
 

 האוניברסיטה העברית בירושלים
THE HEBREW UNIVERSITY OF JERUSALEM 

 
 

 
 
 
 

TRUTHFUL RANDOMIZED MECHANISMS 
FOR COMBINATORIAL AUCTIONS 

  
 

by 
 
 

SHAHAR DOBZINSKI, NOAM NISAN 
and MICHAEL SCHAPIRA 

  
Discussion Paper  # 408  November 2005 

 
 
 
  
 

   
 

 
 

יות  מרכז לחקר הרציונל  
 

CENTER FOR THE STUDY 
OF RATIONALITY 

 
 

 
 
 

 
 
 

Feldman Building, Givat-Ram, 91904 Jerusalem, Israel 
PHONE:  [972]-2-6584135      FAX:  [972]-2-6513681 

E-MAIL:              ratio@math.huji.ac.il 
     URL:    http://www.ratio.huji.ac.il/ 

 



Truthful Randomized Mechanisms for Combinatorial Auctions

Shahar Dobzinski Noam Nisan Michael Schapira∗

November 10, 2005

Abstract

We design two computationally-e�cient incentive-compatible mechanisms for combinatorial

auctions with general bidder preferences. Both mechanisms are randomized, and are incentive-

compatible in the universal sense. This is in contrast to recent previous work that only addresses

the weaker notion of incentive compatibility in expectation. The �rst mechanism obtains an

O(
√

m)-approximation of the optimal social welfare for arbitrary bidder valuations � this is

the best approximation possible in polynomial time. The second one obtains an O(log2 m)-
approximation for a subclass of bidder valuations that includes all submodular bidders. This

improves over the best previously obtained incentive-compatible mechanism for this class which

only provides an O(
√

m)-approximation.

1 Introduction

1.1 Background

The �eld of Algorithmic Mechanism Design attempts to design e�cient mechanisms for decentralized
computerized settings. These mechanisms must take into account both the strategic behavior of the
di�erent participants and the usual algorithmic e�ciency considerations. Target applications include
many types of protocols for Internet environment that necessitate looking at both issues � strategic
and algorithmic � together. For an introduction see [20].

The basic strategic notions are taken from the �eld of mechanism design � a sub�eld of economic
theory (see [18, 23]), and in most of the work in computational settings, as in this one, the very robust
notion of equilibrium in dominant strategies is used. It is well known ([18], see [20]) that without loss
of generality, we can limit ourselves to looking at �incentive compatible� mechanisms, also known as
�truthful� mechanisms or �strategy-proof� mechanisms. In such mechanisms participants are always
rationally motivated to correctly report their private information.

The basic di�culty in this �eld is the fact that the basic technique of mechanism design �
namely VCG mechanisms [25, 4, 11] � can only be applied in cases where the exact optimal outcome
is achieved. However, in most interesting computational applications, exact optimization is NP-hard,
and computationally-speaking we must settle for approximations or heuristics. As was observed in
[20, 17], the VCG technique cannot be applied in such cases, and in fact [21] showed that this
inapplicability was essentially universal. Thus, the challenge is to design alternative incentive-
compatible mechanisms for interesting applications.

The problem of combinatorial auctions has gained the status of the paradigmatic problem of
this �eld. For a thorough overview see [5]. In a combinatorial auction m items are auctioned to n
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players. Each player i has a valuation function vi that describes his value vi(S) for each subset S of
items. The basic question is how to construct the auction mechanism in a way that will allocate all
the items in a way that optimizes the social welfare Σivi(Si) where Si is the set of items allocated
to bidder i. This problem indeed exhibits the basic issues of algorithmic mechanism design: �nding
the exact optimum is computationally hard, even for the most interesting special cases, but several
approximation algorithms, with varying approximation ratios, are known for the general case as well
as various interesting special cases [16, 6, 7, 8]. However, these approximation algorithms do not
yield incentive compatible mechanisms.

In a landmark paper, Lehmann et al [17] were able to design an incentive-compatible e�ciently-
computable approximation mechanism � which achieves an approximation ratio that is as good as
computationally possible Θ(

√
m) [24] � for the special case of �single-minded bidders�. This is the

case in which each bidder is only interested in a single bundle of goods. For this special case, as
well as some other single-parameter scenarios a host of incentive compatible mechanisms have been
found in the last few years (e.g., [19, 1, 10, 9]). However, almost nothing is known in more general
cases in which bidders have complex multi-dimensional preferences. Only two results are known in
multi-dimensional settings1: the �rst is a pair of algorithms that completely optimize over a very
restricted range of allocations and then use the usual VCG mechanism. These get a barely better
than trivial approximation ratio of O(m/

√
log m) for the general case [12] and a weak O(

√
m) for

the �complement-free� case [6] � both ratios being quite far from what is computationally possible.
The second result is the mechanism of [2] that applies only to the special case of auctions with many
duplicates of each good and indeed is not a VCG mechanism. Some evidence showing that obtaining
a non-VCG incentive-compatible mechanism for combinatorial auctions and related problems would
be di�cult was given in [14].

1.2 Randomized Mechanisms

It was observed in [20] that randomized mechanisms can sometimes provide better approximation
ratios than deterministic ones. There are two possible de�nitions for incentive compatibility of a
randomized mechanism. The �rst and stronger one, de�nes an incentive-compatible randomized
mechanism as a probability distribution over incentive compatible deterministic mechanisms. Thus,
this de�nition requires that for any �xed outcome of the randomized choices made by the mechanism,
players still maximize their utility by reporting their true valuations. This de�nition was used in
[20, 10, 9], and will be called incentive compatible in the universal sense. The weaker de�nition
only requires that players maximize their expected utility, where the expectation is over the random
choices of the mechanism (but still for every behavior of the other players). This was used in [15, 8]
(see below), and will be called incentive compatibility in expectation.

