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Abstract

We analyze an independent private values model where a number of objects are sold in

sequential first- and second-price auctions. Bidders have unit demand and their valuation

for an object is decreasing in the rank number of the auction in which it is sold. We

derive efficient equilibria if prices are announced after each auction or if no information

is given to bidders. We show that the sequence of prices constitutes a supermartingale.

Even if we correct for the decrease in valuations for objects sold in later auctions we find

that average prices are declining.

JEL classification numbers: D82, D44



1 Introduction

If multiple objects are sold in auctions, this is often done sequentially — one object after

the other. In this paper we focus on situations where bidders have unit demands and

their valuation for an object declines with the rank number of the auction it is sold. This

is the case if otherwise identical objects become available at different points in time and

bidders prefer to receive an object early. Examples are auctions of goods on a rental

basis where one object is available to one buyer at a time (like vacation accommodation,

cars, tractors or DVD’s) or fish auctions, where the fish is auctioned when it arrives at

the port. In addition, our analysis applies to situations where the objects are physically

different and the more valuable objects are sold in earlier auctions. Prominent examples

are right-to-choose auctions where the winner can choose one object from the pool of

objects that are for sale.

We find for sequential first- or second-price (sealed bid) auctions that (expected) dis-

counted prices decline. Furthermore, we show that conditional on the current price, the

expected discounted price in any future period is below the current price. In other words:

the stochastic process that governs the price development is a supermartingale. The in-

tuition supporting these results is as follows: If discounted equilibrium prices remained

constant, a bidder’s expected utility from winning would decline (since valuation and

price decline at the same rate). Since the probability of winning in a given period is

not affected by the devaluation, the (non-conditional) expected utility would decline as

well. This means that bidders can do better by increasing their bids in earlier periods,

thereby deviating from the putative equilibrium. We provide an example where even a

slight decline in valuations across periods results in a substantial price decline. Hence our

results can offer an explanation for declining prices even in settings with high discount

factors.

Another finding of our analysis concerns the information policy of the seller. We

analyze the price dynamics for two different information structures. Under the first no

information is revealed between periods. Under the second the seller announces after
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each period the price paid in that period. We show that both information structures yield

efficient equilibria.

By using a revenue equivalence approach we argue that the same price dynamics

hold for other sequential bidding mechanisms and information structures. Specifically, we

show that any two sequential mechanisms which are efficient and in which information is

revealed only about bidders who already quit the auction, yield the same price dynamics.

In addition, the sequential formats are revenue equivalent to a Vickrey auction, where all

objects are sold at the same time within one auction (and buyers have to wait after the

auction until the objects become available). Hence, choosing a sequential format will not

reduce the seller’s revenue or create inefficiencies. What matters in terms of revenue is not

whether the auctions are sequential or simultaneous but whether the goods are available

to all buyers instantaneously1.

We also show how our model translates to situations where the objects for sale are

identical but bidders are uncertain about the continuation of the auction process.

Weber (1983) and Milgrom and Weber (2000) assume constant valuations across peri-

ods and show that expected prices stay constant. These papers analyze bidding behavior

in first- and second-price auctions with and without price announcements but only provide

a proof for the first-price auction with price announcements2. Beggs and Graddy (1997)

analyze a two period second-price auction with declining valuations whereas Jeitschko

(1999) and Pezanis-Christou (1997) analyze sequential auctions with uncertain supply3.

We generalize these papers by allowing for more than two periods, for a more general

valuation structure and by looking at different auction mechanisms. Moreover we use a

1If the latter is the case, it is obviously not in the interest of the seller to sell the objects sequentially

if bidders are impatient.
2This proof is for a more general environment than ours since it also covers the case of common values.

Milgrom and Weber (2000) point out the problems they face with the proofs for the other settings, e.g.

they mention that with price announcements second-price auctions reveal information about remaining

bidders and thus break the symmetry. This problem is tackled in our framework of independent private

values.
3Jeitschko (1999) considers second price auctions with only two stages and Pezanis-Christou (1997)

requires the highest bid to be announced between auctions to compute equilibria.
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revenue equivalence result to show that our price dynamics holds for a reasonably large

class of information structures. Our analysis of the price dynamics establishes results on

today’s price conditional on yesterday’s price and exposes a super-martingale property

for special cases. Finally, we provide comparative statics results that shed further light

on the structure of price trends.

Several empirical papers report price decline in sequential auctions: Ashenfelter (1989)

first observed this trend in wine auctions followed by Jones et al. (1996) for wool auctions

and recently van den Berg et al. (2001) for flower auctions. These examples differ from

our model in an important aspect: There is only a very short time difference between the

availability of different items. Hence it is not clear (and also not analyzed in these papers)

to what extend declining valuations matter. Our findings are consistent with Ashenfelter

and Genesove (1992), who observe a "declining price anomaly" for real estate right-to-

choose auctions, where prices drop faster than associated valuations. They observe that

at most 25 % of the price drop can be explained by quality differences. Some theoretical

papers give other reasons for declining prices: While McAfee and Vincent (1993) show

that risk aversion can cause declining prices, von der Fehr (1994) shows that declining

prices can be the result of participation costs. Relaxing the unit demand assumption,

Black and de Meza (1992) explain declining prices by a buyer’s option to purchase further

objects for the same price and Menezes and Monteiro (2003) obtain declining prices if

objects are complements.

Our paper is organized as follows: In Subsection 1.1 we present an example and

sketch the main ideas. The general model is introduced in Section 2. In Section 3 we

derive equilibria and properties of the trend of prices. Section 4 gives comparative statics

results on the sequences of expected prices. Section 5 contains the conclusion. Proofs can

be found in the appendix.

