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Evolutionary Dynamics for Large
Populations in Games with Multiple
Backward Induction Equilibria∗

Tomer Wexler†

Abstract

This work follows “Evolutionary dynamics and backward induc-
tion” (Hart [2000]) in the study of dynamic models consisting of selec-
tion and mutation, when the mutation rate is low and the populations
are large. Under the assumption that there is a single backward induc-
tion (or subgame perfect) equilibrium of a perfect information game,
Hart [2000] proved that this point is the only stable state. In this
work, we examine the case where there are multiple backward induc-
tion equilibria.

1 Introduction

More than two decades after the first connections between evolutionary biol-
ogy and game theory were made, a major part of the study in this field still
revolves around finding evolutionarily stable states. Evolutionary models re-
place a player with a population of individuals, and a mixed strategy with
the proportions of the various strategies in the population. The evolutionary
dynamics consist of selection (toward the better replies) and mutation (which
is random and relatively rare). Evolutionarily stable states in these models
are states that, in the long run, occur with positive probability (bounded
away from zero), no matter how rare the mutations are. It turns out that
every evolutionarily stable states is a Nash equilibrium, but the converse does
not necessarily hold.
∗This research is the author’s master’s thesis in the Department of Mathematics, The

Hebrew University of Jerusalem, under the supervision of Sergiu Hart. The author thanks
Sergiu Hart for his guidance and insight and Ziv Gorodeisky for helpful conversations.
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In finite games of perfect information in extensive form, it seems that the
natural candidate to be the equivalent of the evolutionary stable states in
the evolutionary models is the backward induction equilibrium (BIE). This
equilibrium is obtained by induction starting at the final nodes, with each
player choosing the best reply given the choices of the players that play
after him. This equilibrium is also known as a subgame perfect equilibrium
because the strategies yield an equilibrium in every subgame as well.
Since mutations, like perturbations, make every action possible, it follows

that every node is reached, and thus, as the perturbations go to zero, this
should yield a subgame perfect equilibrium. However, as the literature shows
(see Hart [2000]), equilibria other than the BIE can be evolutionarily stable.
In Hart’s paper it is assumed that the game is generic and has a unique BIE.
The main result there (later expanded by Gorodeisky [2003]) is that the
backward induction equilibrium becomes in the limit the only evolutionarily
stable outcome as the mutation rate decreases to zero and the populations
increase to infinity.
In this paper, we continue Hart’s work by examining the case where the

BIE is not unique. The assumptions on large populations and rare mutations
are maintained. We limit ourselves to games with two players and, by re-
viewing the different cases, we find the limit distribution of both populations.
The result is that the evolutionarily stable states are either one or two out
of the infinitely many backward induction equilibria in these games.
Two main tools developed in this paper for the case of two players will be

useful in trying to expand the results to multi-player games. The first uses
the equations satisfied by the invariant distribution. It is easy to use, but it
is quite a rough tool and fits mainly the more obvious cases. The second tool
is based on estimating the average time the system spends in each state.

2 The model

We now present the so-called “basic model” as it appears in Hart [2000].

2.1 The game

Let Γ be a finite game in extensive form with perfect information. Thus, we
have a rooted tree, where each non-terminal vertex corresponds to a move.
Each move of one of the players is called a node and the set of all nodes is
denoted N . At each node i there is a different player i. At each node i ∈ N ,
player i has a choice out of the set Ai, which denotes the set of outgoing
branches at i. An action of player i is ai in Ai, and A :=

Q
i∈N A

i is the set
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of N−tuples of actions. At each leaf (terminal vertex) there are associated
payoffs to all players and ui : A → R is the payoff function of player i.
As usual, the payoff functions are extended multilinearly to mixed actions;
thus ui : A → R, where X :=

Q
i∈N X

i and X i := ∆(Ai) = {xi ∈ RAi

+ :P
ai∈Ai x

i
ai
= 1} is the set of probability distributions over Ai.

We now define a population game called the “gene-normal form.” At
each node i there is a population of M(i) individuals playing the game in
the role of player i. We assume that the populations at different nodes are
disjoint. Let ωiq ∈ Ai denote the pure action of an individual q ∈ M(i),
ωi = (ωiq)q∈M(i), and ω = (ωi)i∈N . Let, for each ai ∈ Ai,

xiai ≡ xiai(ωi) :=
|q ∈M(i) : ωiq = ai|

|M(i)|
be the proportion of population M(i) that plays ai. We can view xi ≡
xi(ωi) := (xiai(ωi))ai∈Ai ∈ X i as a mixed action of player i. The payoff of
an individual q ∈ M(i) is defined as his average payoff against the other
populations, i.e., ui(ωiq, x

−i) or ui(ωiq,ω
−i).

