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RECORD BREAKING AND TEMPORAL CLUSTERING

Flavio Toxvaerd∗†

This draft: June 2005. Preliminary, comments welcome.

Abstract. Casual observation suggests that athletics records tend to cluster over
time. After prolonged periods without new records, a record breaking performance spurs
other athletes to increase effort and thereby repeatedly set new standards. Subsequently,
record breaking subsides and the pattern repeats itself. The clustering hypothesis is
tested for the mile run, the marathon, the world hour record and long jump. For all four
disciplines, the null hypothesis of non-clustering is rejected at the 4% level or below. A
theoretical rationale for this phenomenon is provided through a model of social learning
under limited awareness. The agents are assumed to be unaware of the true limits to
performance and to take the current record as the upper bound. The observation of a
record breaking achievement spurs the agents to try harder and thus temporarily increase
the probability of new records. Subsequently, record breaking trails off and the process
is repeated.

JEL Classification: D83, O33.
Keywords: Record breaking, temporal clustering, adaptive learning, limited awareness.

1. Introduction
On May 6, 1954, 25 year-old Roger Bannister was the first in history to run one mile in
less than four minutes. With a time of 3 minutes and 59.4 seconds, he had accomplished
an astonishing feat, something his contemporaries deemed impossible and which is routinely
compared to Edmund Hillary and Tenzing Norgay’s conquest of Mount Everest almost ex-
actly a year earlier on May 29, 1953. According to Myers (2002), “for decades it was
considered beyond human capacity, virtually in physiological principle, to run a mile inside
four minutes”. As it turned out, there was no real barrier of four minutes, only a perceived
one. But perceptions matter.

A remarkable thing is that before Bannister’s achievement, the fastest time remained
unchanged for a decade. In contrast, it took a meagre seven weeks for Bannister’s record to
be broken by John Landy. Such clusters of records on the mile run have occurred repeatedly
over the past century and a half and the phenomenon is found also in other disciplines such
as the marathon, the one hour cycling race and long jump.

The aims of this paper are twofold. First, the hypothesis of temporal clustering of records
is tested for the four mentioned disciplines. For all four, the null hypothesis of non-clustering
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2 F. Toxvaerd

is rejected at an appropriate level. Second, having established the clustering phenomenon, a
theoretical rationale is provided through a model of social learning under limited awareness.

To test the hypothesis that records cluster over time, methodology developed for the
study of epidemics is employed. The so-called scan statistic detects a cluster by way of
rejecting a null hypothesis of uniformity. For the four disciplines considered, the hypothesis
of clustering is corroborated by the test. For the mile run, the marathon, the world hour
record and long jump, the null hypothesis of uniformity is rejected at the 4% level or below.

Motivated by the established stylized fact of temporal clustering, I develop a model to
explain such a pattern in the progression of records. The model builds on the premise
that agents are unaware of the true limits to performance, but that they perceive that the
standing record is the maximum attainable. Acting optimally given such perceptions, the
existing record is broken only with a very small probability, giving rise to prolonged periods
without new records. Eventually though, the record is broken, prompting the agents to revise
their perceptions of what is feasible. In turn, this revision spurs subsequent agents to exert
more effort, thereby increasing the probability of new records. In this way, an initial record
may create a rapid succession of new records, which eventually subsides when perceptions
about what is possible catch up with reality.

The progression and time series properties of records in athletics has long attracted
the attention of statisticians, who have developed a rich body of research on the subject. A
review of the early literature is offered by Glick (1978).1 Roughly, the early literature focused
on the characterization of record data when such records were generated by identically,
independently distributed random variables, while more recent literature has relaxed the
assumptions of independence and stationarity in several different ways. Yang (1975) considers
the effects on records of an increasing population, while Ballerini and Resnick (1985) consider
the effects of improving populations. Ballerini and Resnick (1987) study the effects on records
of adding a linear trend to a stationary process. While these papers are theoretical in nature,
they all illustrate their results with athletics data such as that for the mile run. However,
this literature has not identified nor studied the clustering phenomenon. Another stream of
research, initiated by Tryfos and Blackmore (1985), has focused on forecasting the future
evolution of records. This research agenda has been refined in several different ways, e.g.
by Smith and Miller (1986), Smith (1988) and most recently by Carlin and Gelfand (1993).
Last, some effort has been devoted to a more applied perspective on records, within the field
of sports medicine. Bassett et al. (1999) study the progression of the world hour record
and estimate how much of the improvements in distance can be attributed to technological
and physiological improvements respectively. Gembris, Taylor and Suter (2002) study the
progression of records for a number of different sports events in the German championships
and try to separate how much of improvements are due to systematic improvement of the
athletes and how much is attributable to chance events.2 Again, this literature does not
touch upon the clustering phenomenon. From the economics literature, two strands of related
research should be mentioned. The first is that of rational learning, surveyed in great detail
by Chamley (2004). The second is that on informational cycles, as studied by Zeira (1994).

