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WHEN SHOULD YOU STOP AND WHAT DO YOU GET?
SOME SECRETARY PROBLEMS

ESTER SAMUEL-CAHN

The Hebrew University of Jerusalem

ABSTRACT. A version of a secretary problem is considered: Let Xj,
j=1,...,n beii.d. random variables. Like in the classical secretary problem
the optimal stopper only observes Y; = 1, if X; is a (relative) record, and
Y; = 0, otherwise. The actual X;-values are not revealed. The goal is to maxi-
mize the expected X -value at which one stops. We describe the structure of the
optimal stopping rule, its asymptotic properties and the asymptotic expected
reward. Three different families of distributions of X are considered, belong-
ing to the three different domains of attraction of the maximum. It is shown
that both the time of stopping, as well as the expected reward are strongly
distribution dependent. The last section discusses an ‘inverse’ of ‘Robbins’
Problem’.

1. INTRODUCTION

Let Xy,..., X, be continuous i.i.d. random variables with known distribution.
In the present paper we consider stopping problems where the decision when to
stop must be based only on the relative ranks of the Xs, while the payoff is
the (unobservable) X, if one stops at time j, j = 1,...,n. Except for the last
section, we assume that one only knows whether the present observation, Xj, is
the largest observed so far, in which case ¥; = 1, or not, in which case ¥; = 0.
Two assumptions are made throughout:

(i) The horizon, n, is known.
(ii) One item must be chosen.

Assumption (ii) implies that if one has not stopped before time n, she must
stop at time n.

Probably the best known optimal stopping problem is the Classical Secretary
Problem (see e.g., Gilbert and Mosteller (1966)), which is based on the following
additional assumptions

(al) Only relative records (Y; = 1) or nonrecords (Y; = 0) are observed at
time 7,7 =1,...,n.
(b1l) The goal is to maximize the probability of choosing the overall best item.
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The solution to this problem is well known: When n — oo one should let e~!n
items pass, and choose the first j thereafter for which Y; = 1. (If none exists,
stop at time n.) The probability of choosing the overall best item tends to e~ *
as n — oo.

Recently Bearden (2006) considered the following interesting twist of the above
problem: (al) remains unchanged but (b1) is replaced by the different goal

(b2) The goal is to maximize the X-value of the item chosen.

Bearden (2006) considers this problem when the X;s are i.i.d. uniformly dis-
tributed on [0, 1]. He shows that for every n > 1 the optimal strategy is: Let c—1
items pass, and stop with the first j > ¢ for which Y; = 1. (If none exists, stop
at time n). The optimal value of ¢ is either |\/n] or [\/n]. Bearden refers to
empirical experiments with subjects confronted with the classical secretary prob-
lem. These exhibit a tendency to stop too soon. He wonders, therefore, whether
the reason might be that the subjects of the experiment have (b2) rather than
(b1), in mind.

Bearden’s result depends on the fact that the X;s are uniformly distributed.
Hence the title of the present note: “When should you stop and what do you get?”
Below we consider this problem when the i.i.d. Xj;s come from three different
families of distributions, belonging to the three different domains of attraction
for the maximum. We show that the optimal number of items one should skip
depends heavily on the distribution. We also compute the asymptotic expected
return, when using the optimal rule, and compare this to the asymptotic optimal
expected return attainable, had the X ;s themselves been sequentially observable.
The last section discusses the optimal stopping problem, where stopping can be
based on the sequentially observed relative ranks of the X;s and the payoff is the
X chosen, for the case where the X;s are i.i.d. uniformly distributed.

