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Abstract

A social choice rule is a collection of social choice correspondences, one for
each agenda. An effectivity rule is a collection of effectivity functions, one for
each agenda. We prove that every monotonic and superadditive effectivity rule
is the effectivity rule of some social choice rule. A social choice rule is binary if
it is rationalized by an acyclic binary relation. The foregoing result motivates
our definition of a binary effectivity rule as the effectivity rule of some binary
social choice rule. A binary social choice rule is regular if it satisfies unanimity,
monotonicity, and independence of infeasible alternatives. A binary effectivity
rule is regular if it is the effectivity rule of some regular binary social choice
rule. We characterize completely the family of regular binary effectivity rules.
Quite surprisingly, intrinsically defined von Neumann-Morgenstern solutions
play an important role in this characterization.
Keywords: Social choice correspondences, effectivity functions, Nakamura’s
number, von Neumann-Morgenstern solutions.
JEL Classification: D71.

1 Introduction

The classical problem of social choice is the following: A society has to choose one
or more alternatives out of a set of feasible alternatives. Our problem is to find a
choice procedure that satisfies certain desirable properties so that it may be used
by the society.

It is well known that every choice procedure introduces a power structure among
coalitions of members of the society. Perhaps the most prominent example is the
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power structure induced by a social welfare function as a function of the restric-
tions on the social preference relation (see Section 3 of Sen (1986)). A method of
detailed description of the induced power structure was introduced in Moulin and
Peleg (1982), who used effectivity functions. Effectivity functions describe fully
and precisely the power structure induced by a game form or a social choice cor-
respondence. Abdou and Keiding (1991) deals with the theory and applications
of effectivity functions. Many additional applications have been found since 1991.
Thus, Peleg (2002) mentions some recent applications of effectivity functions.

Gärdenfors (1981) proposes a new framework for the application of game theory
to social choice. His starting point is a new concept of constitution called “rights-
system”. The axioms imposed by Gärdenfors on a rights-system imply that it is,
essentially, a monotonic and superadditive effectivity function. Gärdenfors’ ideas
have been used recently in Peleg (1998), Peleg, Peters and Storcken (2002), and
Keiding and Peleg (2002).

It is well-known that every monotonic and superadditive effectivity function is
the effectivity function of some game form (see, e.g., Peleg (1998) for a proof). We
prove in Section 3 the following related result: Every monotonic and superadditive
effectivity function is the effectivity function of some social choice correspondence.
This result motivates our central definition in Section 5.

A social choice rule is a collection of social choice correspondences, one for each
agenda (an agenda is a non-empty subset of the set of social alternatives). An effec-
tivity rule is a collection of effectivity functions, one for each agenda. An effectivity
rule is monotonic (superadditive) if every effectivity function is monotonic (super-
additive). By the result in Section 3, every monotonic and superadditive rule is the
effectivity rule of some social choice rule. This is the contents of Section 4.

A social choice rule is binary of it may be rationalized by an acyclic social binary
relation (for each profile of preferences of the members of the society). A binary
social choice rule is regular if it satisfies independence of infeasible alternatives, and
each of its social choice correspondences is monotonic and satisfies unanimity. An
effectivity rule is binary and regular if it is the effectivity rule of some regular binary
social choice rule. Section 5 contains a complete characterization of regular binary
effectivity rules.

2 Definitions and notations

Throughout this paper, A denotes the set of alternatives. A is assumed to be finite
and to have at least three members.. A (linear) preference ordering on A is a
complete, transitive, and antisymmetric binary relation. We denote by L = L(A)
the set of all linear orders on A. If S is a set, then LS = {f | f : S → L} denotes
the set of all maps from S to L.

Let B be a set. We denote by P (B) the set of all subsets of B, that is P (B) =
{B′ | B′ ⊆ B}. Also, P1(B) = P (B)\{∅} is the set of all non-empty subsets of B.
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Let N = {1, . . . , n} be the set of players, n ≥ 2. A social choice correspondence
(SCC) is a function H : LN → P1(A). Let H be an SCC. H satisfies non-imposition
(NI) if for every x ∈ A there exists RN ∈ LN such that H(RN) = {x}. H satisfies
unanimity if

[x ∈ A and x Ri y for all y ∈ A and i ∈ N ] ⇒ H(RN) = {x}.