1See also Arnold, Balakrishnan and Nagaraja (1998) for a thorough exposition of the theory of records.
2Perhaps surprisingly, they find that in only four of 22 disciplines is there evidence of systematic improve-

ment over time.
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The rest of the paper is organized as follows. In Section 2, the progression of records
for the mile run, the marathon, the one hour cycling race and long jump is described in
some detail. The test employed for the statistical analysis of clustering, the scan statistic,
is introduced and the results presented. Section 3 offers a model of temporal clustering of
records based on the notion of social learning under limited awareness. Section 4 is devoted
to a broader discussion of alternative explanations of the clustering phenomenon and their
merits.

2. Stylized Facts of Record Progression
Casual observation of the progression of world records suggest that improvements tend to
cluster over time. In particular, some records remain unbroken for prolonged periods of time,
but once broken, subsequent records are achieved in relatively rapid succession.

For the purpose of illustration, the progression of records in four different disciplines will
be studied in some detail. These are the mile run, the marathon, the world hour record and
long jump respectively. The choice of disciplines is based on personal taste. In principle, the
model offered in this paper applies equally to any sport in which the objective is well defined
and easily measurable and whose record progression displays temporal clustering.

The data set employed for each discipline is the longest available time series which includes
the exact dates of the records. The data on the mile run, the marathon, long jump and the
world hour record were obtained from the British Milers’ Association, the International
Olympic Committee (IOC) and the International Cycling Union (UCI) respectively. They
are included in the appendix for completeness. Throughout, the starting date of a series is
taken to be the date of the first recorded observation, while the end date is 4 September,
2005.3

First, consider the evolution of records for the mile run. The first recorded time included
in the data set was 4:52.0, achieved by Cadet Marshall in 1852. Since then, the record time
has come down by more than a minute, to Hicham El Guerrouj’s standing record of 3:43.12,
achieved in 1999. Over the period, the record was equalled or bettered a total of 48 times,
with an average inter-record time of 3 years.4

The distribution of new records over time is shown in the first panel of Figure 1. Inspec-
tion of the plot shows that the evolution has been less than even, with some periods seeing
no improvements at all, while other periods show evidence of a flurry of activity. During the
eight-year period 1915-1923, the record remained unbroken, while in the three-year period
1942-1945, it was broken six times, with three new records in 1942 alone. After that, the
record remained unbroken for almost a decade, until Bannister’s historical achievement in
1954 and Landy’s improved time about seven weeks later.

Turning to the progression of records for the marathon, the best time has decreased a
dramatic 50 minutes over the past century, from John Hayes’ time of 2:55:19 in 1908 to Paul

3The available data sets are lists of dates on which records where equalled or bettered. To make the plots
and statistical tests of this paper, the lists of dates where converted to series with one day as the time unit,
with any particular day scoring 1 if the existing record was equalled or bettered on that day and 0 otherwise.
There were no incidences of more than one record on any one day. The Matlab code used for the tests is
available upon request.

4A standing record was equalled only twice over the period.
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Figure 1: Temporal Distribution of Records (selected disciplines).
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Tergat’s standing record of 2:04:55, achieved in 2003. Over this period, the record has been
bettered 34 times, with an average inter-record time of 3 years.

Like for the mile run, the decrease in the best time for the marathon has been far from
smooth. E.g., 1909 alone saw nine successive new records, while the seven-year period 1913-
1920 saw none. Similarly, 1935 saw three new records, while there were none in the following
twelve-year period. Last, the sixties saw relatively many new records, seven, while there
was not a single new record in the proceeding twelve years. The second panel of Figure 1
shows the temporal distribution of records for the marathon. Visual inspection confirms the
uneven distribution over time.

A similar pattern is also evident from the progression of the world hour record in cycling.
The world record has increased by more than 20km, from Henry Desgrange’s distance of
35.325km in 1893 to Chris Boardman’s standing record of an impressive 56.375km, achieved
in 1996. Over the period, the record was bettered 32 times, with an average inter-record
time of 3.3 years.

The temporal distribution of best times for one hour cycling is displayed in the third
panel of Figure 1. Again, the uneven temporal pattern of records found for the mile run and
the marathon is apparent. E.g., during the five-year period 1907-1912, the record remained
unbroken, but it was then broken four times in the span of one year, in 1913-1914. Subse-
quently, the record remained unbroken for eighteen years straight, until 1935. Then, in the
two-year period 1935-1937, it was broken four times.

Last, consider the progression of records for long jump, displayed in the fourth panel of
Figure 1. Over the last century, from Peter O’Connor’s record of 7.61m in 1901, the best
result has increased by more than two meters, to Mike Powell’s standing record of 8.95m,
achieved in 1991. Over the period, the record was bettered or equalled 17 times, with an
average inter-record time of 5 years.5 For the long jump, the clustering phenomenon is
perhaps more striking than in any other discipline, containing two of the longest standing
records in any track and field discipline. O’Connor’s 1901 record remained unbroken for two
decades, until 1921. The next decade witnessed six new records, while Owens’ 1935 record
remained unbroken for a quarter of a century. Then, in the 1960’s, the record was broken
or bettered a total of nine times, while Beamon’s 1968 records remained unbroken for more
than two decades.