2.2 The dynamics

We come now to the dynamic model. A state ω specifies the pure ac-
tion of each individual in each population, i.e., ω = (ωi)i∈N , where ωi =
(ωiq)q∈M(i). Let Ω :=

Q
i∈N(A

i)M(i) be the state space. Our process will
be a stationary Markov chain with a one-step transition probability matrix
Q ≡ (Q[eω|ω])eω,ω∈Ω, which specifies the transition probabilities. The basic
model assumes that all populations are of equal size, i.e., m = |M(i)| for
each i ∈ N . Given µ,σ > 0, such that µ + σ ≤ 1, the transition matrix
entries are given by performing the following process independently for each
i ∈ N :

• Choose a random individual q(i) ∈M(i), with probability 1/m for each
individual to be chosen. All other individuals inM(i), q0(i) ∈M(i)\q(i)
don’t change their action.

• Choose SE(i) (“selection”) and MU(i) (“mutation”), with probabili-
ties (1− µ), µ, respectively.

• If selection was chosen then define the set of “better actions” Bi :=
{ai ∈ Ai : ui(ai,ω−i) > ui(ωiq(i),ω−i)}. If the set is not empty then a
random action is chosen from Bi, with probability 1/|Bi| each, as the
new action of q(i); otherwise, there is no change in q(i)’s action.
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• If mutation was chosen, then a random action in Ai is chosen, with
probability 1/Ai for each action, as the new action of q(i).1

3 Main results

Consider the two-player game 1
L1/ \R1
2

L2/ \R2
with m individuals in each node. We would like to estimate the joint dis-
tribution of both populations when the mutation rate µ0 goes to zero (for
convenience we define µ := µ0/2) and the population m goes to infinity in
the cases where there are multiple BIE. We define a state of the above system
to be z := (x, y) where

• x is the number of individuals in population 1 playing left (L1).
• y is the number of individuals in population 2 playing left (L2).
and we define a state of the above system at time t as zt := (xt, yt).
Let Ht be the history until time t (inclusive).

Notice that P [(xt, yt) |Ht−1] = P [(xt, yt) | (xt−1, yt−1)] because this is a
Markovian process.

3.1 The family of games

We consider the case where U2(L1, L2) = U2(L1, R2) (the population in node
2 is indifferent; therefore there are multiple BIE). Without loss of generality
assume that U2(L1, L2) = 0, U1(L1, R2) = 0; thus the game is (for θ,λ > 0)

1
/ \
2 (θ, .)
/ \

(λ, 0) (0, 0)

3.1.1 The first case: λ/2 = θ

Here the set of backward induction equilibria is:

BIE = {(x, y) : x = m, y > m/2}∪{(x, y) : x = 0, y < m/2}∪{(x, y) : y = m/2} .
1Examples of this model can be found in Hart [2000].
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Let πm,µ denote the unique invariant probability vector2 of the above
system.Denote ξ := x/m, η := y/m. πm,µ ∈ [0,m]2 yields a probability
measure on [0, 1]2 which we denote as bπm,µ(ξ, η). Our Main Theorem is (Φ
denotes the cumulative normal distribution):
Main Theorem

bπm,µ(ξ, η) =⇒
1
m,µ→0

1

2
1(1, 1

2
) +

1

2
1(0, 1

2
)

(where “=⇒” denotes weak convergence of measures and 1ζ is the Dirac mea-
sure on ζ). Moreover,

∀ε > 0,∃d > 0, s.t. : ∀m,∀µ > 0, ∀α,β : 0 < α < β¯̄̄̄
πm,µ

·½
(x, y) |x ≥ m(1− ε), α ≤ y −

1
2
m

1
4

√
m
≤ β

¾¸
− (Φ(β)− Φ(α))

¯̄̄̄
≤ d(

r
1

m
+
√
µ)

and for α < β < 0¯̄̄̄
πm,µ

·½
(x, y) |x ≤ mε, α ≤ y −

1
2
m

1
4

√
m
≤ β

¾¸
− (Φ(β)− Φ(α))

¯̄̄̄
≤ d(

r
1

m
+
√
µ).

In other words, our Main Result is that in the limit when 1/m, µ → 0, the
distribution of population 2 is concentrated around two BIE. These are: (i)
all the population at node 1 is playing left and half the population at node 2
is playing left; and (ii) all the population at node 1 is playing right and half
the population at node 2 is playing left (see Fig. 1 in the appendix).
To prove our result, we start with player 2. Notice that the yt process is

independent of the xt process, so for every i < t we have P [yt | (xi, yi)] =
P [yt | yi] (because the population at node 2 is not affected by the population
at node 1).

Lemma 1 Let πym,µ denote the marginal invariant distribution on population
2. For every µ > 0,m, we have

πym,µ = Binomial(m,
1

2
).

Proof. We have a one-dimensional random walk, where for every i > 0, t > 0

P [yt = i− 1 | yt−1 = i] = i

m
µ

2The dynamic is irreducible because mutations make every state reachable from any
other state, and aperiodic because for each state there is a positive probability of staying.
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and for every i < m

P [yt = i+ 1 | yt−1 = i] = m− i
m

µ.

Therefore, we know for the invariant distribution that

πym,µ [i]
m− i
m

µ = πym,µ [i+ 1]
i+ 1

m
µ

⇒ πym,µ [i+ 1] =
m− i
i+ 1

πym,µ [i]

⇒ πym,µ [i] =
³m
i

´
πym,µ [0] .