1.1 An illustrative example: constant proportional devaluation

There are two objects for sale in two subsequent second-price auctions and three bidders

with unit demand. The bidders’ valuations for the objects are common knowledge. Bidder
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i’s valuation for the object sold in the first auction is given by θi. Her valuation for the

object sold in the second auction is δθi where δ ∈ (0, 1]. We write θ(1) for the highest,

θ(2) for the median and θ(3) for the lowest of the types. The last auction is a normal

second-price auction and it is a dominant strategy for the two remaining bidders to bid

their valuations, i.e. δθi. The optimal bid in the first auction is b (θ) = θ − δθ + δθ(3). It

is optimal to bid one’s own valuation minus the utility of winning the second auction4.

If δ = 1 both objects are sold for the same price p = θ(3). This is because a bidder can

arbitrage away differences in prices: if for example the price in the first auction were

higher the winning bidder would do better by losing the first auction and winning the

second at a lower price. If valuations for the objects are decreasing, i.e. if δ < 1, then the

price paid in the first auction, (1− δ) θ(2) + δθ(3), is higher than the price in the second

auction δθ(3). It is even higher than the discounted price θ(3) of the second object. The

devaluation in prices does not follow the devaluation in valuations of the objects, in fact

it is stronger. Intuitively, bidders would prefer winning the first auction for a price of p

instead of winning the second auction for a price of δp. The first would give a utility of

θ − p whereas the latter would only give δ (θ − p) < (θ − p) . Hence bidding in the first

auction is more aggressive and results in higher prices. In the following sections we show

that this intuition translates to the incomplete information case.

2 A Model with Private Valuations

A seller offers k ≤ n indivisible objects to n risk neutral buyers i = 1, ..., n. The seller uses

a sequential first- (second-) price auction, i.e. the objects are sold sequentially in periods:

Each period consists of a first- (second-)price auction for one of the objects. The seller’s

valuation for each object is zero. Buyer i’s valuation for an object depends on her type θi.

The types θi are independently distributed on [θ,θ] with θ ≥ 0 and are drawn according

4Note that this is not a dominant strategy since it might be profitable to underbid a (significantly)

lower type of another bidder who deviates from her equilibrium in the first auction and bids slightly

below her own equilibrium bid.
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to a common distribution function F with continuous and strictly positive density f. We

write θ(i) for the i
′th highest type among θ1, ..., θn, i.e. θ(i) denotes the i’th order statistic

of θ1, ..., θn. Each buyer has unit demand and therefore quits after winning. A buyer’s

valuation for an object is a function of her type and the rank number of the period in

which the object is sold, i.e. Dl (θi) denotes bidder i′s valuation for the object5 sold in

period l given that her type is θi. We make the following assumptions for Dl :

A1 Normalization: D1 (θ) = θ, Dl (θ) ≥ 0 for all l, θ

A2 Time is valuable: Dl (θ) ≥ Dl+1 (θ) for all l

A3 Objects are more valuable for higher types: Dl (θ) is strictly increasing in θ for all l

A4 Continuity: Dl (θ) is continuous for all l

A5 Increasing loss to delay: Dl (θ)−Dl+1 (θ) is weakly increasing in θ for all l.

Example 1 Constant proportional devaluation is given by Dl (θ) = δl−1θ for δ ∈ (0, 1] .

The last assumption states that higher types face higher devaluation (in absolute

terms). Note the similarity of these conditions with those in Rubinstein’s bargaining

model (Rubinstein (1982)). However our notion of the devaluation function is more gen-

eral in that it does not assume stationarity (an essential property in Rubinstein’s time

preferences), i.e. the degree of devaluation may change in time.

3 Equilibria and Price Trends

We allow for two different information policies pursued by the seller: she can either reveal

the winning price (i.e. the highest bid in the first-price auction and the second highest bid

5The assumption that for all bidders the functions Dl are identical is restrictive. Nevertheless it

guarantees that the order of the bidders’ valuations is the same in each period. One can interpret the

type as a general preference for the kind of objects for sale. Then it seems plausible that a bidder with

a higher type should value each object more than a bidder with a lower type.
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in the second-price auction) at the end of each period (auction with price announcement)

or she can reveal no information at all (auction without price announcement). We restrict

our attention to symmetric (Bayes-Nash-) equilibria. The following Theorem characterizes

the symmetric equilibrium of the sequential second- and first-price auctions with and

without price announcements:

Theorem 1 The symmetric equilibrium bidding strategy for a type θ-bidder in period l

of a sequential first-price auction with or without price announcements is given

by bl defined recursively:

bk (θ) = E
[
Dk

(
θ(k+1)

)
| θ(k) = θ

]
,

bl (θ) = E
[
Dl

(
θ(l+1)

)
−Dl+1

(
θ(l+1)

)
+ bl+1

(
θ(l+1)

)
| θ(l) = θ

]
.

The symmetric equilibrium bidding strategy for a type θ-bidder in period l of a sequential

second-price auction with or without price announcements is given by bl defined

recursively:

bk (θ) = Dk (θ) ,

bl (θ) = Dl (θ)−Dl+1 (θ) + E
[
bl+1

(
θ(l+2)

)
| θ(l+1) = θ

]
.

The equilibria exhibit some interesting properties. First, bidding functions are strictly

increasing, i.e., bidders of a higher type win earlier. This implies that the sequential

auctions are ex-post efficient (and therefore optimal for a social planner). Furthermore,

even in the second-price auction we find that bidders shade their bids, i.e. bl < Dl, except

for the last period. Note that the bidding functions do not depend on the history of

the game. Since types are independent, the only relevant information (used for updating

beliefs about remaining bidders’ types) in period l of the first-price auction is the type of

the bidder who won period l − 1 since this is the l − 1’th highest type. Every bidder can

deduce this information by inverting the bidding function if prices are announced. The

situation in the second-price auction is more complex because the bidder who sets the

price in period l − 1 participates in period l and therefore others might know her type if
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prices are announced. Theorem 1 shows that this does not lead to inefficiencies due to

pooling.