2.1. Statistical Analysis of Clustering. To confirm the evidence provided by visual
inspection of the distribution plots of Figure 1, a formal test of the clustering hypothesis
will be performed. Before introducing the particulars of the test, it is useful to explain in
more detail what a cluster is and what it is not. Consider a number of points on a segment
of a line, as here, the dates at which a record was equalled or broken. A number of such
points are said to be clustered, if they are located in a relatively small subinterval of the line
segment under consideration. That is, they are clustered if the successive distances between
them are very small compared to the length of the whole interval. At the other extreme, a
number of points are not clustered at all if they are evenly spaced on the line segment. Thus,
there is no clustering if there is no particular subinterval of the line segment that has more
points than any other subinterval of the same length.

5A standing record was equalled only twice over the period.
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Figure 2: The Scan Statistic’s Moving Window.

The next question to ask, given a particular set of observations, is what kind of distribu-
tion is likely to have generated the observed pattern. For the case of no clustering, or evenly
spaced points, a natural conjecture is that they have been generated by a uniform distribu-
tion. Indeed, the uniform distribution shall be the null hypothesis against which the test of
clustering will be performed. The alternative hypothesis is simply that the observations are
not generated by a uniform distribution. To sum up, the data will be said to be clustered if
the null hypothesis of them being generated by a uniform distribution can be rejected at a
reasonable level of confidence.

A simple statistical test embodying the approach just described is based on the scan
statistic. This test was developed by Naus (1965, 1966) and subsequently tabulated by
Wallenstein (1980). It is widely used for the detection of epidemics and outbreaks of infectious
diseases.

To see how the test works, consider a time interval [0, T ], N observations of some event
occurring within this time interval and the exact time at which each of these observations
occurred. Next, let [t, t +∆] be a subinterval with ∆ < T and find the maximum number
of events occurring within any such interval as t slides across the range [0, T −∆]. Let m∆

be this number of observations. Last, calculate the probability, under the null hypothesis of
uniformity, of observing k ≥ m∆ points on an interval of length ∆. Denote this probability
by

p ≡ Pr(m∆ ≥ k) ≡ P (k,N, δ)

where the window δ ≡ ∆/T is just a simplifying normalization. For the purpose of illustra-
tion, Figure 2 shows how the scan statistic’s window of length ∆ slides across the time line.
The short black line segments illustrate dates on which events occur.

The quantities T and N are given by the data, which leaves δ to be chosen. Given some
choice of window δ, the lower p is, the more unlikely it is that the observations are gener-
ated by a uniform distribution, lending credence to the alternative hypothesis of temporal
clustering of the observations.

It has been shown that it is infeasible to obtain an exact form for P (k,N, δ) when T
and N are large, but the function may be approximated quite well. The statistics literature
on such approximations is rich and has proposed very sophisticated and accurate methods
(see Glaz, Naus and Wallenstein, 2001 for details). A simple approximation, which will be
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employed here, is that of Wallenstein and Neff (1987). They show that

p = P (k,N, δ) ≈
µ
k

δ
−N + 1

¶
Pr (Y = k) + 2Pr (Y ≥ k + 1)

where

Pr (Y = k) =

µ
N
k

¶
δk(1− δ)N−k

That is, Y has a binomial distribution with parameters N and δ. This approximation is
accurate up to three decimal points for low p values, but performs less well for large p
values.6

Before presenting the results of the test, the choice of scanning window δ deserves some
discussion. The scanning window is chosen to be the length of the conjectured cluster and
its choice is therefore guided by visual inspection of the distribution plots. For that reason,
clustering in the distributions of the different disciplines is tested with different windows.

The test results are summarized in Table 1. For the windows chosen for each discipline,
the null hypothesis of uniformity is rejected at the 5% level, suggesting statistically significant
clustering. The results of the tests confirm the apparent pattern of clusters seen in the
distribution plots of Figure 1.

A couple of reflections on the scan statistic are in order. First, the scan statistic ignores,
by construction, the exact distribution of those observations that are not included in the
largest cluster and is thus unimodal in nature. In particular, a data set with two identical
but non-overlapping clusters of a given size could yield the same p-values as a data set with
just one cluster of the same magnitude, but with the rest of the observations distributed
uniformly over the interval without the cluster. Therefore, the scan statistic is not able to
detect multiple clusters or cyclicality in the data. This is pointed out by Molinari, Bonaldi
and Daurés (2001), who suggest an alternative approach based on Monte Carlo experiments.
For a constructed data set, they show that the presence of multiple clusters can actually
mask statistical significance if the scan statistic is employed. Specifically, they show that it
is possible that a data set is clustered, but that the scan statistic may fail to pick this up
because of peculiarities of the distribution of observations. In a sense, this means that the
scan statistic is conservative, so that if it shows clustering of a data set, this same data set
would also be clustered according to the method suggested by Molinari et al. (2001). The
second comment on the use of the scan statistic relates to the use of the uniform distribution
as the null-hypothesis of non-clustering. The uniform distribution is not employed because it
is believed to be an accurate description of the record sequence, which it will not in general
be for arbitrary underlying distribution of the outcomes. In fact, visual inspection of the
data already strongly suggests that it is not generated by a uniform distribution. Rather,
it is used as the definition of non-clustering. As such, the null-hypothesis of uniformity is a
very intuitive way of showing that the data is clustered.

