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1 Introduction

“Threshold phenomena” refer to settings in which the probability for an

event to occur changes rapidly as some underlying parameter varies. Thresh-

old phenomena play an important role in probability theory and statistics,

physics, and computer science, and are related to issues studied in economics

and political science. Quite a few questions that come up naturally in those

fields translate to proving that some event indeed exhibits a threshold phe-

nomenon, and then finding the location of the transition and how rapid the

change is. The notions of sharp thresholds and phase transitions originated

in physics, and many of the mathematical ideas for their study came from

mathematical physics. In this chapter, however, we will mainly discuss con-

nections to other fields.

A simple yet illuminating example that demonstrates the sharp threshold

phenomenon is Condorcet’s Jury Theorem (CJT), which can be described as

follows. Say one is running an election process, where the results are deter-

mined by simple majority, between two candidates, Alice and Bob. If every

voter votes for Alice with probability p > 1/2 and for Bob with probability

1 − p, and if the probabilities for each voter to vote either way are inde-

pendent of the other votes, then as the number of voters tends to infinity

the probability of Alice getting elected tends to 1. The probability of Alice

getting elected is a monotone function of p, and when there are many voters

it rapidly changes from being very close to 0 when p < 1/2 to being very

close to 1 when p > 1/2.

The reason usually given for the interest of CJT to economics and political
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science is that it can be interpreted as saying that even if agents receive very

poor (yet independent) signals, indicating which of two choices is correct,

majority voting nevertheless results in the correct decision being taken with

high probability, as long as there are enough agents, and the agents vote

according to their signal. This is referred to in economics as “asymptotically

complete aggregation of information”.

Condorcet’s Jury theorem is a simple consequence of the weak law of large

numbers. The central limit theorem implies that the “threshold interval”

is of length proportional to 1/
√

n. Some extensions, however, are much

more difficult. When we consider general economic or political situations,

aggregation of agents’ votes may be much more complicated than simple

majority. The individual signal (or signals) may be more complicated than

a single bit of information, the distribution of signals among agents can be

more general and, in particular, agents’ signals may depend on each other.

On top of that, voters may vote strategically by taking into account possible

actions of others in addition to their own signal, and distinct voters may have

different goals and interests, not only different information. In addition, the

number of candidates may be larger than two, resulting in a whole set of new

phenomena.

Let us now briefly mention two other areas in which threshold behavior

emerges. The study of random graphs as a separate area of research was

initiated in the seminal paper of Erdős and Rényi [28] from 1959. Consider a

random graph G(n, p) on n vertices where every edge among the
(

n
2

)

possible

edges appears with probability p. Erdős and Rényi proved a sharp threshold

property for various graph properties. For example, for every ǫ > 0, if
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p = (1+ ǫ) logn/n the graph is connected with probability tending to 1 (as n

tends to infinity) while for p = (1− ǫ) log n/n the probability that the graph

will be connected tends to zero. Since the time of their work, extensive studies

of specific random graph properties have been carried out and, in recent

years, results concerning the threshold behavior of general graph properties

have been found. For a general understanding of the threshold properties

of graphs, symmetry plays a crucial role: when we talk about properties

of graphs we implicitly assume that those properties depend only on the

isomorphism type of the graphs, and not on the labeling of vertices. This

fact introduces substantial symmetry to the model. We will discuss how to

exploit this symmetry.

Next, we mention complexity theory. Threshold phenomena play a role,

both conceptual and technical, in various aspects of computational complex-

ity theory. One of the major developments in complexity theory in the last

two decades is the emerging understanding of the complexity of approxi-

mating optimization problems. Here is an important example: for a graph

G let m(G) be the maximum number of edges between two disjoint sets of

vertices of G. MAX-CUT, the problem of dividing the vertices of a given

input graph into two parts so as to maximize the number of edges between

the parts, is known to be NP-hard. However, simply finding a partition such

that the number of edges between the two parts is at least m(G)/2 is easy.

The emerging yet unproven picture for this problem is that if we wish to

find a partition of the vertices with at least cm(G) edges between the parts

then there is a critical value c0 such that the problem is easy (there is a ran-

domized polynomial time algorithm to solve it) for c < c0 and hard (likely
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NP-hard) for c > c0. For MAX-CUT, the critical value c0 = 0.878567 . . . is

reached by the famous Goemans-Williamson algorithm [41] based on semidef-

inite programming. More generally, for many other problems we can expect

a sharp threshold between the region where approximation is easy and the

region where approximation is hard. In addition, the study of threshold phe-

nomena and other related properties of Boolean functions is an important

technical tool in understanding the hardness of approximation.

Another connection with complexity theory occurs in the area of circuit

complexity. It turns out that Boolean functions in very “low” complex-

ity classes necessarily exhibit coarse threshold behavior. For example, the

majority function that exhibits a very sharp threshold behavior cannot be

represented by a bounded-depth Boolean circuit of small size. This insight

is related to another major success of complexity theory: lower bounds for

the size of bounded-depth circuits.

Let us now explicitly define the basic mathematical object that is the sub-

ject of our considerations. A Boolean function is a function f(x1, x2, . . . , xn)

where each variable xi is a Boolean variable, taking the value 0 or 1. The

value of f is also 0 or 1. A Boolean function f is monotone if f(y1, y2, . . . , yn) ≥
f(x1, x2, . . . , xn) when yi ≥ xi for every i. Some basic examples of Boolean

functions are named after the voting method they describe. For an odd

integer n, the majority function M(x1, x2, . . . , xn) equals 1 if and only if

x1 + x2 + . . . + xn > n/2. The dictatorship function is f(x1, x2, . . . , xn) = xi.

Juntas refer to the class of Boolean functions that depend on a bounded

number of variables, namely functions that disregard the value of almost all

variables except for a few, whose number is independent of n.
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Now consider the probability µp(f) that f(x1, x2, . . . , xn) = 1, when the

probability that xi = 1 is p, independently for i = 1, 2, . . . , n, just as we

had earlier for the election between Alice and Bob. When f is a monotone

Boolean function, the function µp(f) is a monotone real function of p. Given

a real number 1/2 > ǫ > 0, the threshold interval depending on ǫ is the

interval [p1, p2] where µp1
(f) = ǫ and µp2

(f) = 1 − ǫ. Understanding the

length of this threshold interval is one of our central objectives.

Before we describe this chapter’s sections it is worth noting that the

notion of a sharp threshold is an asymptotic property and therefore it applies

to a sequence of Boolean functions when the number of variables becomes

large. Giving explicit, realistic, and useful estimates is an important goal.

In the election example above, the central limit theorem provides explicit,

realistic, and useful estimates. In more involved settings, however, this task

can be quite difficult.

The main messages of this chapter can be summarized as follows:

• The threshold behavior of a system is intimately related to combinato-

rial notions of “influence” and “pivotality” (Section 2).

• Sharp thresholds are common. We can expect a sharp threshold unless

there are good reasons not to (Section 3 and 5.3).

• A basic mathematical tool in understanding threshold behavior is Fourier

analysis of Boolean functions (Section 4).

• Higher symmetry leads (in a subtle way) to sharper threshold behavior

(Section 5.2).
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• Sharp thresholds occur unless the property can be described “locally”

(Section 5.3).

• Systems whose description belongs to a very low complexity class have

rather coarse (not sharp) threshold behavior (Section 6.1).

• In various optimization problems, when we seek approximate solutions,

there is a sharp transition between goals that are algorithmically easy

and those that are computationally intractable (Section 6.3).

In Section 2 we introduce the notions of pivotality and influence and

discuss “Russo’s lemma,” which relates these notions to threshold behavior.

In Section 3 we describe basic results concerning influences and threshold

behavior of Boolean functions. In Section 4 we discuss a major mathematical

tool required for the study of threshold phenomena and influences: Fourier

analysis of Boolean functions. In Section 5 we discuss the connection to

random graphs and hypergraphs and to the k-SAT problem. In Section 6 we

discuss the connections to computational complexity. Section 7 is devoted to

the related phenomenon of noise sensitivity. Section 8 discusses connections

with the model of percolation. Section 9 discusses an example from social

science: a result by Feddersen and Pesendorfer that exhibits a situation of

self-organized criticality. Section 10 concludes with some of the main open

problems and challenges.
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2 Pivotality, influence, power, and the thresh-

old interval

In this section we describe the n-dimensional hypercube, and define the

notions of “pivotal” variables and influence for Boolean functions. We

state Russo’s fundamental lemma connecting influences and thresholds.

2.1 The discrete cube

Let Ωn = {0, 1}n denote the discrete n-dimensional cube, namely, the set of

0-1 vectors with n entries. A Boolean function is a map from Ωn to {0, 1}.
Boolean functions on Ωn are of course in 1-1 correspondence with subsets

of Ωn. Elements in Ωn are themselves in 1-1 correspondence with subsets of

[n] = {1, 2, . . . , n}. Boolean functions appear under different names in many

areas of science. We will equip Ωn with a metric, namely a distance function,

and a probability measure. For x, y ∈ Ωn the Hamming distance d(x, y) is

defined by

d(x, y) = |{i : xi 6= yi}|. (1)

Denote by Ωn(p) the discrete cube endowed with the product probability

measure µp, where µp({x : xj = 1}) = p. In other words,

µp(x1, x2, . . . , xn) = pk(1 − p)n−k, (2)

where k = x1 + x2 + . . . + xn.
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2.2 Pivotality and influence of variables

Consider a Boolean function f(x1, x2, . . . , xn) and the associated event A ⊂
Ωn(p), such that f = χA, namely that f is the indicator function of A. For

x = (x1, x2, . . . , xn) ∈ Ωn we say that the kth variable is pivotal if flipping

the value of xk changes the value of f . Formally, let

σk(x1, . . . , xk−1, xk, xk+1, . . . , xn) = (x1, . . . , xk−1, 1 − xk, xk+1, . . . , xn) (3)

and define the kth variable to be pivotal at x if

f(σk(x)) 6= f(x). (4)

The influence of the kth variable on a Boolean function f , denoted by Ip
k(f),

is the probability that the kth variable is pivotal, i.e.,

Ip
k(f) = µp({x : f(σk(x)) 6= f(x)}) (5)

The influence of a variable in a Boolean function and more general notions

of influences were introduced by Ben-Or and Linial [11] in the context of

“collective coin-flipping”.

