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1 Introduction

Consider a newly formed company in immediate need of a cadre of salespeople. Applicants

are interviewed sequentially, each receiving a score. The decision whether or not to hire a

candidate must be made on the spot, without possibility of getting back to someone who

has been let go. What would constitute a reasonable hiring policy?

The issues involved in formulating a policy are the quality and quantity of those hired

and the speed at which positions are filled. Also of import is whether or not the horizon

of the candidate pool is finite. The scenario we envision is one where applicants arrive in

random order and their scores are independent and identically distributed, but nothing is

otherwise known about their distribution, so that as applicants are interviewed information

about the pool of candidates is being gathered. Heuristically, quality of the hired staff and

speed of filling positions are in conflict with each other. A policy of hiring everyone answers

the need for speed, but the quality will be average. Towards the other extreme, declining

to hire anyone if he or she is not better than all of those observed previously will produce

a high-quality group of salespeople, but its rate of growth will be very slow. In this paper

we study certain policies that compromise between the two objectives.

The procedure that accepts the first applicant and subsequently accepts only candidates

who are better than all those observed previously is a well-studied policy (cf. Arnold,

Balakrishnan and Nagaraja, 1998, and Resnick, 1987).

Preater (2000) studied a method that prescribes the employment of the first applicant

and subsequently engages only those who, if hired, would increase the average score of

those retained. Preater assumed that the scores are exponentially distributed, and derived

the asymptotic growth and distribution of the average score after n observations have been

retained, as n → ∞. Selection rules with known distribution of the items and inspection

cost are considered in Preater(1994).

Other problems that have a similar flavor are variations of the secretary problem (cf.

Gilbert and Mosteller, 1966), where one samples sequentially from a finite pool until one or

several are retained, after which sampling ceases, with the objective being the maximization

of the probability of retaining the best in the pool.

In this paper, we study sequential rules that are based on the ranks of the observations.

At every stage, we (re-) rank the observed values from the best to the worst, so that the

best has rank 1. We consider procedures that retain the nth observation if its rank is low

enough relative to the ranks of the previously retained observations.

For the sake of illustration, consider the median rule, which prescribes the retention of

the nth observation if and only if its rank is lower than the median rank of the observations

retained previously (i.e., the median of the retained group will be improved). Regarding the

speed at which observations are retained, let Ln be the number of items that are retained

after n items are observed. We show that the expected number E(Ln) of observations
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retained after n have been observed is of order n1/2 and that Ln/n
1/2 converges almost surely

to a non-degenerate random variable. Regarding the quality of the retained observations,

we show that at least half of the observations retained are the very best of all observed

heretofore, and that the expectation of the average rank of the retained observations is of

order n1/2 log n (implying that almost all of the retained observations are very good). We

show by Monte Carlo that, if the prospective pool has size 10,000, the median rule retains

118 on the average, and approximately 70% of those retained are among the top 1% of the

pool, and only 4% don’t make it to the top decile.

The paper is organized as follows. In Section 2, we introduce a general class of rules that

are characterized by a criterion that ensures that the probability that item n is retained is

a simple function of the number of items Ln that have already been retained. In Section

3 we specialize and consider rules that retain an item if it is among the best p percent of

the items already retained. We show that E(Ln)/np converges. In Section 4 we show that

Ln/n
p converges almost surely to a non-degenerate random variable. In Section 5 we find

the order of the expected value of the average rank of the observations retained by the p-

percentile rule and that suitably normalized, the average converges a.s. to a nondegenerate

random variable. Section 6 is devoted to a Monte Carlo study. We end with Remarks and

Conclusions in Section 7.

2 A class of selection rules

As stated in the previous section, our focus in this article is on selection rules based on

ranks. In this section we introduce a class of selection rules that retain an observation if

its rank is ”low enough”, where the threshold of ”low enough” is determined solely by the

size of the set of observations already retained. The rationale for this has to do with the

tradeoff between the quality of retained observations and the speed of their accumulation.

Heuristically, the more observations retained, the slower one would be about retaining

further observations, so the size of the retained set should be a factor in the selection rule.

On the other hand, one’s evaluation of the quality of an observation depends on all past

observations, not only on those retained so far, and one’s expectations regarding future

observations is the same irrespective of the quality of those already retained. Therefore,

there is good reason to require a selection rule to depend only on the size of the retained

set of observations and the rank of the present observation. (As for the desire to ”improve”

the set of retained observations, heuristically, the quality of the retained set is correlated

with its size, so at least qualitatively ”improvement” is implicit in retained set size. We

examine this more formally in Theorem 1.)

Formally, let X1, X2, . . . be a sequence of observations so that any ordering of the first

n observations is equally likely. A sufficient condition is that the random variables be

exchangeable. A special case that satisfies this assumption is when we have independent
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and identically distributed (i.i.d.) random variables from a continuous distribution. Let Sn

be the set of indices of the retained X ′s. Let Ln be the size of Sn . Let Rn
i be the rank of

the ith observation from among X1, · · · , Xn, i.e., Rn
i =

∑n
j=1 I{Xi ≤ Xj} where I{A} is the

indicator function of A. Thus, Rn
n is the rank of Xn within the set {Xi}n

i=1, where without

loss of generality we assume that “better” is equivalent to “larger” so that rank 1 is given

to the largest observation, rank 2 to the second largest, etc. A selection rule of the type

we study is defined by a function r() on the integers such that the observation Xn will be

retained if and only if Rn
n ≤ r(Ln−1). In this article, we assume that the first observation

is kept always.

Another feature of a reasonable selection procedure is to require that the function r()

be locally sub-diagonal; i.e. r(a + 1) ≤ r(a) + 1. Again, the rationale for this has to

do with the tradeoff between the quality of retained observations and the speed of their

accumulation. (To see this, suppose a observations have been retained after n have been

observed. The rank of the next retained observation will not exceed r(a). The rank of the

succeeding retained observation will not exceed r(a + 1). If r(a + 1) > r(a) + 1, it would

mean that after having retained a + 1 observations, one would be willing to settle for an

observation of lower quality than the acceptance level after having retained a observations.

Although that may be reasonable in a case that a quota has to be filled and the pool of

applicants is finite, that is not the case we regard here.)

We summarize the above in the following definition.

Definition 1 A locally sub-diagonal rank selection scheme (LsD) is a rule determined by

a function r() with the following properties:

i) r is non-decreasing.

ii) r(0) = 1 and L0 = 0.

iii) r is locally sub-diagonal; i.e. r(a + 1) ≤ r(a) + 1 .

iv) For n ≥ 1, Xn is retained if and only if Rn
n ≤ r(Ln−1). (This means that the first

observation is retained.)

This class contains many rules that make heuristic sense. For instance, the median rule

is a LsD rule with r(1) = r(2) = 1, r(3) = r(4) = 2, and generally r(2j − 1) = r(2j) = j.

A class of LsD rules is “k-record rules”. For a fixed value k, let r(j) = min{j + 1, k}.
For k = 1, this is the classical record rule, where an element is retained if and only if it is

better than all previous observations. “k-record rules” have been extensively studied (cf.

Leadbetter, Lindgren and Rootzen, 1983, or Resnick, 1987, and many subsequent papers).

The following observation is trivial for “k-record rules” but is true for any LsD rule. It

attests to the high quality of the set of observations retainable by a LsD rule.

Let N ≥ 1 be any integer either predetermined or random. For example, N can be

a stopping rule. A special case of interest is inverse sampling, where the objective is to
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collect a group of some fixed size m, so that

N = inf{n : Ln = m}.

Theorem 1 Consider a LsD rule defined by r(). The r(LN) best observations among

X1, X2, ..., XN belong to SN .

Proof: Let Xm be the tth best observation among X1, X2, ..., XN with t ≤ r(LN). Let

a be the number of observations among X1, X2, ..., Xm−1 that are better than Xm and let

b be the number of observations among Xm+1, ..., XN that are better than Xm . Clearly,

a + b = t− 1.

If m/∈ SN , then the next item retained after iteration m must be better than Xm . This

implies that LN ≤ Lm−1 + b. Hence

r(LN) ≤ r(Lm−1 + b) ≤ r(Lm−1) + b. (1)

But m /∈ SN implies that a + 1 > r(Lm−1). Since by assumption t ≤ r(LN),

a + b + 1 = t ≤ r(LN) ≤ r(Lm−1) + b (2)

so that a + 1 ≤ r(Lm−1) , which contradicts the inequality two lines above.

Remark: Because of Theorem 1, implicit in the definition of a LsD rule is that it

“improves” the retained set. For example, when applying the median rule, the median of

the retained set gets better, something that is not transparent when regarding the median

rule via its LsD definition. Theorem 1 is a more formal presentation of the heuristic stated

in the beginning of this section, that the quality of the retained set is correlated with its

size, and a LsD rule embodies all three heuristics: i) the larger the retained set, the slower

one goes about retaining more observations; ii) perception of quality is founded on all

previous observations; iii) one only retains items that “improve” the retained set. Theorem

1 means that there is no contradiction between the third heuristic and selection based on

the size of the retained set only.

A natural representation of the quality of the group of observations kept (when retention

is by ranks) is the average rank of the observations retained. Denote by Qn the sum of the

ranks of the retained set after n observations have been made, so that the average rank An

is Qn/Ln.