Now, πym,µ is a probability distribution so

1 =
mX
i=0

πym,µ [i] = πym,µ [0]
mX
i=0

³m
i

´
= 2mπym,µ [0]

⇒ πym,µ [0] =
1

2m
⇒ πy

m,µ
[i] =

³m
i

´ 1

2m
,

which completes the proof.
We define two sets of states (c > 0, ε > 0):

• Ac,ε := {z : x < (1 − ε)m and y ≥ m/2 + c√m} (all states in which,
given a parameter c and an ε, at least m/2 + c

√
m individuals in

population 2 are playing left and less than (1 − ε)m individuals in
population 1 are playing left).

• Bε := {z : x ≥ (1 − ε)m and y > m/2} (all states in which, given a
parameter ε, more than half the population 2 are playing left and at
least (1− ε)m individuals in population 1 are playing left).

Lemma 2 For every constants c1, c3 > 0, ε > 0 there exists a constant d > 0
such that for every µ > 0,m, for any z0 ∈ Ac1,ε we have

P

·
min

06t≤τm
yt ≤ m

2

¯̄̄̄
z0

¸
≤ d√µ,

where τ := c3√
µ
m.
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Remark 1 Clearly, it is enough to prove this for y0 = dm/2+c1√me because
for y00 ≥ y0 we get

P

·
min
0≤t≤τ

yt ≤ m
2

¯̄̄̄
y00

¸
=

τX
t0=0

P

·
t0 =inf

0≤t

n
t : yt = dm

2
+ c1
√
me
o¸
P

·
min
t0≤t≤τ

yt ≤ m
2

¯̄̄̄
yt0 = dm

2
+ c1
√
me
¸

≤ max
0≤t0≤τ

P

·
min
t0≤t≤τ

yt ≤ m
2

¯̄̄̄
yt0 = dm

2
+ c1
√
me
¸

= max
0≤t0≤τ

P

·
min

0≤t≤τ−t0
yt ≤ m

2

¯̄̄̄
y0 = dm

2
+ c1
√
me
¸

≤ P

·
min
0≤t≤τ

yt ≤ m
2

¯̄̄̄
y0 = dm

2
+ c1
√
me
¸
.

Proof. Define a stopping time T := inf{t : |yt − y0| ≥ c1
√
m}. Notice

that P
·
min
0≤t≤τ

yt ≤ m/2
¯̄̄̄
y0

¸
≤ P [T ≤ τ | y0] because the event on the left

is contained in the one on the right. Also define byt := yt∧T for every t ≥ 0
and wt := byt − byt−1 for every t ≥ 1 , so byt = y0+ tP

i=1

wt. Notice that wt = 0

for t > T , and for t ≤ T we have

wt =

 0 with probability 1− µ
+1 with probability p(yt−1) =

m−yt−1
m

µ
−1 with probability q(yt−1) =

yt−1
m
µ.

Define vt := wt − E [wt|Ht−1]; these are martingale differences; hence
∀t E [vt] = 0.

i 6= j E [vivj] = 0.
∀t V ar(vt) ≤ V ar(wt) ≤

½
µ if t ≤ T
0 if t > T

¾
≤ µ.

∀t V ar(
tX
i=1

vi) =
tX
i=1

V ar(vi) ≤ tµ.

Based on Kolmogorov’s inequality for martingale differences (see Sheldon
[1996]), we get

(1) P

"
max
1≤k≤τ

|
kX
i=1

vi| > 1

2
c1
√
m

#
≤ τµ

1
4
c21m

≤ 4c3
c21

√
µ.
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Let i ≤ τ . If i ≤ T then m/2 ≤ yi ≤ m/2 + 2c1
√
m + 2 (recall that

y0 = dm/2 + c1√me) and we get
E [wi |Hi−1] = p(yi−1)− q(yi−1)

≤
¯̄̄̄
µ
m
2
− 2c1√m− 2

m
− µ

m
2
+ 2c1

√
m+ 2

m

¯̄̄̄
≤ 4(c1 + 1)√

m
µ.

This inequality also holds for i > T , since then wi = 0. Hence

(2) max
1≤k≤τ

kX
i=1

|E [wi |Hi−1] | ≤ 4(c1 + 1)√
m

µ
c3√
µ
m ≤ 4(c1 + 1)c3√µ

√
m.

Choose δ > 0 such that 4(c1 + 1)c3
√
δ < c1/2; then for all µ < δ the right-

hand side in (2) becomes less than c1
√
m/2. Also choose d1 > 0 such that

d1 = 4c3/c
2
1, so

P [T ≤ τ | y0] ≤ P
"
max
1≤k≤τ

|
kX
i=1

wi| ≥ c1
√
m

¯̄̄̄
¯ y0
#

≤ P

"
max
1≤k≤τ

(|
kX
i=1

vi|+
kX
i=1

|E [ (wi |Hi−1)] |) ≥ c1
√
m

¯̄̄̄
¯ y0
#

(2)

≤ P
"
max
1≤k≤τ

|
kX
i=1

vi| > 1

2
c1
√
m

¯̄̄̄
¯ y0
#
(1)

≤ d1√µ.