In conclusion, the evidence favors the hypothesis that records cluster over time. This
suggests two key observations. First, a cluster is evidence that athletes are not permanently
at the frontier of what is humanly possible (they may, of course, be close to what they
perceive to be the absolute frontier). The dichotomy between absolute limits to performance

6For k ≥ N/2 and δ ≤ 1/2, the given formula is exact.
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Discipline Start date N ∆ p-value
15 0.0036899

One Mile 2 Sep. 1852 49 30 0.0145200
45 0.0321410
350 0.0080598

Marathon 24 July 1908 35 400 0.0130830
450 0.0199370
50 0.0211610

One Hour 11 May 1893 33 60 0.0301780
70 0.0406810
700 0.0261660

Long Jump 5 Aug. 1901 18 750 0.0315550
800 0.0375460

Table 1: p-values for the Scan Statistic.

and perceived ones is recognized by sports scientists. Myers (2002) paraphrases the world
expert on endurance sports Tim Noakes and states that “however exhausted a runner may
feel, he is likely to be a fair way from exhausting all his physical potential. The trick is to
close the gap [...]”.7

The second observation is that, once a long-standing record is broken, this event seems
to shift the entire distribution of outcomes upwards, thereby increasing the probability that
subsequent attempts will set new standards. A case in point is the breaking of the four
minute mile barrier. John Landy, who was the first to break Bannister’s record, said of his
thinking before the breaking of the four minute mile: “I honestly felt, certainly after I’d run
half a dozen 4.2s, that there was a bit of a barrier there”. After the fact, he thought that “if
he [Bannister] can run as fast as that, so can I”.8

These two observations together suggest that athletes act in an environment with infor-
mational imperfections and that they engage in some kind of learning. Furthermore, they
suggest that the effect of this learning is that athletes increase their effort, thereby inducing
an upward shift in the distribution of outcomes.

There are two stylized facts of the time series that a satisfactory theory should match.
The first is that after a period with no new records, when a standing record is eventually
broken, new records come in relatively rapid succession. The second is that after a period
with relatively many new records, the occurrence of new records subsides and gives way to
a new period of tranquility.

Which kind of underlying process could one expect to yield patterns of records consistent
with those actually observed? It has long been recognized that the sheer abundance of new
records over time makes iid processes particularly unsuited to model real record progressions
in sports. Models with deterministic trends, i.e. independently but not identically distributed

7According to Bannister, “though physiology may indicate respiratory and circulatory limits to muscular
effort, psychological and other factors beyond the ken of physiology set the razor’s edge of defeat or victory
and determine how close an athlete approaches the absolute limits to performance” (quoted from Myers,
2002).

8Quoted from interview with John Landy, The Sports Factor, 30 April 2004: The Mile of the Century.
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observations only seem to fare marginally better. That leaves models with some sort of
dependence. Unfortunately, such models are very difficult to solve in general, apart from in
a few cases (see Arnold et al., 1998).

Before embarking on the details of the model, a discussion of athlete’s objectives is in
order. It is far from clear how to model the payoffs from participating in an athletic event,
as participants (in multi-player events) do not have the same goals, even if competing within
the same event. For example, in a marathon, some runners seek to win on the day, others
may seek to be within the top three, others may wish to improve their personal records and
last, some runners may actively seek to break records or be the fastest of the year. Also,
if one believes that clustering in different disciplines reflect the same underlying forces, the
details of the model should not be so specific to the particulars of one discipline that it is at
odds with those of the other. In particular, since clustering is found in the one hour cycling
record (which is by definition a one man event), tournament incentives do not seem to be a
crucial consideration when modeling the evolution of records over time. Also, if one were to
focus on tournaments, it is not clear how such tournaments should be related over time and
how payoffs from different tournaments are interlinked. For all these reasons, a pragmatic
approach has been taken in which the agents are decision makers whose payoffs depend only
on the outcome of their own efforts. While this is certainly a simplification of reality, it does
capture some important aspects of reality and yields patterns of record breaking reminiscent
of those observed in the data.

3. A Model of Social Learning with Limited Awareness

The following model is one where agents act in an environment the details of which they do
not fully grasp. It is inspired by the anecdotal evidence from the history of the mile run and
the marathon.9 In particular, the agents are unaware of the true limits to performance, but
learn adaptively about these by observing the outcomes of predecessors’ efforts.

3.1. The Basic Setup. Time is discrete and the horizon is infinite. In each period, a
new agent appears who lives for just that period. Denote by agent t the agent who lives in
period t.10 In period t = 1, 2..., agent t exerts effort e to produce an outcome x drawn from
a continuously differentiable distribution G ≡ G(xt; e, zt) on some bounded interval [0, zt],
which allows a probability density function g.11 In the first period, the outcome is drawn
from the interval [0, z1], so that z1 ≡ z defines the lower bound of possible feasibility frontiers
for the outcome. Similarly, I assume that there is an upper bound z̄ of possible feasibility
frontiers for the outcome. A first assumption is made:

A1 z ≤ zt ≤ zt+1 ≤ z for all t.