2. GENERAL DESCRIPTION OF THE OPTIMAL RULE, AND PAYOFF

Let M; = max{Xy,...,X;}. Since {M;} is a monotone nondecreasing se-
quence, it is clear that if for some value m you should stop if Y,, = 1, then,
if Y,, = 0 you should stop for the smallest j > m for which Y; = 1, (if such
a j exists). (The reason one should never stop for ¥; = 0 and j < n is that
E[X,|Y; = 0] < EX,, thus it is better to stop at n.) Hence, when seeking an
optimal rule for n fixed, we only need to search among the class

(1) tp(k) =min{j > k:Y; =1} An, k=0,...,n—1

Let V,,(k) be the expected return when using ¢, (k).
Then it is easily seen that V,,(0) = EX and for k=1,--- ,;n—1

— 1 (i-1\ Ty (i-1
Vak) =Y BM;- ] ( Z, >+ 1T ( Z, )EXn
j=k+1 JiZkh i=k—+1

=k [ S° EM/j( - 1)+ BX/(n - 1)]

j=k+1
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(where the last term is due to the possibility of being forced to stop at time n).
Thus the optimal rule and value can be obtained by maximizing V,,(k) over k.
Denote

(3) V, = . max 1Vn(k) and k(n) = arg _max an(k)-

Below we consider the three following classes of distributions, each of which
belongs to a different domain of attraction of the extremal distribution.

(A) The family of Pareto distributions, with F(x) = [1 — 27®|I(x > 1) where
I(A) is the indicator function. We consider o > 1 only, as otherwise EX = oo
and the problem is trivial.

(B) The family of Beta distributions F(z) =[1—-(1—2)*I(0 <2 <1)+I(z >
1), where a > 0. (For v =1 this yields the uniform distribution.)
(C) The exponential distribution, with F'(z) = [1 — e *|I(x > 0).

We consider asymptotic results only. It is clear that as n — oo the optimal
k-value also tends to infinity. It is quite well known (see e.g. Resnick (1987),
Chapter 2.1) that

for (A) lim j~*EM; =T(1 —1/a)

j—o0
(4) for (B) lim 591 — EM;] =T(1+1/a)
J—0o0
for (C) lim EM; —logj = .
j—o0
Here I' is the gamma function and v ~ .5772 ... is Euler’s constant.

3. ASYMPTOTIC RESULTS FOR CASE (A)
We shall show

Assertion 1. For family (A), and any o > 1

(5) lim k(n)/n = /@Y
n—oo
and
(6) lim n Y9V, =T(1 - 1/04)04_5.
n—oo

Proof. From (4A) it follows that we can write, for all j > k sufficiently large
EM; = (T(1—1/a) +¢;)j'/%, where |¢;] < ¢, and € — 0 as k — oo. Substituting
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this into (2) yields

n—1

(C(1—=1/a) - e)k Z (=11 VY +ka/[(a—1)(n—1)] < Va(k)

(7) .
<(TA=1a)+ek > (G -1 4 ka/[(a—1)(n - 1)).

j=k+1
Since ¢ — 0 as k,n — oo, for asymptotic results it suffices to analyze the right
n—1
hand side, setting € = 0, only. The sum S = Y (j—1)"'0=Y% of (7) satisfies
j=k+1
n n—1
dx g dx
r2-1/a < < (1. _ 1)2—1/a
k+1 k

and since there is no need to asymptotically distinguish between k, k — 1,k + 1
etc., nor between n,n — 1,n + 1 etc. we shall replace S in (7) by
alk=(1=1/2) — n=0=1/2)]/(q — 1) and write

(8) Vi(k) ~ D(1 — 1/a)ak[k=0=1) — ==Y /(q — 1) + ka/(a — 1)(n — 1)

Differentiating the right hand side of (8) with respect to k yields that the
maximizing k should satisfy

9) (1 —1/a)[k OV —an Y9 /(a = 1) +a/(a—1)n=0

It is immediately seen that the last term in (9) has only a secondary effect. We
therefore conclude that the optimal £(n) must satisfy (5). Substituting (5) into
the right hand side of (8) yields (13). O