Thus, we have proved that for every c1, c3 > 0, ε > 0 there exists δ > 0 and
a constant d1 > 0 such that for every m, for any (x0, y0) ∈ Ac1,ε, we have

P

·
min
06t6τ

yt ≤ m
2

¯̄̄̄
z0

¸
≤ d1√µ for all µ < δ.

Now, take d = max(d1, 1√
δ
) and the result follows.

Lemma 3 For every constants c1 > 0, ε > 0 there exist constants c2, d > 0
such that for every µ > 0,m, for any z0 ∈ Ac1,ε, we have

P

·
max

0≤t≤c2m
xt > (1− ε

2
)m

¯̄̄̄
z0

¸
≥ 1− d( 1

m
+
√
µ).

Proof. Define a stopping time T := inf{t : yt ≤ m/2}; also define

wt :=

½
xt − xt−1 if xt−1 ≤ (1− ε

2
)m and t ≤ T

ε
6

if xt−1 > (1− ε
2
)m or t > T
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and we know that for t ≤ T

xt − xt−1 =
 0 with probability 1− p− q
+1 with probability p(xt−1, yt−1) =

m−xt−1
m

(1− µ)
−1 with probability q(xt−1, yt−1) =

xt−1
m
µ.

Notice that when xi ≤ (1− ε/2)m and i ≤ T we get p(xi−1) ≥ (1−µ)ε/2
and q(xi−1) ≤ (1− ε/2)µ. So we can choose δ > 0 such that for every µ ≤ δ
we get p(xi−1) ≥ ε/3 and q(xi−1) ≤ ε/6 and it follows that E [wi |Hi−1] ≥
ε/3−ε/6 = ε/6. This inequality also holds in the other case, where wt = ε/6.

Define bxt := tP
i=1

wi+x0 and notice that when t ≤ T and max
0≤i≤t

xi ≤ (1−ε/2)m

we have bxt = xt .
Define vt := wt − E [wt |Ht−1]; these are martingale differences so it

follows that

∀t V ar(vt) ≤ V ar(wt) ≤ V ar(xt − xt−1) ≤ 1

∀t V ar(
tX
i=1

vi) =
tX
i=1

V ar(vi) ≤ t.

Choose c2 = d6/εe and d1 = 4c2/ε2; from Chebyshev’s inequality we get

P

"
|
c2mX
i=1

vi| ≥ ε

2
m

#
≤ c2m

( ε
2
m)2

= (
4c2
ε2
)
1

m
= d1

1

m
.

Therefore

P

·
max

0≤t≤c2m
bxt > (1− ε

2
)m

¯̄̄̄
z0

¸
≥ P

hbxc2m > (1− ε

2
)m

¯̄̄
z0
i

≥ P

"
c2mX
i=1

wi > (1− ε

2
)m

¯̄̄̄
¯ z0
#

= P

"
c2mX
i=1

E [wi |Hi−1] +
c2mX
i=1

vi > (1− ε

2
)m

¯̄̄̄
¯ z0
#

≥ P

"
d6
ε
emε

6
+

c2mX
i=1

vi > (1− ε

2
)m

¯̄̄̄
¯ z0
#

≥ P

"
|
c2mX
i=1

vi| < ε

2
m

¯̄̄̄
¯ z0
#
≥ 1− d1 1

m
.
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By Lemma 2 (with c1 = c1, c3 = c2, ε = ε), there exists d2 ≥ d1, which

guarantees P [T ≤ c2m | z0] ≤ P
h
T ≤ c2m√

µ

¯̄̄
z0
i
≤ d2√µ, and so

P

·
max

0≤t≤c2m
bxt > (1− ε

2
)m and T > c2m

¯̄̄̄
z0

¸
≥ 1− d2( 1

m
+
√
µ).

Let t0 := min{t : bxt > (1 − ε/2)m}. Notice that if max
0≤t≤c2m

bxt > (1− ε/2)m

and T > c2m then bxt0 = xt0, and so xt0 > (1− ε/2)m. Therefore

P

·
max

0≤t≤c2m
xt > (1− ε

2
)m

¯̄̄̄
z0

¸
≥ P

·
max

0≤t≤c2m
bxt > (1− ε

2
)m and T > c2m

¯̄̄̄
z0

¸
≥ 1− d2( 1

m
+
√
µ).

This holds for all µ < δ. Take d = max(d2, 1/
√
δ); the result follows.

Proposition 4 For every constants c1 > 0, ε > 0 there exists a constant
c2 > 0 such that for any c3 ≥ c2 there exists d > 0 such that for every
µ > 0,m, for any z0 ∈ Ac1,ε, if we define g := c3/max(√µ,

p
1/m), we have

P

·
∩

c2m≤t≤gm
{zt ∈ Bε}

¯̄̄̄
z0

¸
≥ 1− d(

r
1

m
+
√
µ). (∗)

Proof. Define stopping times T1 := inf{t : xt > (1 − ε/2)m} and T2 :=
inf{t : yt ≤ m/2}. Define

wt :=

 0 with probability 1− µ
+1 with probability m−xt−1

m
(1− µ)

−1 with probability xt−1
m
µ.