If valuations remain constant over objects the sequence of prices is a martingale (see

Weber (1983)), i.e. prices are constant on average over time. In our model with time

preferences prices drift down over time. The following Theorem shows the link between

(expected) prices in the subsequent period and observed prices in the actual period.

Denote by pl the price in period l in a sequential first- or second-price auction, i.e. pl =

bl
(
θ(l)

)
in a sequential first-price auction and pl = bl

(
θ(l+1)

)
in a sequential second-price

auction. Denote by Dl,l+1 := Dl+1 ◦D
−1
l the devaluation function from period l to period

l+1, i.e. Dl,l+1 (v) denotes a bidders valuation in period l+1 if her valuation is v in period

l. Hence D−1
l,l+1 (pl+1) is the price in period l+ 1 corrected for the last period devaluation.

Theorem 2 In a sequential first-price auction the expected corrected price in period l+1

is always lower than the realized price pl, i.e.

E
[
D−1

l,l+1 (pl+1) | pl
]
≤ pl. (1)

In a sequential second-price auction given a price pl in period l the corrected expected price

in period l + 1 is always lower than pl, i.e.

D−1
l,l+1 (E [pl+1| pl]) ≤ pl. (2)

Note that on the left hand side of (1) we have the expected corrected price (in period

l + 1) whereas in (2) we have the corrected expected price, both of which are compared

with the actual price of period l. The reason for this difference is that in the sequential

first-price auction bids are given in terms of expected utility of the second highest bidder,

while in the second-price auction bidders bid their own valuation minus the expected

outside option. If Dl,l+1 is convex we get statement (1) also for second-price auctions

(using Jensen’s inequality) and if Dl,l+1 is concave we get (2) for first-price auctions.

The following Corollary summarizes some implications of Theorem 2.
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Corollary 3

1. The sequence of prices (pl)l≤k is a supermartingale.

2. The sequence of expected prices is the same for a sequential first- and second-price

auction and we have

E[D−1
l,l+1 (pl+1)] ≤ E[pl] and E[pl+1] ≤ E[Dl,l+1 (pl)].

If Dl,l+1 is concave we have

D−1
l (E [pl]) ≥ D−1

l+1 (E [pl+1]) .

3. For proportional devaluation, i.e. Dl (θ) =
∏l−1

i=1 δiθ, δi ∈ (0, 1) , the sequence(
D−1

l (pl)
)
l≤k

is a supermartingale. Moreover (1) and (2) hold.

Due to the Revenue-Equivalence-Theorem the seller’s expected revenue is the same for

all mechanisms that implement the efficient allocation and result in the same utility level

for a type-θ-bidder. Corollary 3 shows that even the per period revenue for sequential first-

and second-price auctions is the same6. The following Theorem shows revenue equivalence

in each period for a large class of efficient sequential auction mechanisms. A sequential

auction mechanism is a mechanism7 in which bidders submit bids in each period and the

object (sold in that period) is given to the bidder with the highest bid. Payments to the

6By applying techniques known from the case of one object (see Myerson (1981)), we can also character-

ize the revenue-maximizing sequential auction. If we assume that virtual valuations Dl (θ)−D′

l (θ)
1−F (θ)
f(θ)

fulfill the properties A2, A3 and A5, then the sequential first- or second-price auction with a reserve price

of rl = Dl (θr,l) in period l, where θr,l is defined by

Dl (θr,l)−D′

l (θr,l)
1− F (θr,l)

f (θr,l)
= 0,

is optimal. For the special case of constant proportional devaluation the optimal reserve prices are given

by rl = δrl−1, r1 −
1−F (r1)
f(r1)

, if the "standard" virtual valuation θ −
1−F (θi)
f(θi)

is strictly increasing in θ.
7For a more formal definition, see the proof of Theorem 4.
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seller depend on the submitted bids8. We consider four properties of sequential auction

mechanisms:

P1 The mechanism results in an efficient allocation of the objects, i.e., the l′th object is

sold to the bidder with the l’th highest type.

P2 A bidder of type θ has zero expected payments in each period.

P3 After each period the type of the winning bidder in that period is announced.

P4 Each bidder’s (expected) payment (in a period) only depends on her own bid (of that

period).

Theorem 4 For any two sequential auction mechanisms both satisfying either P1, P2,

P3 or P1, P2, P4 the expected sum of payments in period l (i.e. for the l′th object) is the

same.

Our previous analysis translates to a model with discounting or equivalently to a

model with an uncertain number of objects. Assume that bidders in period l expect

a continuation of the auction process with (commonly known) probability δl, i.e. with

probability 1− δl period l was the last period. Since agents are risk-neutral, this model is

equivalent to a model in which discounting applies to both payments and valuations with

the same discount factor δl (between period l and l+ 1). Formally, if δ1, . . . , δk−1 are the

inter-period discount rates then winning an object in period l+ 1 for the (nominal) price

of pl+1 yields a utility level of δl (θ − pl+1) for a type-θ-agent finding herself in period l.

8An example is a sequential version of the Clarke-Groves mechanism: In period l bidders sub-

mit types θ̂i, the bidder with the highest announcement wins the l’th object and pays Dl

(
θ̂
l

(2)

)
+∑k−l+1

j=2

(
Dj

(
θ̂
l

(j+1)

)
−Dj

(
θ̂
l

(j)

))
, where θ̂

l

(j) is the j’th highest announced type in period l. After

each period the highest announced type is made public and the winning bidder of that period quits the

mechanism (i.e. does not participate in subsequent periods). Since truthtelling is a dominant strategy

in the Clarke-Groves mechanism, this is also true for its sequential version (which results in the same

allocation and payments and only differs in the bidders’ knowledge on others’ types).
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Corollary 5 The equilibrium bidding function for the sequential first-price auction (with

or without price announcement) with uncertain continuation is given by

bl (θ) = E
[
θ(l+1) − δl

(
θ(l+1) − bl

(
θ(l+1)

))
| θ(l) = θ

]
,

bk (θ) = E
[
θ(k+1)| θ(k) = θ

]
.