There are two major implications of the di�erence between these two notions:

1. Attitude towards risk: randomized mechanisms that are incentive compatible in expectation
only motivate risk-neutral bidders to act truthfully. Risk-averse bidders may bene�t from
strategic behavior. In contrast, the universal sense of incentive compatibility applies to any
attitude towards risk, as it applies to every possible realization of the random coins.

2. Knowledge of the randomization results: randomized mechanisms that are incentive
compatible in expectation induce truthful behavior only as long as players have no information
about the outcomes of the random coin �ips before they need to act. Thus, in order to ensure
truthful behavior the mechanism must utilize cryptography-grade randomness, and keep it
secret from the players. In contrast, any randomization that is e�ective algorithmically su�ces

1This is true not only for combinatorial auctions but also for any other computationally-hard problem.
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to ensure truthful behavior in the universal case. (In a similar vein, technically speaking,
using a pseudorandom generator will destroy the formal incentive compatibility properties
of randomized mechanisms that are incentive compatible in expectation, due to the slight �
sub-polynomial � change in probabilities of outcomes.)

In the recent [15] a rather general technique was developed for converting approximation algo-
rithms into randomized mechanisms that are incentive compatible in expectation. The technique is
based on randomized rounding of the LP relaxation, and relies on a clever representation of the LP
solution as a scaled convex combination of integer solutions. In particular, they design a randomized
mechanism for general combinatorial auctions that is incentive compatible in expectation and ob-
tains the computationally-optimal approximation ratio of O(

√
m). Very recently, [8] used a di�erent

but somewhat related randomized rounding procedure to obtain another randomized mechanism
for the case of combinatorial auctions with complement-free bidders. This mechanism is, again,
incentive-compatible in expectation, and achieves an approximation ratio of O( log m

log log m), which is
worse than what he obtains algorithmically � a ratio of 2.

1.3 Our Results

We present the �rst randomized mechanism for combinatorial auctions that is incentive compatible
is the universal sense. This is another step towards the �holy grail� of obtaining a deterministic one.

Theorem: There exists a polynomial-time computable randomized mechanism for combinatorial
auctions with general bidders that is incentive compatible in the universal sense and obtains a
O(
√

m) approximation ratio.

The algorithm runs in time that is polynomial in the natural parameters of the problem: the
number of players n and the number of items m. Access to the (exponentially long) valuation
functions of the players is done using the usual demand queries [3, 6, 7], in which bidders are
presented with a vector of item prices p1...pm and reply with the set of items S that maximizes their
utility under these prices v(S) −

∑
j∈S pj

2. The approximation factor mentioned in the theorem is
in expectation, however, our result is technically stronger: the required approximation is obtained
with probability of at least 1− ε, for any �xed ε > 0.

Our techniques are quite simple, completely di�erent than the methods of [15, 8], and do not
rely on the LP-relaxation of the problem. They are more in line with the random sampling methods
that were used for auctioning �digital goods� [10, 9]. These techniques can be viewed as providing a
general framework for obtaining randomized incentive compatible mechanisms in the universal sense.
In particular, a signi�cant property of this framework is that it provides the achieved approximation
not just in expectation, but with probability 1 − ε for any �xed ε > 0. We stress that this cannot
be achieved by the usual techniques of ampli�cation, since repetition can destroy the incentive
properties. Using the same framework, we are also able to design improved mechanisms for the
important special case of submodular valuations, and actually even for a more general class of
valuations termed �XOS� in [16] and �fractionally-subadditive� in [8]3. This improves over the
truthful deterministic O(

√
m)-approximation achieved in [6].

Theorem: There exists a polynomial-time computable randomized mechanism for combinatorial
auctions with submodular bidders that is incentive compatible in the universal sense and obtains a
O(log2 m) approximation ratio.

2Somewhat unusually, the equilibrium obtained is in dominant strategies even for the adaptive query model which
usually only supports ex-post equilibria.

3For the XOS class, the bidders must also be able to answer, so called, XOS queries [6].
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Beyond the use of randomization, this theorem is sub-optimal in two other senses, which remain
as open problems: �rst, the approximation ratio achieved is worse than the ratio of e

e−1 that is
computationally possible [7]; second, our mechanism does not apply to the somewhat wider class of
complement-free valuations that is handled in [8, 6].

The major open problem left is that of �nding deterministic e�ciently-computable incentive-
compatible mechanisms for combinatorial auctions.

2 Preliminaries

In a combinatorial auction, a set M of items, M = {1, ...,m}, is sold to n bidders. Every bidder values
bundles of items, rather than only assigning values to single items. The value that bidder i assigns to
bundle S is de�ned by a valuation function vi : 2M → R+. Two standard assumptions regarding each
bidder i, are that vi is normalized (vi(∅) = 0), and monotone (for every S ⊆ T ⊆ M, vi(S) ≤ vi(T )).
The allocation problem is to partition the items between the bidders in a way that maximizes the
�total social welfare�. I.e., to �nd a partition S1, ..., Sn of M , that maximizes Σivi(Si).