The total influence Ip(f) is the sum of the individual influences.

Ip(f) =
n
∑

k=1

Ip
k(f). (6)

We omit the superscript p for p = 1/2. For a monotone Boolean function

thought of as an election method, Ik(f) (= I
1/2
k (f)) is referred to as the

Banzhaf power index of voter k. The quantity

φk(f) =

∫ 1

0

Ip
k(f)dp, (7)
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is called the Shapley-Shubik power index of voter k.

The mathematical study (under different names) of pivotal agents and

influences is quite basic in percolation theory and statistical physics, as well as

in probability theory and statistics, reliability theory, distributed computing,

complexity theory, game theory, mechanism design and auction theory, other

areas of theoretical economics, and political science.

2.3 Russo’s lemma and threshold intervals

A Boolean function f is monotone if its value does not decrease when we

flip the value of any variable from 0 to 1. For a monotone Boolean function

f ⊂ Ωn, let µp(f) be the probability that f(x1, . . . , xn) = 1 with respect

to the product measure µp. Note that µp(f) is a monotone function of p.

Russo’s fundamental lemma [79, 39] asserts that

dµp(f)

dp
= Ip(f). (8)

Suppose now that f is a non-constant monotone Boolean function. Given

a small real number ǫ > 0, let p1 be the unique real number in [0, 1] such that

µp1
(f) = ǫ and let p2 be the unique real number such that µp2

(f) = 1 − ǫ.

The interval [p1, p2] is called a threshold interval and its length p2 − p1 is

denoted by tǫ(f). Denote by pc the value satisfying µpc
(f) = 1/2, and call it

the critical probability of the event A.

By Russo’s lemma, a large total influence around the critical probability

implies a short threshold interval.

Remark: Let us now exhibit the notions introduced here using a sim-

ple example. We will return to this example to demonstrate several issues
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discussed in the chapter. Let M3 represent the majority function on three

variables. Thus, M3(x1, x2, x3) = 1 if x1 +x2 +x3 ≥ 2 and M3(x1, x2, x3) = 0

otherwise. Clearly, µ(M3) = 1/2. This follows from the fact that M3 is an

odd Boolean function, namely one that satisfies the relation

f(1 − x1, 1 − x2, . . . , 1 − xn) = 1 − f(x1, x2, . . . , xn). (9)

A simple calculation gives, for general p,

µp(M3) = p3 + 3p2(1 − p). (10)

As for the influence of the variables, we obtain Ik(M3) = 1/2 and Ip
k(M3) =

2p(1− p)2 + 2p2(1− p) for k = 1, 2, 3. Therefore I(M3) = 3/2 and Ip(M3) =

6(p(1 − p)), which is indeed equal to dµp(M3)/dp.

3 Basic results on influences and threshold

behavior of Boolean functions

Dictatorship and juntas have coarse threshold and when the critical prob-

ability is 1/2, coarse threshold implies that the function “looks” like a

junta.

Some basic facts on influences and the corresponding results on threshold

intervals are as follows. Dictatorships and juntas have small total influence,

and thus coarse thresholds. Conversely, when the critical probability is 1/2, a

coarse threshold implies that the function “looks like” a junta. These results

are formalized as follows.
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3.1 The total influence cannot be overly small

Theorem 3.1 For every Boolean function f ,

I(f) ≥ 2µ(f) log2(1/µ(f)). (11)

In particular, if µ1/2(f) = 1/2 then I(f) ≥ 1 and equality holds if and

only if f is a dictatorship, namely f(x1, . . . , xn) = xi for some i, or an “anti-

dictatorship,” f(x1, . . . , xn) = 1−xi for some i. Inequality (11) has its origins

in the works of Whitney and Loomis, Harper, Bernstein, Hart, and others.

It is of great importance in many mathematical contexts. Inequality (11) is

often referred to as the edge-isoperimetric inequality. It can be regarded as

an isoperimetric relation for subsets of the discrete cube, analogous to the

famous Euclidean isoperimetric relations. This analogy goes a long way, and

we will return to it in Section 5.4. Ledoux’s book [66] is an excellent source

for the related phenomenon of “measure concentration”.

An upper bound for the length of the threshold interval can be derived

from the bounds on the sum of influences combined with Russo’s lemma.

Theorem 3.2 (Bollobás and Thomason[17]) For every monotone Boolean

function f ,

tǫ(f) = O(min(pc, 1 − pc)). (12)

Two brief remarks are in order. First, note that for a function f(x1, x2, . . . , xn)

we can consider the “dual” function defined by

g(x1, x2, . . . , xn) = f(1 − x1, 1 − x2, . . . , 1 − xn). (13)
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Then it is easily seen that

µp(g) = 1 − µ1−p(f). (14)

Due to this duality we may, without loss of generality, restrict ourselves to the

case where pc(f) ≤ 1/2, which will simplify several of the statements below.

Second, note that another way to state the Bollobás-Thomason result is that

for every Boolean function f and every ǫ > 0 there exists a value c(ǫ) such

that tǫ(f)/pc(f) ≤ c(ǫ).

Theorem 3.2 is the basis for the following definition: we say that a se-

quence (fn) of Boolean functions has a sharp threshold if for every ǫ > 0,

tǫ(fn) = o(min(pc, 1 − pc)). (15)

Otherwise, we say that the sequence demonstrates a coarse threshold behav-

ior. When the critical probabilities for the functions fn are bounded away

from 0 and 1 then having a sharp threshold simply means that for every

ǫ > 0, tǫ(fn) = o(1).

3.2 Simple majority maximizes the total influence of

monotone Boolean functions

Let n be an odd integer. Denote by Mn a simple majority function on n

variables.

Proposition 3.3 Let f be a monotone Boolean function over n variables, n

odd, and with pc(f) = 1/2. Then for every p, 0 < p < 1,

Ip(f) ≤ Ip(Mn). (16)

13



See, e.g., Lemma 6.1 of [34] and [24]. By Russo’s lemma it follows that:

Proposition 3.4 Let f be a monotone Boolean function over n variables, n

odd, and with pc(f) = 1/2. Then, for every p > 1/2, µp(Mn) ≥ µp(f).

3.3 Not all individual influences can be small

Theorem 3.5 (Kahn-Kalai-Linial [52]) There exists a universal constant

K such that for every Boolean function f ,

max
k

Ik(f) ≥ K min(µ(f), 1 − µ(f)) logn/n. (17)

This theorem answered a question posed by Ben-Or and Linial [11], who

gave an example of a Boolean function f with µ(f) = 1/2 and Ik(f) =

Θ(log n/n). Note that Theorem 3.5 implies that when all individual influ-

ences are the same, e.g., when A is invariant under the induced action from

a transitive permutation group on [n], then the total influence is at least

K min(µ(f), 1 − µ(f)) log n. An extension for arbitrary product probability

spaces was found by Bourgain, Kahn, Kalai, Katznelson, and Linial [21].

Talagrand [87] extended the result of Kahn, Kalai, and Linial in various di-

rections and applied these results for studying threshold behavior. Talagrand

also presented a very useful extension for arbitrary real functions on the dis-

crete cube. Talagrand’s extension for the product measure µp is stated as

follows:

Theorem 3.6 (Talagrand [87]) There exists a universal constant K such

14



that for every Boolean function f ,

n
∑

k=1

Ip
k(f)

log 1/Ip
k(f)

≥ K
µp(f)(1 − µp(f))

log 2/(p(1 − p))
. (18)

Our next result [35] describes Boolean functions with a small total influ-

ence.

Theorem 3.7 (Friedgut) Let f be a monotone Boolean function. For ev-

ery 0 < z ≤ 1/2, a ≥ 1 and γ > 0, there exists a value C = C(z, a, γ) such

that if z ≤ p ≤ 1 − z and Ip(f) ≤ a, then there is a monotone Boolean

function g depending on at most C variables, such that

µp({x ∈ Ωn : f(x) 6= g(x)}) ≤ γ. (19)

Theorem 3.7 asserts that if the critical probability is bounded away from 0

and 1 and the threshold is coarse, then for most values of p in the threshold

interval, f can be approximated by a junta with respect to the probability

measure µp. Note that when p tends to zero with increasing n, the size of

the junta is no longer bounded; when p tends to zero as a fractional power

of 1/n, the theorem carries no information. We will return to this important

range of parameters later.

Likewise, if no one influence is unduly large then the threshold is sharp,

as demonstrated by the following.

Theorem 3.8 (Russo-Talagrand-Friedgut-Kalai) Let f be a Boolean func-

tion. For every 0 < z ≤ 1/2, ǫ > 0 and γ > 0, there exist values δi =
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δi(z, ǫ, γ) > 0, i = 1, 2, 3 such that if z ≤ pc(f) ≤ 1 − z, then any of the

following conditions implies that

tǫ(f) < γ.

(1) [80, 87, 34] For every k, 1 ≤ k ≤ n, and for every p, 0 < p < 1,

Ip
k(f) ≤ δ1.

(2)[55] For every k, 1 ≤ k ≤ n, and for p such that ǫ < µp(f) < 1 − ǫ

(e.g., p = pc(f)), Ip
k(f) < δ2.

(3) [55] For every k, 1 ≤ k ≤ n, the Shapley-Shubik power index φk(f) ≤
δ3.

Part (1) of the theorem was proved by Russo [80]. A sharp version was

proved by Talagrand [87] and Friedgut and Kalai [34] based on the Kahn-

Kalai-Linial theorem and its extensions.

Parts (2) and (3) are based on Friedgut’s result and some additional

observations, and are derived in [55], but the values of δ2, δ3 are rather weak

(doubly logarithmic in γ). It would be interesting to find better bounds.

Part (3) in the theorem above is, in fact, a characterization:

Theorem 3.9 [55] Let (fn) be a sequence of monotone Boolean functions.

For every ǫ > 0,

lim
n→∞

tǫ(fn) = 0

if and only if the maximal Shapley-Shubik power index for fn tends to zero.
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4 Fourier analysis of Boolean functions

We describe some basic properties of Fourier analysis of Boolean func-

tions.