9For an account of the history of the mile run, see Bryant (2004).
10 In fact, the assumption that a new agent appears in each period is inessential. As will become clear

later, under the assumed perceptions of the agents, all the results carry through unaltered if the same agent
is allowed to attempt multiple times.
11Note that although the distribution function changes over time (since the support changes over time), it

is assumed that for all t, the distribution function comes from the same family (i.e. the functional form is the
same). For notational simplicity, the time subscript on G will be suppressed, but it is implicit that at time t,
the distribution G is parameterized by time t through the frontier zt.
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This assumption reflects the notion that over time, improvements in training regimes,
diets and technology increase what it is possible to achieve. Imposing an upper bound
on zt reflects the fact that, for example, in running there is a time below which it is hu-
manly/biologically impossible to run a prespecified distance.

Some further assumptions on the distribution function follow:

A2 G(x; e, z) ≤ G(x; e0, z) for all x and z and e ≥ e0.

Assumption A2 simply states that the distribution G is stochastically increasing in effort
(i.e. it shifts in the sense of first-order stochastic dominance). This means that higher effort
leads to higher outcome in expectation.

A3 G(x; e, z) ≤ G(x; e, z0) for all x ∈ [0, z0], e and z ≥ z0.

Assumption A3 is seemingly similar to A2, requiring that the distribution be stochasti-
cally increasing in the possibility frontier on the shared domain. Note that A3 contains an
important implicit assumption about how the agents of the model update beliefs. In this
model, the agents’ information is very restricted and they do not update in Bayesian fashion.
Rather, they conjecture and correctly so, that the distribution has a particular functional
form. What is unknown to them is a parameter of this distribution, namely the upper limit
of its support. In a Bayesian model, Bayes’ rule dictates precisely how the posterior beliefs
are formed. But this approach is not applicable in this model since the agents do not, by
assumption, hold beliefs about the sequence {zt}. Therefore, an alternative updating rule
must be specified. What is assumed here is that the agents maintain the perception that
the distribution of outcomes belongs to a given family of functions and remains so after
the agents become aware that the frontier has expanded. Furthermore, it is assumed that
once they become aware that the frontier has expanded, they roll over probability mass to
accommodate for this expansion in the way specified in A3.

A4 g(x; e, z) > 0 for all x ∈ [0, z] and e.

Assumption A4 means that the probability density is strictly positive for all feasible
outcomes, i.e. the outcome distribution has full support.

Finally, define the record x̄t at time t as being the maximum of all outcomes up to time
t− 1, i.e.

xt ≡ max {x1, ..., xt−1}

By definition, the sequence of records is increasing over time, i.e. xt ≤ xt+1 for all t.

3.2. The Agent’s Problem. Given effort e and outcome x, the agent’s utility is given
by the separable function

u(x)− ψ(e)

where the utility of outcome u is strictly increasing and concave and the disutility of effort ψ
is strictly increasing and convex.12 In order to write up the agent’s maximization problem,

12One may rewrite the problem and specify the agent’s utility as u(r(x)), where r(x) is the expected rank
in some tournament setting and r0 > 0.
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some assumptions on the available information need to be made. I assume that agent t
observes only the outcomes of predecessors’ efforts {x1, ..., xt−1} and knows the functional
form of the family of distribution functions {G(x; e, z)}z∈[z,z]. He does not know that the
frontier of feasible outcomes is expanding, nor its current position zt. Instead, it is assumed
that he perceives the outcome to be drawn from the distribution G(x; e, xt). That is, the
agent is not aware of and does not take into account, the possibility of outcomes in the
interval [xt, zt]. The agent’s problem is then

max
e

½Z xt

0
u(x)g(x; e, xt)dx− ψ(e)

¾
A last assumption is imposed on the problem:

A5
R xt
0 u(x)g00ext(x; e, xt)dx+ u(xt)g

0
e(xt; e, xt) > 0.

Assumption A5 is technical in nature and is basically a sufficient joint condition on u and
g for optimal effort to be monotone in the perceived frontier. In essence, this assumption
ensures that “when potential rewards are higher, optimal effort is higher”. While a more
primitive set of assumptions yielding monotone optimal effort would be desirable, the search
for such has been greatly complicated by the fact that virtually all existing theory on decisions
under uncertainty and associated comparative statics assume no changes in the support of
the random variables and focus exclusively on changes in the distribution.

The optimal level of effort e∗, given current perceptions, is implicitly given by the first
order condition Z xt

0
u(x)g0e(x; e

∗, xt)dx = ψ0(e∗)

where subscript e denotes a partial derivative with respect to effort.

3.3. The Dynamics of the Model. Next, turn to the dynamics of the model. Suppose
that for some t, zt > xt and that for some small ε > 0,

|G(x; e∗(xt), zt)−G(x; e∗(xt), xt)| < ε (1)

where e∗(x) denotes the optimal choice of effort given the perception that the frontier is
given by x. Then

Proposition 1. Under assumptions A1-A5 and (1), social learning under limited awareness
generates temporal clustering of records.