Even though the size of the �input� is exponential in m (each vi is described by 2m real numbers)
we require algorithms to run in time polynomial in the natural parameters of the problem, m and
n. An important issue is how the input can be accessed. In this paper we follow the �black box�
approach: we assume that we are given an oracle for each valuation function. The oracle is limited
to some prede�ned type of queries. A common type of query is the demand query (e.g., [6, 7, 3]). A
demand query to a valuation vi speci�es a vector p = (p1...pm) of �item prices�. The answer to the
query is the set that would be �demanded� by the queried bidder under these item prices. I.e., the
subset S that maximizes vi(S)−

∑
j∈S pj .

In this paper we seek algorithms that are incentive compatible (a.k.a. truthful). That is, algo-
rithms which ensure that it is in the best interest of each of the bidders to always reveal his true
preferences when asked. In the case of randomized mechanisms this translates to being incentive

compatible in the universal sense � randomized mechanisms that are a probability distribution over
incentive compatible deterministic mechanisms. In other words, telling the truth is the dominant

strategy of each bidder, regardless of the coins tossed by the mechanism. This is a much stronger
requirement than incentive compatibility in expectation (see [15]).

Some special cases of combinatorial auctions have recently received great attention. In particular,
combinatorial auctions in which all bidders are known to have submodular valuations are the subject
of extensive research (e.g., [16, 6, 13, 7]). A valuation v is submodular if v(S∪T )+v(S∩T ) ≤ v(S)+
v(T ) for all S, T ⊆ M . All submodular valuations are known to be strictly contained in the more
general class of valuations termed �XOS� in [16], and �fractionally-subadditive� in [8]. A valuation
v is said to be XOS if there are additive valuations {a1, ..., at}, such that v(S) = maxk{ak(S)} for
all S ⊆ M4. See [7] for a more thorough explanation. For every XOS valuation v = maxk{ak}, and
bundle S, we call an additive valuation a such that a(S) = arg maxk{ak(S)} a maximizing clause

for S in vi. We require XOS bidders to be able to answer XOS queries. In this type of queries the
question is in the form of a bundle and the answer is the maximizing clause for that bundle.

3 A Framework For Designing Incentive-Compatible Mechanisms

The design of a randomized approximation algorithm comprises two basic steps: �rst, we are in-
terested in making sure that the expected value of the solution produced by the algorithm is �not
far� from the optimum. Second, we wish to be able to �nd a solution with a value �close� to the

4A valuation a is additive if for every S ⊆ M , a(S) = Σj∈Sa({j})

4



expectation with high probability. Usually, the main di�culty is in achieving the �rst goal and
proving that a solution close to the expectation can be obtained with some (perhaps polynomially
low) probability. Ampli�cation of the probability of success is then easily attainable by running the
algorithm a polynomial number of times and choosing the best solution.

In contrast, the design of a randomized mechanism is inherently di�erent: in general, running
a mechanism multiple times and choosing the best output does not preserve the truthfulness of the
mechanism. In addition, it is well known that in order to ensure truthfulness, the price a bidder
pays for the bundle he is allocated cannot depend on information he provides. The framework we
introduce here helps us overcome these problems.

The framework relies on the examination of these two distinct possible cases: either there is one
bidder such that allocating all items to him is a good approximation to the welfare, or there is no
such bidder. I.e., there is no �small� group of bidders that contributes �a lot� to the optimal solution.
In the �rst case, achieving a good approximation is easy - allocate all items to that bidder. In the
second and more complicated case, we will perform a �xed-price auction, and will have to prove
that we get a good approximation. The key observation used in handling the second case is that
two randomly chosen groups that consist of a constant fraction of the bidders have many properties
in common (e.g., both hold a constant fraction of the total welfare). This idea is similar to the
main principle in random-sampling auctions for �digital goods� [10, 9]. However, our situation is
much more complex due to the multi-parameter setting of combinatorial auctions, in contrast to the
single-parameter setting of [10, 9]. In addition, our goal is to optimize the welfare, and not maximize
revenue. Moreover, we do not assume that all the items are identical and that there is an unlimited
supply of items, as in the case of �digital goods�.

The framework allows us, with high probability, to distinguish between the two cases, and pro-
vides us with the tools for �nding the price used in the �xed-price auction. The main di�culty
in tailoring the framework to a speci�c setting is showing that the �xed-price auction guarantees
a good approximation. Indeed, in the two mechanisms we present in this paper the price for the
�xed-price auction is determined in a completely di�erent manner.

The Framework:

Phase I: Partitioning the Bidders

We randomly partition the bidders into three sets SEC-PRICE, FIXED, and STAT, such that
|SEC-PRICE|=(1 − ε)n, and |FIXED|=|STAT|= ε

2n. Only bidders from SEC-PRICE will be
allowed to participate in the second-price auction. Bidders in STAT will never get any items,
so we can safely use this group to gather the necessary statistics (see next phase). The bidders
in FIXED will be the only bidders who participate in the �xed-price auction.

Phase II: Gathering Statistics

The goal in this phase is to use the bidders in STAT in order to �nd prices for the second-
price auction with reserve price, and the �xed-price auction, which we will conduct in the next
phases. To ensure incentive compatibility, a bidder should have no in�uence on the price of the
bundle he is o�ered. This is why the prices of bundles o�ered to bidders in SEC-PRICE and
FIXED in the following phases will be determined using bidders in STAT only. The bidders
in STAT never get any items and so have no incentive to misreport their preferences.

