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Aumann and Brandenburger [Econometrica 63 (1995), 1161�1180.] provide
sufficient conditions on the knowledge of the players in a game for their beliefs
to constitute a Nash equilibrium. They assume, among other things, mutual
knowledge of rationality. By rationality of a player, it is meant that the action
chosen by him maximizes his expected utility, given his beliefs. There is, however,
no need to restrict the notion of rationality to expected utility maximization.
This paper shows that their result can be generalized to the case where players'
preferences over uncertain outcomes belong to a large class of non-expected utility
preferences. Journal of Economic Literature Classification Numbers: C72, D81.
� 1996 Academic Press, Inc.

1. INTRODUCTION

Expected utility theory of choice under uncertainty rests upon several
axioms, among which the most controversial is independence. The nor-
mative appeal of this theory stems from the fact that the independence
axiom can be regarded as a combination of two normatively appealing
assumptions: the compound independence and the reduction of compound
lotteries axioms. Compound independence requires for any positive prob-
ability : and lotteries X, Y, and Z that X is preferred to Y if and only if
a :: (1&:) chance of getting either X or Z is preferred to the same chance
of getting Y or Z. The reduction axiom, on the other hand, requires indif-
ference between any two-stage lottery and the one-stage lottery that yields
the same prizes with the corresponding multiplied probabilities. Despite its
normative appeal, the descriptive usefulness of expected utility theory has
been challenged by some systematic violations observed in experiments.
Machina [5] shows, however, that many of the results of expected utility
theory are robust to certain kinds of violations of independence.

* This paper is a revised version of part of my Ph.D. thesis. I have benefitted from the com-
ments of seminar participants at the Hebrew University of Jerusalem. I am grateful to my
advisors Menahem Yaari and Motty Perry for their comments and to an anonymous referee
for having contributed to the improvement of the paper.
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In the last few years some effort has been spent in extending game theory
to non-expected utility preferences. Part of the importance of these
developments lies in the fact that they allow us to check how much of
our understanding of strategic behavior survives the relaxation of the
experimentally violated independence. Since, as said before, independence
is a combination of two different axioms, the failure to satisfy independence
can be explained alternatively as a failure to satisfy either of the two
axioms above, and each of the two explanations leads to a different theory
of choice under uncertainty in interactive situations. Crawford [3] extends
the concept of Nash equilibrium to games in which the players' preferences
do not satisfy the compound independence axiom. He also shows, however,
that in this context a Nash equilibrium may fail to exist in a finite normal
form game. Partly for this reason, he proposes a new equilibrium concept,
called equilibrium in beliefs. Roughly speaking, an equilibrium in beliefs is
a pair of probability assessments (the beliefs), one for each player, over the
other's strategic choices, that can each be expressed as a mixture of best
responses to the other belief. Crawford [3] proves that in any finite normal
form game, an equilibrium in beliefs always exists. Dekel et al. [4] choose
to drop the reduction axiom and to maintain the compound independence
axiom; within this framework they prove existence of Nash equilibrium.

The traditional interpretation of mixed strategies views them as random
devices that select actions according to some probability distribution.
Another interpretation of mixed strategies maintains that players never
randomize, that they always choose a specific action, but that the mixed
strategy of player i represents the uncertainty in the other players' minds
about his own action. When the second interpretation is adopted, a Nash
equilibrium in mixed strategies is an equilibrium in beliefs. Equilibrium in
beliefs is however, a more general concept because beliefs may be in equi-
librium without constituting a Nash equilibrium.

In a recent paper, Aumann and Brandenburger [2] describe sufficient
conditions about the knowledge of the players in a game for their beliefs
at some state to constitute an equilibrium in beliefs. One of the key
assumptions is mutual knowledge of rationality, namely the players must
know that everybody is rational. By rationality of a player, the authors
mean that the action actually chosen by that player maximizes his expected
utility, given his beliefs at that state. There is, however, no need to restrict
the notion of rationality to expected utility maximization. Rationality refers
to making a choice that brings one closest to a desired end. It has nothing
to do with the specific functional form that may represent that end. In this
paper we will show that Aumann and Brandenburger's result can be
generalized to the case where the players' preferences over uncertain out-
comes do not necessarily satisfy the independence axiom of the expected
utility theory. In this broader setting, rationality of a player means that a
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player chooses a mixed strategy (in the traditional sense) that maximizes
his preferences, given his beliefs. The criterion for rationality is given in
terms of mixed strategies, because when the preferences are not necessarily
linear in the probabilities, a player may well strictly prefer to randomize
rather than to pick any specific action.

