γ ∈ A, then we call ~α maximal non-enhancing

(MNE). Note that for any non-enhancing position ~α there exists an MNE position ~β such that
~β ≥ ~α.

Lemma 6.8 If ~α is a non-enhancing position and if α ∈ A, then |{i ∈ N | αi Qi α}| < n
2 .

Proof: Let S = {i ∈ N | αi Qi α} and β ∈ A−(α). As ~α does not enhance β there exists

h(β) ∈ A such that h(β) Â β and, for all i ∈ N , if αi Qi h(β) Qi β, then αi = h(β). As

h(β) 6= α, {i ∈ N | α Qi h(β) Qi β} ⊆ N \ S. Therefore h : A−(α) → A is a function as in

Lemma 6.7 and {i ∈ N | ∃ β ∈ A−(α) such that α Qi h(β) Qi β} ⊆ N \ S. By Lemma 6.7 and

construction, |N \ S| > n
2 , and the proof is complete. q.e.d.

Construction (cont.): Let A∗ = {~α∗ | ~α is an MNE position of QN} be a set, whose cardinality

is the number of MNE positions, of alternatives such that A ∩ A∗ = ∅. For every voter i ∈ N

let Ri ∈ L(A ∪A∗) be a preference that arises from Qi by inserting every alternative in A∗ into

Qi in such a way that

~α∗ Ri α ⇔ αi Qi α for all α ∈ A and all ~α∗ ∈ A∗. (6.9)

In other words, the new alternative that corresponds to the position ~α is inserted just above ~α.

The internal order between new alternatives that are inserted in the same slot is immaterial.

Note that, by Lemma 6.8, in the tournament associated with RN , ÂRN (see Notation 2.1), every

α ∈ A beats any ~α∗ ∈ A∗, i.e.,

α ÂRN ~α∗ for all α ∈ A, ~α∗ ∈ A∗. (6.10)

We proceed to show that the Mas-Colell bargaining set of the simple majority voting game

that corresponds to RN via some utility representation is empty. We first present the idea of

the construction and proof verbally. In QN , the non-enhancing positions correspond to payoff

vectors that admit no justified objection. In order to prevent those vectors from belonging

to MB, we added in RN new alternatives that render them non-weakly Pareto optimal. Of

course there is a danger that by doing this we introduce new candidates for belonging to MB.

Condition (6.10) is crucial for avoiding this, and in order to guarantee it we had to do the long

preparatory work.

Let uN ∈ URN
and V = VuN .

Proposition 6.9 MB(N, V ) = ∅.

Proof: Assume, on the contrary, that there is some x ∈MB(N,V ). Let y ∈ RN be defined by

yi = min{ui(α) | α ∈ A∪A∗, ui(α) ≥ xi} for all i ∈ N . Then y ∈MB(N,V ) as well. Moreover,
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there is a position ~α of RN such that yi = ui(αi) for all i ∈ N . As y ∈MB(N, V ), the position

~α has the following properties:

∃ α ∈ A ∪A∗ such that α Ri αi ∀ i ∈ N. (6.11)

6 ∃ β ∈ A ∪A∗ such that β Ri αi and β 6= αi ∀ i ∈ N. (6.12)

6 ∃ β ∈ A such that |{i ∈ N | β Ri αi, β 6= αi}| > n
2 and ~α enhances β at RN . (6.13)

Indeed, (6.11) and (6.12) are true, because y ∈ V (N) and y is weakly Pareto optimal. In order

to show (6.13) let β ∈ A satisfy |S| > n
2 , where S = {i ∈ N | β Ri αi, β 6= αi}. Then (S, uS(β))

is an objection against y. Hence, there exist γ ∈ A \ {β} and T ⊆ N , |T | > n/2 such that

ui(γ) ≥ max{yi, ui(β)} for all i ∈ T (note that γ must be in A, rather than A∗, due to (6.10)).

By Lemma 6.1, T = {i ∈ N | γ Ri β} and |T | = n+1
2 . Hence, ~α does not enhance β.

Claim 1: The position ~α does not enhance any β ∈ A.

In view of (6.13) we may assume that |{i ∈ N | αi Ri β}| > n
2 . Let α ∈ A ∪ A∗ satisfy (6.11).

Then |{i ∈ N | α Ri β}| > n
2 . Therefore, either α = β or α ÂRN β. If α = β, then αi Ri γ Ri β

for some i ∈ N implies that αi = γ. If α ÂRN β, then α ∈ A by (6.10), and αi Ri α Ri β for

some i ∈ N implies αi = α. So, in both cases ~α does not enhance β.