It is of interest to compare the result in (6) with the optimal asymptotic value
attainable, had the actual X; values been revealed sequentially, j = 1,...,n
and the goal is to stop with as large an X-value as possible. This problem has
been studied in detail by Kennedy and Kertz (1991), for the three domains of
attraction. From their results it follows that
(10) lim n YW, = [a/(a — 1)]¥/*

n—oo
where we have denoted by W), the optimal expected reward from the X;s them-
selves, in an n-horizon problem. Comparing (10) and (6) and we see that although
in our present context only the location of relative records is being sequentially
revealed, no rate of convergence is lost, though the constants in the right hand
side of (6) are clearly smaller than those of (10). When o« — oo both constants
tend to 1. In Table 1 we list some values of these constants, and their ratio.

The limit in (5) is also interesting. It shows that for family (A) one should let
a proportion of n pass, before considering choosing the first relative record. It
is quite easily seen, that this proportion, o~ %=1 is monotone decreasing in «,
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and satisfies lim a~%/(@~1) = (0 and lim a~¢/(@=1) = ¢=1 (The latter constant is
a— 00 oa—>

of interest, when comparing to the classical Secretary Problem).

Remark. The classical Prophet Inequality states that for any nonnegative inde-
pendent random variables with finite expectations

(11) EM, < 2sup EX,
¢

where the supremum is over all stopping rules which stop no later than n. When
the X;s are i.i.d. the constant “2” can be replaced by an even smaller (n-
dependent) constant. See e.g. Hill and Kertz (1992). Comparing (4A) and
(6), it is easily seen that (11) fails here, for small values of .. This is no contra-
diction! The stopping rules ¢ in (11) are based on the sigma fields created by the
X values themselves, whereas here the stopping rules are based on the Yjs only.

4. ASYMPTOTIC RESULTS FOR CASE (B)

We use the same notation as before, making no distinction due to distribution.
The proof is also parallel to that of the previous section, and we omit some
explanations.

Assertion 2.  For family (B) and any o > 0

(12) lim & (n) /@) = (D(1 +1/a) fa)*/ @)
n—oQ
and
(13) lim nY/04e)(1 = V) = T(1 + 1/a) ™/ @+ D /(o4 D)
n—oQ

Proof. By (4B), for all j sufficiently large EM; = 1—j~Y*(I'(1+1/a)+¢;) where
lej| < € and € = 0 as j — oco. Substituting into (2) we have, for all k sufficiently
large

(14)
n—1
ak
1—(T(1+1/a)+ o)k R I < Vu(k) <
jzk;rl (a+1)(n—1)
n—1 ak
1= (A +1/a) =gk Y j VI -1~
j:zk;rl (a+1)(n—1)
Approximating the sum in (14) by the integral
n—1
/ o= 2H1/a) g — L[k—(l—l—l/a) — (n—1)~0+1/a)]
a+1
k
and substituting back into (14) , one obtains
ak

(15) Va(k) & 1=T(1+1/a)alk™/* —k(n—1)"+) /(a+1) - CESCE
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Differentiating (15) with respect to k, we see that the maximizing & should satisfy

~(1+1/a) _ 1)-(+1/e) _ @ _

(16) T(1+1/a)k +a(n—1) |/(a+1) IR 0
Note that, in contrast to what happened for family (A), in (16) the last term
is significant, and the smaller order term which we can ignore is (n — 1)~(+1/2),
Solving for £ yields (12). (Note that for a = 1 (12) reads k(n)/y/n — 1, in
agreement with Bearden’s (2006) exact result for the uniform distribution which
is a particular case of (B).) Substituting the value for k(n) of (12) back into (15)
yields (13). O

It is of interest to note that when the values of the X;s themselves are observed
sequentially j = 1,...,n, the optimal return, W,,, for family (B) (see Kennedy
and Kertz (1991)) satisfies

(17) limn'/*(1 - W,) = (1+1/a)®
Comparing (17) and (13), we see that unlike for family (A) for family (B) the
rate of convergence of V,, to 1 in (13) is slower than that of W, to 1 in (17) .