One remark is in order. Aumann and Brandenburger [2] state their
results in terms of Nash equilibrium. Specifically, they found sufficient
conditions for the beliefs of the players to constitute a Nash equilibrium.
They did not use the concept of equilibrium in beliefs. When we deal with
expected utility maximizers there is an equivalence between the concept
of Nash equilibrium and the concept of equilibrium in beliefs. Since they
focused on games with expected utility maximizing agents, Aumann and
Brandenburger were able to state their results in terms of Nash equi-
librium. When the players do not satisfy the independence axiom, Nash
equilibrium and equilibrium in beliefs are no longer equivalent and the
results must be stated in terms of the latter. We will show sufficient condi-
tions for the beliefs of the players to constitute an equilibrium in beliefs.

In Section 2 we define two-stage lotteries and state some properties that
preferences over them may satisfy. The space of two-stage lotteries is a
natural environment to deal with non-expected utility preferences.
Section 3 adapts the Nash equilibrium concept to games in which players'
preferences over simple lotteries do not satisfy the independence axiom.
Section 4 uses an interactive belief system to define a notion of rationality
that is consistent with non-expected utility preferences and states the
generalization of Aumann and Brandenburger's result. Section 5 concludes.

2. TWO-STAGE LOTTERIES AND PREFERENCES ON THEM

This section is based on Segal [7, 8]. Let L1 be the set of lotteries with
outcomes in a bounded interval [&M; M]�R. That is

L1={(x1 , p1 ; ...; xn , pn) | x1 , ..., xn # [&M; M],

p1 , ..., pn�0 and :
n

i=1

pi=1= .

Elements of L1 are denoted by X, Y, etc. and are sometimes called simple
or one-stage lotteries. In some cases it will be convenient to denote simple
lotteries by [(xi , pi)]i # I , where I is some finite set of indexes. For X # L1 ,
define the cumulative distribution function FX (x)=Pr (X�x). A preference
relation over simple lotteries is a complete and transitive relation on (L1)2.
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By continuity of a preference relation p1 over simple lotteries we mean
that if [Yi]�

i=1 , Y, X # L1 are such that at each continuity point x of FY ,
FYi (x) converges to FY (x) and if for all i Xp1 Yi , then Xp1 Y. And
similarly, if for all i Yi p1 X then Yp1 X.

A two-stage lottery is a lottery whose outcomes are themselves lotteries
in L1 . The set of two-stage lotteries is then

L2={(X1 , q1 ; ...; Xm , qm) | X1 , ..., Xm # L1 ,

q1 , ..., qm�0 and :
m

j=1

qj=1= .

Elements of L2 are denoted A, B, etc. and are sometimes called compound
lotteries. Again, it will sometimes be convenient to denote compound
lotteries by [(Xj , qj)]j # J , where J is some finite set of indices and Xj # L1 .

Two subsets of L2 are of special interest:

2=[(X, 1) | X # L1]/L2 ;

1=[[(xi , 1), pi]n
i=1 | [(xi , pi)]n

i=1 # L1]/L2 .

2 is the set of all two-stage lotteries that have no uncertainty in the first
stage. Lotteries in 2 give a specific lottery X # L1 with probability 1. All the
uncertainty is resolved in the second stage. 1 is the set of all lotteries with
no uncertainty in the second stage. All the uncertainty is resolved in the
first stage. Let X=[(xi , pi)]i # I be a simple lottery. Based on X define the
two lotteries #X # 1 and $X # 2, as follows:

#X=[(xi , 1), pi]i # I ;

$X=[(xi , pi) i # I , 1].