For the sequential second-price auction with uncertain continuation the bidding function

is given by

bl (θ) = θ − δl
(
θ −E

[
bl+1

(
θ(l+2)

)
| θ(l+1) = θ

])
bk (θ) = θ.

The sequence of actual prices (pl)l≤k with pl = bl
(
θ(l)

)
for the first-price auction and

pl = bl
(
θ(l+1)

)
for the second-price auction is a supermartingale, i.e. given any realization

pl expected prices decline on average.

4 Comparative Statics

In this section we study how changes in various parameters of the model (e.g., the number

of bidders, the devaluation factor and the distribution of valuations) affect the price

dynamics.

If we denote the expected price in period l by pl, we get as a direct consequence of

Theorem 1

pl = E
[
Dl

(
θ(l+1)

)
−Dl+1

(
θ(l+1)

)]
+ pl+1 for l < k and (3)

pk = E
[
Dk

(
θ(k+1)

)]
.

From this it is easy to see that for a given k, prices increase in the number of bidders n

and converge to the highest type’s valuation of the good.

For further analysis we confine our attention to the case where Dl (θ) := δl−1θ. Fix

the number of objects k and denote by pl (n) the expected price in the l′th auction if the

number of bidders in the first auction was n. As the number of bidders becomes large
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(for a fixed number of goods), we find that expected prices decrease approximately with

δ, i.e. limn→∞
pl(n)

pl−1(n)
= δ for all l ≤ k. For a fixed number of bidders and objects the

difference in prices pl−pl+1 = δl−1 (1− δ)E
[
θ(l+1)

]
is decreasing in l. The ratio of prices,

i.e. the sequence
(

pl
pl−1

)
l≤k

, depends on the distribution of types, or more precisely on

the expected values of the l′th order statistics. For high δ, we will see that the sequence(
pl

pl−1

)
l≤k

is increasing.

Theorem 6 Fix a number of bidders n and a number of objects 2 < k < n.

1. For every distribution F there exists a threshold δ < 1 such that for all δ ∈ (δ, 1)

the sequence
(

pl
pl−1

)
l≤k

is increasing.

2. If the sequence

(
E[θ(l)]

E[θ(l−1)]

)
l≤k

is increasing (decreasing) and if for δ ∈ (0, 1) we find

that
E
[
θ(k+1)

]
(1− δ)E

[
θ(k)

]
+ δE

[
θ(k+1)

] >

(<)

E
[
θ(k)

]
E
[
θ(k−1)

]
then the sequence

(
pl

pl−1

)
l≤k

is increasing (decreasing).

To analyze the proportion of the decline in prices that can be directly attributed to

the factor δ we look at the ratio (1−δ)pl
pl−pl+1

. Because of (3) we have

(1− δ) pl
pl − pl+1

=

∑k−1
m=l

(
δm−l − δm−l+1

)
E
[
θ(m+1)

]
+ δk−lE

(
θ(k+1)

)
E[θ(l+1)]

.

Therefore the portion of the total price difference that cannot be directly explained by the

devaluation is greater if δ is higher. The share that can be explained by the direct effect

(of the devaluation) is always higher than
E[θ(k+1)]

E[θ(l+1)]
, but can be arbitrarily close to this

value (if δ is close to 1). In the next example we show that this share can be arbitrarily

small9.

9In general, this can be achieved by a distribution that has its mass concentrated around 0 and 1. If

the mass concentrated in a small environment of 0 becomes large,
E[θ(k+1)]

E[θ(l+1)]
is close to zero.
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Example 2 Consider the case of a distribution where the type is 0 with probability very

close to q and 1 with probability very close to 1 − q. If we have two objects and three

bidders (3) yields that expected prices are close10 to:

p1 = (1− q)3 + 3 (1− δ) (1− q)2 q,

p2 = δ (1− q)3 .

If we have q = 3
4
and δ = 0.99 we get that p2

p1
≈ 0.91 and 1−δ

1−
p2
p1

≈ 1
9
, indicating that 8

9

of the total price drop cannot be explained directly by the factor δ. This shows that the

indirect effect can be substantial and that a significant decline in prices may occur even if

devaluation at first sight seems to be too small to have a significant impact on the trend

of prices.

5 Conclusion

We show that in sequential first- and second-price auctions with or without price an-

nouncements we have declining prices if valuations decrease for objects sold in later auc-

tions. Even if we account for the general decrease in valuations, which is given by a

common general devaluation function Dl, l = 1, . . . , k, expected prices decline in later

auctions. Even if the decline in valuations is relatively small it can have a substantial

effect on the development of prices, hence our model might explain declining prices for en-

vironments where devaluation seems to be negligible at first sight. A revenue equivalence

result shows that our findings translate to a large class of sequential selling mechanisms11

and therefore are applicable to other market mechanisms as well.

10Note that a discrete distribution which only puts mass on 0 and 1 does not fulfill the assumptions

made in this paper. In particular there do not exist pure strategy equilibria if the distribution of types has

mass points. The prices p1 and p2 (which are calculated from (3) with a discrete distribution that puts

mass q on 0 and 1− q on 1) can be approximated arbitrarily close by choosing continuous distributions

that have mass concentrated around 0 and 1.
11Our findings also translate to non-sequential selling mechanisms as the comparison to the Clarke-

Groves mechanism shows.
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A Appendix

Proof of Theorem 1

We prove the statement for the sequential first-price auction without and sequential

second-price auction with price announcements. The other proofs follow similar arguments

and are omitted here.

Consider first the sequential first-price auction without price announcements. We

prove that it is never beneficial for a bidder to imitate a type different to her own type

θ in some of the periods of the auction. The expected utility of a type-θ-bidder who

always bids according to bl (θ) in period l (if she is still in the auction) and who faces

bidders following the same strategies bl is denoted by U (θ) . A bidder who deviates from

the strategy bl by bidding as if she were of type θl in period l (if she did not win in period

m < l), expects a utility of U
(
θ, θ1, . . . , θk

)
. To improve the exposition we set Dl = bl = 0

for l > k and we use the following abbreviations:

Ê (xl) :=

k∑
i=l+2

(
Di (θ)− bi

(
θi
)) (n− l − 1)!