Proof : Supposition (1) means that there is a very small probability that the outcome will
be beyond the perceived frontier, given the optimal level of effort given current perceptions.
Note that this does not necessarily imply that the interval [xt, zt] be small, but that the
outcome distribution has a thin upper tail. Since the probability that the outcome falls in
this range is small, the probability that the agents become aware that the record can be
broken is small. There can therefore be prolonged periods of time where the agents keep
acting under the perception that the true frontier is xt. During this period, the true frontier
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may have expanded further, beyond the current level zt. At some point though, since the
true distribution of outcomes has positive probability in the range in question (because of
A4), the record will be broken. Formally, there exists some finite time s defined by

s = min {τ : xτ ≥ xt.} ≥ t

But then, since xs = xs ≥ xt, assumption A5 implies that e∗(xs) ≥ e∗(xt). In turn, assump-
tions A2, A1 and A3 imply that for all x ∈ [0, zt],

G(x; e∗(xt), zt) ≥ G(x; e∗(xs), zt) ≥ G(x; e∗(xs), zs)

The first inequality in particular implies that

G(xt; e
∗(xt), zt) ≥ G(xt; e

∗(xs), zt) (2)

The second inequality implies that

G(xs; e
∗(xs), zt) ≥ G(xs; e

∗(xs), zs) (3)

for all x ∈ [0, zs], where it should be noted that G(xs; e∗(xs), zt) = 1 for all x ∈ [zt, xs] if
zt ≤ xs.

Inequality (2) means that once a certain record xt has been broken, it is more likely that
subsequent outcomes will be above xt. In turn, inequality (3) means that the new record
xs is more likely to be broken in subsequent attempts. This process will continue until
the record (i.e. the perceived frontier) is so close to the true frontier that record breaking
subsides. When xt = zt, learning stops, while the true barrier zt expands and again creates
a discrepancy between the true and perceived frontier. At some point, the process repeats
itself ¥

A key supposition in generating temporal clustering of records is that the current record
is below the frontier of what is currently feasible. In turn, this also shows that the model
allows for the possibility that the breaking of a long-standing record does not induce further
record breaking. This can happen if the new best achievement is a substantial improvement
on the old record, located very close to (or at) the frontier. Such stand-alone records are
also observed in practice, as seen on Figure 1.

A small discrepancy between the motivating example and the model should be mentioned.
Before Bannister’s record, four minutes on the mile was believed to be the limit, like two
hours and ten minutes on the marathon was before Clayton’s record. Thus the existing
records were not perceived to be the limits. This suggests that the perceived frontier at time
t should be xt+ η for some η ≥ 0 rather than xt. Clearly, all the arguments of the model go
through unaltered with this modification, so η is set to nil for simplicity. Also, this obviates
the need to specify, in an ad-hoc way, how η is determined.13

Figure 3 represents the process graphically. The solid curve represents the true frontier
z, while the dashed horizontal lines are the record x. Last, the vertical dotted lines represent
13Four minutes on the mile, two hours and ten minutes on the marathon, as well as 10,000 on the NASDAQ,

seem to acquire intrinsic importance, although of course such beliefs are baseless. Rather, round numbers
acquire attention because they are elegant and thus become somehow “focal”.
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Figure 3: Temporal Clustering with Limited Awareness.

dates at which a record was broken. The temporal pattern shown in Figure 3 is consistent
with that of the four disciplines shown in Figure 1. Starting from a best outcome below the
feasibility frontier, an initial broken record successively ratchets up the record through the
described process until the frontier is reached. The process then stops, until the frontier has
expanded further and another record breaking performance starts the process anew.

4. Discussion
In this paper, the phenomenon of temporal clustering of record breaking was studied. The
hypothesis of clustering was tested for the mile run, the marathon, the world hour record in
cycling and long jump and was in each case found statistically significant.

To explain the phenomenon, a parsimonious model was presented that yields patterns
of record breaking consistent with the evidence. The three basic features of the model
are learning from the observation of others, monotone optimal effort and that the outcome
distribution is stochastically increasing in effort. When a long-standing record is broken,
learning alerts other agents that some environmental factor has changed. In turn, monotone
optimal effort means that agents, in reacting optimally to what they have observed, try
harder than they otherwise would have. Last, since higher outcomes become more likely
when effort is higher, record breaking becomes more likely. Eventually, record breaking
subsides because the agents have fully adapted to the new environment.

Two possible alternative explanations to the presented one should be mentioned. First is
the notion that clusters could be driven wholly by exogenous events. One may argue that the
best athletes almost always perform close to their absolute best but that once in a while, there
is some exogenous change, such as improved equipment or training routines, that within a
relatively short time span simultaneously improves the performance of the athletes, thereby
prompting them to break existing records. Once the full potential is reached, given the
new conditions, record breaking subsides or trails off until a new exogenous change occurs.
While such exogenous changes indeed occur and are important, they seem unable to catch
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an important element of interaction between athletes’ performances and furthermore, run
counter to the lore of the different disciplines.