Finding the price of the �xed-price auction is mechanism speci�c. However, the reserve price
for the second price auction is generally determined by applying an approximation algorithm
to bidders from STAT. If no small groups of bidders contributes a large fraction of the opti-
mal solution, we can prove that with high probability the reserve price we obtain is a good
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approximation to the optimal social welfare. If there is one bidder with very high value for
the bundle of all items, we will see that this reserve price has no e�ect on the result of the
second-price auction.

Phase III: A Second-Price Auction

We now conduct a second-price auction with a reserve price for selling the bundle of all items
to one of the bidders. Intuitively, one can think of this phase as handling the �rst case, where
there is one bidder with a very high value for the bundle of all items. A second-price auction
will allocate the bundle of all items to the bidder that values it the most. If there is one bidder
with a very high value for this bundle, he will be placed in SEC-PRICE with probability 1− ε.
We then get a good approximation to the welfare, and the algorithm terminates.

The purpose of the reserve price is to handle the second case, where no small group of bidders
contributes a lot to the optimal solution5. If this is the situation, allocating all items to one
bidder may provide a bad approximation. Fortunately, in the previous phase we obtained a
reserve price which is a good approximation to the optimal social welfare. Therefore, if there is
a �winning bidder�, we know that we have a good approximation because the revenue obtained
in the second-price auction (which is at least the reserve price) is a lower bound on the welfare.
If we do not have a winning bidder, we continue to the next phase.

Phase IV: A Fixed-Price Auction

We go over the bidders in FIXED one by one, in some arbitrary order, asking each one for his
demand under a �xed price per item, obtained earlier from the bidders in STAT. We allocate
each bidder his most demanded set, and charge him the appropriate price. We remove the set
allocated to him from the set of items that are o�ered to the next bidders.

This phase is meant to handle the second case, where no small group of bidders contributes a
lot to the optimal solution. Indeed, it can be shown that since FIXED is a randomly chosen
group that consists of a constant fraction of all bidders, it also holds, with high probability,
a constant fraction of the optimal welfare. In addition, we show that in the second case the
bidders in STAT aid us in choosing a �xed-price that leads to a good approximation. The way
this price is chosen is mechanism-speci�c, and is not the same in our two mechanisms.

For every possible tosses of coins the framework produces a truthful deterministic mechanism.
First, bidders who are in STAT never get any items, and thus have no incentive to misreport their
preferences. A bidder can get items in exactly one of the following ways: by participating in the
second-price auction with the reserve price, or by participating in the �xed-price auction.

It is well known that second-price auctions with a reserve price are incentive compatible. The
�xed-price auction is also clearly incentive compatible, as each bidder gets the bundle that maximizes
his demand, given prices which he does not a�ect.

4 Combinatorial Auctions with General Valuations

In this section we exhibit an incentive-compatible mechanism for approximating combinatorial auc-
tions with general valuations. The incentive compatibility of the mechanism is guaranteed by its use
of the framework. As in all mechanisms built using the framework, the main di�culty is to analyze
the case in which no �small� group of bidders contributes �a lot� to the optimal solution. In the

5Of course, both a second-price auction and a second-price auction with a reserve price are incentive-compatible.
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case of general valuations this is translated to the case where no bidder assigns a value to M that is
higher than the

√
m-fraction of the value of the optimal fractional solution.

In this case, our mechanism uses the bidders of STAT to approximate the value of the optimal
fractional solution. We set the item price for the �xed-price auction to be (approximately) the
value of the approximation we obtained, divided by the number of items. The important technical
observation is that for each item we manage to sell at this price, we �lose� a value of at most O(

√
m)

times this price (compared to the optimal fractional solution). The revenue we get in this case sets
a lower bound on the welfare we achieve.

Although the mechanism does use the LP relaxation of the problem, it plays a relatively minor
role, and we mainly use it for the analysis. This is in contrast to previous related work [15, 8],
where the technique itself is LP based. The reader is referred to the appendix for the standard LP
relaxation of the problem.

4.1 The Algorithm

Input: n bidders, each with a general valuation vi that is represented by a demand oracle, a rational
number 0 < ε < 1.

Output: An allocation of the items, which is a O(
√

m
ε3

)-approximation to the optimal allocation.

The Algorithm:

Phase I: Partitioning the Bidders

1. Choose, uniformly at random, one partition of the bidders such that the bidders are parti-
tioned to three sets, SEC-PRICE, FIXED, and STAT, where |SEC-PRICE|=(1 − ε)n, and
|FIXED|=|STAT|= ε

2n.

Phase II: Gathering Statistics

2. Calculate the value of the optimal fractional solution in the combinatorial auction with all m
items, but only with the bidders in STAT. Denote this value by OPT ∗

STAT .

Phase III: A Second-Price Auction

3. Conduct a second-price auction with a reserve price of
OPT ∗

STAT√
m

, in which the bundle M of

all items is sold to the bidders in SEC-PRICE. If there is a �winning bidder�, allocate all the
items to that bidder and output this allocation. Otherwise, proceed to the next step.

Phase IV: A Fixed-Price Auction

4. Let R = M . Let p = εOPT ∗
STAT

8m .

5. For each bidder i ∈ FIXED:

(a) Let Si be the demand of bidder i given the following prices: p for each item in R, and ∞
for each item in M −R.

(b) Allocate Si to bidder i, and set his price to be p · |Si|.
(c) Let R = R− Si.