(n− i)!∫ max(xl,θl+1)

θl+1
. . .

∫ max(xi−2,θi−1)

θi−1
F n−i

(
min

(
xi−1, θ

i
))

f (xi−1) dxi−1 . . . f (xl+1) dxl+1,

E (xl) :=

k∑
i=l+2

(Di (θ)− bi (θ))
(n− l − 1)!

(n− i)!

∫ xl

θ

. . .

∫ xi−2

θ

F n−i (θ) f (xi−1) dxi−1 . . . f (xl+1) dxl+1.

We show that U (θ) ≥ U
(
θ, θ1, . . . , θk

)
for all

(
θ, θ1, . . . , θk

)
∈ [θ,θ]k+1 by using an

13



induction argument, i.e. we show that for l = 1 and xl−1 = x0 = θ we have that

U
(
θ, θ1, . . . , θk

)
=

(
Dl (θ)− bl

(
θl
))

F n−l
(
θl
)
+ (n− 1)

∫ xl−1

θl
Ê (xl) f (xl) dxl (4)

+(n− l)
(
Dl+1 (θ)− bl+1

(
θl+1

)) ∫ xl−1

θl
F n−l−1

(
min

(
xl, θ

l+1
))

f (xl) dxl

≤ (Dl (θ)− bl (θ))F
n−l (θ) + (n− l) (Dl+1 (θ)− bl+1 (θ))

∫ xl−1

θ

F n−l−1 (θ) f (xl) dxl

+(n− 1)

∫ xl−1

θ

E (xl) f (xl) dxl = U (θ) .

Since we have12

(
Dl (θ)− bl

(
θl
))

F n−l
(
θl
)
=

∫ θl

θ

(Dl (θ)−Dl (x) +Dl+1 (x)− bl+1 (x)) dF
n−l (x) (5)

it suffices to show that for all
(
θ, θl+1, . . . , θk

)
∈ [θ,θ]k−l+1 the following three statements

hold:

1. for xl ≥ θ

(Dl (θ)−Dl (xl) +Dl+1 (xl)− bl+1 (xl))F
n−l−1 (xl) (6)

≤ (Dl+1 (θ)− bl+1 (θ))F
n−l−1 (θ) + E (xl)

2. for xl ≤ θ

(
Dl+1 (θ)− bl+1

(
θl+1

))
F n−l−1

(
min

(
xl, θ

l+1
))

+ Ê (xl) (7)

≤ (Dl (θ)−Dl (xl) +Dl+1 (xl)− bl+1 (xl))F
n−l−1 (xl)

3. for xl ≥ θ

(
Dl+1 (θ)− bl+1

(
θl+1

))
F n−l−1

(
min

(
xl, θ

l+1
))

+ Ê (xl) (8)

≤ (Dl+1 (θ)− bl+1 (θ))F
n−l−1 (θ) + E (xl) .

12This can easily be seen by using the following representation of bi:

bl (θ) =
1

Fn−l (θ)

∫ θ

θ

(Dl (x)−Dl+1 (x) + bl+1 (x))dF
n−l (x) .
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This is done by three induction arguments13.

1. Subtracting (Dl (θ)− bl+1 (θ))F
n−l−1 (θ) on both sides of (6) gives

(Dl (θ)−Dl (xl) +Dl+1 (xl)−Dl+1 (θ))F
n−l−1 (xl)

+

∫ xl

θ

(Dl+1 (θ)−Dl+1 (xl+1) +Dl+2 (xl+1)− bl+2 (xl+1)) dF
n−l−1 (xl+1)

≤ (n− l − 1)

∫ xl

θ

(
(Dl+2 (θ)− bl+2 (θ))F (θ)n−l−2 + E (xl+1)

)
dF (xl+1) .

Since Dl (θ) − Dl (xl) + Dl+1 (xl) − Dl+1 (θ) ≤ 0 this is true if for all xl+1 ≥ θ we

have

(Dl+1 (θ)−Dl+1 (xl+1) +Dl+2 (xl+1)− bl+2 (xl+1))F
n−l−2 (xl+1)

≤ (Dl+2 (θ)− bl+2 (θ))F
n−l−2 (θ) + E (xl+1) .

For l = k and xk ≥ θ this is true since Dk (θ)−Dk (xk) ≤ 0.

2. For xl ≤ θl+1 this is true since bl+1 is increasing and we have

Dl (θ)−Dl+1 (θ)− (Dl (xl)−Dl+1 (xl)) ≥ 0.

Assume now that xl > θl+1. Then (7) is equivalent to

(n− l − 1)

∫ xl

θl+1

(
Dl+2 (θ)− bl+2

(
θl+2

))
F n−l−2

(
min

(
xl+1, θ

l+2
))

dF (xl+1)

+ (n− l − 1)

∫ xl

θl+1
Ê (xl+1) dF (xl+1)

≤ (Dl (θ)−Dl (xl) +Dl+1 (xl)−Dl+1 (θ))︸ ︷︷ ︸
≥0

F n−l−1 (xl)

+

∫ xl

θl+1
(Dl+1 (θ)−Dl+1 (y) +Dl+2 (y)− bl+2 (y)) dF

n−l−1 (y) .

This is true if for xl+1 ≤ θ we have that (7) is correct for “l = l + 1”. For l = k the

statement is true since 0 ≤ (Dk (θ)−Dk (xk))F
n−(k+1) (xk) for xk ≤ θ.

13The induction is over l starting from l = k going backwards to l = 1.
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3. To show that (8) holds we again consider two cases: If xl ≤ θl+1, the argument is

similar to the second case of 2 and therefore omitted here.