In this section we describe an important mathematical tool in the study

of threshold phenomena and in various related areas. The material described

here is not essential for reading most of the remaining sections, and so the

reader who wishes to skip this section may safely do so. But as the topic

is central to many of the mathematical results presented in this chapter, we

feel it is important familiarize the reader with it at this early stage.

4.1 All the way to Parseval

It is surprising how much you can get by the simple base-change of the

Fourier-Walsh transform with the very elementary Parseval relations.

Let Ωn denote the set of 0-1 vectors (x1, . . . , xn) of length n. Let L2(Ωn)

denote the space of real functions on Ωn, endowed with the inner product

〈f, g〉 =
∑

(x1,x2,...,xn)∈Ωn

2−nf(x1, . . . , xn)g(x1, . . . , xn). (20)

The inner product space L2(Ωn) is 2n-dimensional. The L2-norm of f is

defined by

‖f‖2
2 = 〈f, f〉 =

∑

(x1,x2,...,xn)∈Ωn

2−nf 2(x1, x2, . . . , xn). (21)

Note that if f is a Boolean function, then f 2(x) is either 0 or 1 and therefore

‖f‖2
2 =

∑

(x1,...,xn)∈Ωn
2−nf 2(x) is simply the probability µ(f) that f = 1

17



(with respect to the uniform probability distribution on Ωn). If the Boolean

function f is odd (i.e., satisfying relation (9)) then ‖f‖2
2 = 1/2.

For a subset S of [n] consider the function

uS(x1, x2, . . . , xn) = (−1)
P

i∈S
xi . (22)

It is not difficult to verify that the 2n functions uS for all subsets S form an

orthonormal basis for the space of real functions on Ωn.

For a function f ∈ L2(Ωn), the Fourier-Walsh coefficient f̂(S) of f is

f̂(S) = 〈f, uS〉. (23)

Since the functions uS form an orthogonal basis, it follows that

〈f, g〉 =
∑

S⊂[n]

f̂(S)ĝ(S). (24)

In particular,

‖f‖2
2 =

∑

S⊂[n]

f̂ 2(S). (25)

This last relation is called Parseval’s formula.

Remark: To demonstrate the notions introduced here we return to our

example. Let M3 represent the majority function on three variables. The

Fourier coefficients of M3 are easy to compute: M̂3(∅) =
∑

(1/8)M3(x) =

1/2. In general, if f is a Boolean function then f̂(∅) is the probability that

f(x) = 1 and when f is an odd Boolean function, f̂(∅) = 1/2. Next,

M̂3({1}) = 1/8(M3(0, 1, 1)−M3(1, 0, 1)−M3(1, 1, 0)−M3(1, 1, 1)) = (1−3)/8

and thus M̂3({j}) = −1/4, for j = 1, 2, 3. Next, M̂3(S) = 0 when |S| = 2 and

18



finally M̂3({1, 2, 3}) = 1/8(M3(1, 1, 0)+M3(1, 0, 1)+M3(0, 1, 1)−f(1, 1, 1)) =

1/4.

4.2 The relation with influences

It is surprising how far one can get with the simple base-change of the Fourier-

Walsh transform and Parseval’s formula. The relation between influences

and Fourier coefficients is given by the following expressions, whose proof is

elementary:

Ik(f) = 4
∑

S:k∈S

f̂ 2(S). (26)

I(f) = 4
∑

S⊂[n]

f̂ 2(S)|S|. (27)

If f is monotone we also have Ik(f) = −2f̂({k}).
The following notation is useful:

Wk(f) =
∑

S:|S|=k

f̂ 2(S), (28)

allowing us to rewrite relation (27) as I(f) = 4
∑

k≥0 kWk(f).

To practice these notions, observe that f̂(∅) = ‖f‖2
2 = µ(f), so from Par-

seval’s formula,
∑

S⊂[n],S 6=∅
f̂ 2(S) = µ(f)(1−µ(f)). It follows from equation

(27) that

I(f) ≥ 4µ(f)(1− µ(f)). (29)

If one considers a Boolean function f where µ(f) = 1/2, I(f) ≥ 1. This is

an important special case of the edge-isoperimetric inequality (11).
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Remark: Indeed, for our example M3 we have

3/2 = I(M3) = 4
∑

S subset[n]

M̂2
3 (S)|S| = 4(3(1/16) + (1/16)3).

4.3 Bernoulli measures

When we consider the probability distribution µp, we have to define the inner

product by

〈f, g〉 =
∑

(x1,x2,...,xn)∈Ωn

f(x1, . . . , xn)g(x1, . . . , xn)µp(x1, . . . , xn). (30)

We need an appropriate generalization for the Walsh-Fourier orthonormal

basis for general Bernoulli probability measures µp. Those are given by

up
S(x1, x2, . . . , xn) =

(

−
√

1 − p

p

)

P

i∈S
xi
(
√

p

1 − p

)n−
P

i∈S
xi

. (31)

Let p be a fixed real number, 0 < p < 1. Every real function f on Ωn can

be expanded to

f =
∑

S⊂[n]

f̂(S; p)up
S,

where

f̂(S; p) =
∑

x∈Ωn

f(x)up
S(x)µp(x).

The relations with influences also extend as follows:

p(1 − p)Ip
k(f) =

∑

S:k∈S

f̂ 2(S; p), (32)
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Ip(f) =
1

p

1

1 − p

∑

S⊂[n]

f̂ 2(S)|S|. (33)

Exercise: Compute the coefficients M̂3(S, p) and verify relation (33) for

the case of M3.

4.4 The Bonami-Gross-Beckner relation

We present a fundamental non-elementary inequality. There are many

ways of looking at this inequality but its remarkable effectiveness is mys-

terious.

The reader who did not skip this whole section may still wish to skip

this subsection. We will consider here a technical inequality that will not be

explicitly mentioned again in the chapter, but nevertheless underlies many of

the proofs and results. There are many ways of viewing the inequality, and

its remarkable effectiveness remains somewhat mysterious. We will present

the “simplest” application of it that we know.

For a real function f : Ωn → R, f =
∑

f̂(S)uS, define the Lw-norm of a

function f to be

‖f‖w =

(

∑

x∈Ωn

2−n|f(x)|w
)1/w

. (34)

Note that, due to the normalization coefficient 2−n in the definition, if

1 ≤ v < w then

‖f‖v ≤ ‖f‖w. (35)
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Next define the operator

Tρ(f) =
∑

S⊂[n]

f̂(S)ρ|S|uS, (36)

so that

‖Tρ(f)‖2
2 =

∑

S⊂[n]

f̂ 2(S)ρ2|S|. (37)

The Bonami-Gross-Beckner (briefly, BGB) inequality [18, 42, 7] asserts that

for every real function f on Ωn,

‖Tρ(f)‖2 ≤ ‖f‖1+ρ2. (38)

Because this inequality involves two different norms, it is referred to as

“hypercontractive” [43]. The inequality can be regarded as an extension of

the Khintchine inequality [62], which states that the different Lw-norms of

functions of the form
∑

k αku{k} differ only by absolute multiplicative con-

stants. Beckner used this inequality in the early 1970’s to handle classical

problems in harmonic analysis. The work was influenced by earlier hypercon-

tractive inequalities by Nelson and others, originating in the mathematical

study of quantum field theory [73, 42].

Here is a quick and sketchy argument giving a flavor of the use of the

Bonami-Gross-Beckner inequality. Note that for a Boolean function f and

every w ≥ 1,

‖f‖w
w = µ(f). (39)

Let 0 < ρ < 1. Now, if a large portion of the L2-norm of f is concentrated

at “low frequencies” |S|, then ‖Tρ(f)‖2 will not be too much smaller than

‖f‖2. The BGB inequality implies that in this case, ‖f‖1+ρ2 cannot be too
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much smaller than ‖f‖2 either. This fact, however, cannot coexist with

relation (39) if µ(f) is sufficiently small.

More formally, suppose that µ(f) = s ≤ 1/2, and we will try to give

lower bounds for I(f). In Section 4.2 we derived from Parseval’s formula

that I(f) ≥ 4(s − s2). The edge-isoperimetric inequality (relation (11))

asserts that I(f) ≥ 2s log2(1/s). Let us try to understand the appearance

of log(1/s). Take ρ = 1/2 and thus 1 + ρ2 = 5/4. The BGB inequality and

equation (39) give
∑ f̂ 2(S)

22|S| ≤ ‖f‖2
5/4 = s1+3/5.

Noting that 22|S| < 1/
√

s for 0 < |S| < log2(1/s)/4,

∑

0<|S|<log(1/s)/4

f̂ 2(S) ≤
√

ss3/5 ≤ K
√

s(1 − s)

for some constant K < 1, since s ≤ 1/2. This implies that a finite fraction

of the L2 norm of f is concentrated at Fourier coefficients f̂(S) where |S| ≥
K ′ log(1/s). It then follows from the discussion in Section 4.2 that I(f) ≥
K ′′(µ(f)(1−µ(f)) log(1/µ(f)). Up to a multiplicative constant this gives the

fundamental edge-isoperimetric relation (equaion (11)), but the information

on Fourier coefficients, while not sharp, is even stronger.

An extension of the BGB inequality for general p can be found in [87].

4.5 Remarks

1. The Fourier coefficients of Boolean functions are tailor-made to deal with

the total influence that by Russo’s lemma gives the “local” threshold behav-

ior. However, to understand the behavior in the entire threshold interval, a
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further understanding of the relation between the behavior at different points

is required. For a global understanding of influences over the entire threshold

interval, the quantities
∫ 1

0
f̂(S, p)dp may play a role: it would be interesting

to study them.

2. This section is only a taste of a rather young field of Fourier analysis

of Boolean functions which has many connections, extensions, applications,

and problems. We hope to be able to give a fuller treatment elsewhere.

5 From Erdős and Rényi to Friedgut: ran-

dom graphs and the k-SAT problem

5.1 Graph properties and Boolean functions

We first tell how to represent a graph property by a Boolean function.

Another origin for the study of threshold phenomena in mathematics is

random graph theory and, particularly the seminal works by Erdős and Rényi

[28]. Some good references on random graphs are [14, 51, 2].