Assertion Let Fn be the σ − field formed by the random variables X1, · · · , Xn. Let

Qn =
∑

i∈Sn
Rn

i . The conditional expected behavior of the quantities Ln+1, Qn+1 and the

average rank An+1 given the past, in terms of the corresponding quantities for n, results in

i) E(Ln+1|Fn) = Ln + r(Ln)
n+1
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ii) E(Qn+1|Fn) = n+2
n+1

Qn + r(Ln)(r(Ln)+1)
2(n+1)

iii) E (An+1| Fn) = An

(
1 + 1+Ln−r(Ln)

(n+1)(Ln+1)

)
+ r(Ln)(r(Ln)−1)

2(n+1)Ln

Proof: i) Ln+1|Ln = Ln + B
(

r(Ln)
n+1

)
where B(x) is a Bernoulli random variable with

probability x. Hence (i) follows by taking conditional expectations on both sides.

ii) {Qn} is a non-decreasing sequence. Its growth can be described as follows. If

Xn+1 is retained, and it has rank k among the items retained, then Xn+1 adds k to the

sum of the ranks and one for each observation that is inferior to it. Hence, Qn+1 =

Qn +k +[Ln− (k− 1)] = Qn +Ln +1. When Xn+1 is not retained, then the rank of each of

the lower-quality retained observations can increase (by 1, if Xn+1 has lower rank). Note

that the distribution of the rank of Xn+1 (conditional on Fn and its not being retained)

is uniform over r(Ln) + 1, · · · , n + 1. Therefore, letting Sn = the retained set after n

observations have been made, for n ≥ 1

E (Qn+1|Fn) = (Qn + Ln + 1)
r(Ln)

n + 1

+
n + 1− r(Ln)

n + 1


Qn + E


 ∑

{i∈Sn}
I

{
Rn+1

n+1 < Rn+1
i

}
|Fn, Rn+1

n+1 > r(Ln)







= Qn + (Ln + 1)
r(Ln)

n + 1
+

Qn − r(Ln)(r(Ln) + 1)/2− r(Ln)(Ln − r(Ln))

n + 1

=
n + 2

n + 1
Qn +

r(Ln)(r(Ln) + 1)

2(n + 1)
.

iii) If Xn+1 is retained then Ln+1 = Ln + 1 and if Xn+1 is not retained Ln+1 = Ln.

Therefore, the same argument as in the proof of ii) leads to

E (An+1| Fn) =
Qn + Ln + 1

Ln + 1
· r(Ln)

n + 1

+
n + 1− r(Ln)

n + 1


Qn + E

(∑
{i∈Sn} I

{
Rn+1

n+1 < Rn+1
i

}
|Fn, Rn+1

n+1 > r(Ln)
)

Ln




= An

[
Ln

Ln + 1
· r(Ln)

n + 1

]
+

r(Ln)

n + 1

+
n + 1− r(Ln)

(n + 1)Ln


Qn + E




∑
{i∈Sn,Rn+1

n+1<Rn+1
i }(R

n+1
i − r(Ln))

n + 1− r(Ln)

∣∣∣∣∣∣
Fn







= An

[
r(Ln)Ln

(n + 1)(Ln + 1)
+

n + 1− r(Ln)

n + 1

]

+
r(Ln)

n + 1
+

1

(n + 1)Ln

[
Qn − r(Ln)(r(Ln) + 1)

2
− r(Ln)(Ln − r(Ln))

]
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= An

[
1 +

1 + Ln − r(Ln)

(n + 1)(Ln + 1)

]
+

r(Ln)(r(Ln)− 1)/2

(n + 1)Ln

. (3)

3 Percentile rules

In the following sections, we consider rules that retain items if the item is among the best

p-percent among those items that have already been retained.

Definition: A p-percentile rule, for p fixed (0 < p ≤ 1) is a LsD rule with r(k) = dpke
for k ≥ 1, where dxe is the smallest integer that is greater than or equal to x. Thus, the

nth item is retained if and only if its rank satisfies Rn
n ≤ dpLn−1e.

To see that the p-percentile rule is a LsD rule, note that dp(a + 1)e = dpa + pe ≤
dpa + 1e = dpae+ 1.

Remark: Note that the p-percentile rule is meaningful even when p = 1. In that case,

the first observation is kept. The second is kept if it is better than the first observation. In

general, an item is kept if this is better than the worst item that has already been retained.

It is easy to see that when p = 1, E(Ln|Ln−1) = Ln−1 + Ln−1/n. It is straightforward to

show that E(Ln) = n+1
2

. Hence E(Ln)/n → 1/2. Also, since E(Ln|Ln−1) = n+1
n

Ln−1, it

follows that Ln/(n + 1) is a bounded positive martingale, and therefore converges almost

surely. Since the worst item that has already been retained is obviously X1, it follows that

Ln/n is asymptotically U(0, 1).

4 Results for the Number of Retained Items

In this section, we study the behavior of the number of items that are retained after n items

are observed, Ln, for p−percentile rules. It turns out that Ln is of order np. Hence we con-

sider the quantity Ln/np. We first show that the expectation of this quantity converges to

a finite limit. We then show that this quantity converges almost surely to a non-degenerate

random variable.

The first result we present is that E(Ln)/np → cp as n →∞. For example, this results

says that the rule that retains items if they are superior to the median of all items already

retained, will be keeping on the order of
√

n items on the average. The constant cp depends

on

dn ≡ E(dpLne − pLn). (4)

The relationship between cp and d1, d2, ... is complicated because it depends on all of the
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dj. It seems impossible to determine cp analytically, except for p = 1, as done in the remark

above.

The result, however, only requires that we show that dn is bounded away from zero. This

result is intuitive. For the median rule (p = 1/2), dn is simply P (Ln is odd)/2. Logically,

we would expect (it turns out to be justified by empirical analysis) that P (Ln is odd) → 1/2

as n → ∞. This is not easy to prove. Similarly, if p = 1/4, then dpLne − pLn is either

0, 3/4, 1/2, or 1/4 depending on whether Ln(mod4) is j for j = 0 ,1 ,2 or 3 respectively.

Since logically each of the four cases should be equally likely (again this appears to be the

case by computer analysis), we would anticipate that dn → 3/8. We conjecture that if p is

an irrational number, then dLnpe −Lnp converges to U(0, 1) which implies that dn → 1/2.

The actual value of dn is hard to determine. But it is sufficient to show that dn is bounded

away from zero. Specifically,

Lemma 1 Let 0 < p < 1 be fixed, and ε = εp = min{p
2
, 1−p

2
}. Then dn ≥ ε/3 for all n.

Proof: Let Sε = {j | dpje − pj ≤ ε}. Note that if j ∈ Sε, then

• j−1 /∈ Sε. This follows since ε+p < 1, thus dp(j − 1)e = dpje. But then dp(j − 1)e−
p(j − 1) = dpje − pj + p ≥ p > ε.

• j +1 /∈ Sε This follows since p−ε > 0, thus dp(j + 1)e = dpje+1. Hence dp(j + 1)e−
p(j + 1) = dpje − pj + 1− p > ε.

We will show that for all n ≥ 2 and all j = 1, 2, . . .

P (Ln = j + 1) + P (Ln = j − 1)− P (Ln = j) ≥ 0. (5)

This will yield the lemma since clearly (5) implies
∑

j∈Sε
P (Ln = j) ≤ 2

∑
j /∈Sε

P (Ln = j),

which in turn implies that
∑

j /∈Sε
P (Ln = j) ≥ 1/3 so dn ≥ ε/3. Note that (5) is trivial for

j > n.

We prove (5) by induction. For n = 2 and all 0 < p < 1 we have P (L2 = 1) = P (L2 =

2) = 1/2. Thus (5) holds for j = 1, 2 and n = 2.

Now assume (5) holds for 2, 3, . . . , n − 1. We shall show it holds for n. Consider first the

values of j for which

2dpje/n ≤ 1. (6)

Clearly

P (Ln = j − 1) ≥ (1− dp(j − 1)e/n)P (Ln−1 = j − 1) (7)

P (Ln = j) = (dp(j − 1)e/n)P (Ln−1 = j − 1) + (1− dpje/n)P (Ln−1 = j) (8)

P (Ln = j + 1) = (dpje/n)P (Ln−1 = j) + (1− dp(j + 1)e/n)P (Ln−1 = j + 1). (9)
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Thus

P (Ln = j + 1) + P (Ln = j − 1)− P (Ln = j)

≥ P (Ln−1 = j + 1) + P (Ln−1 = j − 1)− P (Ln−1 = j) + 2(dpje/n)P (Ln−1 = j)

− 2(dp(j − 1)e/n)P (Ln−1 = j − 1)− (dp(j + 1)e/n)P (Ln−1 = j + 1). (10)

However, dp(j − 1)e ≤ dpje and dp(j + 1)e ≤ 2dpje as dpje ≥ 1. Hence, the right hand

side of (10) is greater than or equal to

(1− 2dpje/n)[P (Ln−1 = j + 1) + P (Ln−1 = j − 1)− P (Ln−1 = j)] ≥ 0 (11)

where the last inequality in (11) follows from (6) and the induction hypothesis.