Any complete and transitive preference relation p on L2 induces two,
possibly different, complete and transitive preference relations on L1 in the
following way:

Xp1 Y if and only if #Xp#Y ;

Xp2 Y if and only if $Xp$Y .

We shall say that a preference relation p over two-stage lotteries is time
neutral if for every simple lottery X # L1 , #X t$X .

Time neutrality means that the decision maker is indifferent about the
timing of resolution of the uncertainty, as long as all the uncertainty is
resolved at one and the same time.
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Segal [7] shows the following:

Theorem 2.1. Let p be a preference relation over compound lotteries
whose induced preference relations p1 and p2 are continuous. The induced
preference relations p1 and p2 are identical if and only if p satisfies time
neutrality.

Given a time neutral preference relation p on L2 , this theorem allows
us to define its induced preference relation on simple lotteries to be
p1 = p2 .

There are some properties that a preference relation over compound
lotteries may or may not satisfy. One commonly assumed axiom is the
following:

Reduction of Compound Lotteries Axiom. For any compound lottery
A=[Xj , qj]j # J where for each j # J, Xj=[(xij , pij)]ij # Ij is a simple lottery,
define the following lottery in L1 :

XA=[(xij , pij qj)]ij # Ij , j # J .

We shall say that p satisfies the reduction of compound lotteries axiom if
and only if for all A # L2 , At#XA .

This axiom says that a decision maker is indifferent between any two lot-
teries that are actuarially equivalent (that can be reduced to the same
simple lottery by application of the rules of probability). Segal [7] showed
that the reduction axiom implies time neutrality.

Another property is:

Compound Independence Axiom. Let X, Y be two simple lotteries and
let A=(Z1 , q1 ; ...; X, qi ; ...;Zm , qm) and B=(Z1 , q1 ; ...;Y, qi ; ...; Zm , qm) be
two compound lotteries. We shall say that p satisfies the compound inde-
pendence axiom if for all such lotteries, ApB if and only if $X p$Y .

This axiom says that if the individual prefers a simple lottery X to a
simple lottery Y, then he must also prefer to replace Y with X in any
compound lottery containing Y as an outcome, and vice versa.

Let X=(x1 , p1 ; ...; xn , pn) and Y=( y1 , q1; ...; ym , qm) be two simple
lotteries and let : # (0, 1]. We denote by :X+(1&:) Y the lottery
(x1 , :p1; ...; xn , :pn ; y1 , (1&:) q1 ; ...; ym , (1&:) qm). It can be shown (see
Segal [7]) that if p satisfies the reduction of compound lotteries and the
compound independence axioms, then the induced preference relation over
simple lotteries satisfies the following property:

Independence. Let X, Y, and Z be simple lotteries and let : # (0, 1].
We shall say that a preference relation p1 over simple lotteries satisfies
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independence if for all such lotteries

Xp1 Y if and only if :X+(1&:) Zp1 :Y+(1&:) Z.

Segal [8] proved the following important result:

Theorem 2.2. Each continuous preference relation p1 on L1 has a
unique extension to L2 satisfying p1 # p2 # p1 and the compound
independence axiom and another unique extension to L2 satisfying p$1 #

p$2 # p$1 and the reduction of compound lotteries axiom.

This theorem points out to two different ways to deal with non-expected
utility maximizers in general and within game theory in particular.
Crawford [3] chose to keep the reduction axiom while Dekel et al. [4]
chose to keep the compound independence axiom.

3. GAME THEORY WITHOUT INDEPENDENCE

Consider a 2-person game form G*=(N; (Si ) i # N ; (hi )i # N) in strategic
form, where N=[1, 2], and for each player i # N, S i is his finite set of pure
actions and hi is i 's monetary payoff function, i.e., a function that assigns
to every n-tuple of pure actions a monetary payoff to player i. In order to
transform G* into a game G we need to specify for each player a preference
relation over lotteries on the set of monetary outcomes. We endow each
player i with a complete and transitive preference relation pi over com-
pound lotteries on money. We also assume that each preference relation
satisfies time neutrality and that the induced preference relation over
simple lotteries is continuous.