Consider a graph G = (V, E), where V is the set of vertices and E is

the set of edges. Let x1, x2, . . . , x|E| be Boolean variables corresponding to

the edges of G. An assignment of the values 0 and 1 to the variables xi

corresponds to a subgraph H ⊆ G, where H = (V, E ′) and e ∈ E ′ if and only

if xe = 1. We will mostly consider the case where G is the complete graph,

namely, E =
(

V
2

)

.
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This basic Boolean representation of subgraphs (or substructures for other

structures) is very important. A graph property P is a property of graphs

that does not depend on the labeling of the vertices. In other words, P

depends only on the isomorphism type of G. The property is monotone if

when a graph H satisfies it, every graph G on the same vertex set obtained by

adding edges to H also satisfies the property. Examples include: “the graph

is connected,” “the graph is not planar” (a graph is planar if it can be drawn

in the plane without crossings), “the graph contains a triangle,” and “the

graph contains a Hamiltonian cycle”. Understanding the threshold behavior

of monotone graph properties for random graphs was the main motivation

behind the theorem of Bollobás and Thomason ([17], Theorem 3.2). Their

result applies to arbitrary monotone Boolean functions, so it does not rely

on the symmetry that Boolean functions representing graph properties have.

Theorem 5.1 (Friedgut and Kalai [34]) For every monotone property P

of graphs, there exists a constant C such that

tǫ(P ) ≤ C log(1/ǫ)/ log n. (40)

Theorem 5.1, which answered a question suggested by Nati Linial, is

a simple consequence of the Kahn-Kalai-Linial theorem and its extensions

combined with Russo’s lemma. The crucial observation is that all influences

of variables are equal for Boolean properties defined by graph properties.

As a matter of fact, this continues to be true for Boolean functions f de-

scribing random subgraphs of an arbitrary edge-transitive graph.1 All influ-

1A graph is edge-transitive if for every two edges e and e
′ there is an automorphism of

the graph that maps e to e
′.
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ences being equal implies that the total influence Ip(f) is at least as large

as K min(µp(f), 1 − µp(f)) log n. By Russo’s lemma, this gives the required

result.

Friedgut and Kalai [34] raised several questions that were addressed in

later works:

• What is the relation between the group of symmetries of a Boolean

function and its threshold behavior?

• What would guarantee a sharp threshold when the critical probability

pc tends to zero with increasing n?

• What is the relation between influences, the threshold behavior, and

other isoperimetric properties of f?

We will describe in some detail the work of Bourgain and Kalai [22] on the

first question and the works of Friedgut [36] and Bourgain [23] on the second.

The last question was addressed by several papers of Talagrand [90, 91] and

also [9], but we will not elaborate on it here.

Let us make one comment at this point. When we consider the Fourier

coefficients f̂(S) of a Boolean function representing a graph property then

the set S, which can be regarded as a subset of the variables, also represents a

graph. As mentioned above, being a graph property implies large symmetry

for the original Boolean function: it is invariant under permutations of the

variables that correspond to permutations of the vertices of the graph. The

same is true for the Fourier coefficients: the Fourier coefficient f̂(S) depends
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only on the isomorphism type of the graph described by the set S. This is a

crucial observation for the results that follow.

5.2 Threshold under symmetry

We now describe a measure of symmetry that is related to the threshold

behavior. The key intuition is that the more symmetry we have, the

sharper the threshold behavior we observe. The measure of symmetry is

based on the size of orbits.

A graph property for graphs with n′ vertices is described by a Boolean

function on n =
(

n′

2

)

variables. Such Boolean functions are invariant under

the induced action of the symmetric group Sn′ on the vertices, namely the

group of all permutations of the vertices, acting on the edges. (Note that

the variables of f correspond to the n edges of the complete graph on n′

vertices.) In the previous section we used this symmetry to argue that all

individual influences are the same. Here we would like to exploit further the

specific symmetry in the situation at hand.

Bourgain and Kalai [22] studied the effect of symmetry on the threshold

interval, leading to the following result:

Theorem 5.2 (Bourgain and Kalai) For every monotone property P of

graphs with n′ vertices, and every τ > 0, there exists a value C(τ) such that

tǫ(P ) ≤ C(τ) log(1/ǫ)/(log n′)2−τ . (41)

It is conjectured that the theorem continues to hold for τ = 0. Let Γ be

a group of permutations of [n]. Thus Γ is a subgroup of the group of all n!
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permutations of [n]. The group Γ acts on Ωn as follows:

π(x1, x2, . . . , xn) = (xπ(1), xπ(2), . . . , xπ(n)),

for π ∈ Γ. A Boolean function is Γ-invariant if f(π(x)) = f(x) for every

x ∈ Ωn and every π ∈ Γ. We would like to understand the influences and

threshold behavior of Boolean functions that are Γ-invariant.

We now describe certain parameters of Γ that depend on the size of the

orbits in the action of Γ on subsets of [n]. Divide the discrete hypercube Ωn

into layers: write Ωm
n for the vectors in Ωn with exactly m 1’s. For a group Γ

of permutations of [n], let T (m) denote the number of orbits in the induced

action of Γ on Ωm
n and let B(m) be the smallest size of an orbit of Γ acting

on Ωm
n . For graph properties, T (m) is the number of isomorphism types of

graphs with n′ vertices and m edges, and B(m) is the minimum number

of (labeled) graphs with n′ vertices and m edges that are isomorphic to a

specific graph H . The number of graphs isomorphic to H is n′!/|Aut(H)|,
where Aut(H) denotes the automorphism group of H .

When we consider graph properties for graphs with n′ vertices, B(m)

grows as
(

n′

√
m

)

. To see this, note that when m =
(

s
2

)

for some s ≤ n′, graphs

H with the fewest isomorphic copies (hence with the largest automorphism

groups) are complete graphs on s vertices, leading to B(m) =
(

n′

s

)

.

Define the parameter κ(Γ) as follows:

κ(Γ) = min{m : B(m) < 2m}. (42)

Since greater symmetry leads to smaller B(m), κ(Γ) measures the “size” of

the group of symmetries.

28



Define also for τ > 0:

κτ (Γ) = min{m : B(m) < 2mτ}. (43)

Bourgain and Kalai showed that for every τ > 0 the total influence Ip(f)

of a Γ-invariant Boolean function f satisfies the inequality

Ip(f) ≥ K(τ)κτ (Γ) min(µp(f), 1 − µp(f)), (44)

where K(τ) is a positive function of τ . It can be shown that this reduces to

Theorem 5.2 when we specialize to graph properties, emphasizing that the

symmetry implied by Γ-invariance leads directly to a sharp threshold.

Bourgain and Kalai also gave examples of Γ-invariant functions fn such

that µ(fn) is bounded away from 0 and 1 and I(fn) = Θ(κ(fn)). Based on this

result and results on primitive permutation groups (that require the classifi-

cation of finite simple groups), it is possible to classify the coarsest threshold

behavior for Γ-invariant Boolean functions, when Γ is a primitive permuta-

tion group. Welcome results here would include sharper lower bounds for the

influences and, for example, proving a lower bound of K log2 nµ(f)(1−µ(f))

on the influence of Boolean functions that describe graph properties. See [22]

for further details.

5.3 Threshold behavior for small critical probabilities

Theorems by Friedgut and by Bourgain show that when the critical prob-

abilities are small, a coarse threshold implies that the function has “local”

behavior.
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Theorem 3.7 addressed the consequences of a coarse threshold when p is

bounded away from 0. In this section we state theorems by Friedgut [36] and

by Bourgain [23] on the sharpness of thresholds (as defined by equation (15)),

that apply when the critical probability pc tends to zero. These theorems

yield sharp threshold results for graph properties when pc tends to zero.

Recall that Theorem 5.2 asserts that a sharp threshold is guaranteed for

graph properties when the critical probability is bounded away from 0 and

1.

Given a family G of graphs, let gG be the Boolean function describing the

graph property: “The graph contains a subgraph H , where H ∈ G”. For a

graph H , e(H) denotes the number of edges in H .

Theorem 5.3 (Friedgut [36]) Let f represent a monotone graph property.

For every a ≥ 1 and γ > 0, there exists a value C = C(a, γ) such that if

Ip(f) < a, then there is a family G of graphs such that

e(H) ≤ C for every H ∈ G

and

µp({x : f(x) 6= gG(x)}) ≤ γ. (45)

The interpretation of the theorem is that a coarse threshold implies that the

function has “local” behavior.

Friedgut’s proof relies on symmetry and the statement extends to hy-

pergraphs and similar structures. The crucial property appears to be that

the number of orbits of sets of a given size, or T (m) in the notation of the

previous section, has a uniform upper bound. (For graphs this reads: For a
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fixed nonnegative integer m the number of isomorphism types of graphs with

n′ vertices and m edges is uniformly bounded.)

Friedgut conjectured that his theorem can be extended to arbitrary Boolean

functions. For a collection G of subsets of [n] (which without loss of gen-

erality we assume to be an antichain of sets, so it does not contain two

sets Q and R with Q ⊂ R) let gG(x1, x2, . . . , xn) be defined as follows:

gG(x1, x2, . . . , xn) = 1 if and only if for some S ∈ G, xi = 1 for every i ∈ S.

The sets S in G are called min-terms for the function gG. Of course, every

Boolean function can be represented in such a way.

Conjecture 5.4 (Friedgut) Let f be a monotone Boolean function. For

every a ≥ 1 and γ > 0, there is a value C = C(a, γ) such that if Ip(f) < a,

then there is a family G of subsets of [n] such that

|S| ≤ C for every S ∈ G

and

µp({x : f(x) 6= gG(x)}) ≤ γ.

In other words, Friedgut’s conjecture asserts that a Boolean function with

low influence can be approximated by a Boolean function with small min-

terms.

A theorem of Bourgain [23] towards this conjecture which is very useful

for applications is

Theorem 5.5 (Bourgain) Let f be a monotone Boolean function. For ev-

ery a ≥ 1, there is a value δ = δ(a) > 0 such that if Ip(f) < a then there is
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a set S of variables, |S| < 10a, such that

µp(f(x)|xi = 1 for every i ∈ S) ≥ (1 + δ)µp(f).