5. ASYMPTOTIC RESULTS FOR CASE (C)

Substituting EM; = logj + (v + ¢;) into (2), and noting that for sufficiently
large k and j > k one has |¢;| < e and e — 0 as k — oo, we get

S Qo+ (7 — /i — 1)+ 1/(n— 1)] < Va(h)
(18) j:k+1n_1
<H Y (ogj+ (14 )/iG ~ 1) +1/(n 1)

Approximate the sum in (18) by

T2

19) [ 5%+ Zids = (logk + (1)) /k = (logln — 1)+ (1+9) /(n =

Thus

(20) Va(k) = logk + (1+7v) — k(log(n — 1) +7v)/(n — 1)
Differentiating (20) with respect to k yields

Assertion 3.  For distribution (C)

(21) lim k(n)logn/n=1
n—oo
(22) lim (V,, — logn + loglogn) = v

n—o0
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The value in (22) is obtained by substituting (21) into (20). The value W, if
the X;s themselves were observable, satisfies

(23) lim(W,, — logn) =0

Also here, V,, converges at a slightly slower rate than W,,.

6. A DIFFERENT GOAL

Suppose now that goal (b2) is replaced by

(b3): The goal is to maximize the X-value chosen, but only if that is the
maximal item. Otherwise the payoff is 0.

The assumption (al) remains unchanged. Let ¢! be the rule which maximizes
the probability of choosing the best in the Classical Secretary Problem, with
horizon n, and let P(n) denote the probability that the best is chosen.

Assertion 4. Let Xy,---,X, be any non-negative i.i.d. random variables
with continuous distribution. Under (al) and (b3) the optimal rule is ¢} of the
Classical Secretary Problem and the optimal expected payoft is EM,, P(n).

Proof. An intuitive proof is the following. Since the expected value of M,, does

not depend on its location, the goal is equivalent to that of finding that location,

i.e. of choosing the best. A more formal proof follows. The argument in Section

2 shows that one needs only consider rules ¢,(k) of (1). Suppose Y; = 1 and
n

one stops. The payoff then is X; [[ I(Y; = 0), where, conditional on Y; =
i=j+1
1, X, has distribution F{;) of the maximum of j i.i.d. random variables with
distribution F, i.e. dFj(z) = jF(z)'"'dF(x). Now E{ [[ I(Y; = 0)|X;,Y; =
i=j+1
1} = F(X,)" . Thus ELX; T 10, = OY; = 1)} = [ ajF(e)" 'dF(z) =
i=j+1 0
LEM,. For k > 1 let S,(k) denote the expected payoff when using rule ¢, (k).
i—1

n J . n
Then S,(k) = £ 3~ 5.1 T (=) = £ 30 3%1 Thus the maximizing

RN R [y R
k must satisfy k i 1/(j—1) > (k+1) i 1/(j — 1), which is equivalent to
j=k+1 j=k+2
min{k: 3 1/(j — 1) < 1}, which is exactly 2. Also (k/n) 3 1/(j — 1) is
the prob;i)];lﬁilzy of choosing the best, with rule ¢, (k). e O

Remark. If the stopping rule is based on the X-values themselves, the optimal
rule for goal (b3) depends on the distribution of the X's. We hope to come back
to this, in a future paper.
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7. THE “INVERSE ROBBINS’ PROBLEM”

Chow et al (1964) considered a different version of the Secretary Problem. In
their model, (al) is replaced by

(a2) The (sequential) observations on which the stopping rule is based, are the
J
relative ranks RR; of the X;s, where RR; = > I{X,; > X;}.
i=1

(Thus RR; = 1 if the jth observation is the largest, = 2 if it is the second
largest, etc. among X7, ..., X;.) The goal (bl) is replaced by

(b4) The goal is to minimize the expected absolute rank of the object chosen.