If we have xl ≥ θl+1, we have to show that

(
Dl+1 (θ)− bl+1

(
θl+1

))
F n−(l+1)

(
θl+1

)
+ (n− l − 1)

∫ xl

θl+1

Ê (xl+1) dF (xl+1)

+ (n− l − 1)
(
Dl+2 (θ)− bl+2

(
θl+2

)) ∫ xl

θl+1

F n−l−2
(
min

(
xl+1, θ

l+2
))

dF (xl+1)

≤ (Dl+1 (θ)− bl+1 (θ))F
n−l−1 (θ) + (n− l − 1)

∫ xl

θl
E (xl+1) dF (xl+1)

+ (n− l − 1) (Dl+2 (θ)− bl+2 (θ))

∫ xl

θ

F n−l−2 (θ) f (xl+1) dxl+1.

This is statement (4) formulated for l+ 1. Therefore the Theorem holds for general

l if (4) holds for l = k which is the case since

(
Dk (θ)− bk

(
θk
))

F n−k
(
θk
)
≤ (Dk (θ)− bk (θ))F

n−k (θ) .

We now give the proof for the sequential second-price auction with price announce-

ments. We write vl (θ;x1...xn−l) for the utility of a bidder with type θ, who finds herself

in period l given her remaining opponents have types x1,..., xn−l and everyone announces

her type truthfully. If xi < θ for all i = 1..n − l the θ-type buyer wins the l’th auction

and we have

vl (θ; x1, ..., xn−l)) = Dl (θ)− bl (max {x1, ..., xn−l}) . (9)

We show by induction that it is optimal to bid according to bl (θi) in period l if it is

optimal to bid according to bm in period m for m > l and if all other bidders (always) bid

according to bl. In period l = k bidding Dk (θi) is a dominant strategy. To show that it

is optimal to bid according to bl in period l consider first the bidder who submitted the

highest bid in period l − 1.

The expected utility of a bidder in period l who sets the price in period l−1 does only

depend on her type θ, her bid in period l given by14 bl
(
θl
)
and in period l − 1 given by

bl−1
(
θl−1

)
. Her bid in period l − 1 influences her expected utility since she updates her

14Note that bidding outside the range of bl has the same effect as bidding bl (θ) =θ or bl (θ) = θ.
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beliefs about other agents’ types distributions by inferring that these are given by F [θ|

θ ≤ θl−1] = F (θ)

F(θl−1)
for θ ≤ θl−1. Bids in periods 1 to l − 2 have no influence since all

relevant information about other agents’ types is given by the fact that these are smaller

than15 θl−1. A bidder’s expected utility in period l if she is type θ, bids as if she were of

type θl (in period l), submitted bl−1
(
θl−1

)
in period l − 1 and bm (θ) in periods m > l is

given by:

Ul

(
θ, θl, θl−1

)
(10)

=
n− l

F n−l
(
θl−1

) ∫ θl

θ

[Dl (θ)− bl (x1)]F
n−l−1 (x1) f (x1) dx1

+
n− l

F n−l
(
θl−1

) ∫ θl−1

θl

∫ min{x1,θ}

θ

...

∫ min{x1,θ}

θ

vl+1 (θ;x2...xn−l) f (xn−l) dxn−l · · · f (x1) dx1

+
n− l

F n−l
(
θl−1

) (n− l − 1)

∫ θl−1

θl

∫ x1

min{x1,θ}

∫ x2

θ

...

∫ x2

θ

vl+1 (θ; x2...xn−l) f (xn−l) dxn−l · · · f (x1) dx1.

The first addend describes the case where the bidder wins in period l. The second addend

describes the case where she does not win period l but wins period l+1. The last addend

describes the case where she neither wins period l nor period l + 1.

We show that ∂

∂θl
Ul

(
θ, θl, θl−1

)
≥ 0 for θl < θ and ∂

∂θl
Ul

(
θ, θl, θl−1

)
≤ 0 for θl > θ if

the same is true for period l + 1. Since

bl
(
θl
)
= Dl

(
θl
)
−

1

F n−l−1
(
θl
) ∫ θl

θ

...

∫ θl

θ

vl+1

(
θl;x2...xn−l

)
f (xn−l) dxn−l · · · f (x2) dx2

we have to determine the sign of

F n−l
(
θl−1

)
(n− l) f

(
θl
) d

dθl
Ul

(
θ, θl, θl−1

)
(11)

=

∫ θl

θ

...

∫ θl

θ

[
Dl (θ)−Dl

(
θl
)
+ vl+1

(
θl; x2...xn−l

)]
f (xn−l) dxn−l · · · f (x2) dx2

−

∫ min(θl,θ)

θ

...

∫ min(θl,θ)

θ

vl+1 (θ; x2...xn−l) f (xn−l) dxn−l · · · f (x2) dx2

− (n− l − 1)

∫ θl

min(θl,θ)

∫ x2

θ

...

∫ x2

θ

vl+1 (θ; x2...xn−l) f (xn−l) dxn−l · · · f (x2) dx2

15This is due to independence of types.
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First assume16 θl > θ: For l = k we obtain

(11) =

∫ θl

θ

...

∫ θl

θ

[
Dk (θ)−Dk

(
θl
)]

f (xn−k) dxn−k · · · f (x2) dx2,

which is smaller than zero, since θl > θ and Dk is strictly increasing.

Using (9) we have that (11) equals:

∫ θ

θ

...

∫ θ

θ

(Dl (θ)−Dl+1 (θ))−
(
Dl

(
θl
)
−Dl+1

(
θl
))

f (xn−l) dxn−l · · · f (x2) dx2︸ ︷︷ ︸
≤0

+ (n− l − 1)

∫ θl

θ

∫ x2

θ

...

∫ x2

θ

[
Dl (θ)−Dl

(
θl
)
+ vl+1

(
θl; x2...xn−l

)
− vl+1 (θ; x2...xn−l)

]
f (xn−l) dxn−l · · · f (x2) dx2.