Theorem 4.1 For any constant ε > 0, there exists a randomized and truthful algorithm that achieves

a O(
√

m
ε3

)-approximation with probability 1− ε.
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Proof: The algorithm produces a feasible allocation. In addition, the algorithm is clearly incentive
compatible, since it was designed using the framework. It is left to prove that it obtains the desired
approximation ratio with probability 1− ε. All missing proofs can be found in the appendix.

Denote by OPT ∗ the optimal fractional solution. There are two possible cases:

1. There is a bidder i such that vi(M) ≥ OPT ∗
√

m
.

2. For each bidder i, vi(M) < OPT ∗
√

m
.

We start by handling the �rst case. Let i be some bidder such that vi(M) ≥ OPT ∗
√

m
. Observe

that with probability 1− ε bidder i is in SEC-PRICE. If there is no such bidder is in SEC-PRICE,
then the algorithm fail to guarantee any approximation ratio. This happens with probability of at
most ε. The next proposition shows that if bidder i is in SEC-PRICE the algorithm obtains an
O(
√

m)-approximation.

Proposition 4.2 If there exists a bidder i in SEC-PRICE such that vi(M) ≥ OPT ∗
√

m
, then the

allocation generated by the algorithm is an O(
√

m)-approximation to the optimal allocation.

The second case is more complicated. For each bidder i, vi(M) < OPT ∗
√

m
. We will take advantage

of the fact that no bidder contributes �a lot� to the optimal fractional solution, and see that, with
high probability, OPT ∗

STAT is a good approximation to the optimal fractional solution. We will see
that the same holds for OPT ∗

FIXED, which is the value of the optimal fractional solutions in the
combinatorial auctions with all m items and with bidders from FIXED only.

Lemma 4.3 If for each bidder i, vi(M) < OPT ∗
√

m
, then with probability 1− o(1):

1. ε
4 ·OPT ∗ ≤ OPT ∗

STAT

2. ε
4 ·OPT ∗ ≤ OPT ∗

FIXED

With probability of 1−o(1) we have that the values of the optimal fractional solutions for FIXED

and STAT are �close� to OPT ∗. If this is the case, we will show that we manage to achieve an O(
√

m
ε2

)
approximation factor. With probability of at most o(1) this is not the case, and the algorithm fails
to provide any approximation ratio.

If some bidder i in SEC-PRICE was allocated the bundle M in Step 3, then he was forced to pay

at least
OPT ∗

STAT√
m

. Therefore, that bidder's value for the bundle M is greater than
OPT ∗

STAT√
m

, which

by Lemma 4.3 is at least εOPT ∗

4
√

m
. Hence, allocating the bundle M to bidder i provides an O(

√
m
ε )

approximation to the optimal solution.
If no bidder in SEC-PRICE got the bundle M then the algorithm attempts to sell items to the

bidders in FIXED (Step 5). As before, we claim that the revenue is a lower bound to the social

welfare. The next lemma shows that in this case the revenue will be Ω( ε3OPT ∗
√

m
). Hence, Step 5 will

result in an allocation that is a Ω(
√

m
ε3

)-approximation to the optimal allocation.

Lemma 4.4 If the following conditions hold:

1. The algorithm reaches Step 5

2. For each bidder i, vi(M) < OPT ∗
√

m

3. ε2OPT ∗

16m ≤ p ≤ εOPT ∗

8m
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4. OPT ∗
FIXED ≥ ε

4 ·OPT ∗

then the revenue of the algorithm is Ω( ε3OPT ∗
√

m
).

5 Combinatorial Auctions with XOS Valuations

Like the mechanism for approximating combinatorial auctions with general valuations, the mecha-
nism for XOS valuations is also based the general framework. Again, the main challenge involved in
designing this mechanism is analyzing the case in which no �small� group of bidders contributes �a
lot� to the optimal solution. The way this is achieved for XOS valuations is entirely di�erent from
the way it is done with general valuations.

A key observation, is that the combinatorial structure of XOS valuations implies a method for
�nding a price for the �xed-price auction that guarantees a poly-logarithmic approximation ratio.
To see how this is done we must �rst introduce the following de�nition:

De�nition 5.1 We say that an allocation of the items T = (T1, ..., Tn) is supported by a price p, if
for each bidder i and each possible bundle Si ⊆ Ti, it holds that vi(Si) ≥ |Si| · p.

We will now show that for every allocation T = (T1, ..., Tn) one can �nd an allocation (S1, ..., Sn)
and a price p that supports it, such that for each i, Si ⊆ Ti, and Σi|Si| · p ≥ Ω(Σivi(Ti)

log m ). That is,
for every allocation it is possible to �nd a �contained� allocation and a price that supports it and
holds a considerable part of the social welfare of the original allocation. Given an allocation T , this
is done as follows: query each bidder i's XOS oracle for the maximizing XOS clause for Ti. We refer
to the value of an item in Ti as its value in the maximizing clause for Ti. Let W = Σivi(Ti) (i.e.,
the social welfare value of T ). De�ne the set P = { W

2m , W
m , ..., W

2 ,W}. Notice that |P | = O(log m).
We can ignore items with value lower than W

2m � our �loss� is not too high since the sum of these
items' values is less than W

2 . Round down each item's value to the nearest value in P . Let p ∈ P be
the (rounded down) item value that �contributes the most� to the social welfare. We can now de�ne
(S1, ..., Sn) to be the allocation in which Si ⊆ Ti and the (rounded down) value of every item in Ti

is p.
There is still the matter of �nding such a price that would enable us to get a good approximation

in the �xed-price auction. We prove that one can use the bidders in STAT to �nd such a price for the
bidders in FIXED with high probability. If a valuation is known to be submodular, an XOS oracle
for it can be simulated using a demand oracle [6]. Thus, if all bidders are known to be submodular
our algorithm can be implemented using demand oracles only.