A second interesting question is whether the observed pattern of clustering in the progres-
sion of records can be explained through the strategic behavior of athletes, i.e. if clustering
could be the equilibrium outcome of some game situation. In this context, it should be noted
that athletes, in general, compete for many reasons, not necessarily to break records. After
his famous achievement, Derek Clayton declared that “I was hoping to improve my personal
best, but I never thought of a possibility of setting the world marathon best. In fact, I did
not even think about winning until after half way”.14

But breaking a record is undoubtedly icing worth having for any athlete and a long-
standing one even more so. A case can be made that the longer a record has remained
unbroken, the more prestigious it is to be the one to finally break it. This line of thinking is
suggestive of a preemption type game. Still, strategic timing of record breaking seems highly
unlikely. Athletes have a limited number of years at their physical peak and must perform
bearing this fact in mind. Also, such considerations do not suggest why there should be
clustering of records after the breaking of a long-standing best. If anything, the incentive to
break the new record should be lower than the incentive to break the original one.

Temporal clustering of events has previously been studied, e.g. by Gul and Lundholm
(1995), Grenadier (1996) and Toxvaerd (2004). They all study models in which agents choose,
in equilibrium, to act simultaneously or in rapid succession. Importantly though, deciding
when to act is wholly different in nature to the decision of breaking a long-standing record.
Extremely few athletes can do more than merely dream of breaking a world record, so the
idea of strategic timing of such attempts seem somewhat unconvincing.

Last, it should be noted that the model studied in this paper can plausibly be inter-
preted as a stylized model of technological innovation. An innovation, especially a process
innovation, can be seen as simply an improvement upon the existing state of affairs. But
an improvement upon the existing is in turn the breaking of a record. An extension of
the current work could be to explore this link further and contrast it with existing litera-
ture on growth and endogenous innovation waves, such as Helpman and Trajtenberg (1998),
Andergassen and Nardini (2003).

14Quoted in Nakamura (1967).
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Progression of World Record: Mile Run 
Result Date Name 
4:52.00 02 Sep 1852 Cadet Marshall  
4:45.00 03 Nov 1858 Thomas Finch  
4:45.00 15 Nov 1858 Vincent Hammick  
4:40.00 24 Nov 1859 Gerald Surman  
4:33.00 23 May 1862 George Farran  
4:29.60 10 Mar 1868 Walter Chinnery  
4:28.80 03 Apr 1868 William Gibbs  
4:28.60 31 Mar 1873 Charles Gunton  
4:26.00 30 May 1874 Walter Slade  
4:24.50 19 Jun 1875 Walter Slade  
4:23.20 16 Aug 1880 Walter George  
4:19.40 03 Jun 1882 Walter George  
4:18.40 21 Jun 1884 Walter George  
4:17.80 26 Aug 1893 Thomas Conneff  
4:17.00 06 Jul 1895 Fred Bacon  
4:15.60 28 Aug 1895 Thomas Conneff  
4:15.40 27 May 1911 John Paul Jones  
4:14.40 31 May 1913 John Paul Jones  
4:12.60 16 Jul 1915 Norman Taber  
4:10.40 23 Aug 1923 Paavo Nurmi  
4:09.20 04 Oct 1931 Jules Ladoumégue  
4:07.60 15 Jul 1933 Jack Lovelock  
4:06.80 16 Jun 1934 Glenn Cunningham  
4:06.40 28 Aug 1937 Sydney Wooderson  
4:06.20 01 Jul 1942 Gunder Hägg  
4:06.20 10 Jul 1942 Arne Andersson  
4:04.60 04 Sep 1942 Gunder Hägg  
4:02.60 01 Jul 1943 Arne Andersson  
4:01.60 18 Jul 1944 Arne Andersson  
4:01.40 17 Jul 1945 Gunder Hägg  
3:59.40 06 May 1954 Roger Bannister  
3:58.00 21 Jun 1954 John Landy  
3:57.20 19 Jul 1957 Derek Ibbotson  
3:54.50 06 Aug 1958 Herbert Elliott  
3:54.40 27 Jan 1962 Peter Snell  
3:54.10 17 Nov 1964 Peter Snell  
3:53.60 09 Jun 1965 Michel Jazy  
3:51.30 17 Jul 1966 Jim Ryun  
3:51.10 23 Jun 1967 Jim Ryun  
3:51.00 17 May 1975 Filbert Bayi  
3:49.40 12 Aug 1975 John Walker  
3:49.00 17 Jul 1979 Sebastian Coe  
3:48.80 01 Jul 1980 Steve Ovett  
3:48.53 19 Aug 1981 Sebastian Coe  
3:48.40 26 Aug 1981 Steve Ovett  
3:47.33 28 Aug 1981 Sebastian Coe  
3:46.32 27 Jul 1985 Steve Cram  
3:44.39 05 Sep 1993 Noureddine Morceli  
3:43.12 07 Jul 1999 Hicham El Guerrouj  

 
 
 
 
 
 
 
 
 
 
 
 