A mixed strategy for player i in this game is, as usual, a probability
distribution over pure actions. We shall denote the set of mixed strategies
of player i by 7i and specific elements of it by _i, {i, etc. The mixed strategy
that assigns probability 1 to action si # Si will be denoted by si. If
_=(_1, _2) is a pair of mixed strategies, then for all i, i=1, 2, _&i denotes
_ j, j{i.

Each pair _=(_1, _2) of mixed strategies defines for each player i the
following simple lottery over monetary outcomes

hi (_) :=[hi (s); _1(s1)__2(s2)]s # S ,

where S :=Xi # NSi. That is, _ defines the lottery that assigns the amount
hi (s) with probability _1(s1)__2(s2). If player i 's preference relation does
not satisfy the reduction axiom, he will not evaluate the optimality of his
mixed strategy _i against the mixed strategy of his opponent _&i according
to his evaluation of the lottery hi (_). Although we know the way he
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evaluates compound lotteries, we do not know how he translates pairs of
mixed strategies into compound lotteries. In other words, it is not clear
what is the relevant compound lottery that represents the given pair of
strategies. In this paper we are going to assume that the relevant com-
pound lottery with which a player evaluates a pair of strategies is the one
defined by the timing of revelation of the information and not the one
defined by the actual or objective resolution of the uncertainty. No matter
who randomizes first, each player will first be informed of the result of his
own randomization following which the uncertainty about the other
player's action will be revealed to him. This point of view is what Dekel et
al. [4] call ``the first perceptual hypothesis.'' Therefore, for any realization
si of i 's randomizing device he will face the simple lottery hi (si, _&i ). And
since he chooses si with probability _i (si ), he will in fact be facing, ex ante,
the following two-stage lottery:

[hi (si, _&i ), _i (si )]s i # Si .

Taking this into account the best reply correspondences BRi : 7i � 7i,
i=1, 2, are defined as

BRi (_&i )=[_i # 7i : [hi (si, _&i ); _i (si )]s i # Si

pi [hi (si, _&i ); {i (si )]si # Si for all {i # 7 i].

Definition. A Nash equilibrium in G is a pair of mixed strategies
_=(_1, _2) such that

_i # BRi (_&i ) for all i # N. (1)

Remark 1. Dekel et al. [4] showed that assuming preferences which
satisfy compound independence, a Nash equilibrium always exists in any
finite game.

Remark 2. The above definition takes into account that players may
not satisfy the reduction of compound lotteries axiom. If, however, they do
satisfy this axiom, condition (1) could be replaced by the more familiar

[hi (_i, _ j), 1]pi [hi ({i, _ j), 1] for all {i # 7i, for all i # N.

In order to define the notion of equilibrium in beliefs, we need some
notation. Let _i

1 and _i
2 be a pair of mixed strategies of player i # N and let

: # [0, 1]. The mixture :_i
1 � (1&:) _i

2 is the mixed strategy of i that
assigns to each pure action si # S i the probability :_i

1(si )+(1&:) _i
2(si ).

For any set T/7i, D(T ) denotes the intersection of all the supersets of T
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that are closed under the mixture operation. Clearly, each member of D(T )
can be expressed as a mixture of elements of T.

Definition. An equilibrium in beliefs is a pair of strategies (_1, _2) such
that

_i # D[BRi (_&i )], \i # N.

If (_1, _2) is an equilibrium in beliefs, _i is not to be interpreted as the
actual mixed strategy chosen by player i; rather, it must be understood as
the equilibrium beliefs held by j ({i) about the action taken by i. Equi-
librium in beliefs requires each player's beliefs about the other's actions to
be expressible as a probability distribution over the other's best replies to
his own beliefs.

Though different in nature, equilibrium in beliefs and Nash equilibrium
are related concepts. It follows directly from the definitions that a Nash
equilibrium is an equilibrium in beliefs as well. As for the converse,
Crawford [3] showed that if the players' preferences satisfy the reduction
of compound lotteries axiom and if the induced preference relation over
simple lotteries is convex, i.e., it can be represented by a quasi-concave
utility function, then equilibria in beliefs are also Nash equilibria. Further,
another relation is given by the following observation.