It is always true that E [wt |Ht−1] ≥ −µ. Define bxt := tP
i=1

wi + x0. Notice

that for t ≤ T2 we have wt = xt − xt−1, so bxt = xt. From Lemma 4 there
exists d1, c2 > 0 such that we have

(1) P [T1 ≤ c2m | z0] ≥ 1− d1( 1
m
+
√
µ).

Define vt := wt − E [wt |Ht−1]; these are martingale differences so it follows
that

∀t V ar(vt) ≤ V ar(wt) ≤ 1⇒ ∀t V ar(
tX
i=1

vi) =
tX
i=1

V ar(vi) ≤ t.
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Given c3 > c2 choose d2 = max((16c3/ε2), d1), from Kolmogorov’s inequality
for martingale differences we get for each t1 ≤ c2m

P

"
max

t1≤t≤gm
|

tX
i=t1

vi| > ε

4
m

#
≤ gm

( ε
4
m)2
≤ (16c3

ε2
)
1√
m
≤ d2

r
1

m
.

Now, choose δ > 0 such that c3
√
δ < ε/4 so that we have

(2)

gmX
i=0

E [wi |Hi−1] ≥ gm(−µ) ≥ −c3m
√
δ > −ε

4
m.

Therefore for each t1 ≤ c2m (note that in time T1, bxt = (1− ε/2)m)

P [∃t, t1 ≤ t ≤ gm : bxt < (1− ε)m |T1 = t1, z0]

≤ P

"
min

t1≤t≤gm

tX
i=t1

wi < −ε

2
m

¯̄̄̄
¯T1 = t1, z0

#

= P

"
min

t1≤t≤gm

t

(
X
i=t1

E [wi |Hi−1] +
tX
i=t1

vi) < −ε

2
m

¯̄̄̄
¯T1 = t1, z0

#
(2)

≤ P
"
max

t1≤t≤gm
|

tX
i=t1

vi| > ε

4
m

¯̄̄̄
¯T1 = t1, z0

#
≤ d2

r
1

m
.

Hence

(3) P

·
∩

T1≤t≤gm
{bxt ≥ (1− ε)m}

¯̄̄̄
T1 ≤ c2m, z0

¸
≥ 1− d2

r
1

m

so

P

·
∩

T1≤t≤gm
{bxt ≥ (1− ε)m} and T1 ≤ c2m

¯̄̄̄
z0

¸
= P

·
∩

T1≤t≤gm
{bxt ≥ (1− ε)m}

¯̄̄̄
T1 ≤ c2m, z0

¸
P [T1 ≤ c2m | z0]

(1)+(3)

≥ (1− d2
r
1

m
)(1− d2( 1

m
+
√
µ)) ≥ 1− 2d2(

r
1

m
+
√
µ).

Using Lemma 2 with ε = ε, c1 = c1, c3 = c3 we can choose d3 ≥ d2 and we
get P [T2 > gm| z0] ≥ (1− d3√µ). Therefore

P

·µ
∩

T1≤t≤gm
{bxt | bxt ≥ (1− ε)}m and T1 ≤ c2m

¶
and T2 > gm

¯̄̄̄
z0

¸
≥ 1− d3√µ− 2d3(

r
1

m
+
√
µ) = 1− 3d3(

r
1

m
+
√
µ).
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Define d := 3d3. As we have already seen, for t ≤ T2 we have bxt = xt. The
above event includesn

∃t1 ≤ c2m : xt1 > (1−
ε

2
)m and ∀t, t1 ≤ t ≤ gm : zt ∈ Bε

o
,

which in turn includes
∩

c2m≤t≤gm
{zt ∈ Bε} ,

and the proof is completed.

Proposition 5 For every constants c1 > 0, ε > 0 there exists a constant
d > 0 such that for every µ > 0,m, we have

πm,µ [Ac1,ε] ≤ d(
r
1

m
+
√
µ).

Proof. Since πm,µ is the unique invariant vector of our stationary Markov
process, we have

∀z0∀z0, P [zt = z0 | z0] →
t→∞

πm,µ [z
0]

⇒ P [zt ∈ Ac1,ε | z0] →
t→∞

πm,µ [Ac1,ε] .

Using Proposition 5 and Ac1,ε ∩Bε = ∅ we know that there exists a constant
c2 > 0 such that for every c3 ≥ c2 we get a constant d1 for which the claim
(∗) of Proposition 4 holds.
Notice that since this is a Markovian process, the claim will still be valid

starting at a certain time t0, so

∀zt0 ∈ Ac1,ε, P
·

∩
c2m+t0≤t≤gm+t0

{zt ∈ Bε}
¯̄̄̄
zt0

¸
≥ 1− d(

r
1

m
+
√
µ).

Now, for each µ > 0,m we know that

∀ε > 0,∃tm,µ0 ≡: ∀t ≥ tm,µ0 , |P [{zt ∈ Ac1,ε} | z0]− πm,µ [Ac1,ε] | <
√
µ.