Since θl > xi (a.e.) for i = 2, . . . , n − l and since x2 denotes the highest of the other

bidders’ types (remaining in the auction) we have

vl+1

(
θl; x2...xn−l

)
= Dl+1

(
θl
)
−Dl+1 (x2)

+
1

F n−l−2 (x2)

∫ x2

θ

...

∫ x2

θ

vl+2 (x2; x̃3, ..., x̃n−l) f (x̃n−l) dx̃n−l · · · f (x̃3) dx̃3.

In addition we have θ < x2 and consequently vl+1 (θ;x2...xn−l) = vl+2 (θ; x3...xn−l) . Since

Dl −Dl+1 is increasing we have

(n− l − 1)

∫ θl

θ

∫ x2

θ

...

∫ x2

θ

[
Dl (θ)−Dl

(
θl
)
+Dl+1

(
θl
)
−Dl+1 (x2)

+vl+2 (x2; x3...xn−l)− vl+2 (θ; x3...xn−l)
]
f (xn−l) dxn−l · · · f (x2) dx2

≤ (n− l − 1)

∫ θl

θ

[∫ θ

θ

...

∫ θ

θ

[Dl+1 (θ)−Dl+1 (x2)

+vl+2 (x2; x3...xn−l)− vl+2 (θ; x3...xn−l)] f (xn−l) dxn−l · · · f (x3) dx3

+(n− l − 2)

∫ x2

θ

∫ x3

θ

...

∫ x3

θ

[Dl+1 (θ)−Dl+1 (x2)

+vl+2 (x2; x3...xn−l)− vl+2 (θ; x3...xn−l)] f (xn−l) dxn−l · · · f (x3) dx3] f (x2) dx2.

16This is the more complicated case since “overbidding”, i.e. overstating her own type might lead to

winning in period l instead of winning in some later period.
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The integrand of the outer integral is smaller than zero by induction17 since x2 > θ.

Assume now that we have θ > θl.We get d

dθl
Ul

(
θ, θl, θl−1

)
≥ 0 sinceDl−Dl+1 is increasing

and

(11) =

∫ θl

θ

...

∫ θl

θ

[
Dl (θ)−Dl+1 (θ)−

(
Dl

(
θl
)
−Dl+1

(
θl
))]

f (xn−l) dxn−l · · · f (x2) dx2.

Consider now a bidder who did not submit the highest bid in period l − 1. Assume

y to be the highest of the other bidders’ types which is known since it can be inferred

from the announced price of the previous period. We show that for θ > y it is optimal for

bidder i to win period l, which implies that bidding according to bl is optimal (given it is

optimal to bid according to bm in forthcoming periods m > l). If θ < y, bidder i finds it

optimal not to win period l which is achieved by bidding according to bl as well.

The difference in utility between winning period l and not winning for a type θ agents is

Dl (θ)− bl (y) (12)

−
1

F n−l−1 (y)

∫ min{y,θ}

θ

...

∫ min{y,θ}

θ

vl+1 (θ; x2...xn−l) f (xn−l) dxn−l · · · f (x2) dx2

−
1

F n−l−1 (y)
(n− l − 1)∫ y

min{y,θ}

∫ x2

θ

...

∫ x2

θ

vl+1 (θ;x2...xn−l) f (xn−l) dxn−l · · · f (x2) dx2.

This equation has the same sign as (11) if θl = y. Therefore we already proved that (12)

is negative if θ < y and positive if θ > y and the induction argument given above is also

valid here.

Proof of Theorem 2:

In the sequential first-price auction denote the type who sets the price pl, by θ i.e.

bl (θ) = E
[
Dl

(
θ(l+1)

)
−Dl+1

(
θ(l+1)

)
+ bl+1

(
θ(l+1)

)
| θ(l) = θ

]
= pl.

Since D−1
l+1

(
bl+1

(
θ(l+1)

))
≤ θ(l+1) and Dl −Dl+1 is increasing, we have

Dl

(
θ(l+1)

)
−Dl+1

(
θ(l+1)

)
+Dl+1

(
D−1

l+1

(
bl+1

(
θ(l+1)

)))
≥ Dl

(
D−1

l+1

(
bl+1

(
θ(l+1)

)))
17Obviously it is smaller than zero if l = k − 1.
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which yields the statement.

For the sequential second-price auction we have

bl (θ) = Dl (θ)−Dl+1 (θ) + E
[
bl+1

(
θ(l+2)

)
| θ(l+1) = θ

]
.

We define p0 by pl = Dl (p0) and get

E
[
bl+1

(
θ(l+2)

)
| bl

(
θ(l+1)

)
= pl

]
= Dl (p0)−Dl

(
b−1l (Dl (p0))

)
+Dl+1

(
b−1l (Dl (p0))

)
≤ Dl+1 (p0) .

Where the inequality holds because Dl −Dl+1 is increasing and because Dl > bl.

Proof of Corollary 3:

1. This follows directly from Theorem 2 and the fact that D−1
l,l+1 (x) ≥ x.

2. This follows directly from Theorem 2, the fact that Dl − Dl+1 is increasing and

bl+1 ≤ Dl+1.

3. This results from the linearity of Dl,l+1and Theorem 2.

Proof of Theorem 4:

A sequential k−period auction is given by the strategy set R
+, the sets of partici-

pating bidders of period l, Hl ⊆ {1, . . . , n}, the sellers information policy, allocation

functions s = (s1, . . . , sk) and payment functions t = (t1, . . . , tk) specified as follows:

In period l all bidders submit bids bl,i ∈ R
+. The allocation function sl : R

n �→

{1, . . . , n} allocates the l’th object to the highest participating bidder of that period18, i.e.

sl (bl,1, . . . , bl,n) = argmaxi∈Hl
bl,i. Bidder i has to make a payment to the seller which is

given by −tl,i (bl,1, . . . , bl,n) whereas this is zero for non-participating bidders (i.e. tl,i = 0

if i /∈ Hl) and does not depend on bids of non-participating bidders (i.e. for all j /∈ Hl

we have tl,i (bl,j, bl,−j) = tl,i

(
b̃l,j, bl,−j

)
for all i ∈ Hl and bl,j, b̃l,j ∈ R

+). In period l + 1

18If there is more than a single highest bidder any tie-breaking rule can be applied.
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the set of participating bidders is given by Hl+1 = Hl\{sl}. Before period l information

concerning the winning type of the previous period might be revealed to all agents (e.g.

if we have efficient equilibria the seller can do so by announcing the highest bid of the

previous period). The information policy is common knowledge.