Both Friedgut’s and Bourgain’s theorems are very useful for proving sharp

threshold behavior in many cases. We will mention one example that was

studied in Friedgut’s original paper, and is central to this volume. We refer

the reader to Friedgut’s recent survey article [37] for many other examples.

This survey article also describes various handy formulations of Theorems

5.3 and 5.5.

The 3-SAT problem. This problem has been discussed at length in

Chapter [PERCUS]. Consider n Boolean variables, x1, . . . , xn. A “literal” zi

is either xi or xi. A clause c is an expression of the form (zi∨zj∨zk) where the

symbol ∨ represents the logical OR and 1 ≤ i < j < k ≤ n. A 3-CNF formula

with m clauses is a formula of the form (c1 ∧ c2 ∧ · · ·∧ cm), where the symbol

∧ represents the logical AND. A random formula of length m is obtained by

choosing ci uniformly at random among the possible 8
(

n
3

)

possible clauses.

A closely related model is obtained by choosing each one of the possible

8
(

n
3

)

clauses at random with probability p. (See Chapter [KIROUSIS] for

further discussion of the differences between these ensembles.) A formula is

satisfiable if we can assign truth values to the variables so that the Boolean

value of the entire formula is true. The larger m is, the more difficult it

is. Using a slight extension of Theorem 5.3, Friedgut proved that there is a

threshold αc(n) such that for every ǫ > 0, a random formula with (αc(n)+ǫ)n

clauses is satisfiable with probability tending to 0 (as n tends to infinity) while

a random formula with (αc(n) − ǫ)n clauses is satisfiable with probability
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tending to 1. It is still an outstanding problem to show that αc(n) can be

replaced by a constant αc in the large n limit, meaning that the location of

the critical probability does not oscillate. Recent advances concerning the

location of the critical value for the k-SAT problem are discussed in Chapter

[KIROUSIS].

5.4 Margulis’ theorem

A theorem of Margulis gives another general method to prove a sharp

threshold behavior.

Margulis [70] found in 1974 a remarkable condition guaranteeing a sharp

threshold for Boolean functions, and applied it to study random subgraphs of

highly connected graphs. His paper also contains an earlier proof of Russo’s

lemma. The theorem later improved by Talagrand [85] gives another general

method for proving threshold behavior.

Let f be a monotone Boolean function. For x ∈ Ωn let

h(x) = |{y ∈ Ωn : d(x, y) = 1, f(y) 6= f(x)}|, (46)

with the Hamming distance d(x, y) as defined in equation (1). Thus, h(x)

counts the number of neighbors of x for which the value of f changes, which

is the number of pivotal variables at x. Note that the total influence is then

given by

Ip(f) =
∑

x∈Ωn

µp(x)h(x). (47)
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Define h+(x) = h(x) if f(x) = 1 and h+(x) = 0 if f(x) = 0. Since every

pair x, y with f(x) 6= f(y) has precisely one element where f attains the

value one, one finds

pIp(f) =
∑

x∈Ωn

µp(x)h+(x).

Theorem 5.6 (Talagrand [85])

∑

x∈Ωn

µp(x)
√

h+(x) ≥ µp(f)(1 − µp(f))

√
2min(p, 1 − p)
√

p(1 − p)
. (48)

Suppose (for simplicity) that pc(f) is bounded away from 0 and 1. Sup-

pose also that if h+(x) > 0 then h+(x) ≥ k. This implies that

Ip(f) = (1/p)µp(x)
∑

x∈Ωn

h+(x) ≥
√

k
∑

x∈Ωn

µp(x)
√

h+(x).

It then follows from relation (48) that

Ip(f) ≥ C
√

k.

By Russo’s lemma the length of the threshold interval is O(1/
√

k).

Here is Margulis’ original application. Let G be a k-connected graph,

i.e., at least k vertices must be deleted from G for it no longer to be con-

nected. Consider a random spanning subgraph H where an edge of G is

taken to be absent from H with probability p. We assume that H has n

edges and let f be the Boolean function that represents the property: “H is

not connected.” Margulis proved that the threshold interval for connectivity

is of length O(1/
√

k). The reason is that if H is not connected, but it is

possible to make H connected by adding back a single edge of G (so that
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h+(x) > 0), then H must have precisely two connected components. Since

G is k-connected, there are at least k edges in G\H such that adding any of

them to H yields a connected graph. It thus follows that if h+(x) > 0 then

h+(x) ≥ k.

5.5 Further connections and problems

1. The giant component. Both Talagrand’s strengthening of Margulis’

theorem and Friedgut’s theorem give the sharp threshold of graph connec-

tivity as a special case. This is nice, but a serious criticism would be that

the more interesting phase transition relating to connectivity occurs earlier,

when p is around 1/n. The value 1/n is the critical probability of the emer-

gence of the “giant component” [51, 2]. It would be desirable to understand

even the basic facts concerning the giant component in the context of general

threshold phenomena, discrete isoperimetry, and Fourier analysis.

2. Graph invariants. We have discussed a monotone graph property,

or more generally a monotone Boolean function, and varied the parameter p.

A different scenario would be to consider a parameter of graphs or a function

defined on the discrete cube and study its distribution for a fixed p. We can

consider, for example, the chromatic number, the clique number, the size of

the maximal component, etc. The probabilistic properties of monotone func-

tions on the discrete cube, and especially those which come from interesting

graph parameters are of great interest. Discrete isoperimetric relations play

a central role in this study. But direct relations with threshold results and

with Fourier analysis are sparse.
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3. Hereditary properties. We could also consider non-monotone prop-

erties. A property of graphs (on n vertices) described by a Boolean function

f is hereditary if there is a collection H of graphs such that f = 1 if the

graph contains a subgraph H from H as an induced subgraph. Alon and

Kalai asked for which hereditary properties is it the case that the measure

of the set of p’s for which ǫ < µp(f) < 1− ǫ tends to 0 as n tends to infinity.

Since f need not be monotone, this set will not necessarily be an interval.

Of course, monotone properties are hereditary.

4. Influence of Boolean functions with tiny measure. Another

criticism would be that we concentrate on the secondary problem of threshold

behavior while neglecting the primary problem of finding the location of

the critical probability. Indeed, finding the critical probability of particular

properties of random structures is a large and beautiful field, and is the

subject of later chapters of this book. We comment that there are a very

few cases where knowing that the threshold is sharp helps in estimating its

location, since it is sufficient to show that the property is satisfied with a

probability that is small but bounded away from zero. The analogy with

physical models suggests that the threshold behavior, like certain critical

exponents for models of statistical physics, may exhibit more “universal”

behavior than the location of the critical probability.

Finally, recent work of Kahn and Kalai [57] suggests that for a large

class of problems, good estimates on the location of critical probabilities can

follow from understanding the behavior of the function tǫ(f) when ǫ itself

is a function that tends to zero with increasing n. Such an understanding

can be derived from some conjectures, quite similar to Theorems 5.3, 5.5 and
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Conjecture 5.4, about influences of Boolean functions when µp(f) tends to

zero with increasing n.

6 Threshold behavior and complexity

In this Section we will discuss two areas where threshold phenomena and

complexity theory are related. First we will describe results on bounded

depth circuits, a very basic notion in computational complexity. Second we

will describe the connection to the area of “hardness of approximation”.

6.1 Bounded depth Boolean circuit

Boolean functions belonging to AC0 — a very low complexity class (and

very exciting nevertheless) — must have a pretty coarse threshold be-

havior.

The important complexity class AC0 of Boolean functions consist of those

that can be expressed by Boolean circuits of polynomial size (in the number

of variables) and bounded depth. Although functions belonging to AC0 are

of very low complexity, the class is an important one. Here we show that

such functions must have a coarse threshold behavior.

A Boolean circuit is a directed acyclic graph with 2n sources, each cor-

responding to a variable xi or its negation xi, and one sink representing the

output of the computation. The intermediate vertices are called gates and

can represent the Boolean operations AND and OR. The size of a Boolean
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circuit is the number of vertices including all sources, gates and sink. The

depth is the maximum length of a directed path.

Boppana [20] proved that if a Boolean function f is expressed by a depth-c

circuit of size N , then

I(f) ≤ C1 logc−1 N. (49)

Earlier, Linial, Mansour, and Nisan [68] proved that for Boolean functions

that can be expressed by Boolean circuits of polynomial (or quasi-polynomial)

size and bounded depth the Fourier coefficient sum Wk(f) defined in equa-

tion (28) decays exponentially with k when k is larger than poly-logarithmic

in the number of variables. This result relies on the fundamental H̊astad

Switching Lemma [45, 2], and a more precise result was recently given by

H̊astad [46]. It appears that all these results and their proofs apply to the

probability measure µp(f) when p is bounded away from 0 and 1.

Remark: A monotone circuit is one where all the gates are monotone

increasing in the inputs, i.e., there are no NOT gates. The H̊astad lemma for

monotone Boolean circuits is easier, and was already proved much earlier by

Boppana [19].

It can be conjectured that the only reason for a small total influence,

and hence for a coarse threshold behavior, comes from bounded depth small

circuits. Here, “small” means a slowly growing function of n. For that to

be the case, an inequality that is roughly the reverse of (49) must also hold.

The following conjecture is a particularly bold version of the statement:

Conjecture 6.1 (Reverse H̊astad) Let f be a monotone Boolean func-

tion. For every ǫ > 0 there is a value K = K(ǫ) > 0 and another function g
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expressible as a Boolean circuit of size N and depth c, such that

logc−1 N < KI(f),

and

µ{x : f(x) 6= g(x)} < ǫ.

Remarks: 1. As discussed in the previous chapter, a large number of pa-

pers in recent years have suggested a bold and far-reaching statistical physics

approach to fundamental questions in complexity. These papers regard clas-

sical optimization problems as zero-temperature cases of statistical physics

systems. The approach further proposes that the complexity of problems

may be related to the type of phase transition of the physical system. In

addition, statistical physics suggests both a way of thinking and heuristic

mathematical machinery for dealing with these problems. This approach

has met with some skepticism within the complexity theory community, and

evidence for its usefulness is still tentative. The results by H̊astad, Linial-

Mansour-Nisan, and Boppana can be interpreted as going in the direction

suggested by physicists. Of course, when we deal with complexity classes

beyond AC0, caution is still advised.