Now consider values of j (if such exist) for which

2dpje/n > 1. (12)

Then clearly j > 1. Replace (7) by

P (Ln = j−1) = (1−dp(j − 1)e/n)P (Ln−1 = j−1)+(dp(j − 2)e/n)P (Ln−1 = j−2) (13)

and replace (9) by

P (Ln = j + 1) ≥ (dpje/n)P (Ln−1 = j). (14)

Then by (13), (8), and (14), it follows that

P (Ln = j + 1) + P (Ln = j − 1)− P (Ln = j) ≥ (2dpje/n− 1)P (Ln−1 = j)

+(dp(j − 2)e/n)P (Ln−1 = j − 2)− (2dp(j − 1)e/n− 1)P (Ln−1 = j − 1). (15)

If 2dp(j − 1)e/n ≤ 1 then by (12) clearly the value in the right hand side of (15) is non-

negative. If

2dp(j − 1)e/n− 1 > 0 (16)

we shall show that (16) implies

dp(j − 2)e/n ≥ 2dp(j − 1)e/n− 1 (17)

so that the right hand side of (15) is greater or equal to

(2dp(j − 2)e/n− 1)[P (Ln−1 = j) + P (Ln−1 = j − 2)− P (Ln−1 = j − 1)] ≥ 0 (18)

where the last inequality follows from (16) and the induction hypothesis. To see (17) note

that dp(j − 2)e ≥ dp(j − 1)e− 1. Thus (17) will follow if we show that (dp(j − 1)− 1)/n ≥
2dp(j − 1)e/n− 1 which is equivalent to

n− 1 ≥ dp(j − 1)e. (19)

9



Since j ≤ n are the only values of interest, we have j − 1 ≤ n − 1, for which (19) clearly

holds.

We now turn to the main result of showing that the average number of items that are

retained is of order np. From Assertion i) at the end of Section 2,

E(Ln|Ln−1) = Ln−1 + dpLn−1e /n. (20)

Hence,

E(Ln|Ln−1) = Ln−1 + pLn−1/n + (dpLn−1e − pLn−1)/n (21)

Let Mn = E(Ln). Then

Mn = Mn−1(1 + p/n) + dn−1/n. (22)

We are now prepared to state and prove the theorem.

Theorem 2 Let 0 < p ≤ 1. Mn/np → cp as n →∞ with 0 < cp < ∞, where Mn = E(Ln).

Proof. By the Remark in Section 3, c1 = 1/2. For 0 < p < 1, let Tn = Mn/np. From (22)

we have that

Tn = ((n− 1)/n)p(1 + p/n)Tn−1 + dn−1/n
1+p. (23)

The key to the proof is showing that ∆n ≡ Tn − Tn−1 eventually becomes positive and

remains positive. Since Tn =
∑n

j=1 ∆j with T0 ≡ 0 and Tn will be shown to be bounded, it

follows that Tn converges.

By definition of ∆j, and (23)

∆j = bjTj−1 + dj−1/j
1+p (24)

where bj = ((j − 1)/j)p(1 + p/j)− 1.

The basis of the proof is in the result that bj < 0 and increases to 0 as j →∞. This is

a straightforward calculus argument.

Let x = 1/j and f(x) = (1− x)p(1 + px)− 1. Thus, f(0) = 0. Also

f ′(x) = p(1− x)p − (1 + px)p(1− x)p−1

= p(1− x)p−1[1− x− 1− px]

= −p(1 + p)x(1− x)p−1 < 0.

Since x = 1/j, this shows that bj increases to zero as j →∞.

From bj < 0 and (24) it follows that

Tn ≤ 1 +
n∑

j=2

1

j1+p
≤ 1 +

∫ n

x=1
(1/x)1+pdx ≤ 2/p (25)
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so Tn is bounded. To show that ∆n is eventually non-negative note that (by (24)) ∆n ≥ 0 ↔
Tn−1 ≤ − dn−1

n1+pbn
. It is again a straightforward calculus argument to show that− 1

n1+pbn
→∞.

Since by (25) Tn ≤ 2/p, for all n, that coupled with Lemma 1 will complete the proof.

Consider

−j1+pbj = [1−
(

j − 1

j

)p

(1 + p/j)]j1+p. (26)

Again, let x = 1/j and so −j1+pbj becomes

g(x) = [1− (1− x)p(1 + px)]/x1+p. (27)

We need to show that g(x) → 0 as x → 0. By L’hospital’s rule

lim
x→0

g(x) = lim
x→0

−(1− x)pp + p(1− x)p−1(1 + px)

(1 + p)xp

= lim
x→0

p(1− x)p−1(1 + px− 1 + x)

(1 + p)xp

= lim
x→0

p
(1− x)p−1x(1 + p)

(1 + p)xp

= lim
x→0

p(
x

1− x
)1−p = 0.

We just showed that E(Ln/np) converges as n →∞. Next we show that Ln/n
p has an

almost sure limit. We prove this by showing that Ln/(n+1)p is a (positive) submartingale

and that V ar(Ln/(n + 1)p) is bounded.

Theorem 3 limn→∞ E(L2
n/n

2p) exists and is finite.

Proof. Let Un = E(L2
n/n2p). We first show that there exist constants 0 < c1(p) < c2(p) <

∞ such that for all n ≥ 1

c1(p) < Un < c2(p). (28)

The left side of inequality (28) follows trivially from Theorem 2, since Un ≥ (ELn/n
p)2 →

c2
p. For the right side inequality of (28), note that

E(L2
n|Fn−1) = L2

n−1

(
1− dpLn−1e

n

)
+ (Ln−1 + 1)2 dpLn−1e

n

≤ L2
n−1 + (2Ln−1 + 1)

pLn−1 + 1

n

= L2
n−1

(
1 +

2p

n

)
+ Ln−1

p + 2

n
+

1

n
. (29)
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Thus

Un ≤ Un−1

(
n− 1

n

)2p (
1 +

2p

n

)
+

ELn−1(p + 2)

n1+2p
+

1

n1+2p
.

Therefore,

Un − Un−1 < Un−1

{(
n− 1

n

)2p (
1 +

2p

n

)
− 1

}
+

E(Ln−1/(n− 1)p)(p + 2)

n1+p
+

1

n1+2p
. (30)

Note that from the bound on f ′(x) used in the proof of Theorem 2 with 2p replacing p(
n−1

n

)2p (
1 + 2p

n

)
− 1 < 0. Since E(Ln−1/(n − 1)p) is bounded, it follows from (30) that

(with U0 = 0)

Un =
n∑

j=1

(Uj − Uj−1) <
∞∑

j=1

const

j1+p
< ∞,

which accounts for (28).

Now denote ∆j = Uj−Uj−1, so that Un =
∑n

j=1 ∆j. By virtue of (28) to complete the proof

it suffices to show that ∆j > 0 for all j sufficiently large. By (29)

E(L2
n|Fn−1) = L2

n−1 + 2(Ln−1 + 1)
dpLn−1e

n
≥ L2

n−1 + (2Ln−1 + 1)
pLn−1

n
.

Thus

∆j ≥ Uj−1





(
j − 1

j

)2p (
1 +

2p

j

)
− 1



 +

pE(Lj−1/j
p)

j1+p
.

Now for some 0 < θ < 1

(
j − 1

j

)2p

=

(
1− 1

j

)2p

= 1− 2p

j
+

p(2p− 1)

j2

(
1− θ

j

)−2(1−p)

.

Hence there exists a constant c3 > 0 such that for all j ≥ 1

(
j − 1

j

)2p (
1 +

2p

j

)
− 1 > −c3

j2
.

Also, there exists a constant c4 > 0 such that E(Lj−1/j
p) > c4 for all j > 1. But then, for

all j sufficiently large, ∆j ≥ −c3c2(p)+pc4j1−p

j2 > 0.

Corollary 1 limn→∞ V ar(Ln/np) exists and is finite.

Theorem 4 Ln

(n+1)p is a submartingale that converges as n → ∞ almost surely to a non-

degenerate finite random variable Λ such that limn→∞ E(Ln/(n + 1)p) = EΛ < ∞, for all

0 < p ≤ 1.
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Proof Let jn = dpLne.

E(Ln|Fn−1) =
jn−1

n
(Ln−1 + 1) + (1− jn−1

n
)Ln−1 = Ln−1(1 +

p

n
) +

jn−1 − pLn−1

n

so

E
(

Ln

(n+1)p |Fn−1

)
=

Ln−1

np

(
n

n + 1

)p (
1 +

p

n

)
+

jn−1 − pLn−1

n(n + 1)p

≥ Ln−1

np

[(
n

n + 1

)p (
1 +

p

n

)]

≥ Ln−1

np
.

Therefore, Ln/(n+1)p is a positive submartingale. Because E(Ln/(n+1)p) and E(L2
n/(n+

1)2p) are both bounded (by virtue of Theorems 2 and 3), Theorem 4 follows from the sub-

martingale convergence theorem.

5 The Quality of the Retained Group of Observations

Acquired by a p−Percentile Rule

In the previous sections, the focus was on the size of the group retained by the p−percentile

rule. Here, attention is focused on its quality.

In general p−percentile rules yield a qualitative crop. A prime indication of this is

Theorem 1 - after n observations of which Ln have been retained, the best dpLne of all n

observations seen heretofore are among the retained set. As will be shown below in this

section, the other retained observations are generally also of high quality.

To this end, the following theorem considers the average rank of the retained items An,

which equals Qn/Ln.