Let RN ∈ LN and let x ∈ A. RN
1 ∈ LN is obtained from RN by an improvement

of the position of x if

(i) for all a, b ∈ A\{x} and all i ∈ N , a Ri b ⇔ a Ri
1 b, and

(ii) for all a ∈ A\{x} and all i ∈ N , x Ri a ⇒ x Ri
1 a.

An SCC H : LN → P1(A) is monotonic if it satisfies the following: If RN ∈ LN ,
x ∈ H(RN), and RN

1 is obtained from RN by an improvement of the position of x,
then x ∈ H(RN

1 ) and H(RN
1 ) ⊆ H(RN).

Let R ∈ L and a ∈ A. We denote L(a, R) = {b ∈ A | a R b}. An SCC H is
Maskin-monotonic if

[a ∈ H(RN), QN ∈ LN , and L(a, Ri) ⊆ L(a, Qi) for all i ∈ N ] ⇒ a ∈ H(QN).

We shall now define a few basic properties of effectivity functions. Effectivity
functions were introduced in Moulin and Peleg (1982). An effectivity function (EF)
is a function E : P (N) → P (P1(A)) that satisfies the following conditions: (i)
E(N) = P1(A), (ii) E(∅) = ∅, and (iii) A ∈ E(S) for all S ∈ P1(N). Let E
be an EF. E is superadditive if it satisfies the following condition: If Si ∈ P1(N),
Bi ∈ E(Si), i = 1, 2, and S1 ∩ S2 = ∅, then B1 ∩ B2 ∈ E(S1 ∪ S2) (in particular,
B1 ∩ B2 �= ∅). E is monotonic if

[B ⊆ B∗, S ⊆ S∗, and B ∈ E(S)] ⇒ B∗ ∈ E(S∗).

As a general interpretation, B ∈ E(S) means that the coalition S can enforce the
social outcome to be in B. Thus, superadditivity and monotonicity are natural
properties.

We shall now show how EFs are linked to SCCs (see, again Moulin and Peleg
(1982)). Let H be an SCC that satisfies (NI), S ∈ P1(N), and B ∈ P1(A). S is
effective for B if there exists RS ∈ LS such that H(RS, QN\S) ⊆ B for all QN\S ∈
LN\S. The EF EH which is associated with H is given by EH(∅) = ∅ and

EH(S) = {B ∈ P1(A) | S is effective for B}

for S ∈ P1(N). As the reader may easily verify, EH is superadditive and monotonic.
We recall now some properties of simple games. A simple game is a pair G =

(N, W ), where N is a set of players and W ⊆ P1(N), W �= ∅, is the set of winning
coalitions. G is monotonic if S ∈ W and S ⊆ T ⊆ N imply T ∈ W . A simple game
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G is proper if S ∈ W ⇒ N\S /∈ W , for all S ∈ P1(N). In the sequel, we deal only
with monotonic and proper simple games. G is weak if

V =
⋂
{S | S ∈ W} �= ∅.

V is the set of vetoers of G. If G is not weak, then the Nakamura number of G,
ν(G) (see Nakamura (1979)), is given by

ν(G) = min{|U | | U ⊆ W and ∩ {S | S ∈ U} = ∅}.

(Here and in the sequel, if B is a finite set, then |B| denotes the number of members
of B.) If G is weak, then we define ν(G) = ∞.

Let G be a simple game and let B ⊆ A, |B| ≥ 2. Further, let x, y ∈ B, x �= y,
and let RN ∈ LN . x dominates y at RN if there exists S ∈ W such that x Ri y for
all i ∈ S. The core of G with respect to RN , C(G, B, RN), is the set of undominated
alternatives in B at RN . If G is not weak, then C(G, B, RN) �= ∅ for all RN ∈ LN

if and only if ν(G) > |B| (see, e.g., Theorem 2.6.14 of Peleg (1984) for a proof).
Obviously, if G is weak, then C(G, B, RN) �= ∅ for all RN ∈ LN and B ⊆ A.