Define T1 := inf{t0 : t0 ≥ t0, zt0 ∈ Ac1,ε}∧ (t0+ gm). For every T1 = t1 we get
from Proposition 5 (choose c3 = c2 ) that

P [# {t1 ≤ t ≤ t0 + gm : zt ∈ Ac1,ε} ≤ c2m |T1 = t1, z0] ≥ 1− d1(
r
1

m
+
√
µ)

⇒ P [# {T1 ≤ t ≤ t0 + gm : zt ∈ Ac1,ε} ≤ c2m | z0] ≥ 1− d1(
r
1

m
+
√
µ)

12



⇒ E [# {t0 ≤ t ≤ t0 + gm : zt ∈ Ac1,ε} | z0]

≤ (1− d1(
r
1

m
+
√
µ))c2m+ d1(

r
1

m
+
√
µ)gm ≤ c2m+ d1(

r
1

m
+
√
µ)gm

⇒ E

"
t0+gmX
t=t0

1zt∈Ac1,ε

¯̄̄̄
¯ z0
#
≤ c2m+ d1(

r
1

m
+
√
µ)gm

⇒ 1

gm

t0+gmX
t=t0

P [{zt ∈ Ac1,ε} | z0] ≤
c2m+ d1(

q
1
m
+
√
µ)gm

gm

≤ (
√
µ+

r
1

m
) + d1(

r
1

m
+
√
µ) ≤ (d1 + 1)(

r
1

m
+
√
µ)

⇒ ∃t ≥ t0 : P [{zt | zt ∈ Ac1,ε} | z0] ≤ (d1 + 1)(
r
1

m
+
√
µ).

Now, since we chose t0 such that for any t ≥ t0, |P [{zt | zt ∈ Ac1,ε} | z0] −
πm,µ [{z | z ∈ Ac1,ε}] | ≤ √µ we get that πm,µ [Ac1,ε] ≤ (d1+2)(

p
1/m+

√
µ).

We define d = d1 + 2 and the result follows.

Theorem 6 For every ε > 0 there exists d > 0 such that for every µ > 0,m
for every α, β : 0 < α ≤ β, we have¯̄̄̄
πm,µ

·½
(x, y) |x ≥ m(1− ε), α ≤ y −

1
2
m

1
4

√
m
≤ β

¾¸
− (Φ(β)− Φ(α))

¯̄̄̄
≤ d(

r
1

m
+
√
µ)

and¯̄̄̄
πm,µ

·½
(x, y) |x ≤ mε, −β ≤ y −

1
2
m

1
4

√
m
≤ −α

¾¸
− (Φ(−α)− Φ(−β))

¯̄̄̄
≤ d(

r
1

m
+
√
µ).

Proof. Given that our system is symmetric (a state with x individuals
playing left at node 1 and y individuals playing left at node 2 is symmet-
ric to a state with m − x individuals playing left at node 1 and m − y
individuals playing left at node 2), we get that πm,µ [(x, y)] is the same as
πm,µ [(m− x,m− y)]. Therefore, it is enough to estimate the probability
πm,µ [x, y] for every 0 ≤ x ≤ m,m/2 ≤ y ≤ m and thus we prove only the
first statement of the Theorem.
We know from Lemma 1 that the marginal invariant distribution of popu-

lation 2 is πym,µ := Binomial(m, 1/2). Choose c1 > 0 such that c1 < α; using
the Berry-Esséen Theorem (see Alan [1993]) we have a constant d1 such that¯̄̄̄

πm,µ

·
α ≤ y −

1
2
m

1
4

√
m
≤ β

¸
− (Φ(β)− Φ(α))

¯̄̄̄
≤ d1 1√

m
.
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Now, using Proposition 5 we have a d2 > 0, such that

πm,µ

·½
(x, y) |x < m(1− ε), α ≤ y −

1
2
m

1
4

√
m
≤ β

¾¸
≤ πm,µ [Ac1,ε] ≤ d2(

r
1

m
+
√
µ)

⇒
¯̄̄̄
πm,µ

·½
(x, y) |x ≥ m(1− ε), α ≤ y −

1
2
m

1
4

√
m
≤ β

¾¸
− (Φ(β)− Φ(α))

¯̄̄̄
≤ d1

1√
m
+ d2(

r
1

m
+
√
µ) ≤ (d1 + d2)(

r
1

m
+
√
µ).

Take d := d1 + d2 and the result follows.
Proof of the Main Theorem. Let ν := 1

2
1(1, 1

2
) +

1
2
1(0, 1

2
); we will show

that lim inf
1
m,µ→0

bπm,µ(G) ≥ ν(G) for any open set G ⊂ [0, 1]2 (see Billingsley

[1968]). Given such a set G with (1, 1
2
) ∈ G we can find δ1, δ2 > 0 and a

rectangle F := {(ξ, η) |0 ≤ 1− ξ ≤ δ1, |1/2− η| ≤ δ2} such that F ⊂ G. We
know that if we choose ε = δ1 in Theorem 3.6, we get, for every α,β : 0 <
α < β,

∀α,β : bπm,µ [F ] ≥ bπm,µ ·½(ξ, η) ¯̄̄̄ξ ≥ 1− δ1,
1

2
+ δ2 ≥ η ≥ 1

2

¾¸
≥ bπm,µ ·½(ξ, η) ¯̄̄̄ξ ≥ 1− δ1,

1

2
m+

1

4
β
√
m ≥ ηm ≥ 1

2
m+

1

4
α
√
m

¾¸
≥ Φ(β)− Φ(α).