Theorem 5 There exist constants 0 < bp < ∞ such that for 0 < p ≤ 1,

E (An) /an(p) →n→∞ bp

where

an(p) =





n1−p if p < 1/2

n1/2logn if p = 1/2

np if p > 1/2
and

bp =





c1/2/8 if p = 1/2
p2

2(2p−1)
cp if p > 1/2

, where cp is the limit of E(Ln/np).

13



Proof: From Assertion iii) at the end of Section 2, with r(Ln) = jn = dpLne ,

E (An+1| Fn) = An

[
1 +

1 + Ln − jn

(n + 1)(Ln + 1)

]
+

jn(jn − 1)/2

(n + 1)Ln

. (31)

Let Yn = An

n1−p . Equation (31) implies

E (Yn+1|Fn) = GnYn + Bn (32)

where

Gn =
(

n

n + 1

)1−p
(

1 +
1 + Ln − jn

(n + 1)(Ln + 1)

)
(33)

and

Bn =
jn(jn − 1)/2

Ln(n + 1)2−p
. (34)

We consider Bn first. Since pLn ≤ jn < pLn + 1,

(p2Ln − p)/2

(n + 1)2−p
≤ Bn <

(p2Ln + p)

2(n + 1)2−p
. (35)

By Theorem 2, ELn/np −→
n→∞ cp, which implies

EBnn2−2p −→
n→∞ p2cp/2. (36)

We consider Gn next. Let en = pLn + p− dpLne , so that

1 + Ln − jn

Ln + 1
= 1− p +

en

Ln + 1
. (37)

Since ( n
n+1

)1−p = 1− 1−p
n+1

+ O( 1
n2 ) and since |en| ≤ 1,

Gn = 1 +
en

(Ln + 1)(n + 1)
+ O

(
1

n2

)
(38)

where O( 1
n2 ) contains elements that multiply en, but nevertheless |n2O( 1

n2 )| is bounded in

n since |en| ≤ 1. Substituting equation (38) into equation (32) yields

E(Yn+1|Fn) = Yn +

[
en

(Ln + 1)(n + 1)
+ O

(
1

n2

)]
Yn + Bn. (39)

After taking expectations in equation (39), it follows that

EYn+1 =
n∑

m=0

[EYm+1 − EYm] =
n∑

m=1

EDm +
n∑

m=1

EBm (40)

where Dm =
[

em

(Lm+1)(m+1)
+ O

(
1

m2

)]
Ym and Y0 = 0.

Our aim is to show that
∑n

m=1 EDm and
∑n

m=1 EBm (or variants thereof for p ≥ 1
2
)

have finite limits as n →∞. For the first sum, since Lm ≤ m, it is sufficient to show that

E
∑n

m=0
Ym

(Lm+1)(m+1)
has a finite limit. Now:
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E

(
Ym

(Lm + 1)(m + 1)

)
= E

(
Am

m1−p(m + 1)(Lm + 1)

)

≤ 1

m2−p

{
E

(
Am

1

mε
I{Lm ≥ mε}

)
+ E (AmI{Lm < mε})

}
. (41)

By virtue of Lemma A.1 (in the Appendix) there exists a constant 0 < cε,p < ∞ such

that for 0 < ε < 1/2

P (Lm < mε) ≤ cε,p

m1−d1+ 1
peε for all 1 ≤ m < ∞. (42)

Note that Am ≤ m. Therefore choosing 0 < ε < (1 − p)/γp (with γp =
⌈
1 + 1

p

⌉
), it

follows that

E

∣∣∣∣∣
emYm

(Lm + 1)(m + 1)

∣∣∣∣∣ <
1

m2−p+ε
E(Am) + cε,p/m

2−p−γpε. (43)

We now divide the proof into three cases.

Case(i): p < 1/2.

a)
∑∞

m=1 EBm < ∞ by virtue of equation (36).

b)
∑∞

m=1
1

m2−p+ε E(Am) =
∑∞

m=1
1

m1+ε/2 E
Am

m1−p+ε/2 < ∞ by virtue of Lemma A.2 (in the

Appendix).

c) Clearly,
∑∞

m=1 cε,p/m
2−p−γpε < ∞.

Case(ii): p = 1/2.

We need to divide both sides of equation (40) by log n.

a)
∑n

m=1 EBm/log n −→
n→∞ p2cp/2 = c1/2/8 by virtue of equation (36).

b)
∑∞

m=1
1

m2−p+ε E(Am) =
∑∞

m=1
1

m1+ε/2 E
Am

m1−p+ε/2 < ∞ by virtue of Lemma A.2 (in the

Appendix). Hence ∑n
m=1

1
m2−p+ε E(An)

log n
−→
n→∞ 0.

c) Clearly,
∑n

m=1
cε,p/m2−p−γpε

log n
−→
n→∞ 0 (since the numerator is summable). Hence

E(An)

n1/2 log n
−→
n→∞ c1/2/8.

Case(iii): p > 1/2.

We need to divide both sides of equation (40) by n2p−1.
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a)
∑n

m=1 EBm/n2p−1 −→
n→∞ p2

2(2p−1)
cp by virtue of equation (36).

b)
∑n

m=1
1

m2−p+ε E(Am)

n2p−1 =

∑n

m=1
1

m2−2p+ε/2
E Am

mp+ε/2

n2p−1
−→
n→∞ 0 by virtue of Lemma A.3 (in the Ap-

pendix).

c) For small enough ε,
∑n

m=1
cε,p/m2−p−γpε

n2p−1
−→
n→∞ 0 (since the numerator is summable). Hence

E(An)

np

−→
n→∞

p2

2(2p− 1)
cp.

The theorem below makes use of a result in Robbins and Siegmund(1971) that states:

If (for each n = 1, 2, · · ·) Yn, Hn, Bn and Cn are non-negative Fn− measurable random

variables such that

E(Yn+1|Fn) ≤ (1 + Hn)Yn + Bn − Cn

where Hn = (Gn−1)+ in our context, then limn→∞ Yn exists and is finite and
∑∞

n=1 Cn < ∞
a.s. on {∑∞

n=1 Hn < ∞,
∑∞

n=1 Bn < ∞} .

Theorem 6

(i) If 0 < p < 1
2
, then An

n1−p converges almost surely as n →∞ to a non-degenerate random

variable.

(ii) If 1
2

< p ≤ 1, then Qn/L
2
n
−→
n→∞ p2

2(2p−1)
almost surely. Therefore, An

np converges almost

surely as n →∞ to a non-degenerate random variable.

(iii) If p = 1
2
, then Qn/L2

n

log n
−→
n→∞ 1

8
almost surely. Therefore, An

n
1
2 log n

converges almost surely

as n →∞ to a non-degenerate random variable.

Proof.

(i) Regard equation (39). Note that Bn of (34) can be written as Bn = (p2Ln+θp)/2
(n+1)2−p where

|θ| ≤ 1. The almost sure convergence of An

n1−p is the result of a direct application of

the Theorem of Robbins and Siegmund stated above. The non-degeneracy of the

limit follows from the fact that the first observations have rank of order n and their

influence on An

n1−p does not vanish as n →∞.

(ii) The idea of the proof is to show that the stochastic process{Qn/L
2
n} gets “pushed

downward” when Qn

L2
n

> p2

2(2p−1)
, it gets “pushed upward” when Qn

L2
n

< p2

2(2p−1)
, and

there is no real push(upward or downward) when Qn

L2
n
≈ p2

2(2p−1)
.

Denote: δn = dpLne−pLn = jn−pLn. Note that 0 ≤ δn < 1. Similar to the derivation

of (3),
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E

(
Qn+1

L2
n+1

∣∣∣∣∣Fn

)
=

jn

n + 1

Qn + Ln + 1

(Ln + 1)2

+
n + 1− jn

(n + 1)L2
n

[
Qn +

Qn − 1
2
jn(jn + 1)

n + 1− jn

− jn(Ln − jn)

n + 1− jn

]

=
Qn

L2
n

[
1 +

1

n + 1
− jn

n + 1
+

jn

n + 1

L2
n

(Ln + 1)2

]

−
1
2
jn(2Ln − jn + 1)

(n + 1)L2
n

+
jn

(n + 1)(Ln + 1)

=
Qn

L2
n

[
1 +

1

n + 1

(
1− (Ln + 1)2 − L2

n

(Ln + 1)2
jn

)]

−
1
2
dpLne (2Ln − dpLne+ 1)

(n + 1)L2
n

+
dpLne

(n + 1)(Ln + 1)

=
Qn

L2
n

[
1 +

1

n + 1

(
1− (2Ln + 1)(pLn + δn)

(Ln + 1)2

)]

−
1
2
(pLn + δn)(2Ln − pLn − δn + 1)

(n + 1)L2
n

+
pLn + δn + p− p

(n + 1)(Ln + 1)

=
Qn

L2
n

[
1 +

1

n + 1

(
1− (2(Ln + 1)− 1)[p(Ln + 1) + δn − p]

(Ln + 1)2

)]

−
1
2
p(2− p)− p

n + 1
−

1
2
δn(2− 2p) + 1

2
p

(n + 1)Ln

+
1
2
δ2
n − 1

2
δn

(n + 1)L2
n

+
δn − p

(n + 1)(Ln + 1)

=
Qn

L2
n

[
1 +

1− 2p

n + 1
− 1

n + 1

2δn − 3p

Ln + 1
+

δn − p

(n + 1)(Ln + 1)2

]

+
1
2
p2

n + 1
− δn(1− p) + 1

2
p

(n + 1)Ln

−
1
2
δn(1− δn)

(n + 1)L2
n

+
δn − p

(n + 1)(Ln + 1)

=
Qn

L2
n


1 +

1− 2p +
1
2
p2

Qn/L2
n

n + 1
+

3p− 2δn + δn−p
Ln+1

(n + 1)(Ln + 1)




+

[
δn − p

(n + 1)(Ln + 1)
− δn(1− p) + 1

2
p

(n + 1)Ln

−
1
2
δn(1− δn)

(n + 1)L2
n

]
. (44)

Note that when Ln is large, the term that can have the greatest influence regarding

whether E
(

Qn+1

L2
n+1

∣∣∣∣Fn

)
is larger or smaller than Qn

L2
n

is the term
1−2p+

1
2 p2

Qn/L2
n

n+1
, and that

1− 2p +
1
2
p2

Qn/L2
n

≥, < 0 ⇔ Qn

L2
n

≤, >
p2

2(2p− 1)
.