2. Connections between influences and the model of decision trees can be

found in [38, 74].
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6.2 Hardness of approximation and PCP

Can we approximate? Given an optimization problem, what is the com-

plexity of finding an approximation to an optimal solution? Sometimes

approximation is intractable and sometimes it is easy. The theory of

probabilistically checkable proofs (PCP) is a powerful tool for studying

approximation. Technical results pertaining to sharp threshold phenom-

ena are important for showing that certain approximation problems are

difficult.

The PCP theorem concerns constraint satisfaction problems (sometimes

referred to as Label-Cover) of various types, and is the main tool in prov-

ing NP-hardness for approximation problems. As examples, consider the

following two computational problems:

Vertex Cover: Given a graph G, find the smallest set of vertices whose complement is

an independent set.

MAX-CUT: Given a graph G, find a partition of its vertices that maximizes the

number of edges between the two sets of the partition.

Coming up with the optimal solution for these problems is known to be

NP-hard [58]. The next best option is to approximate the optimal solution.

In the case of Vertex Cover, that means coming up with an appropriate set

that may not be the smallest, but whose size is larger by at most some fixed

approximation factor. Approximating MAX-CUT requires coming up with a

partition that may not maximize the cut size, but gives a cut whose size is

within a fixed approximation factor of the maximum.

40



Proving that such problems are NP-hard requires extending the Cook-

Levin [25, 67] characterization of NP, which in simple terms states that SAT

is NP-complete. One has to show that even approximating SAT is NP-hard,

in the following sense.

A Constraint Satisfaction Problem (CSP) involves a set of variables and

constraints over the assignment to those variables. Let X and Y be two sets of

(not necessarily Boolean) variables, whose range is RX and RY respectively.

RX and RY are two fixed sets independent of the sizes of X and Y . For

some pairs of variables (x, y) where x ∈ X and y ∈ Y , there is a constraint

φx,y ⊂ RX × RY , specifying the values of x and y that satisfy it. The

constraints imposed on the variables are local, in the sense that they only

involve one variable in X and one in Y . Let us further assume that all

constraints have the projection property: for each constraint φx,y, for every

a ∈ RX there is only one b ∈ RY so that both satisfy φx,y. Our objective is to

find an assignment for all variables x ∈ X and y ∈ Y such that no constraint

will be violated.

A very general version of the PCP theorem is as follows:

Theorem 6.2 (PCP [5, 4, 77]) Given a CSP Φ as defined above, there

exists a constant δ > 0 such that it is NP-hard to exclude either of the

following alternatives:

• There is a variable assignment satisfying all the constraints φ ∈ Φ.

• There is no variable assignment satisfying even a fraction ǫ = |RX |−δ

of the constraints φ ∈ Φ.
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Note that if we had an approximation algorithm determining whether or not

there is an assignment satisfying at least an ǫ fraction of the constraints, this

algorithm would necessarily rule out one of the two alternatives. Namely,

given a CSP instance, if the algorithm satisfies an ǫ fraction of the entire set

of constraints, the second alternative is ruled out, while if it satisfies less than

an ǫ fraction of the constraints, the first alternative is ruled out. Therefore

the corresponding approximation problem is NP-hard.

A general scheme for proving hardness of approximation was developed

in [5, 4, 8, 48, 47, 26]. Let us demonstrate this scheme on the Vertex Cover

problem from above. We consider a basic combinatorial construction in which

sufficiently large independent sets — or alternatively, small vertex covers —

are represented by juntas. We then sketch a reduction of CSP to vertex

cover, such that juntas lead to variable assignments satisfying an ǫ fraction

of the constraints. By the PCP theorem, this implies that approximating

Vertex Cover is NP-hard.

We proceed as follows. First, consider the graph G
[n]
I , whose vertex set

Ωn is the set of all binary vectors {0, 1}n of length n. One may think of these

vertices as all possible input vectors to a function over n Boolean variables.

In G
[n]
I , two vertices v and u are adjacent if there is no i ∈ [n] so that

vi = ui = 1. This is referred to as the non-intersection graph, and it is

the complement of the intersection graph (where two vectors are adjacent if

the sets of indices where they are 1 have non-empty intersection), which has

been investigated extensively. It is easy to see that no independent set in G
[n]
I

contains more than half of the vertices. This upper bound corresponds to an

independent set that for some index i takes all vectors whose ith entry is 1.
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Such an independent set is the pre-image of a dictatorship Boolean function.

What other large independent sets can one find in G
[n]
I ?

The pre-image of the majority function (or any other odd monotone

Boolean function) is also an independent set in the non-intersection graph,

as any two vectors with more than half of their indices being 1 must have an

index in which both are 1. For odd n that independent set matches the upper

bound. To apply the PCP theorem we will need to “eliminate” independent

sets, such as the majority function, that are not close to juntas.

For this purpose, one may impose a different distribution on the vertices of

G
[n]
I that will rule out such examples. One can assign weights to the vertices

of G
[n]
I according to µp for some p smaller than 1/2, weighting independent

sets as the sum of their vertices’ weight. In that case, dictatorships’ weights

are p, while majority’s weight tends to 0 as n tends to infinity.

What about independent sets that are smaller than those corresponding

to dictatorships, but still within some constant factor of that size? It turns

out that for p < 1/2 any independent set of non-negligible weight must

correspond in some sense to a junta. The following result relies on Friedgut’s

Theorem 3.7 and Russo’s lemma.

Theorem 6.3 (Dinur and Safra [26]) Let W be a locally maximal inde-

pendent set in G
[n]
I (thus, every vertex x ∈ G

[n]
I is either in W or is adjacent

to a vertex in W ), and let f be a Boolean function where f(x) = 1 if x ∈ W

and f(x) = 0 if x /∈ W . For every 0 < p < 1/2, γ > 0 and ǫ > 0, there

exists a value q ∈ [p, p + γ], a value C(γ, ǫ) ≤ 2O(1/γǫ) and another Boolean
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function g depending on at most C variables, such that

µq({x ∈ Ωn : f(x) 6= g(x)}) ≤ ǫ.

Note that if we let J ⊆ [n] denote the C variables that g depends on, the

pre-image g−1(1) represents a set of vectors over J that constitutes an inde-

pendent set over GJ
I .

We now sketch the reduction from the CSP instance Φ above to the

Vertex Cover problem. One constructs a graph GΦ as follows. GΦ consists

of one copy of GRX

I for every variable x ∈ X, and one copy of GRY

I for every

variable y ∈ Y . Additional edges, representing constraints, are then added

to connect the copies. The effect of these edges is that large independent sets

reflect consistent assignments of Φ: in particular, if there is an assignment

satisfying all constraints, then the set of vertices made up of the dictatorships

in each copy forms an independent set in GΦ. Theorem 6.3 guarantees that

any independent set in GΦ corresponds to juntas in many of the copies of

GI in GΦ, so a sufficiently large independent set allows one to design an

assignment that satisfies at least an ǫ fraction of Φ. This excludes the second

alternative in the PCP theorem. Consequently, finding whether or not such

a large independent set exists must be NP-hard.

We now describe another powerful form of PCP. Consider a further re-

stricted CSP variant. Above we required the constraints to satisfy the projec-

tion property, meaning that for any constraint φx,y, the value for x, a ∈ RX ,

determines a unique value for y so that both satisfy φx,y. What if we require

in addition that the value for y uniquely determines the value of x?

Given a CSP instance satisfying this uniqueness property, one can effi-

44



ciently figure out whether there is an assignment satisfying all constraints.

Nevertheless, one may consider the following problem:

Khot’s Unique Game [64] Given a CSP instance Φ that conforms to

the uniqueness property, decide whether one of the following alternatives can

be exlcuded:

• There exists an assignment satisfying at least a fraction 1 − ǫ of the

constraints φ ∈ Φ

• No assignment satisfies even a fraction ǫ of Φ.

For ǫ > 0, the complexity of this problem is still wide open. No polyno-

mial algorithm is known for it; neither is it known to be NP-hard. (Khot him-

self conjectures that the problem is NP-hard.) Placing this problem within

the known complexity classes is an exciting open question. The motivation

for this problem, and the reason it is so interesting, is that it is often possi-

ble to relate the hardness of approximation problems to that of the Unique

Game problem. We will give examples in the next section.

6.3 The sharp threshold between easy and hard prob-

lems

Can we approximate? Sometimes approximation is intractable and some-

times it is easy. There is often a sharp transition between the two be-

haviors.

In the previous section we briefly discussed PCP and indicated how tech-

nical results for threshold phenomena are used. There is another threshold
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aspect to the story. It turns out that for various optimization problems,

when we try to approximate the solution, there is a sharp threshold between

cases that are very easy to solve and cases in which the problem is NP-hard.

This insight and the methodology for observing such phenomena are fairly

recent, and a deeper understanding of the issues involved may lead both to

improved approximation algorithms and to tighter hardness results. (We do

not see a clear connection between the two appearances of sharp thresholds

in this story.) Harmonic analysis of Boolean functions has already proved to

be a powerful tool for such considerations.

Here are some results concerning sharp transitions between easy and hard

computational problems:

• MAX-3-LIN(2): Given a set of linear equations over Z2 (integers mod-

ulo 2), assign variables in such a way as to satisfy as many of them

as possible. Satisfying half of the equations is easy — by just taking

a random assignment — and this ”algorithm” can be derandomized

easily. However, for all ǫ > 0, it is NP-hard to distinguish instances

where 1/2 + ǫ of the equations are satisfied and instances where 1 − ǫ

of the equations are satisfied [48] .

• MAX-3-SAT: A similar problem — only instead of equations one has

ORs over three literals each. A fraction 7/8 of the constraints are

expected to be satisfied by a random assignment, yet distinguishing

between 7/8 + ǫ and 1 is NP-hard [48] .

• SET-COVER: Given a collection of subsets of [n], find the smallest

number of sets from the collection such that their union is [n]. A log n
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approximation (one that uses at most log n times as many sets as actu-

ally necessary) is simple to obtain, but nothing better can be achieved

unless NP-complete problems with input size n have a deterministic

algorithm with running time nO(log log n) [33, 78].