5.1 The Algorithm

Input: n bidders, v1, ..., vn, each represented by a demand and a XOS oracle, a rational number
0 < ε < 1

2 .

Output: An allocation of the items, which is an O( log2 m
ε3

)-approximation to the optimal allocation.

The Algorithm:

Phase I: Partitioning the Bidders

1. Choose, uniformly at random, one partition of the bidders such that the bidders are parti-
tioned to three sets, SEC-PRICE, FIXED, and STAT, where |SEC-PRICE|=(1 − ε)n, and
|FIXED|=|STAT|= ε

2n.

9



Phase II: Gathering Statistics

2. Find an allocation that is an O(1) approximation to the value of the optimal solution in the
combinatorial auction with all m items, but only with the bidders in STAT (e.g., using the
algorithms of [6, 7]). Denote this value by OPTSTAT .

3. Using the allocation obtained in the previous step, �nd a price p′ and an allocation T =
(T1, ..., T|STAT |), such that T is supported by p′, and Σi∈STAT |Ti|p′ ≥ Ω(OPTSTAT

log m ).

Phase III: A Second-Price Auction

4. Conduct a second-price auction with a reserve price of ε2

100
OPTSTAT

log2 m
, in which the bundle M of

all items is sold to the bidders in SEC-PRICE. If there is a �winning bidder�, allocate all the
items to that bidder and output this allocation. Otherwise, proceed to the next step.

Phase IV: A Fixed-Price Auction

5. Let R = M . Let p be the value of p′ rounded down to the nearest power of 2.

6. For each bidder i ∈ FIXED:

(a) Let Si be the demand of bidder i given the following prices: p for each item in R, and ∞
for each item in M −R.

(b) Allocate Si to bidder i, and set his price to be p · |Si|.
(c) Let R = R− Si.

Theorem 5.2 For any constant 0 < ε < 1
2 , there exists a randomized and truthful algorithm that

achieves an O( log2 m
ε3

)-approximation with probability 1− ε.

Proof of this theorem can be found in the appendix.
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A Appendix

A.1 The Standard LP Formulation of a Combinatorial Auction

Maximize: Σi,Sxi,Svi(S)
Subject to:

• For each item j: Σi,S|j∈Sxi,S ≤ 1

• for each bidder i: ΣSxi,S ≤ 1

• for each i, S: xi,S ≥ 0

We remark that the LP relaxation can be solved using demand oracles only [22].

A.2 Proof of Proposition 4.2

Proof: Let i′ be the bidder in SEC-PRICE with the highest value for M . By the conditions of
the lemma, vi′(M) ≥ OPT ∗

√
m

. Clearly, since STAT ⊆ N , we have that:

OPT ∗
STAT√
m

≤ OPT ∗
√

m
≤ vi′(M)

Hence, due to the properties of second-price auctions with a reserve price, all items will be sold
to i′, and the algorithm will terminate in Step 3. Thus, we get an allocation that is an O(

√
m)-

approximation to the optimal one.

A.3 Proof of Lemma 4.3

Proof: We will start by proving that the probability that the �rst event does not occur is o(1).
The proof for the second is almost identical. The lemma will then follow, by applying the union
bound.

Let A be the random variable that receives the value of OPT ∗
STAT . For every bidder i we denote

by Ai the random variable that receives the value of bidder i in OPT ∗
STAT . Let {xi,S}1≤i≤n,S⊆M

be the set of variables in the fractional solution, OPT ∗. Since every bidder is placed in STAT with
probability ε

2 , and STAT ⊆ N , we have that E[A] = Σi
ε
2E[Ai] ≥ Σi

ε
2ΣSxi,Svi(S) = ε

2OPT ∗. If

the conditions of the lemma hold, we also have that for each i, Ai < OPT ∗
√

m
. We can use this fact

to set an upper bound on the probability that A gets a value that is substantially smaller than its
expectation. We make use of the following corollary from Chebyshev's inequality:

Claim A.1 Let X be the sum of independent random variables, each of which lies in [0, t]. Then,

for any α > 0, Pr[|X − E[X]| ≥ α] ≤ tE[X]
α2 .

Since for each i, Ai ∈ [0, OPT ∗
√

m
], we have that

Pr[A <
ε

4
·OPT ∗] ≤ Pr[|A− ε

2
·OPT ∗| ≥ ε

4
·OPT ∗]

≤
OPT ∗
√

m
· ε

2 ·OPT ∗

( ε
4OPT ∗)2

≤ 8
ε
√

m
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A.4 Proof of Lemma 4.4

Proof: Let {yi,S}i∈FIXED,S⊆M be the variables in the fractional solution OPT ∗
FIXED. We will

restrict our attention to bundles in OPT ∗
FIXED that are pro�table when setting a price of p for each

item. That is, let T be the set of pairs (i, S) such that yi,S > 0, and vi(S) − p · |S| > 0. The next
claim shows that we don't lose too much by ignoring all other bundles in OPT ∗

FIXED.