Let R(") be the (absolute) rank of X;, i.e. R( Z I{X; > X,}, and denote

by T the set of stopping rules based on the relatlve ranks which stop by time
n. Chow et al prove

E 42\ VD
(24) lim [min ER"] = H <—> — 3.8695...

n—oo teTy k
k=1

They also describe the structure and asymptotic structure of the optimal stopping
rule.

“Robbins’ Problem” can be described as follows. (b4) is as described above,
but (al) and (a2) are replaced by

(a3) The (sequential) observations on which stopping must be based, are the
i.i.d. X-values themselves. These can, without loss of generality, be taken

as U(0,1).
This problem is as yet unsolved, in spite of several attempts to solve it. A
recent review paper is Bruss (2005). Let @, denote the expected optimal return

for horizon n. It is known that lim @), exists and is smaller than 2.3267, but it
n—oo

is not known whether lim (),, is greater or smaller than 2. The value “2” is of
interest, since if (b4) is replaced by

(b5) The goal is to minimize the X-value chosen,
it follows readily from (17) with o = 1, that for the uniform distribution

(25) nlg& n[{g%}l EX,] =2
where T denotes the set of stopping rules based on the X-values, which stop by
time n.

(The reason we are interested in minimization rather than maximization, i.e.
we replace (b2) by (b5), is to be in line with the goal in (b4). The need to
multiply by n is to make the X-values comparable to the absolute ranks, but this
need is also clearly seen from (17).)

The “inverse Robbins’ problem” is where the role of the observations and the
ranks have been reversed. Thus the goal is to minimize the expected value of
the X at which you stop, but the decision as to when to stop may depend on
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the relative ranks only. The assumptions are therefore (a2) and (b5) where it is
assumed that the Xs are i.i.d. U(0,1).

Unlike the original Robbins’ Problem, the inverse Robbins’ problem has a
simple solution

Assertion 5. For X; uniformly distributed on [0, 1], with assumptions (a2) and
(b5),

(26) lim nfmin 5] = [[(2

n—oo teTh 1 k

and the optimal rule is identical to that described in Chow et al (1964).

YV HD = 38695 . . .

Proof. For the uniform distribution, clearly, by considering order statistics, one

has E(X,|RR; = k) = j%, and the relative ranks are independent, thus condi-

tioning on past and present relative ranks is equivalent to conditioning on the
present relative rank only. On the other hand (see also Chow et al (1964))

(n) _ .y (m—=1\(n—m n B
P(R;” =m|RR; = k) = (k—l)(j—k>/<j>’ m=k,---,n
and thus F(R"|RR; = k) = “Lk. Therefore

(27) (n+1)E(X;|RR; = k) = E(R"|RR; = k).
and the assertion follows immediately from (24). ]

Remark. It is clear that the assertion is again distribution-dependent. We have
not attempted to find the asymptotic value and optimal rule for distributions
other than the uniform.
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Table 1: Comparison of Limiting Optimal Stopping Values for Distribution (A)

a (6) (10)  (6)/(10)
1.01 37.1310  96.4887 0.3848
1.05 7.7141 18.1659 0.4247
1.10 4.0505 8.8455 0.4579
1.20 2.2370 4.4510 0.5026
1.30 1.6456 3.0893 0.5327
1.40 1.3579 2.4469 0.5549
1.50 1.1906 2.0801 0.5724
1.60 1.0830 1.8460 0.5867
1.70 1.0090 1.6853 0.5987
1.80 0.9559 1.5691 0.6092
1.90 0.9163 1.4818 0.6184
2.00 0.8862 1.4142 0.6267
3.00 0.7818 1.1447 0.6830
4.00 0.7720 1.0746 0.7184
5.00 0.7786 1.0456 0.7446
6.00 0.7888 1.0309 0.7652
7.00 0.7995 1.0223 0.7821
8.00 0.8096 1.0168 0.7962
9.00 0.8189 1.0132 0.8083
10.00 0.8274 1.0106 0.8187
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