When we consider reductions to Khot’s Unique Game problem, further

results can be proved.

• MIN-2-SAT-DELETION: The instance is a formula in 2-CNF form,

i.e., a conjunction of clauses, each one consisting of 2 literals connected

by OR. The goal is to delete as few of the clauses as possible, such

that the remaining instance is completely satisfiable. Approximation

within any constant factor (finding a solution that deletes at most a

constant times as many clauses as actually necessary) is as hard as

Khot’s Unique Game problem [64].

• Vertex Cover: Given an undirected graph, find the minimal number of

nodes that touch all edges. A 2-approximation, namely covering the

edges by at most twice the number of nodes needed, is quite easy —

for example, by taking both ends of each as yet uncovered edge. Any

better approximation is as hard as Khot’s Unique Game problem [65].

• MAX-CUT: Find a 2-partition of the nodes of a given graph such that

there are as many edges as possible between the two parts. We will

return to this problem in the next section.

Remark: Other interesting cases of threshold behavior in complexity
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theory concern fault-tolerant computations, both for classical notions of com-

putation and for “quantum computers”.

7 Noise sensitivity

Which voting methods are immune to random noise in the counting of

votes?

Motivated by mathematical physics, Benjamini, Kalai, and Schramm [9]

have studied the sensitivity of an election’s outcome to low levels of noise

in the signals — or viewed differently, to small errors in the counting of

votes. Their assumption is that there is a probability ǫ > 0 of a mistake

in counting a given vote and these probabilities are independent. Simple

majority tends to be quite stable in the presence of noise. Two-level majority

like the U.S. electoral system is less stable and multi-tier council democracy

is quite sensitive to noise. This study is also closely related to works by

Tsirelson, Vershik and Schramm [93, 92, 83]. For an attempt to apply the

notion of noise sensitivity in finance, see [1].

For a Boolean function f and ω > 0, consider the following scenario.

First choose voter signals x1, x2, . . . , xn randomly such that xi = 1 with

probability p, independently for i = 1, 2, . . . , n. Let S = f(x1, x2, . . . , xn).

Next let yi = xi with probability 1 − ω and yi = 1 − xi with probability ω,

independently for i = 1, 2, . . . , n. Let T = f(y1, y2, . . . , yn). Define Cω(f) to

be the correlation between S and T .

Let p, 0 < p < 1, be fixed. A sequence (fn)n=1,2,... of Boolean functions
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such that µp(fn) is bounded away from 0 and 1 is called asymptotically noise-

sensitive if, for every t > 0,

lim
n→∞

Cω(fn) = 0. (50)

We will now define the complementary notion of noise stability. A class

F of Boolean functions is uniformly noise-stable if for every f ∈ F and every

s > 0 there exists a value ω = ω(s) > 0 such that Cω(f) ≥ 1 − s.

A basic result concerning noise sensitivity is that the class of simple and

weighted majority functions f such that µp(f) is bounded away from 0 and

1 is noise-stable. A sharp version was recently demonstrated by Peres [76].

Note that when the individual influences tend to 0, the property is a conse-

quence of the central limit theorem.

The main result of [9] is a sort of converse of this. It asserts the following:

Theorem 7.1 For every sequence (fn) of monotone Boolean functions such

that µp(fn) is bounded away from 0 and 1 and (fn) is not asymptotically

noise-sensitive, there exists a weighted majority function g such that the cor-

relation between (fn) and g is bounded away from zero.

The basic relation between noise sensitivity and influences is that for a

sequence (fn) of asymptotically noise-sensitive monotone Boolean functions,

lim Ip(fn) = ∞. Therefore, if f is noise-sensitive in its threshold interval, it

must have a sharp threshold behavior. On the other hand, in this case the

threshold interval is of length Ω(1/
√

n).

In this chapter, we have described several results where in order to demon-

strate a sharp threshold behavior we exhibited a large total influence. In
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some of these results the proofs actually give the stronger property of noise

sensitivity.

The following four remarks will further demonstrate further the relevance

of noise sensitivity:

1. The connection with Fourier coefficients. A simple but impor-

tant result from [9] asserts

Theorem 7.2 For every sequence (fn) of Boolean functions such that µ(fn)

is bounded away from 0 and 1, (fn) is asymptotically noise-sensitive if and

only if for every k > 0

lim
n→∞

k
∑

i=1

Wi(fn) = 0. (51)

Thus, f is noise-sensitive if and only if most of the L2-norm of f is

concentrated at “high frequencies.” By the same token, noise stability is

equivalent to the statement that most of the L2-norm of f is concentrated

at “low” frequencies.

Theorem 7.3 A class F of Boolean functions is uniformly noise-stable if

and only if for every f ∈ F and every ǫ > 0 there exists a value k such that

∑

i≥k

Wi(f) < ǫ (52)

2. The majority-is-stablest conjecture. What are the Boolean func-

tions most stable under noise? It was conjectured by several authors that

under several conditions that exclude individual variables having a large in-

fluence, majority is (asymptotically) most stable to noise. This conjecture

has recently been proved by Mossel, O’Donnell and Oleszkiewicz [72].
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We define a sequence (fn) of Boolean functions to have a diminishing

individual influence if

lim
n→∞

max{Ik(fn) : 1 ≤ k ≤ n} = 0. (53)

Theorem 7.4 (Mossel, O’Donnell and Oleszkiewicz [72]) For every se-

quence (fn) of Boolean functions with diminishing individual influence,

Cω(fn) ≤ (1 − o(1))

(

1 − 2

π
arccos(1 − 2ω)

)

. (54)

The fact that the right-hand side gives the precise asymptotic description of

the noise stability of the majority function is a nineteenth-century result by

Sheppard.

3. MAX-CUT. Khot, Kindler, Mossel, and O’Donnell [63] showed that

the majority-is-stablest theorem (which at the time was a conjecture that

they posed) implies a sharp threshold for approximating MAX-CUT based

on Khot’s unique game problem. The famous Goemans-Williamson algo-

rithm based on semidefinite programming achieves the ratio α = .878567 . . .

Khot, Kindler, Mossel, and O’Donnell showed that assuming the majority-is-

stablest theorem, anything better is as hard as Khot’s Unique Game problem.

4. Monotone threshold circuits. Threshold circuits form an impor-

tant class of circuits that are more general than Boolean circuits, since they

allow weighted majority gates. Contrary to the situation for Boolean circuits,

it is not the case that functions expressible by constant depth threshold cir-

cuits have coarse threshold behavior, as is evident from majority itself. But

there is a far-reaching conjecture [9] regarding their stability to noise that is
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analogous to the theorems by Boppana, Linial-Mansour-Nisan, and H̊astad

mentioned in the previous section:

Conjecture 7.5 Consider the class F of monotone Boolean functions f that

are expressed by monotone depth-c threshold circuits (of size N(f)). Then,

for every f ∈ F and every ǫ > 0 there is a value K = K(ǫ) such that

∑

k>K logc−1 N(f)

Wk(f) < ǫ. (55)

Relation (52) shows that a noise-stable Boolean function can be well

approximated by a low depth threshold circuit, but we do not know whether,

when the function is monotone, this can be achieved by a monotone threshold

circuit.

Finally, let us note an important criticism arising from works by Tsirelson

[83, 93]. These demonstrate that Boolean functions are too restricted for

various problems and applications concerning noise sensitivity, and indicate

that “binary trees” (in the form used in basic probability theory) rather than

“cubes” are the correct mathematical framework. Tsirelson’s more general

setting allows him to study, for example, “correlated” random walks and

Brownian motions. It suggests that the extensive investigation of Boolean

functions, based on the discrete cube, may be complemented by investigations

based on binary trees. This point of view may reflect on other topics studied

in this chapter.
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8 Percolation

We have mentioned in the introduction that the area where threshold be-

havior was originally studied is Physics. In this section we will discuss the

model of percolation.

Consider the graph G of an m by m + 1 planar rectangular grid. The

vertices of G are thus points of the form (i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤
m + 1, and two vertices are adjacent in the graph G if they agree in one

coordinate and differ by one in the other coordinate. Questions concerning

percolation in the plane (usually on the infinite grid) are very important.

Russo’s lemma was proved in the context of percolation, and Kesten proved

a sharp threshold result on the way to proving his famous result [59] on

critical probabilities for planar percolation. (For a simple proof of Kesten’s

theorem and an extension to Voronoi percolation, see the recent papers by

Bollobás and Riordan [15, 16].)

Choose every edge in G to be “open” with probability p. What is the

probability of an open path from the left side of the rectangle to the right

side? Is there a sharp threshold? We can ask and immediately answer the

analogous question on the torus when we identify the left and right sides of

the rectangle and the top and bottom sides, or even just for a cylinder when

we identify only the left and right sides. When we look for a path homotopic

to the horizontal path from (0,0) to (0, m+1), a sharp threshold follows from

the proof of Theorem 5.1.

The total influence of the Boolean function f described by “left-right”

percolation on the m + 1 by m grid is a basic notion in percolation theory.
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It is conjectured that I(f) ≈ m3/4 ≈ n3/8, where n is the number of vari-

ables. This conjecture was recently verified for one of the variants of planar

percolation (site percolation on the triangular grid) based on the works of

Smirnov, Lawler, Schramm, and Werner.

Basic Problem: For a Boolean function f with µ(f) bounded away

from 0 and 1, find sufficient conditions to guarantee that for some α, β > 0,

nα < I(f) < n1/2−β .

It was shown by Kesten [60, 61] that this property holds for the crossing

event for planar percolation. Why does the total influence for percolation

behave as a power of n? We can expect that the reason lies in some symmetry

like the one considered in Theorem 5.2 of Bourgain and Kalai. However,two

facts are worth noting. The first is that the present formulation of Theorem

5.2 is not sufficiently strong to yield lower bounds of the form I(f) > nα.

The second is that the Boolean function we described does not admit many

symmetries. What it does seem to have is “approximate” symmetries. We

expect that as the grid becomes finer, there will be some “limit object” (the

scaling limit) reflecting an approximate symmetry of our functions under

continuous maps of the square to itself. Such a symmetry is expected in

any dimension. In two dimensions, it is expected that the limit object is

symmetric under conformal maps. This was proved by Smirnov for another

variant of planar percolation, namely site percolation on the triangular grid.