Consider period l of a k−period sequential auction where everyone bids according to

an efficient equilibrium in previous periods. The belief about other types’ distribution

of an agent who participates in period l depends on the previously observed history and

on her own type. We will denote this distribution (for an agent i) by Fl,i (θi, θ−i) . If the

winner’s type of period l − 1 is known Fl,i does only depend on this type since types

are distributed independently. If no announcements are made, Fl,i only depends on the

θi (since we assumed truthful bidding in previous periods). In period l no agent should

have an incentive to bid as if she were of a different type given all other agents stick to

the equilibrium. We denote by Ul,i

(
θi, θ̂i

)
the expected utility of an agent i of type θi

of reaching period l who behaves subsequently as if she were of type θ̂i and who faces

agents that are bidding according to the equilibrium (and do not imitate other types).

In addition we denote by tl,i
(
θ̂i, θ−i

)
the payment of a bidder who bids as if she were of

type θ̂i in period l (given the other agents bid according to their equilibrium strategy).

We have that

Ul,i

(
θi, θ̂i

)
(13)

= Dl (θi)Eθ
−i

[
1

(
θ̂i > θ(l)

)
| Fl,i (θi, θ−i)

]
− Eθ

−i

[
tl,i

(
θ̂i, θ−i

)
| Fl,i (θi, θ−i)

]

+
k∑

j=l+1

(
Dj (θi)Eθ

−i

[
1

(
θ(j−1) > θ̂i > θ(j)

)
| Fl,i (θi, θ−i)

]

−Eθ
−i

[
tj,i

(
θ̂i, θ−i

)
| Fl,i (θi, θ−i)

])
.

Consider the case where the winning type of the previous period is known,

i.e. Fl,i (θi, θ−i) = Fl,i (θ−i) . Since imitating another type cannot be profitable we have

that Ul,i (θi) := Ul,i (θi, θi) = max
̂θi
Ul,i

(
θi, θ̂i

)
and therefore the Envelope-Theorem yields

dUl,i (θi)

dθi
=

k∑
j=l

dDj (θi)

dθi
Eθ

−i

[
1
(
θ(j−1) > θi > θ(j)

)
| Fl,i (θ−i)

]
. (14)
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Combining (13) and (14) shows that the ex-ante expected payment an agent has to make in

period l, i.e. Eθ [tl,i (θ)] = Eθ

[
Eθ

−i
[tl,i (θi, θ−i) | Fl,i (θ−i)]

]
, is the same for all sequential

auctions (with announcement of winning types) if this is true for Eθ [tj,i (θ)] , j = l +

1, . . . , n. By induction we can conclude that this indeed must be the case.

If no announcements are made, beliefs are updated by using the information that all

winning types of previous periods are higher than the own type (i.e. Fl,i only depends on

her own type θi). In this case we have

Eθ
−i

[
tl,i

(
θ̂i, θ−i

)
| Fl,i (θi, θ−i)

]
= tl,i

(
θ̂i
)

and the Envelope-Theorem and the argumentation apply to this case as well.

Proof of Corollary 5:

The Corollary is an immediate consequence of the proof of Theorem 1 and Corollary 3.

We have (expected) payoffs which are identical to a sequential auction (as analyzed in

the proof of Theorem 1) in a period l up to a factor of
∏l−1

i=1 δi if we set D1 (θ) = θ and

Dl+1 (θ) = δlDl (θ). Therefore the analysis is the same as in Theorem 1.

Proof of Theorem 6:

From formula (3) we get pl =
(
δl−1 − δl

)
E[θ(l+1)] + pl+1. Hence

pl+1

pl

>

(<)

pl
pl−1

⇔
pl+1

pl

>

(<)

(
δl−1 − δl

)
E[θ(l+1)](

δl−2 − δl−1
)
E[θ(l)]

= δ
E[θ(l+1)]

E[θ(l)]
. (15)

1. Because of (15) we have to show that for every distribution there exists δ ∈ (0, 1) with
pl+1
pl

> δ
E[θ(l+1)]

E[θ(l)]
for all l ≤ k. Let m be defined by m = argmaxl≤k

E[θ(l+1)]

E[θ(l)]
. We know that

E[θ(m+1)]

E[θ(m)]
< 1. Since for δ → 1 we have

pl+1

pl
→ 1 for all l there exists a δ sufficiently close

to 1 such that
pl+1
pl

>
E[θ(m+1)]

E[θ(m)]
for all l ≤ k.

2. We have pk
pk−1

>

(<)

pk−1
pk−2

because of pk
pk−1

= δ
E[θ(k+1)]

(1−δ)E[θ(k)]+δE[θ(k+1)]
the assumption and (15).

Similarly to (15) we have that

pl+1

pl

>

(<)

pl
pl−1

⇔
pl
pl−1

>

(<)
δ
E[θ(l+1)]

E[θ(l)]
.
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Therefore if
pl+1
pl

>

(<)
pl

pl−1
we have (from the assumptions) that pl

pl−1

>

(<)
δ
E[θ(l+1)]

E[θ(l)]
>

(<)
δ

E[θ(l)]

E[θ(l−1)]

which implies that pl
pl−1

>

(<)

pl−1
pl−2

. The statement therefore follows by induction.
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