Observation. Let G=(N; (Si, hi, pi ) i # N) be a two player game and
assume that for all i in N, pi satisfies the compound independence axiom. Let
_=(_1 , _2) be an equilibrium in beliefs. Then _ is a Nash equilibrium as well.

Proof. The observation will follow from the following lemmas, which
are proved in the Appendix.

Lemma 3.1. Let _i be a best response to _ j and let s* be a pure action
which is assigned positive probability by _i. Then s* is a best response to _ j

as well.

Lemma 3.2. Let [si
1 , ..., si

n] be pure actions which are all of them best
responses to _ j. Any mixed strategy involving only elements of this set is a
best response to _ j as well.

Now pick i # N. Since _ is an equilibrium in beliefs _i # D[BRi (_&i )]. Let
si be an action to which _i assigns positive probability. Then there must be
a best response to _&i that gives positive probability to si. By Lemma 3.1
si must itself be a best response to _ j. By Lemma 3.2 _i is a best response
to _&i. K
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4. RATIONALITY WHEN INDEPENDENCE FAILS

Let us again be given a 2-player game G=(N; (S i, hi, pi) i # N) , where
as in the previous section N=[1, 2] and for each i # N, S i is his set of
available actions, hi is his monetary outcome function, and pi is his
preference relation over compound lotteries which is assumed to satisfy
time neutrality and whose induced preference relation is continuous. As
pointed out by Crawford [3], if one player has preferences that satisfy the
reduction of compound lotteries axiom and his induced preferences over
simple lotteries are convex, it may well be that, given two distinct lotteries
among which he is almost indifferent, he strictly prefers a convex combina-
tion of them (a compound lottery) to either of them separately. This may
seem peculiar, because after the first-stage lottery has taken place, the
player may end up with the worst lottery. This phenomenon may seem at
first sight to be a case of preference reversal which contradicts transitivity,
but this interpretation cannot be correct because the preferences were
assumed from the outset to satisfy transitivity. The correct interpretation of
convex preferences is that, when faced with the choice between two distinct
lotteries among which he is indifferent, the agent prefers to choose by
means of a random device rather than choosing directly; when the device
chooses one specific lottery, the agent strictly prefers to stick to this choice,
i.e., the player's preferences satisfy dynamic consistency (see Machina [6]).
Another interpretation is that, though not dynamically consistent, the
player can commit himself to abide by the outcome of his randomizing
device. This commitment ability makes his planned behavior coincide with
his actual or ex post behavior. In either case, the player's best response to
any combination of mixed strategies of the other players may be a non-
degenerate mixed strategy, and this best response may even be unique.
Hence, in order to establish the rationality of a given player, the action
actually chosen is no longer relevant, as it was in the case of linear
preferences. Now, the mixed strategy he chooses is the relevant variable.
We shall have to take this last remark into account when we define the
event ``player i is rational''.

In order to evaluate the rationality of an agent, we need to know what
he does and what he believes, and in order to be able to express what a
player does and believes within a game, we are going to use the formal tool
of an interactive belief system.

An interactive belief system for G consists of the following elements:

(1) for each player i # N, a finite set T i of types
and for each type ti of i

(2) a mixed strategy _i # 7i and
(3) a probability distribution on the set T j of types of his opponent

(ti 's theory).
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Interactive belief systems were first introduced by Aumann [1] and
thoroughly discussed in Aumann and Brandenburger [2]. The differences
between the interactive belief system used here and the one in Aumann and
Brandenburger [2] are discussed in the concluding section.