3 Representation of effectivity functions by social

choice correspondences

In Section 2 we have associated with every SCC H : LN → P1(A) a superadditive
and monotonic EF EH : P (N) → P (P1(A)). In this section we shall be interested in
the converse problem: Let E : P (N) → P (P1(A)) be a monotonic and superadditive
EF; is it possible to find an SCC H : LN → P1(A) such that EH = E? Quite
surprisingly, the answer is positive.

Let E be an EF. An SCC H that satisfies EH = E is called a representation of
E. It is well known that a superadditive and monotonic EF can be represented by
a game form (see Peleg (1998) for the relevant definitions and the result). However,
an SCC H : LN → P1(A) is a very special (multi-valued) game form: The set of
strategies of each player is L, the set of linear preferences on A.

We are ready now to formulate the above-mentioned result.

Theorem 3.1. Let E : P (N) → P (P1(A)) be a monotonic and superadditive EF.
Then there exists an SCC H : LN → P1(A) such that EH = E. Moreover, we may
assume that H is monotonic and satisfies unanimity.

Our first step towards a proof of this result is to recall some results of Abdou
and Keiding (1991). Let E : P (N) → P (P1(A)) be an EF and let RN ∈ LN . For
S ∈ P1(N) and B ⊆ A we say that x ∈ A\B is uniformly dominated by B via S at
RN if B ∈ E(S) and B RS A\B (that is b Ri a for all b ∈ B, a ∈ A\B, and i ∈ S).
The u-core of E at RN , written u-C(E, RN), is the set of all alternatives that are
not uniformly dominated at RN (by some B ∈ P1(A) via some S ∈ P1(N)). If E
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is superadditive and monotonic, then u-C(E, RN) �= ∅ for all RN ∈ LN (see Abdou
and Keiding (1991), p.145). Also, as the reader may easily verify, u-C(E, RN) is
monotonic and satisfies unanimity.

We shall also need the notion of u-effectiveness: Let S ∈ P1(N) and B ∈ P1(A);
then S is u-effective for B at RN if there exists T S ∈ LS such that for each x ∈ A\B,
there is S ′ ∈ P1(S) satisfying the conditions

(a) x is uniformly dominated via S ′ at (T S, RN\S),

(b) B RS′
x.

The following result, which we shall use in the proof of Theorem 3.1, is proved
in Abdou and Keiding (1991), p.148.

Lemma 3.2. Let E : P (N) → P (P1(A)) be a monotonic and superadditive EF, and
let RN ∈ LN . If S ∈ P1(N) is u-effective for B ∈ P1(A) at RN , then B ∈ E(S).

We are now ready for the proof of Theorem 3.1.

Proof: Define an SCC H : LN → P1(A) by

H(RN) = u-C(E, RN),

for all RN ∈ LN . By the foregoing remarks, H(RN) �= ∅ for all RN ∈ LN and H is
monotonic and satsifies unanimily. It remains to prove that EH = E.

Let B ∈ P1(A) and S ∈ P1(N). If B ∈ E(S), then for any profile T S ∈ LS such
that B T S A\B, we obtain

H(T S, RN\S) = u-C(E, (T S, RN\S)) ⊆ B

for every RN\S ∈ LN\S. Thus, B ∈ EH(S).
Conversely, if B ∈ EH(S), then there exists T S ∈ LS such that u-C(E, (T S, RN\S))

⊆ B for all RN\S ∈ LN\S. Choose RN
0 ∈ LN such that

B RS
0 A\B and A\B R

N\S
0 B.

We obtain that each x ∈ A\B is uniformly dominated at (T S, R
N\S
0 ) via some

coalition S ′ ⊆ S, and B RS′
0 x. Thus, S is u-effective for B at RN

0 . By Lemma 3.2,
B ∈ E(S).

An EF may be considered as a constitution for the society N (see Gärdenfors
(1981) and Peleg (1998)). If S ∈ P1(N) and B ∈ P1(A), then B ∈ E(S) implies that
the group S has the right to enforce the social state to be in B. A representation of
E by an SCC H may help the members of N to exercise their rights simultaneously
in the following sense. Let Si ∈ P1(N), Bi ∈ E(Si), i = 1, 2, and let S1 ∩ S2 = ∅.
Then there exist profiles RSi ∈ LSi , i = 1, 2, such that

H(RSi , QN\Si) ⊆ Bi, for all QN\Si ∈ LN\Si , i = 1, 2.
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Hence
H(RS1 , RS2 , QN\(S1∪S2)) ⊆ B1 ∩ B2, for all QN\(S1∪S2).