Now, this holds for all 0 < α < β; taking α→ 0 and β →∞ therefore yields

lim inf
1
m,µ→0

bπm,µ(G) ≥lim inf
1
m,µ→0

bπm,µ(F ) ≥ Φ(∞)− Φ(0) =
1

2
.

Similarly, given an open set G0 with (0, 1
2
) ∈ G0 we have

lim inf
1
m,µ→0

bπm,µ(G0) ≥ 1
2
.

For any other open set G00 if it does not contain (1, 1
2
) and (0, 1

2
) then ν(G00) =

0 and the claim is trivial. If it contains both points, then it contains two
open sets G,G0 such that (1, 1

2
) ∈ G, (0, 1

2
) ∈ G0 and G ∩G0 = ∅ so

lim inf
1
m,µ→0

bπm,µ(G00) ≥lim inf
1
m,µ→0

bπm,µ(G)+ lim inf
1
m,µ→0

πm,µ(G
0) ≥ 1.

With this we have finished showing that lim inf
1
m,µ→0

bπm,µ(G) ≥ ν(G) for any open

set G, which, together with Theorem 3.6, yields the Theorem.
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3.1.2 The second case: λ/2 > θ

Here the set of backward induction equilibria is:

BIE = {(x, y) : x = m, y > mθ/λ}∪{(x, y) : x = 0, y < mθ/λ}∪{(x, y) : y = mθ/λ} .
Theorem 7

(1) bπm,µ(ξ, η) =⇒
1
m,µ→0

1(1, 1
2
)

and for every ε > 0, there exist constants c, d > 0 such that for every µ > 0,m
for every α, β : −∞ ≤ α ≤ β ≤ ∞, we have

(2)

¯̄̄̄
πm,µ

·½
(ξ,ψ) | ξ ≥ (1− ε), α ≤ ηm− 1

2
m

1
4

√
m

≤ β

¾¸
− (Φ(β)− Φ(α))

¯̄̄̄
≤ de−cm.

Thus, evolutionary stability here yields a unique BIE (see Fig. 2 in the
appendix).

Proof. We start with the proof of inequality (2).
Define Ui := πm,µ

£©
(x, y) : x = i, y

m
λ > θ

ª¤
, Vi := πm,µ

£©
(x, y) : x = i, y

m
λ < θ

ª¤
andWi := πm,µ

£©
(x, y) : x = i, y

m
λ = θ

ª¤
. Now we have an inequality for bi-

nomial distribution (see Hoeffding [1963]), namely,

P [B(t, p) ≤ pt− δt] ≤ e−2tδ2

for all δ > 0. Therefore, knowing that πym,µ = Binomial(m, 1/2) and θ/λ <
1/2, we have

∃c0 :
mX
i=0

(Vi +Wi) ≤ e−c0m.

Since we have a random walk on the population at node 1, for every i, 0 ≤
i < m, we get

Ui(1− µ)m− i
m

+ Viµ
m− i
m

+Wiµ
m− i
m

= Ui+1µ
i+ 1

m
+ Vi+1(1− µ)i+ 1

m
+Wiµ

i+ 1

m

⇒ Ui(1− µ)m− i
m
≤ Ui+1µi+ 1

m
+ e−c

0m.

Using it for i+ 1 < (1− ε/2)m we get

Ui(1− µ)m− i
m
− e−c0m ≤ Ui+1µi+ 1

m

⇒ Ui
(1− µ)
µ

m− i
i+ 1

− m
µ
e−c

0m ≤ Ui+1

⇒ (1− µ)
µ

µ
Ui

ε
2

(1− ε
2
)
−me−c0m

¶
≤ Ui+1.
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Now, assume by contradiction that there exists i0, i0 < (1 − ε)m such that
Ui0 ≥ e−c0m/2; then

∃m0 : ∀m > m0,
1

2
e−

c0m
2

ε
2

(1− ε
2
)
> me−c

0m

⇒ ∀m > m0,
(1− µ)
µ

µ
1

2
Ui0

ε
2

(1− ε
2
)

¶
≤ Ui0+1

⇒ ∀m > m0,
(1− µ) ε

2

2µ(1− ε
2
)
Ui0 ≤ Ui0+1.

So choosing δ > 0 such that

(1− δ) ε
2

2δ(1− ε
2
)
> 2

we get for every µ < δ, m > m0 and i, i0 ≤ i < (1−ε/2)m−1 that Ui+1 ≥ 2Ui;
hence (denote k := b(1− ε/2)m− 1c)

Uk ≥ 2( ε2m−3)Ui0 ≥ 2( ε2m−3) 1
m2

⇒ ∃m00 > m0 : ∀m ≥ m00, Uk > 1,

which is a contradiction. Therefore, it is always true for i ≤ (1−ε)m, m > m0

that Ui < e−c
0m/2, so

∃m00 > m0, c > 0 : ∀m ≥ m00,
(1−ε)mX
i=0

(Ui + Vi) ≤
(1−ε)mX
i=0

Ui +

(1−ε)mX
i=0

Vi

≤ (1− ε)me−
c0m
2 + e−c

0m ≤ e−cm

for all c > 0. Choosing d = max(m00, 1
δ
) we get

πm,µ [{(x, y) |x ≥ (1− ε)m}] ≥ 1− de−cm.