Set T :=T 1_T 2. Call each of the elements t=(t1, t2) of T a state of the
world. An event is a subset of T. Denote by p( } ; ti ) the probability distribu-
tion on T induced by ti; formally, for any event E, p(E; ti ) is defined to be
the probability assigned by ti 's theory to [t j # T j : (ti, t j ) # E ]. We say that
player i knows an event E at state t if at t he ascribes probability 1 to E,
i.e., if p(E; ti )=1. We say that an event E is mutual knowledge at
t=(t1; t2) if both players know E at t, i.e., if p(E; ti )=1, i=1, 2. We
denote by _ i

t the mixed strategy chosen by i at state t, namely the mixed
strategy of ti. Functions defined on T (like _i ), which are going to be typed
in boldface, can be used to define events. If x is such a function and x is
one of its values, then [x=x] will denote the event [t # T : x(t)=x].
A conjecture 9 of i about the mixed strategy of player j ({i ) is a simple
probability distribution on 7 j. The theory of ti at state t yields a conjec-
ture, denoted 9 i

t and called the conjecture of i at t which is given by

9 i
t (_

j ) :=p([_ j=_ j]; ti ).

The conjecture 9 i
t represents i 's assessments at t concerning j 's choice of

mixed strategy. Similarly, a belief .i of player i about the other players'
actions, or more shortly a belief of player i, is a probability distribution on
S j. The conjecture of i at t yields a belief of i about j 's actions in the
following manner:

. i
t (s

j )= :
_ # M j

9 i
t(_) _(s j ),

where M j�7 j is the set of mixed strategies assigned positive probability
by 9 i

t .
The probability that i assigns at state t to j 's taking action s j is the

average over all j 's mixed strategies of the probabilities given by those
mixed strategies to s j, where the averaging weights are given by i 's conjec-
ture at t concerning j 's choice of mixed strategy. The fact that player i
applies the laws of probabilities in order to calculate the chances of j
playing s j does not contradict the fact that i 's preferences over compound
lotteries may not satisfy the reduction axiom. The basic assumption is that
i knows how to calculate probabilities while he may not evaluate com-
pound lotteries according to the ultimate distribution of monetary out-
comes.
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Player i is called rational at t if his mixed strategy at t maximizes his
preferences given his belief at t. Formally, if

_ j
t # BRi (. i

t).

In other words, a player is rational at state t, if what he really does at t
is the best he can do given his beliefs about his opponent's choice of
action. We denote by Ri the event ``player i is rational,'' i.e., Ri=
[t # T : _ i

t # BRi (. i
t)].

Within the interactive belief system, there is a natural relation between
a player's beliefs and his knowing his own beliefs. This relation is stated in
the following lemma.

Lemma 4.1. Let 9 be a conjecture about player j 's mixed strategy and
assume i knows at t that his own conjecture at t is 9. Then his conjecture at
t is indeed 9, i.e., 9 i

t=9.

This lemma is a corollary of Lemma 2.6 in Aumann and Brandenburger
[2]. We give a proof for completeness.

Proof. Let E be the event ``i 's conjecture is 9,'' i.e., E=[9=9 ]. By
assumption, i knows E at t, i.e., p(E; ti )=1. Let 6 be i 's conjecture at t
and let F be the event ``i 's conjecture is 6.'' Since i 's conjecture at t
depends only on i 's type, we have that [t j # T j : (ti, t j ) # F ]=T j. Therefore
p(F; ti )=1. But then E and F have a non-empty intersection which means
that 6=9. K

We can now state the main result of this paper.

Theorem 4.2. Let (9 1, 9 2) be a pair of conjectures. Suppose that at
some state t it is mutually known both that the players are rational and that
(91, 92)=(9 1, 9 2). Then (.2

t , .1
t ) is an equilibrium in beliefs of G.

Proof. Pick player i. By Lemma 4.1 9 i
t=9 i. Then by the definition of

i 's belief at t about j 's actions,

. i
t(s j )= :

_ # M j

9 i
t(_) _(s j ).