Also note that
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1. Qn+1 = Qn + Ln + 1 if Ln+1 = Ln + 1

2. Qn ≤ Qn+1 ≤ Qn + Ln − dpLne if Ln+1 = Ln.

Therefore,

1. if Ln+1 = Ln + 1, then Qn+1

L2
n+1

= Qn

L2
n+1

+ 1
Ln+1

,

2. if Ln+1 = Ln, then 0 ≤ Qn+1

L2
n+1

− Qn

L2
n
≤ 1−p

Ln

so that in both cases, if Qn

L2
n
≤ c0 for some 1

2
≤ p2

2(2p−1)
< c0 < ∞, then (since

Qn ≥ Ln(Ln + 1)/2)

1

Ln + 1
>

Qn+1

L2
n+1

− Qn

L2
n

≥ 1

Ln + 1
− 2Ln + 1

(Ln + 1)2

Qn

L2
n

≥ 1

Ln + 1
− 2Ln + 1

(Ln + 1)2
c0

= −(2c0 − 1)Ln + c0 − 1

(Ln + 1)2

> −2c0

Ln

. (45)

It follows that when Qn

L2
n
≤ c0

∣∣∣∣∣
Qn+1

L2
n+1

− Qn

L2
n

∣∣∣∣∣ <
2c0

Ln

. (46)

Let 0 < ε < 1 and define c0 = p2

2(2p−1)
+ ε. It follows from equation (44) that when

Ln > 280
ε

E

(
Qn+1

L2
n+1

∣∣∣∣∣Fn

)
− Qn

L2
n

< 0 on
Qn

L2
n

≥ c0 (47)

and from equation (46) that

∣∣∣∣∣E
(

Qn+1

L2
n+1

∣∣∣∣∣Fn

)
− Qn

L2
n

∣∣∣∣∣ <
2c0

Ln

on
Qn

L2
n

< c0. (48)

Now note that Q1

L2
1

= 1. Let ζ0 = ξ0 = 0, and define {ζi, ξi}∞i=1 recursively as follows:

If p2 > 2(2p− 1) then ξ1 = 1 and for i ≥ 1

1. ζi = min
{
n

∣∣∣n > ξi,
Qn

L2
n
≥ p2

2(2p−1)

}
; ζi = ∞ if ξi = ∞ or if no such n exists.

2. ξi+1 = min
{
n

∣∣∣n > ζi,
Qn

L2
n

< p2

2(2p−1)

}
; ξi+1 = ∞ if ζi = ∞ or if no such n

exists.

If p2 ≤ 2(2p− 1) then ζ1 = 1 and for i ≥ 1
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1. ξi = min
{
n

∣∣∣n > ζi,
Qn

L2
n

< p2

2(2p−1)

}
; ξi = ∞ if ζi = ∞ or if no such n exists.

2. ζi+1 = min
{
n

∣∣∣n > ξi,
Qn

L2
n
≥ p2

2(2p−1)

}
; ζi+1 = ∞ if ξi = ∞ or if no such n

exists.

Let 1 ≤ j ≤ ∞.

For p such that p2 ≤ 2(2p− 1) define

Yn =





Qn

L2
n
−∑j−1

i=1
2c0

(ξi+1)Lξi
for n = ζj, ζj + 1, · · · , ξj

Qξj

L2
ξj

−∑j
i=1

2c0
(ξi+1)Lξi

for n = ξj + 1, · · · , ζj+1 − 1.

For p such that p2 > 2(2p− 1) define

Yn =





Qn

L2
n
−∑j

i=1
2c0

(ξi+1)Lξi
for n = ζj, ζj + 1, · · · , ξj+1

Qξj

L2
ξj

−∑j−1
i=1

2c0
(ξi+1)Lξi

for n = ξj + 1, · · · , ζj − 1.

The series {Yn}∞n=1 satisfies the conditions of Robbins and Siegmund (1971), so it

converges a.s. to a finite limit. Since
∑∞

i=1
1

(i+1)Li
< ∞ almost surely, it follows that

{Qn

L2
n
∨ p2

2(2p−1)
}∞n=1 has an a.s. finite limit on the event {ζi < ∞ for all i < ∞}, and

that {Qn

L2
n
}∞n=1 has an a.s. finite limit on the event {ξi < ∞, ζi = ∞ for some i < ∞}

when p2 > 2(2p − 1) and on the event {ξi < ∞, ζi+1 = ∞ for some i < ∞} when

p2 ≤ 2(2p− 1).

For the part of the Qn

L2
n

that is below p2

2(2p−1)
, note that it follows from equation (46)

that any upcrossing of Qn

L2
n

from below p2

2(2p−1)
to above p2

2(2p−1)
will first lead to a value

of Qn

L2
n

that is less than c0 whenever Ln > 2c0
ε

.

In a manner similar to the former argument,

for p such that p2 ≤ 2(2p− 1) define

Wn =





p2

2(2p−1)
−

(
Qn

L2
n
−∑j

i=1
2c0

(ζi+1)Lζi

)
for n = ξj, ξj + 1, · · · , ζj+1

p2

2(2p−1)
−

(
Qζj

L2
ζj

−∑j−1
i=1

2c0
(ζi+1)Lζi

)
for n = ζj + 1, · · · , ξj − 1

and for p such that p2 > 2(2p− 1) define

Wn =





p2

2(2p−1)
−

(
Qn

L2
n
−∑j−1

i=1
2c0

(ζi+1)Lζi

)
for n = ξj, ξj + 1, · · · , ζj

p2

2(2p−1)
−

(
Qζj

L2
ζj

−∑j
i=1

2c0
(ζi+1)Lζi

)
for n = ζj + 1, · · · , ξj − 1.

The series {Wn} satisfies the conditions of Robbins and Siegmund (1971), so it con-

verges a.s. to a finite limit. Since
∑∞

i=1
1

(i+1)Li
< ∞ almost surely, it follows that

{Qn

L2
n
∧ p2

2(2p−1)
}∞n=1 has an a.s. finite limit on the event {ξi < ∞ for all i < ∞} and
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that {Qn

L2
n
}∞n=1 has an a.s. finite limit on the event {ζi < ∞, ξi = ∞ for some i < ∞}

when p2 > 2(2p − 1) and on the event {ζi < ∞, ξi+1 = ∞ for some i < ∞} when

p2 ≤ 2(2p− 1).

Note that {ζi < ∞ for all i < ∞}={ξi < ∞ for all i < ∞}, and since both {Yn} and

{Wn} converge a.s. to a finite limit (on this set, too), necessarily Qn

L2
n

−→
n→∞ p2

2(2p−1)
a.s.

on this set.

Therefore: we have proven that Qn

L2
n

converges almost surely to a finite limit. It re-

mains to show that his limit is p2

2(2p−1)
.

Towards this end, note that by equation (47), once Ln becomes greater than 280
ε

, the

variables Qn

L2
n

constitute a positive supermartingale as long as it exceeds c0. It is easy

to see that once Ln becomes large enough, by virtue of equation (44) there exists a

constant c1 > 0 such that when Qn

L2
n
≥ c0

E

(
Qn+1

L2
n+1

∣∣∣∣∣Fn

)
− Qn

L2
n

≤ − c1

n + 1
. (49)

Therefore, (since
∑∞

n=m− c1
n+1

= −∞,) it follows that if τm = min{n|n > m, Qn

L2
n

< c0},
then necessarily P (τm = ∞|Qm

L2
m
≥ c0) = 0. Since ε was arbitrary, it follows that

limn→∞
Qn

L2
n
≤ p2

2(2p−1)
almost surely. A similar argument obtains that Qn

L2
n

is a positive

bounded submartingale as long as it is below p2

2(2p−1)
− ε once Ln is large enough, and

E
(

Qn+1

L2
n+1

∣∣∣∣Fn

)
≥ c2

n+1
for some constant c2 > 0. An argument analogous to the above

obtains limn→∞
Qn

L2
n
≥ p2

2(2p−1)
almost surely. Hence we have shown that p2

2(2p−1)
is the

a.s. limit of Qn

L2
n
.