Using the marginal distribution on population 2 (the same argument as in
Theorem 6) proves inequality (2).
We now move to the proof of statement (1). Let ν := 1(1, 1

2
). Again,

we will show that lim inf
1
m,µ→0

bπm,µ(G) ≥ ν(G) for any open set G. Given an

open set G with (1, 1
2
) ∈ G we can find δ1, δ2 > 0 and a square F :=

{(ξ, η) |0 ≤ 1− ξ ≤ δ1, |1/2− η| ≤ δ2} such that F ⊂ G. We know that if
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we choose ε = δ1 as in the previous lemma, we get in the limit, for every
α, β : −∞ ≤ α ≤ β ≤ ∞,

bπm,µ ·½(ξ, η) ¯̄̄̄ξ ≥ 1− δ1, α ≤
ηm− 1

2
m

1
4

√
m

≤ β

¾¸
= Φ(β)− Φ(α)

⇒ ∀α, β : bπm,µ [F ] ≥ bπm,µ ·½(ξ, η) ¯̄̄̄ξ ≥ 1− δ1,
1

2
m+ δ2m ≥ ηm ≥ 1

2
m

¾¸
≥ Φ(β)− Φ(α).

Therefore
lim inf
1
m,µ→0

bπm,µ(G) ≥lim inf
1
m,µ→0

bπm,µ(F ) ≥ 1,
which concludes the proof.

3.1.3 The third case: λ/2 < θ

Here the set of backward induction equilibria is:

BIE = {(x, y) : x = m, y > mθ/λ}∪{(x, y) : x = 0, y < mθ/λ}∪{(x, y) : y = mθ/λ} .

Theorem 8

(1) bπm,µ(ξ, η) =⇒
1
m,µ→0

1(0, 1
2
)

and for every ε > 0, there exists constants c, d > 0 such that for every
µ > 0,m for every α, β : −∞ ≤ α ≤ β ≤ ∞, we have

(2)

¯̄̄̄
πm,µ

·½
(ξ, η) | ξ ≤ ε, α ≤ ηm− 1

2
m

1
4

√
m

≤ β

¾¸
− (Φ(β)− Φ(α))

¯̄̄̄
≤ de−cm.

Thus, also here evolutionary stability yields a unique BIE (see Fig. 3 in the
appendix).

Proof. We start with the proof of inequality (2).
Define Ui := πm,µ

£©
(x, y) : x = i, y

m
λ < θ

ª¤
, Vi := πm,µ

£©
(x, y) : x = i, y

m
λ > θ

ª¤
and Wi := πm,µ

£©
(x, y) : x = i, y

m
λ = θ

ª¤
. Since πym,µ = Binomial(m, 1/2),

there exists c0 > 0 such that

∃c0 :
mX
i=0

(Vi +Wi) ≤ e−c0m.
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Again, since we have a random walk on the population at node 1, for every
i, 0 ≤ i < m, we have

Vi(1− µ)m− i
m

+ Uiµ
m− i
m

+Wiµ
m− i
m

= Vi+1µ
i+ 1

m
+ Ui+1(1− µ)i+ 1

m
+Wiµ

i+ 1

m

⇒ Uiµ
m− i
m

+ e−c
0m ≥ Ui+1(1− µ)i+ 1

m
.

From here, steps similar to those in the previous theorem yield inequality
(2).
We now move to the proof of statement (1). Let ν := 1(0, 1

2
); we will show

that lim inf
1
m,µ→0

bπm,µ(G) ≥ ν(G) for any open set G. Given an open set G with

(0, 1
2
) ∈ Gwe can find δ1, δ2 > 0 and a square F := {(ξ, η) |0 ≤ ξ ≤ δ1, |1/2− η| ≤ δ2}

such that F ⊂ G. We know that if we choose ε = δ1 as in the previous lemma,
we get in the limit, for every α, β : −∞ ≤ α ≤ β ≤ ∞,

bπm,µ ·½(ξ, η) ¯̄̄̄ξ ≤ δ1, α ≤
ηm− 1

2
m

1
4

√
m

≤ β

¾¸
= Φ(β)− Φ(α)

⇒ ∀α,β : bπm,µ [F ] ≥ bπm,µ ·½(ξ, η) ¯̄̄̄ξ ≥ 1− δ1,
1

2
m+ δ2m ≥ ηm ≥ 1

2
m

¾¸
≥ Φ(β)− Φ(α).

Therefore
lim inf
1
m,µ→0

bπm,µ(G) ≥lim inf
1
m,µ→0

bπm,µ(F ) ≥ 1,
which concludes the proof.
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