 
Progression of World Record: Marathon 

Result Date Name 
2:55:19 24 Jul 1908 John Hayes 
2:52:46 01 Jan 1909 Robert Fowler 
2:46:53 12 Feb 1909 James Clark 
2:46:05 08 May 1909 Albert Raines 
2:42:31 26 May 1909 Henry Barrett 
2:40:35 31 Aug 1909 Thure Johansson 
2:38:17 12 May 1913 Harry Green 
2:36:07 31 May 1913 Alexis Ahlgren 
2:32:36 22 Aug 1920 Hannes Kolemainen 
2:29:02 12 Oct 1925 Albert Michelsen 
2:27:49 31 Mar 1935 Fusashige Suzuki 
2:26:44 03 Apr 1935 Yasuo Ikenaka 
2:26:42 03 Nov 1935 Kitei Son 
2:25:39 19 Apr 1947 Bok-Suh Yun 
2:20:43 14 Jun 1952 Jim Peters 
2:18:41 13 Jun 1953 Jim Peters 
2:18:35 04 Oct 1953 Jim Peters 
2:17:40 26 Jun 1954 Jim Peters 
2:15:17 24 Aug 1958 Sergey Popov 
2:15:16 10 Sep 1960 Abebe Bikila 
2:15:15 17 Feb 1963 Toru Terasawa 
2:14:28 15 Jun 1963 Buddy Edelen 
2:13:55 13 Jun 1964 Basil Heatley 
2:12:12 21 Oct 1964 Abebe Bikila 
2:12:00 12 Jun 1965 Morio Shigematsu 
2:09:37 03 Dec 1967 Derek Clayton 
2:08:34 30 May 1969 Derek Clayton 
2:08:18 06 Dec 1981 Rob de Castella 
2:08:05 21 Oct 1984 Steve Jones 
2:07:12 20 Apr 1985 Carlos Lopes 
2:06:50 17 Apr 1988 Belayneh Dinsamo 
2:06:05 20 Sep 1998 Ronaldo da Costa 
2:05:42 24 Oct 1999 Khalid Khannouchi 
2:05:38 14 Apr 2002 Khalid Khannouchi 
2:04:55 28 Sep 2003 Paul Tergat 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Progression of World Record: One Hour Race 
Result Date Name 
35325 11 May 1893 Henry Desgrange 
38220 31 Oct 1894 Jules Dubois 
39240 30 Jul 1897 Oscar van Den Eynde 
40781 03 Jul 1898 William Hamilton 
41110 08 Aug 1905 Lucien Petit-Breton 
41520 20 Jun 1907 Marcel Berthet 
42122 22 Aug 1912 Oscar Egg 
42741 07 Aug 1913 Marcel Berthet 
43525 21 Aug 1913 Oscar Egg 
43775 20 Sep 1913 Marcel Berthet 
44247 08 Aug 1914 Oscar Egg 
44588 08 Aug 1933 Jan Van Hout 
44777 28 Sep 1933 Maurice Richard 
45090 31 Oct 1935 Giuseppe Olmo 
45325 14 Oct 1936 Maurice Richard 
45485 29 Sep 1937 Frans Slaats 
45767 03 Nov 1937 Maurice Archambaud 
45798 07 Nov 1942 Fausto Coppi 
46159 06 Jun 1956 Jacques Anquetil 
46394 19 Sep 1956 Ercole Baldini 
46923 18 Sep 1957 Roger Riviere 
48093 30 Oct 1967 Ferdinand Bracke 
48653 10 Oct 1968 Ole Ritter 
49432 25 Oct 1972 Eddy Merckx 
50808 19 Jan 1984 Francesco Moser 
51151 23 Jan 1984 Francesco Moser 
51596 07 Jul 1993 Graeme Obree 
52270 23 Jul 1993 Chris Boardman 
52713 04 Apr 1994 Graeme Obree 
53040 02 Sep 1994 Miguel Indurain 
53832 22 Oct 1994 Tony Rominger 
55291 05 Nov 1994 Tony Rominger 
56375 09 Sep 1996 Chris Boardman 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Progression of World Record: Long Jump 

Result Date Name 
7.61 05 Aug 1901 Peter O’Connor 
7.69 23 Jul 1921 Ed Gourdin 
7.76 07 Jul 1924 Bob LeGendre 
7.89 13 Jun 1925 William de Hart Hubbard 
7.90 07 Jul 1928 Edward Hamm 
7.93 09 Sep 1928 Silvio Cator 
7.98 27 Oct 1931 Chuhei Nambu 
8.13 25 May 1935 Jesse Owens 
8.21 12 Aug 1960 Ralph Boston 
8.24 27 May 1961 Ralph Boston 
8.28 16 Jul 1961 Ralph Boston 
8.31 10 Jun 1962 Igor Ter-Ovanesyan 
8.31 15 Aug 1964 Ralph Boston 
8.34 12 Sep 1964 Ralph Boston 
8.35 29 May 1965 Ralph Boston 
8.35 19 Oct 1967 Igor Ter-Ovanesyan 
8.90 18 Oct 1968 Bob Beamon 
8.95 30 Aug 1991 Mike Powell 
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