Now choose _ j # M j. By assumption then, i assigns positive probability at
t to [_ j=_ j]. Also, i attributes probability 1 at t to the event ``j is
rational'' and to [9 j=9 j]. There must be a state t$ at which all the three
events obtain, which means that _ j # BR j (. j

t ). Therefore . i
t is a mixture of

best responses to . j
t . K
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We have seen in the previous section that if the players' preferences
satisfy the compound independence axiom, then all equilibria in beliefs are
Nash equilibria as well. As a corollary then, we have that mutual
knowledge of rationality and of beliefs imply that those beliefs constitute a
Nash equilibrium. For this case, however, we can reach the same conclu-
sion with a conceptually simpler interactive belief system. A basic
ingredient of the interactive belief system used in the previous section was
a mixed strategy for every type. This was needed because when a player's
preferences do not satisfy the independence axiom, it may be the case that
he strictly prefers certain mixed strategy to any of his pure actions. This
possibility, in turn, imposed on us the definition of rationality: a player is
rational if his choice of mixed strategy (and not the actual realization of his
randomizing device) yields his most preferred lottery. If we restrict atten-
tion to preferences that satisfy the compound independence axiom, it is
always the case that an optimal mixed strategy is a mixture of pure actions
which are themselves optimal (see Lemma 3.1). This property allows us to
define rationality in terms of actions actually chosen instead of mixed
strategies. With this idea in mind we can formulate the model in the fol-
lowing way.

Let G be a game as before but in which the preferences of the players
satisfy the compound independence axiom. An interactive belief system for
G is composed of the following elements:

(1) for each player i # N, a set T i of types
and for each type ti of i

(2) and action si # S i and

(3) a probability distribution on the set T j of types of his opponent
(ti 's theory).

Again T :=T 1_T 2 is the set of states of the world, with generic element
t, and p( } ; ti ) is the probability distribution on T induced by ti. A belief .i

of i is a probability distribution on S j. Now, the theory of i at t yields i 's
belief at t which is given by

. i
t (s

j )=p([s j (t)=s j]; ti).

Accordingly, player i is called rational at t if his choice of action at t is a
best response given his conjecture, namely if si (t) # BRi (. i

t). Now we have
the following theorem.

Theorem 4.3 Let (.1, .2) be a pair of beliefs. Suppose that at state t it
is mutually known that the players are rational and that (.1, .2)=(.1, .2).
Then (.2, .1) is a Nash equilibrium of G.
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Proof. Let s j be an action to which .i assigns positive probability.
Since by assumption i knows that his conjecture at t is .i, by an argument
analogous to the one in Lemma 1 it can be shown that i 's conjecture at t
is indeed .i. Hence at t i assigns positive probability to [s j=s j]. Further,
i ascribes probability one to the events ``j is rational'' and to [. j=. j].
Therefore, there must be a state at which all the three events obtain, which
means that s j # BR j (. j ). By Lemma 3.2 .i # BR j (. j ). K

5. CONCLUDING REMARKS

Extensions of the Nash equilibrium concept have been provided by
Crawford [3] and Dekel et al. [4] for the cases in which the compound
independence and the reduction of compound lotteries axioms, respec-
tively, are not satisfied. Using these generalizations we showed that
Aumann and Brandenburger's [2] Theorem A can be extended to games in
which players' preferences do not satisfy the independence axiom of
expected utility maximization. The theorem states a relation between the
rationality of the players and an equilibrium concept and supports the idea
that the notion of rationality should not be restricted to expected utility
maximization. It would be interesting to know whether other results con-
cerning the relation between rationality and different solution concepts can
also be generalized to the case of non-expected utility preferences.

Since whenever players have convex preferences, every equilibrium in
beliefs is also a Nash equilibrium in the game (see Crawford [3]), it
follows that in this case mutual knowledge of rationality and of conjectures
imply that the beliefs associated to the conjectures are a Nash equilibrium
in a 2-person game. Moreover, we could have also proved Theorem 4.3,
using the appropriate belief system, for a game where players' preferences
satisfy the reduction axiom and the induced preference relation over sim-

ple lotteries is convex. The proof would be identical to the Proof of
Theorem 4.3 with the only difference that the conclusion would follow by
invoking the convexity of the preferences rather than Lemma 3.2. Concep-
tually, the problem is that there might be games for which the conditions
of the theorem cannot be satisfied even though a Nash equilibrium exists.
This will happen when all Nash equilibria are in mixed strategies and those
mixed strategies are the unique best response to each other. In this case,
the definition of rationality cannot be fulfilled. That is, there is no pure
action that is best response against i 's beliefs, hence the impossibility of
being rational.