Claim A.2 Σ(i,S)∈T yi,S vi(S) ≥ 1
2 ·OPT ∗

FIXED

Proof: De�ne T to be the �complement� set of T . Formally, T consists of all pairs (i, S) such that
yi,S > 0 in OPT ∗

FIXED, but vi(S)−p·|S| ≤ 0. It is easy to see that OPT ∗
FIXED = Σ(i,S)∈T yi,Svi(S)+

Σ(i,S)∈T yi,Svi(S). Since OPT ∗
FIXED ≥ ε

4 ·OPT ∗ it is enough to bound from above the contribution

of T to OPT ∗
FIXED to prove the claim.

Σ(i,S)∈T yi,Svi(S) ≤ Σ(i,S)∈T yi,Sp · |S| ≤ m · p ≤ m · ε ·OPT ∗

8m
≤

OPT ∗
FIXED

2

where the �rst inequality is because of the de�nition of T and the second inequality is due to the
LP constraints.

Let us now calculate the revenue we get in Step 5. Without loss of generality, assume the bidders
in FIXED are 1, ..., ε

2 . In the �rst iteration of Step 5, bidder 1 is asked for his most demanded set.
The key observation is that if there is some S such that x1,S > 0 and (1, S) ∈ T then bidder 1's
demand is not empty. Recall that for each item in S1 we gain a revenue of p.

We will now upper bound what we �lose� by assigning S1 to bidder 1 in comparison to OPT ∗
FIXED.

Notice, that by assigning S1 to bidder 1 we lose both the value of all the bundles assigned to bidder
1 in OPT ∗

FIXED, and of all the bundles in OPT ∗
FIXED that contain some item from S1. The value

of all the bundles assigned to bidder 1 in OPT ∗
FIXED is at most OPT ∗

√
m

:

Σ(1,S)∈T y1,Sv1(S) ≤ OPT ∗
√

m

because v1(M) < OPT ∗
√

m
and Σ(1,S)y1,S ≤ 1, due to the constraints of the LP formulation.

We will now bound the value of all the bundles in OPT ∗
FIXED that contain some item from S1.

Fix some item j ∈ S1. Again, using the constraints of the LP and vi(M) < OPT ∗
√

m
,

Σ(i,S)∈T |j∈Syi,Svi(S) ≤ OPT ∗
√

m

To conclude, for every item we sell to bidder 1 at price p ≥ ε2 · OPT ∗

16m , we lose bundles in T

that are together worth at most 2 · OPT ∗
√

m
. The analysis continues by removing from OPT ∗

FIXED all

pairs (i, S) which can not be assigned now (either i = 1, or j ∈ Si and j ∈ S), and applying similar
arguments to the rest of the bidders in FIXED.

The revenue achieved by the algorithm is an O(
√

m
ε2

)-approximation to the value of OPT ∗
FIXED.

Since OPT ∗
FIXED ≥ ε

4 ·OPT ∗ we have that it is a O(
√

m
ε3

) approximation to OPT ∗, and the theorem
follows.
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A.5 Proof of Theorem 5.1

Proof: The algorithm produces a feasible allocation. Incentive compatibility of the algorithm is
guaranteed since it was built using the framework. It is left to prove that it obtains the desired
approximation ratio with probability 1− ε.

We will now prove that the the algorithm provides the approximation ratio. Let R = ε2

100
OPT
log2 m

.

There are two possible cases:

1. There is a bidder i such that vi(M) ≥ R.

2. For each bidder i, vi(M) < R.

We handle the �rst case in a way similar to the way we handled the �rst case in the correctness
proof for the algorithm of Section 4.1. Let i be some bidder such that vi(M) ≥ R. Observe that
with probability 1− ε bidder i is in SEC-PRICE. If there is no such bidder is in SEC-PRICE, then
the algorithm fails to guarantee any approximation ratio. This happens with probability of at most
ε. If bidder i is in SEC-PRICE the algorithm obtains a R-approximation. The next proof is similar
to the proof of Lemma 4.2.

Proposition A.3 If there exists a bidder i in SEC-PRICE such that vi(M) ≥ R, then the allocation

generated by the algorithm is a O(R)-approximation to the optimal allocation.

Let us now examine the second case, where for each bidder i, vi(M) < R. The basic idea, is to
use the bidders in STAT to �nd a price that, with high probability, we can use in Step 6 to obtain
an allocation of the items to the bidders in FIXED that has a �large value�.

To show this we need prove that OPTFIXED has a social welfare value that is �close� to the
value of the total welfare. Moreover, we have to prove that if a price is �good� in OPTFIXED (i.e.
supports an allocation that holds a substantial part of the welfare), then it can be found using the

bidders in STAT. Clearly, we can restrict our attention to prices which are greater than vi(M)
2m log m .

Otherwise, the value of the sum of prices is too low.

Lemma A.4 If for each bidder i, vi(M) < R, then with probability higher than 1− 2ε2:

1. ε
4 ·OPT ≤ OPTSTAT

2. ε
4 ·OPT ≤ OPTFIXED

3. Let P = {OPT
2k | log log m ≤ k ≤ log m + log log m, and there exists an allocation T that

is supported by OPT
2k , and Σj∈T

OPT
2k ≥ ε

4 ·
OPT
log m}. Then, for every pk ∈ P there exists an

allocation Tk of the items to the bidders in FIXED such that Tk is supported by pk, and

Σj∈Tk
OPT
2k ≥ ε2

16 ·
OPT
log m .

Proof: The proof that the probability that one of the �rst two events does not occur is o(1) is
identical to that of Lemma 4.3. We now bound from above the probability that the fourth event
occurs, and use the union bound to complete the proof.