(iii) For p = 1
2
, note that

log n

log(n + 1)
=

log n

log n + log(1 + 1/n)
= 1− 1 + o(1)

n log n
. (50)

Applying this to equation (44) with p = 1
2
, obtain

E

(
Qn+1/L

2
n+1

log(n + 1)

∣∣∣∣∣Fn

)

=
Qn/L

2
n

log n


1− 1 + o(1)

n log n
+

1

8(n + 1) log n

1
Qn/L2

n

log n

+
3/2− 2δn +

δn− 1
2

Ln+1

(n + 1)(Ln + 1)


 +

[
δn − 1

2

(n + 1)(Ln + 1)
−

1
2
δn + 1/4

(n + 1)Ln

−
1
2
δn(1− δn)

(n + 1)L2
n

]
. (51)
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The situation here is similar to the one in (ii) :

• E
(

Qn+1/L2
n+1

log(n+1)

∣∣∣∣Fn

)
< Qn/L2

n

log n
when Qn/L2

n

log n
> 1

8
+ ε (and Ln is large enough),

• E
(

Qn+1/L2
n+1

log(n+1)

∣∣∣∣Fn

)
> Qn/L2

n

log n
when Qn/L2

n

log n
< 1

8
− ε

•
∣∣∣∣
Qn+1/L2

n+1

log(n+1)
− Qn/L2

n

log n

∣∣∣∣ < const
nLn log n

when 1/8 lies between Qn/L2
n

log n
and

Qn+1/L2
n+1

log(n+1)
. The

proof of (iii) is analogous to that of (ii) (with c1
[n log n]

replacing c1/(n + 1) in

equation (49). The details are omitted.

Remark Our results demonstrate clearly that, when using a p−percentile rule, there

are two forces at play: the initial observations that are retained and the rest of the retained

set. Since Ln is of order np, the contribution of the first few observations to the average

rank is of order n1−p(since their ranks are typically of order n). Most of the observations

will have relatively small rank, and hence contribute np to the average. Therefore, when p is

small, the first few observations dominate, whereas, when p is large, a sufficient number of

observations is retained to dilute the effect of the initial items that are kept on the average

rank. (When p = 1
2
, although the contribution of the very first few retained observations

vanishes, the first part of the observations that are kept and the other retained items both

contribute to the average rank.) The effect is so strong that, when p > 1
2
, the average rank

is essentially proportional to the size of the retained set of observations.

6 Simulations

The results in the previous sections describe the performance of rank-based rules; specif-

ically, rules that retain an item if its rank is sufficiently good compared to items already

kept. The class of p−percentile rules, that essentially retains items in the top p−percentile

among items already kept, is showcased.

Let n refer to the number of observed items with Ln and An = Qn/Ln denoting the

number of items kept and average rank of the retained items, respectively, as above. Note

that this average rank is from the retained Ln of the n ranks that are observed to that

point. Hence the rank of an item might change as we observe additional items. The results

can be summarized as follows:

i) Remarkably, if the observed items are ranked from 1 (best) to n (worst), then necessarily

the best dpLne items will be kept.

ii) As n → ∞ , Ln/n
p converges almost surely to a non-degenerate distribution and

E(Ln)/np converges to a constant.

iii) As n →∞ , An/an(p) converges almost surely to a non-degenerate distribution and

E(An)/an(p) converges to a constant where an(p) = n1−p if p < 1/2, an(1/2) = n1/2 log n

and an(p) = np if p > 1/2.
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The aim of this section is to illustrate these results by simulation. To this end, the

number of items that are seen is fixed to be n = 10, 000. For each sample k, the ranks of

the items that are kept using 20 different percentiles rules corresponding to p = .05j for

j = 1, . . . , 20, are recorded. These results are summarized into L(p, k) and A(p, k) - the

number of items retained and the average rank (from among 1 to 10,000) of the retained

items using the p−percentile rule for replication k. This process was replicated 10,000

times so that k varies from 1 to 10,000.

A representative replication for the median rule is presented in Table 1 to underscore

the remarkable property inherent in the first result. Since the average number of items that

are kept is approximately 118, the first replication with exactly 118 retained observations

is featured.

In Panel 1 of Table 1, where the 118 ranks are kept and sorted, it is evident that

i) The best 59 (half of 118) from among the 10,000 that are seen are kept.

ii) Even if an item is not among the top 59, if it is kept it is still a relatively good item. 83

out of 118 (70%) of the items that are kept are among the top 1% (rank within the first

100 out of 10,000 observations). In addition, only 4 out of 118 (3.4%) of the items that are

kept are not in the top 10%.

In Panel 2 of Table 1, the ranks are displayed in the order in which they are kept.

Interestingly, all items that are kept after the 4th item is retained are in the top 10% of all

items. Since there is a tendency for the items that are retained later to be better than those

that are retained towards the beginning, a modification of the median rule that “keeps”

for comparative purposes, but does not formally retain the first m items, should perform

very well.

Finally, the implication of result 1 that items that are retained are very good ones,

is evident from Table 2. The fraction of times the retained rank Rn
i is less than r, for r

ranging from 100, 200, · · · , 10, 000, is computed for all 20 percentile rules across all 10,000

replications. For example, for the median rule, about 70% of the items that are kept have

ranks within the first 100 and only 3.4% of the retained ranks are worse than 1,000.

The first column of Table 3 defines the specific percentile rule. The second and third

columns illustrate the results for the number of items that are retained as appears in

Section 3.

Column 2 reflects Theorem 2. Alongside each value of p is an estimate of Mn/n
p for n =

10, 000, where Mn is estimated by averaging Ln over the 10, 000 replications. The number

immediately below it is the standard deviation of Ln/n
p over the 10, 000 replications. For

example, for the median rule (p = 1/2), Mn/np is estimated to be 1.18. Since the (observed)

standard deviation is 0.77, the standard error is 0.77/
√

10, 000 = 0.0077.

Has Mn/n
p essentially converged to its limit at n = 10, 000? To answer this question,

we plotted the estimated Mn/np for n = 1, 000, 2, 000, · · · , 10, 000 in Figure 1. Since the

lines are essentially horizontal for p ≥ 0.25, it appears that Mn/np is approximately cp even

if n is as small as 1, 000. When p is small, the rate at which Mn/n
p converges is apparently
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slower. The corresponding graph for the standard deviation (it is not shown) indicates that

the variability of Ln/n
p stabilizes already for n = 1, 000 for all values of p.

Finally, it is known that Ln/n
p → U(0, 1) when p = 1. The average of 0.49974 (approx-

imately 0.5) and standard deviation of 0.28933 (approximately 1/
√

12) are consistent with

this finding. Likewise, under a limiting U(0, 1) distribution, the average proportion of ob-

servations whose rank (among the 10,000) is less than r = 10, 000x should be approximately

x[1− ln x], which is consistent with the last line of Table 2.

Column 3 provides estimates for the expected average number of items retained. Obvi-

ously, we tend to retain more observations as p increases. For example, for the median rule,

the average number of items that are retained are about 118 of the 10, 000 items observed.

When p = 1, essentially half of the observed items are retained.

We now turn to Columns 4 and 5 which illustrate the quality of the retained items in

terms of their average rank.

Column 4 reflects Theorem 5. The values along p are estimates of bp, provided that the

expected values of the average rank, suitably normalized by an(p), has essentially converged

to their corresponding limiting values when n = 10, 000. For the median rule, the value

of 0.21404 is intended to approximate c1/2/8 ≈ 1.18074/8 = 0.1476. The discrepancy is

evident from Figure 2 where the graph for p = 0.5 is clearly decreasing suggesting that the

limit has not nearly been reached even when n = 10, 000.

However, when p = 0.75, bp = (0.75)2c0.75 ≈ 0.56725(0.90699) = 0.5102. This value is

very close to 0.50989 as appear in Table 3. Figure 3 supports this finding as the graph for

p = 0.75 is nearly horizontal.

Column 5 provides the average over the replications, of the average rank of the retained

items. This should be of order n1−p for p < 1/2, np for p > 1/2 and
√

n log n when p = 1/2.

Table 3 supports the conclusion that the average rank of retained items is minimized for

the median rule. The average rank of 197 (with standard error of about 1) is smaller

than the corresponding values for all other p reported. Since we automatically retain the

first observation whose average rank is 5, 000, about 5, 000/118.074 = 42.35, it follows

that 42 of the 197 is reflected in the first item alone. The median rule turns out to be

superior based on average rank, as it balances best amortizing the first few retained items

by keeping a sufficient number of items, while not keeping too many items some of which

would necessarily be inferior.

Column 6 supports the finding that Qn/L2
n converge almost surely to a constant for

p > 1/2. Note that the standard deviation of Qn/L2
n over the 10, 000 replications is

virtually zero (and gets smaller) for large p.