Aumann and Brandenburger [2] proved another theorem concerning
finite n-player games with expected utility preferences. Their result states
that if in an n-player game all players share a common prior and there is
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mutual knowledge of rationality and common knowledge of each players
conjectures (beliefs) about the other players' actions, then for each player
j, the rest of the players agree on their beliefs about j 's choice of action and
the profile of agreed beliefs constitutes a Nash equilibrium. In this theorem,
the assumptions of a common prior and common knowledge of the players'
conjectures are used only to show that for each player j, (i) j 's beliefs over
the others' choice of actions is given by a product probability measure on
the product of the strategy spaces of his rivals, and (ii) all the other players
agree on their beliefs about j 's action, thus singling out a unique belief of
j. Once the existence of a unique common belief about j 's actions is proved
for all j, the proof of the fact that the profile of common conjectures con-
stitutes a Nash equilibrium follows the lines of the 2-player case, but using
the fact that conjectures are a product measure. Since in the proof of the
existence of a unique profile of beliefs about each player's choice of action
and its independence it is nowhere used the fact that the players' prefe-

rences are of any particular kind, adding the assumptions of the existence
of a common prior and of common knowledge of the conjectures to the
hypothesis of Theorem 4.2 leads to a generalization of Aumann and
Brandenburger's [2] Theorem B for the preferences that do not satisfy the
independence axiom. Clearly, in order to state the result for the n-player
case, we need to extend the definitions of Nash equilibrium and equilibrium
of beliefs for this case as well, but this is done in a straightforward manner.
We have chosen not to deal with this case because the main point of this
paper is completely made by the 2-player case. Similarly, for the sake of
simplicity, we have chosen to implicitly assume that payoff functions are
common knowledge and not to introduce any uncertainty about payoff
functions. This would only have distracted attention from the main point.

APPENDIX

In this Appendix we prove Lemmas 3.1 and 3.2 used in the Proof of the
Observation in Section 3. For this purpose we need first to show the following.

Claim. Let p be a preference relation over compound lotteries that
satisfies time neutrality and compound independence and whose induced
preference relation over simple lotteries is continuous. Then for any simple
lottery X, [X, qk]n

k=1 t(X, 1), where qk�0 k=1, ..., n and 7kqk=1.

Proof. Let X be a simple lottery. By continuity, there exists a number
C such that

(X; 1)t[(C, 1); 1)]. (A.1)
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By continuity again, [(C, 1); 1]t[(C, qk)n
k=1;1]. By time neutrality,

[(C, qk)n
k=1; 1]t[(C, 1); qk]n

k=1 . Taking into account (A.1) and by
repeated application of compound independence, we have [(C, 1);
qk]n

k=1 t[X; qk]n
k=1 . The desired result follows by transitivity. K

Lemma 3.1. Let _i be a best response to _i and let s* a pure action which
is assigned positive probability by _i. Then s* is a best response to _ j as well.

Proof. Since _i # BRi (_ j ) and s* is assigned positive probability by _i,
by compound independence we must have

[hi (s*; _ j ), 1]pi [hi (si; _ j ), 1] for all si # S i.

By compound independence again

[hi (s*; _ j ), {i (si )]si # S i pi [hi (si; _ j ), {i (si )]si # S i for all {i # 7i.

But since by the previous claim

[hi (x*; _ j ), {i (si )]si # Si t i [hi (s*; _ j ), 1],

s* is a best response to _ j. K

Lemma 3.2. Let [si
1 , ..., si

n] be pure actions which are all best responses
to _ j. Any mixed strategy involving only elements of this set as a best
response to _ j as well.

Proof. By the Claim and compound independence we have

[hi (si
1 , _ j ), 1]ti [hi (si

1 , _ j ), q1 ; ...; hi (si
1 , _ j ), qn]

ti [hi (si
1 , _ j ), q1 ; ...; hi (si

n , _ j ), qn],

where qk�0 k=1, ..., n and 7kqk=1.
Hence, any mixed strategy involving only pure best replies is a best

reply. K
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