Claim 2: There exists a position ~β satisfying βi ∈ A and βi Ri αi for all i ∈ N such that ~β

does not enhance any member of A (that is, ~β is non-enhancing at QN ).

Let i ∈ N and let δi = t1(Qi) (that is, i’s best alternative in A). We show now that δi Ri αi.

Assume, on the contrary, αi Ri δi, αi 6= δi. Let γi be i’s lowest alternative in A, that is,

γi = tm(Qi). If δ ∈ A ∪ A∗ satisfies δ ÂRN γi, then δ ∈ A by (6.10). Moreover, αi Ri δ Ri γi

and αi 6= δ. Hence, ~α enhances γi and a contradiction to Claim 1 is established. Let βi be i’s

lowest alternative in A weakly above αi, that is, βi ∈ A, βi Ri αi, and β′i Ri αi implies β′i Qi βi

for all β′i ∈ A. By construction, since ~α does not enhance any β ∈ A, neither does ~β. Claim 2

has been shown.

Select any MNE position ~β at QN that satisfies the conditions of Claim 2. By (6.9), ~β∗ Ri βi and
~β∗ 6= βi for all i ∈ N . Combined with the fact that βi Ri αi holds for all i ∈ N this contradicts

(6.12). q.e.d.

7 Two Models with Many Voters

We present here two models, in which special assumptions about the distribution of preferences

in the population of voters lead to existence results when there are many voters.

The first model is probabilistic. Let A be a fixed set of m alternatives, and let L = L(A).

We assume that each R ∈ L appears with positive probability pR > 0 in the population of
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potential voters, where
∑

R∈L pR = 1. Now let (Ri)i∈N be a sequence of independent and

identically distributed random variables such that Pr(Ri = R) = pR for all i ∈ N, R ∈ L.

Let RN = (R1, . . . ,Rn) be the corresponding random profile of preferences for n voters, and

let (N, V (RN )) be the random simple majority voting game that is associated via some utility

representation for each realization RN of RN .

Theorem 7.1 limn→∞ Pr
(M (

N,V
(RN

)) 6= ∅) = limn→∞ Pr
(MB (

N, V
(RN

)) 6= ∅) = 1.

Proof: Call RN ∈ LN good if for all α ∈ A there exists i ∈ N such that α = tm(Ri). If

RN is good, then 0 ∈ M(N, VuN ) for any uN ∈ URN
. Regarding MB(N,VuN ) when RN is

good and uN ∈ URN
, we distinguish two cases. If there is a weak Condorcet winner α, then

uN (α) ∈MB(N, VuN ). If no such α exists, then 0 ∈MB(N, VuN ). Thus we see that in order to

prove both parts of the theorem, it suffices to show that RN is good with probability tending

to 1 as n tends to infinity. This fact is easily checked. q.e.d.

The second model involves replication. Let A be a fixed set of m alternatives, and let L = L(A).

Let N = {1, . . . , n}, let RN ∈ LN , and let uN ∈ URN
. In order to replicate the simple majority

voting game (N, VuN ), let k ∈ N and denote

kN = {(j, i) | i ∈ N, j = 1, . . . , k}.

Furthermore, let R(j,i) = Ri and u(j,i) = ui for all i ∈ N and j = 1, . . . , k. Then (kN, VukN ) is

the k-fold replication of (N, VuN ).

Theorem 7.2 If k ≥





n + 2 , if n is odd,

n
2 + 2 , if n is even,





then MB(kN, VukN ) 6= ∅.

Proof: If α is a weak Condorcet winner with respect to RN , then ukN (α)∈MB(kN, VukN ).

Hence we may assume that for every α ∈ A there exists β(α) ∈ A such that β(α) ÂRN α. Let

x̃ ∈ RN
+ be any weakly Pareto optimal element in VuN (N). We define x ∈ RkN by x(1,i) = x̃i

and x(j,i) = 0 for all i ∈ N and j = 2, . . . , k and claim that x ∈ MB(kN, VukN ). Let (P, y)

be an objection at x. Then there exists α ∈ A such that y = uP (α). Let β = β(α) and let

T = {i ∈ N | β Ri α}. Then

|T | ≥





n+1
2 , if n is odd,

n
2 + 1 , if n is even.

(7.1)

Let Q = {(j, i) | i ∈ T, j = 2, . . . , k} and define z ∈ RQ by z(j,i) = ui(β) for all i ∈ T and

j = 2, . . . , k. Then |Q| = (k − 1)|T | and z > (yP∩Q, xQ\P ). By (7.1), |Q| ≥ kn+1
2 . So, (Q, z) is a

counter objection to (P, y). q.e.d.
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