The last column of Table 3 presents the correlation between the number of items that

are retained and the sum of the ranks of these items across the 10, 000 replications. As

anticipated this correlation is positive and fairly high for p ≥ 1/2. It is again the behavior

of the rank of the first retained observation that affects the correlation, particularly when

p is small.
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Table 1: Description of a Representative Case for the Median Rule

Number retained Range Ranks

59 1-59 1,2,. . . 59

16 60-79 60 61 62 64 65 66 67 68 69 70 71 73 74 75 76 79

8 80-100 80 83 86 87 89 91 92 99

7 101-150 102 106 107 115 131 139 144

11 151-200 154 158 159 164 172 177 184 193 195 196 197

4 210-300 211 222 239 252

6 301-500 304 318 375 397 416 456

3 501-1,000 549 742 999

4 > 1,000 1811 1973 2795 6554

118

Panel 1− Ranks of representative case

Position Rank of Item

1-10 6554 2795 1973 1811 999 304 742 211 456 197

11-20 416 549 375 131 397 222 86 195 193 239

21-30 318 49 252 70 184 107 144 96 154 196

31-40 43 75 106 139 172 159 44 177 62 37

41-50 164 24 2 83 158 42 67 40 102 92

51-60 4 30 89 55 115 65 1 79 29 39

61-70 5 28 91 8 75 56 87 69 53 16

71-80 9 38 25 76 32 60 17 27 80 57

81-90 58 7 21 20 48 3 61 22 36 14

91-100 47 73 34 66 71 45 46 59 11 15

101-110 41 68 52 26 64 12 23 50 51 54

111-118 6 33 31 19 18 13 10 35

Panel 2− Ranks of representative case in order generated
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Table 2: Fraction Among the Top r Retained Using a Percentile Rule

p\r 100 200 300 500 1,000 2,000 3,000 5,000 10,000

0.05 0.5375 0.6078 0.6490 0.7009 0.7709 0.8408 0.8809 0.9315 1.0000

0.10 0.5584 0.6259 0.6654 0.7149 0.7816 0.8482 0.8864 0.9346 1.0000

0.15 0.6351 0.6977 0.7322 0.7735 0.8275 0.8806 0.9107 0.9484 1.0000

0.20 0.6782 0.7389 0.7712 0.8087 0.8561 0.9009 0.9261 0.9572 1.0000

0.25 0.7212 0.7827 0.8136 0.8479 0.8885 0.9244 0.9438 0.9676 1.0000

0.30 0.7526 0.8201 0.8515 0.8843 0.9198 0.9480 0.9621 0.9786 1.0000

0.35 0.7547 0.8342 0.8691 0.9037 0.9386 0.9634 0.9748 0.9865 1.0000

0.40 0.7606 0.8490 0.8848 0.9185 0.9499 0.9708 0.9800 0.9892 1.0000

0.45 0.7326 0.8479 0.8907 0.9282 0.9600 0.9785 0.9857 0.9925 1.0000

0.50 0.7062 0.8463 0.8954 0.9352 0.9658 0.9821 0.9882 0.9938 1.0000

0.55 0.5236 0.7488 0.8440 0.9165 0.9646 0.9855 0.9918 0.9965 1.0000

0.60 0.4344 0.6700 0.7960 0.9019 0.9651 0.9877 0.9936 0.9974 1.0000

0.65 0.3353 0.5512 0.6947 0.8509 0.9573 0.9883 0.9946 0.9981 1.0000

0.70 0.2377 0.4124 0.5478 0.7361 0.9271 0.9854 0.9944 0.9985 1.0000

0.75 0.1884 0.3309 0.4471 0.6251 0.8673 0.9798 0.9940 0.9987 1.0000

0.80 0.1382 0.2462 0.3385 0.4893 0.7428 0.9499 0.9895 0.9987 1.0000

0.85 0.1027 0.1837 0.2544 0.3747 0.5984 0.8568 0.9637 0.9978 1.0000

0.90 0.0803 0.1434 0.1991 0.2958 0.4828 0.7314 0.8790 0.9905 1.0000

0.95 0.0667 0.1165 0.1605 0.2380 0.3912 0.6093 0.7591 0.9332 1.0000

1.00 0.0575 0.0993 0.1364 0.2016 0.3328 0.5234 0.6622 0.8467 1.0000
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Table 3: Number of Items and Average Rank Retained Using a Percentile Rule and their

standard deviations

p Ln/np Ln An/an An Qn/L2
n Corr(Ln, Qn)

0.05 6.19783 9.823 0.15765 994.704 108.86092 0.49332
1.80894 2.867 0.10206 643.95496 87.76957

0.10 4.17790 10.494 0.23835 948.888 102.48531 0.50996
1.55799 3.913 0.15602 621.12665 88.74309

0.15 3.44086 13.698 0.30052 754.872 70.60250 0.59061
1.54264 6.141 0.20210 507.65234 80.11162

0.20 2.67371 16.870 0.40055 634.829 52.57533 0.64345
1.34555 8.490 0.27218 431.37625 70.29154

0.25 2.25283 22.528 0.49799 497.990 33.44803 0.72194
1.23164 12.316 0.33449 334.48999 55.06502

0.30 2.11095 33.456 0.57821 364.826 17.08678 0.80747
1.17824 18.674 0.36928 232.99991 38.89251

0.35 2.04790 51.441 0.70941 282.421 7.52971 0.87310
1.11932 28.116 0.38147 151.86591 14.27065

0.40 1.65326 65.817 0.96748 243.020 5.57129 0.90373
0.97191 38.692 0.51176 128.54832 13.78241

0.45 1.50674 95.069 1.33261 211.204 3.48498 0.93244
0.91630 57.815 0.68988 109.33862 12.41476

0.50 1.18074 118.074 0.21404 197.138 0.31669 0.94194
0.77037 77.037 0.11236 103.48739 1.34502

0.55 1.39694 221.400 1.42291 225.516 1.08661 0.95778
0.77247 122.428 0.70327 44.37333 0.52466

0.60 1.19805 300.937 0.97761 245.565 0.86203 0.95778
0.68568 172.235 0.51435 20.47664 0.38195

0.65 1.09353 435.342 0.74808 297.816 0.70456 0.95740
0.63277 251.910 0.41435 10.40800 0.15384

0.70 1.04488 659.275 0.63442 400.292 0.61184 0.95942
0.57848 364.996 0.34542 5.47454 0.03791

0.75 0.90699 906.990 0.50989 509.890 0.56518 0.95924
0.51406 514.060 0.28633 2.86330 0.02036

0.80 0.84126 1333.307 0.44875 711.221 0.53453 0.96167
0.46911 743.489 0.24937 1.57342 0.00741

0.85 0.77886 1956.408 0.40202 1009.829 0.51667 0.96357
0.42860 1076.595 0.22098 0.87974 0.00459

0.90 0.69251 2756.931 0.35068 1396.082 0.50677 0.96553
0.38479 1531.876 0.19476 0.48922 0.00403

0.95 0.60885 3841.583 0.30455 1921.580 0.49915 0.96760
0.34306 2164.562 0.17188 0.27241 0.00402

1.00 0.49974 4997.400 0.24950 2495.000 0.49838 0.96827
0.28933 2893.300 0.14461 0.14461 0.00364

• n = 10, 000 and Number of Replications = 10, 000.

• an(p) = n1−p if p < .5; an(p) = n1/2ln(n) if p = 0.5 and an(p) = np if p > .5.

• First row along p is the average; second row is the std. dev.

26



1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

n

M
ea

n(
L n/n

p )

p=0.05 

p=0.25 

p=0.5 
p=0.75 

p=1 

Figure 1: Behavior of normalized average number of items retained
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7 Remarks

Remark 1 Some of the results carry over to the inverse problem. Suppose that a p−percentile

rule is applied. Let Zi (for i ≥ 1) be the number of observations made from the in-

stant that the size of the set of retained observations became i − 1 until its size

became i. Also, let Tn =
∑n

i=1 Zi be the number of observations made until n have

been retained. The results stated in Theorems 4 and 6 carry over directly to Tn and

QTn : LTn/T p
n = n/T p

n converges a.s. as n → ∞ to a finite, non-degenerate random

variable and for p < 1
2
, p = 1

2
, p > 1

2
the quantities

(α) QTn

n
/T p

n , QTn

n
/(T

1
2

n log Tn), QTn

n
/T 1−p

respectively, converge a.s. as n → ∞ to non-degenerate random variables, and for

p > 1
2

(β) QTn/n2p −→
n→∞ p2/[2(2p− 1)] a.s..

Evaluating expectations of Tn =
∑n

i=q Zi is a more complicated matter.

For 0 < p ≤ 1, n ≥ 2 the expectation of Tn is ∞ (since EZ2 = ∞).

For 0 < p ≤ 1, the expectation of each of the three expressions in (α) converges to

a finite positive constant as n →∞, and the expectation of the term on the left

side of (β) converges to the value in the right side as n →∞ for p > 1
2
.

These statements can be proved using methods similar to those used for proving

Theorems 3 and 5.

Remark 2 Other rules can be evaluated in a manner similar to the p−percentile rules.

For example, for k−record rules using the Assertion of Section 2, it can be shown

that Ln/logn converges almost surely to k as n →∞ and ELn/logn also converges to

k. It can be shown that Qn/(n + 1) is a (non-negative) submartingale that converges

a.s. as n →∞ to a non-degenerate random variable, and EQn/(n + 1) −→n→∞ k. Thus

An log n/n converges a.s. to a non-degenerate random variable.