Let T = (T1, ..., Tn) be an allocation, and pk ∈ P a price, such that Σj∈T pk ≥ ε
4 ·

OPT
log m , and T is

supported by pk. We now turn our attention to the bidders in FIXED. Observe that for each bidder
i ∈ FIXED, vi(Ti) ≥ |Ti| · pt. Therefore, we will prove that there exists a Tk with the desired value
by looking at the expected value of T , restricted only to bidders in FIXED.

Let Ai be the random variable that gets the value of p · |Ti| with probability ε
2 , and 0 with

probability 1 − ε
2 . Let A = ΣiAi. Since every bidder i is placed in FIXED with probability ε

2
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we have that E[A] = ΣiE[Ai] = ε
2Σip · |Ti| ≥ ε

4 ·
OPT
log m}. Using Claim A.1, and since for each i,

Ai ∈ [0, R], we have that

Pr[A <
ε2OPT

16 log m
] ≤ Pr[|A− ε2OPT

8 log m
| ≥ ε2OPT

16 log m
]

≤
R · ε2OPT

8 log m

( ε2OPT
16 log m)2

≤ 32R · log m

ε2 ·OPT

Since there are less than log m possible choices of pk, we can apply the union bound to verify
that the fourth event does not occur with probability 32R·log m log m

ε2·OPT
. By our choice of R, we get that

they all hold simultaneously with probability of at least 1− 2ε2.

Given that the conditions of Lemma A.4 hold, we will show that we manage to achieve an O( log m
ε3

)
approximation factor. With probability of at most 2ε2 this is not the case, and the algorithm fails
to provide any approximation ratio.

If some bidder i in SEC-PRICE was allocated M in Step 4, then he was forced to pay at least
ε2

100
OPTSTAT

log2 m
. Therefore, that bidder's value for M is greater than ε2

100
OPTSTAT

log2 m
, which by Lemma

A.4 is at least O( ε3OPT
log2 m

). Hence, allocating M to bidder i provides a a O( log2 m
ε3

) approximation to

the optimal solution.
If no bidder in SEC-PRICE got the bundle M then the algorithm attempts to sell items to the

bidders in FIXED (Step 6). The next two lemmas show that in this case we will get an allocation
that is an O( log m

ε3
)-approximation to the optimal allocation.

Lemma A.5 Let Tp = (T1, ..., Tn) be the allocation that maximizes Σivi(Ti) such that

1. Tp is supported by p.

2. For each bidder i /∈ FIXED, Ti = ∅.

Then, if the algorithm reaches Step 6 the approximation ratio achieved is O(Σi|Ti| · p).

Proof: We �rst note that by assigning Ti to each bidder i and charging a price of |Ti| · p, we gain
a revenue of Σi|Ti| · p, while all bidders are pro�table. We will use this revenue as a lower bound to
the welfare that can be achieved.

We will now upper bound the revenue we lose by assigning S1 to bidder 1, comparing to the
allocation considered earlier. Without loss of generality, assume the bidders in FIXED are numbered
1, ..., ε

2 . In the �rst iteration of Step 5, bidder 1 is asked for his most demanded set. First, we could
have assigned T1 to bidder 1 and gain a revenue of |T1| · p

2 . However, we didn't lose too much because
the value of T1 is at most twice the value of S1. The last statement is true since bidder 1 could
gain a pro�t of at least |T1| · p

2 by choosing T1, and S1 has at least that value being bidder 1's most
demanded set.

The second possible lose occurs when there is an item j ∈ S1 such that there exists another bidder
i′ with j ∈ Ti′ . Because Tp is supported by p, we have that vi′(Ti′\{j}) ≥ (|Ti′ | − 1) · p. Summing
over all such items, we have that we lose a value of at most |S1| · p ≤ v1(S1). The inequality holds
since S1 is pro�table to bidder 1 under a price per item of p.

To conclude, by assigning T1 to bidder 1 we lose a revenue of O(T1). The analysis continues by
removing from T2, ..., T ε

2
all items which can not be assigned now, and applying similar arguments

to the rest of the bidders in FIXED.

Lemma A.6 If the following conditions hold:
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1. The algorithm reaches Step 6

2. ε
4 ·OPT ≤ OPTSTAT

3. ε
4 ·OPT ≤ OPTFIXED

4. Let P = {OPT
2k | log m + log log m ≥ k ≥ log log m, and there exists an allocation T that

is supported by OPT
2k , and Σj∈T

OPT
2k ≥ ε

4 ·
OPT
log m}. Then, for every pk ∈ P there exists an

allocation Tk of the items to the bidders in FIXED such that Tk is supported by pk, and

Σj∈Tk
OPT
2k ≥ ε2

16 ·
OPT
log m .

Then the algorithm produces an allocation that is an O( log m
ε3

)-approximation to the welfare.

Proof: Observe that in Step 3 we have found an allocation that is supported by p and worth
more than OPTSTAT

log m ≥ εOPT
4 log m . Obviously, an allocation restricted to bidders in STAT only is also an

allocation for all bidders with the same value. We can therefore deduce that there exists an allocation
Tp of the items to bidders in FIXED such that Tp = (T1, ..., Tn) is supported by p, rounded down to

the nearest power of 2, and worth at least ε2

16 ·
OPT
log m .

Clearly, all conditions of Lemma A.5 hold. Therefore, the algorithm is an O( log m
ε2

)-approximation

to the value of OPTFIXED. Since OPTFIXED ≥ ε
4 · OPT we have that it is an O( log m

ε3
) approxi-

mation to OPT .
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