Noise sensitivity for the crossing event was proved in [9] and Schramm and

Steif [82] recently proved a very strong form of it.

We now briefly discuss several related issues:

1. First passage percolation. Let f be a Boolean function. Consider a
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real function g defined on the discrete cube. Let y1, y2, . . . , yn be independent,

identically distributed random variables. Define

g(x1, x2, . . . , xn) = min{
∑

x1y1 + x2y2 + +xnyn : f(x1, x2, . . . , xn) = 1}.
(56)

Understanding the behavior of the function g is of interest in percolation

theory. In this context f is the Boolean function that describes the existence

of a path of open edges between two points on the grid. Curiously, the same

model is related to questions raised in mechanism design in economics theory.

Influences and methods used to study them apply very nicely to the study

of first passage percolation [10].

2. Models with dependence. One of the major research challenges is

to extend the results described in this chapter to models where the probability

distribution is not a product distribution. Important cases are the Ising and

the more general Potts and random cluster models, as well as models based

on random walks of various types. The random cluster model is a model of

random subgraphs of a graph G with n edges, where one has a real parameter

q > 0. The probability of a spanning graph H with k edges is proportional

to

pk(1 − p)n−kqc,

where c is the number of connected components of H . This model thus

defines a two-parameter probability distribution on random subgraphs. The

challenge is to find useful discrete isoperimetric theory and useful harmonic

analysis for these probability distributions that will allow us to extend some
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of the general theorems described in this chapter.

Very recently, Graham and Grimmett [40] have made a breakthrough

in this area, extending the Kahn-Kalai-Linial theorem and deducing sharp

threshold theorems for measures of the random-cluster type.

3. The Fourier coefficients. The Fourier coefficients of the crossing

(and other) events for percolation are indexed by subgraphs of the grid.

The Fourier transform gives a distribution on such subgraphs which is very

interesting.

9 Economics and voting: an example of self-

organized criticality

Why should we care about critical probabilities anyway?

Let us now return to the Condorcet Jury theorem from the Introduction.

A key assumption in Condorcet Jury theorem is that each agent votes ac-

cording to his or her signal. There is recent interesting literature on the case

where voters vote strategically based on their signal. Suppose that every voter

wishes to minimize the probability of mistakes, where we may assign differ-

ent weights to mistakes in the two directions. Feddersen and Pesendorfer

[31] considered the example of juries, where a much larger weight is typi-

cally given to an innocent person being convicted than to a guilty one being

acquitted. Suppose that in order to convict, one needs two thirds of the

votes. Suppose furthermore that each juror k receives a Boolean signal sk
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such that if the defendant is guilty then sk = 1 with probability p > 1/2 and

if the defendant is innocent then sk = 1 with probability 1 − p. (We assume

these signals are independent.) Now, if jurors vote according to their signals,

then when p = 0.51 and the number of jurors is large, they will hardly ever

convict.

Feddersen and Pesendorfer considered the case where jurors vote strate-

gically, observing how their peers are voting, and use mixed (randomized)

strategies. The surprising conclusion is that in such a situation, ever with

a high threhsold for conviction and a weak signal, the probability of either

convicting an innocent defendant or acquitting a guilty one tends to zero as

the number of jurors grows, even if the signal is weak. The one case where

this does not hold is where unanimity among all jurors is required. Feddersen

and Pesendorfer’s result and analysis is based on the notion of Nash equilib-

rium. Nash equilibrium in this case gives us a nice example of “self-organized

criticality”. The behavior at the critical point is significant even when the

voting method is biased to start with.

For the reader who is not familiar with game theory, some explanation is

in order. To start with, every member of the jury has four pure strategies for

how to act given the signal he or she receives: act according to the signal, act

opposite to the signal, acquit regardless of the signal and convict regardless

of the signal. A mixed strategy means a strategy involving randomization,

so the outcome is probabilistic. In our case, a mixed strategy for juror k

would be: upon receiving a signal to acquit, acquit with probability αk and

convict with probability 1−αk; upon receiving a signal to convict, acquit with

probability βk and convict with probability 1−βk. We assume that each juror

57



knows the signal sk he or she has received, but not the signals or strategies

of the other voters, and the jurors vote in a secret ballot. Furthermore, we

assume that the signal strength p is known to all.

Each juror now votes in such a way as to maximize his or her own per-

ceived “payoff,” defined as follows. Jurors want to minimize the probability

of a wrong decision, and it is considered worse to convict an innocent de-

fendant than to acquit a guilty defendant. So if the jury reaches the right

decision, the payoff for each juror is zero. If the jury acquits a guilty defen-

dant, the payoff for each juror is −q, where q ∈ (0, 0.5). If the jury convicts

an innocent defendant, the payoff for each juror is q−1. Note that the payoff

function is the same for all jurors, and depends only on the collective deci-

sion of the jury. Given a sequence of mixed strategies, one for each juror,

and based on an equal prior probability of innocence and guilt, a juror can

estimate the posterior probability that the defendant is guilty as well as the

expected payoff. In game theory, the Nash equilibrium point is a sequence of

mixed strategies such that no player can expect a gain in payoff by deviating

from his or her strategy as long as none of the other players deviate from

theirs.

When we consider general voting methods and not only majority rules,

it can be shown that “asymptotically complete aggregation of information”

is intimately related to having a sharp threshold [81]. In particular, if there

is a sharp threshold, then there is always a Nash equilibrium point for which

the probability of mistakes tends to zero as the number of voters grows.

Fedderson and Pesendorfer’s result is related to the question of why we

care about critical behavior to start with. Why is it so often the case that
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shortly before an election between two candidates, both of them appear to

have a significant chance of being elected? How come the probabilities we

can assign to the choices of each individual voter do not “sum up” to a

decisive collective outcome? This seems especially surprising in view of the

sharp threshold phenomena. Fedderson and Pesendorfer’s result suggests

that the strategic behavior of voters can push the situation towards criticality.

Another explanation would challenge the independence of the signals received

by the voters.

There are other relations between threshold phenomena and economics

and social choice theory. We have already seen in Theorem 3.9 that having a

sharp threshold for a sequence of monotone Boolean functions is equivalent to

having a diminishing Shapley-Shubik power index. A famous result in social

choice theory is Arrow’s impossibility theorem concerning election methods

when there are three or more candidates. Condorcet’s famous “paradox”

demonstrates that given three candidates A, B, and C, the majority rule

may result in the society preferring A to B , B to C, and C to A. Arrow’s Im-

possibility Theorem is an extension of Condorcet’s paradox, and states that

under certain general conditions such non-transitive social preferences can-

not be avoided under any non-dictatorial voting method. Relations between

threshold phenomena and Arrow type theorems are described in [53, 56].

As in the percolation discussion in Section 8, a further problem in the

context of economics is to understand matters under more realistic prob-

abilistic assumptions, moving away from product distributions. This poses

interesting conceptual and technical problems. Haggstrom, Kalai, and Mossel

[44] studied aggregation of information in models with dependence. Another
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challenge in the economic arena is to study threshold phenomena (aggrega-

tion of information) and related notions such as noise sensitivity for more

complex models.

10 Conclusions and open problems

Threshold phenomena and related concepts such as pivotality, influence, and

noise sensitivity are important in many areas of mathematics, science, and

engineering. We have described some mathematical advances in the un-

derstanding of threshold behavior and related phenomena, as well as vari-

ous applications and connections, and some open problems. The underlying

mathematical concepts are similar in different disciplines. However, bridging

the different points of view, methodologies and interpretations is a major

challenge. The subequent chapters of this book address this challenge from

the perspectives of physics and computer science.

Over the course of this chapter, we have highlighted some important

open problems. These include proving Friedgut’s Conjecture 5.4 and finding

sharper versions of Bourgain and Kalai’s Theorem 5.2.2 A less explicit but

nevertheless important problem is to explain the emergence of power laws in

the threshold interval, where the width of the interval behaves as n−β where

β > 0 is a real number.

A fundamental challenge is to relate the threshold behavior with the

2Falik and Samorodnitsky [30] have very recently found a new proof of the Kahn-Kalai-

Linial theorem based on an extension of the edge-isoperimetric inequality. Their methods

may be relevant to some of the problems that we have mentioned.
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threshold’s location, and to find methods to exclude the possibility of oscil-

lating critical probabilities. We mentioned this issue in the context of the

k-SAT problem. It is equally of interest for many other problems as well.

Another important challenge is to find methods to deal with the influence

of events of small probability. This is related to a detailed understanding

of how the function µp(f) behaves, and especially to the analysis of large

deviations of the threshold behavior. In this chapter we have dealt mainly

with tǫ(f) when ǫ is fixed. It is of great interest to understand the dependence

on ǫ. The precise behavior of the function µp(f) in the threshold interval and

the situation when ǫ itself is very small and expressed as a function of n are

both very interesting topics. Kahn and Kalai [57] have proposed far-reaching

conjectures concerning the influence Ip(f) of Boolean functions f when µp(f)

is a function of n and tends to 0 with increasing n. They also studied possible

applications towards finding the location of the critical probability.

It would also be interesting to study threshold behavior and influences

when we replace the Boolean cube {0, 1}n by Σn when Σ is a finite alphabet

with more than two letters. We expect in that case that for symmetric mono-

tone functions, the transition will occur in small “membranes” [54]. There

is interesting related work concerning powers of arbitrary graphs by Alon,

Dinur, Friedgut, and Sudakov [3]. There are various other generalizations

of Boolean functions. Some can be found in Ben-Or and Linial’s original

paper [11] on collective coin flipping and are waiting to be explored further.

Another important generalization is to functions of the form

f : {0, 1}n → {0, 1}m. (57)
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These are of great importance in mathematics (e.g., error-correcting codes)

and computer science (e.g., extractors).

Finally, it is worth repeating a problem already mentioned in several con-

texts: study threshold behavior and related notions of noise sensitivity and

Fourier analysis for various models, with non-product probability distribu-

tions.

These are examples of some of the many open problems suggested by our

discussion of threshold phenomena. We challenge the reader to explore other

applications.
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