Remark 3 The complexity of the sorting problem is of order n log n. Sometimes, one is

interested in retaining (in sorted form) only some of the best observations rather than

the whole set. In this case, a p−percentile rule with 0 < p < 1 obtains a sorted set

of best observations, and the complexity is of order n. To see this, note that initially

each observation has to be compared only to the p−percentile of the retained set

— amounting to n operations — and each retained observation must be compared

to (roughly) 100p% of the retained observations, amounting (at most) to another

2
∑Ln

j=1 log(j + 1) = O(Ln log Ln) = Op(n
p log n) operations (since the retained set

can be stored in sorted condition).
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A Appendix

Lemma A.1 For any p−percentile rule with 0 < p ≤ 1 and any 0 < ε < 1, there exists a

constant 0 < cε,p < ∞ such that

P (Ln < k) ≤ cε,pk
r0(1−ε)/n1−ε (52)

where r0 = d1/pe .

Proof: After m − 1 observations have been retained by the p−percentile rule, let Zm

denote the number of additional observations until the next retention. Note that Z1 = 1.

Let Nn =
∑n

i=1 Zi be the number of observations made until n items have been retained.

Thus,

P (Ln < k) = P (Nk > n) = P (N1−ε
k > n1−ε) ≤ EN1−ε

k /n1−ε. (53)

Without loss of generality, assume that the Xi have a U [0, 1] distribution. Let Xn
i denote

the observation with rank i among X1, X2, · · · , Xn. Note that conditional on X1, · · · , XNm ,

the distribution of Zm+1 is

Geometric p with p = 1−XNm
jNm

= 1−XNm

dpme.

Also note that conditional on Nm, the distribution of 1 − XNm

dpme is Beta (dpme , Nm +

1− dpme).
Therefore, for 0 ≤ ε < 1

E
(
Z1−ε

m+1

∣∣∣ Nm

)
= E

[
E

(
Z1−ε

m+1

∣∣∣ Nm, XNm

dpme
)∣∣∣ Nm

]

≤ E
( [

E (Zm+1|Nm, XNm

dpme
)]1−ε

∣∣∣∣ Nm

)

= E





 1

1−XNm

dpme




1−ε
∣∣∣∣∣∣∣
Nm




=
Nm!

(dpme − 1)!(Nm − dpme)! ·
Γ(dpme+ ε− 1)Γ(Nm + 1− dpme)

Γ(Nm + ε)

=
Nm!

(dpme − 1)!
· Γ(dpme+ ε− 1)

Γ(Nm + ε)

≤ Nm

dpme+ ε− 1
. (54)

For ε = 0 obtain E(Zm+1|Nm) ≤ Nm/(dpme − 1), so that

E(Nm+1|Nm) ≤ dpme
dpme − 1

Nm. (55)

Hence

E(N1−ε
m+1|Nm) ≤ [E(Nm+1|Nm)]1−ε ≤

( dpme
dpme − 1

)1−ε

N1−ε
m . (56)
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Letting mp be the smallest m such that dpme > 1, it follows that

E(N1−ε
m+1|Nmp) ≤ N1−ε

mp

m∏

i=mp

( dpie
dpie − 1

)1−ε

. (57)

We first show that EN1−ε
mp

is finite. By virtue of equation (54),

E(N1−ε
m+1|Nm) = E((Nm + Zm+1)

1−ε|Nm)

≤ E(N1−ε
m |Nm) + E(Z1−ε

m+1|Nm)

≤ N1−ε
m + E(Z

(1−ε/2)2

m+1 |Nm)

≤ N1−ε
m + [E(Z

1−ε/2
m+1 |Nm)]1−ε/2

≤ N1−ε
m +

N1−ε/2
m

(dpme+ ε/2− 1)1−ε/2
. (58)

This recursive relation can be applied repeatedly. Since EN1−ε
1 = 1, it follows that

EN1−ε
mp

is finite for all ε > 0.

Finally, note that dpie
dpie−1

> 1 and can appear (in the product)
∏m

i=mp

dpie
dpie−1

at most

r0 = d1/pe times. Hence,

m∏

i=mp

( dpie
dpie − 1

)1−ε

≤
( dpmpe
dpmpe − 1

· dpmp + 1e
dpmpe − 1

· dpmp + 2e
dpmpe − 1

· · · dpme
dpmpe − 1

)1−ε

≤
( dpme
dpmpe − 1

)r0(1−ε)

= dpmer0(1−ε) (59)

For m = k, the conclusion follows from equation (53) and (57).

Lemma A.2 Let 0 < ε < 1 and consider a p−percentile rule with 0 < p ≤ 1
2
. Then

lim
n→∞E

(
An

n1−p+ε

)
= 0.

Proof. Let 1 ≤ kε < ∞ be an integer such that

1 + Ln − jn

1 + Ln

< (1− p)(1 + ε) whenever Ln ≥ kε.

From Lemma A.1 obtain

P (Ln < kε) ≤ c∗ε,p,kε
/n1−ε (60)

Note that An ≤ n and jn ≤ Ln. Therefore

E (An+1| Fn) = An

(
1 +

1 + Ln − jn

(n + 1)(1 + Ln)

)
+

jn(jn − 1)/2

(n + 1)Ln

≤ An + An
1 + Ln − jn

(n + 1)(1 + Ln)
[I{Ln ≥ kε}+ I{Ln < kε}] +

p2Ln + p

2(n + 1)
.(61)
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Now for 0 < p ≤ 1/2, the right hand side of (62) is less than or equal to

An

[
1 +

(1− p)(1 + ε)

n

]
+

n

n + 1
I{Ln < kε}+

p2Ln + p

2(n + 1)
.

Hence, with ε < {p ∧ cp} and large enough n,

E (An+1) ≤ E (An)

[
1 +

(1− p)(1 + ε)

n

]
+

c∗ε,p,kε

n1−ε
+

p2(ε + cp)

2n1−p

≤ E (An)

[
1 +

(1− p)(1 + ε)

n

]
+

cp

n1−p
. (62)

Let γ1 = 1 and define γn+1 = γn/[1 + (1−p)(1+ε)
n

]. Thus, {γn} is a decreasing sequence,

and there exists 0 < γ∞ < ∞ such that

lim
n→∞n(1−p)(1+ε)γn = γ∞.

Note that for large enough n

γn+1E(An+1) ≤ γnE(An) +
2cpγ∞

n2(1−p)+(1−p)ε
. (63)

Because 2(1− p) ≥ 1, it follows that

lim
n→∞ γnE(An) < ∞; i.e. lim

n→∞E
(

An

n1−p+(1−p)ε

)
< ∞.

Hence

lim
n→∞E

(
An

n1−p+ε

)
= 0. (64)
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Lemma A.3 Let 0 < ε and consider a p−percentile rule with 1
2

< p ≤ 1. Then for all

Ln > kε

lim
n→∞E

(
An

np+ε

)
= 0.

Proof. Let kε be an integer such that whenever Ln > kε

1 + Ln − jn

1 + Ln

< (1− p)(1 + ε) < p(1 + ε). (65)

By (62) and (66),

E (An+1| Fn) ≤ An

[
1 +

p(1 + ε)

n

]
+

n

n + 1
I{Ln < kε}+

p2Ln + p

2(n + 1)
. (66)

Hence, with ε < p ∧ cp and large enough n,

E (An+1) ≤ E (An)

[
1 +

p(1 + ε)

n

]
+

c∗ε,p,kε

n1−ε
+

p2(ε + cp)n
p

2n

≤ E (An)

[
1 +

p(1 + ε)

n

]
+

cp

n1−p
. (67)

Let γ1 = 1 and define

γn+1 = γn/

[
1 +

p(1 + ε)

n

]
.

Note that {γn} is a decreasing sequence and there exists a constant 0 < γ∞ < ∞ such

that limn→∞ np(1+ε)γn = γ∞. Note that

γn+1E (An+1) ≤ γnE (An) + γn+1
cp

n1−p
. (68)

Therefore, there exists an integer 1 ≤ nε < ∞ such that for all n ≥ nε

γn+1E (An+1) ≤ γnE (An) + γ∞
2cp

n1+pε
. (69)

It follows that

lim
n→∞ γnE(An) < ∞; i.e. lim

n→∞E
(

An

np+pε

)
< ∞

Hence

lim
n→∞E

(
An

np+ε

)
= 0. (70)

32



References

[1] Arnold, B.C., Balakrishnan, N. and Nagaraja, H.N. (1998) Records. Wiley, New York.

[2] Gilbert, J.P. and Mosteller F.(1996). Recognizing the maximum of a sequence. Journal

of the American Statistical Association, 61, 35-73.

[3] Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Se-

quences and Processes. Springer-Verlag, Inc. New York.

[4] Preater, J. (1994). A multiple stopping problem. Probablity in the Engineering and

Information Sciences, 8, 169-177.

[5] Preater, J. (2000). Sequential selection with a better than average rule. Statistics and

Probability Letters, 50, 187-191.

[6] Robbins, H. and Siegmund, D. (1971). A convergence theorem for non-negative almost

supermartingales and some applications. In Optimizing Methods in Statistics, J.S.

Rustagi Editor. Academic Press, New York.

[7] Resnick, S.I.(1987). Extreme Values, Regular Variation and Point Processes. Springer-

Verlag, Inc. New York.

33


	dpcover388.pdf
	THE HEBREW UNIVERSITY OF JERUSALEM
	
	
	
	
	
	by





	Discussion Paper  # 388 March 2005
	
	
	
	îøëæ ìç÷ø äøöéåðìéåú


	Feldman Building, Givat-Ram, 91904 Jerusalem, Israel