Thus, S1 and S2 may exercise B1 and B2 respectively at the same time. Notice
that the problem of congestion at public facilities does not arise in our framework.
For example, the Center for the Study of Rationality of the Hebrew University of
Jerusalem has only one copying machine. Let N be the set of the menbers of the
Center and let A be the set of all possible social states. If a ∈ A, then a specifies at
most one user of the copying machine at any point of the time grid.

Clearly, representations of an EF E by game forms also help in simultaneous
exercising of rights, and they need not be supplemented by a tie-breaking rule. Also,
they may be used to analyze the strategic behavior of the players in N , subject to
the legal constraints of E, when their preferences are known (see, e.g., Peleg, Peters
and Storcken (2002)). Multi-valued game forms, like SCCs, are inconvenient for
analyzing strategic behavior. Thus, we still need to justify the relevance of Theorem
3.1. At this stage we only point out the following corollary.

Corollary 3.3. An EF E : P (N) → P (P1(A)) is monotonic and superadditive if
and only if it is the EF EH of some SCC H : LN → P1(A) that is monotonic and
satisfies unanimity.

Corollary 3.3 will be generalized in the next section, and it will motivate the
central definition of this paper in Section 5.

4 Effectivity rules

We now turn to the investigation of dynamic choice procedures, or social choice rules.
A social choice rule defines a choice set for each agenda or subset of alternatives,
given a profile of preferences on the set of all alternatives. We remark that social
choice rules appear already in Arrow’s basic model of social choice (see Sen (1986),
p.1077).

Definition 4.1. A social choice rule (SCR) is a function K : P1(A)×LN → P1(A)
that satisfies K(B, RN) ⊆ B for all B ∈ P1(A) and RN ∈ LN .

Thus, if K : P1(A) × LN → P1(A) is an SCR, then for every B ∈ P1(A),
K(B, ·) : LN → P1(B) is an SCC. An SCR K : P1(A) × LN → P1(A) satisfies (NI)
(respectively unanimity, monotonicity, Maskin monotonicity) of each SCC K(B, ·),
B ∈ P1(A), satisfies (NI) (respectively unanimity, monotonicity, Maskin monotonic-
ity).

We shall give two examples:

Example 4.2. Let G = (N, W ) be a proper and monotonic simple game such that
ν(G) > |A|. Define an SCR K by

K(B, RN) = C(G, B, RN), for all B ∈ P1(A) and RN ∈ LN . (4.1)
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Then K satisfies unanimity and Maskin monotonicity.

Example 4.2 exhibits a well-behaved SCR for any number of alternatives. Notice,
however, that if |A| ≥ n, then G is weak.

Example 4.3. (The Wicksell SCR.) For each B ∈ P1(A) choose s(B) ∈ B, inter-
preted as the status quo when the agenda B is the set of available alternatives for
N . Define

K(B, RN) =

{
x if x ∈ B and x Ri b for all b ∈ B and i ∈ N ,
s(B) otherwise.

(4.2)

Then K satisfies unanimity and monotonicity.

Parallel to the introduction of a social choice rule as a family of social choice func-
tions, indexed by subsets of A, we introduce indexed families of effectivity functions
in order to get an effectiveness notion which corresponds to SCRs.

Definition 4.4. An effectivity rule (ER) is a collection D = {E(B, ·) | B ∈ P1(A)}
of EFs, where E(B, ·) : P (N) → P (P1(B)).

An ER D = {E(B, ·) | B ∈ P1(A)} is monotonic (superadditive) if every EF
E(B, ·), B ∈ P1(A), is monotonic (superadditive). Let K : P1(A)×LN → P1(A) be
an SCR. The corresponding ER DK is given by DK = {EK(B,·) | B ∈ P1(A)}. For
every K, DK is superadditive and monotonic.

Example 4.2, continued. For B ∈ P1(A) define an EF E(B, ·) : P (N) →
P (P1(B)) in the following way: E(B, S) = P1(B) if S ∈ W ; E(B, S) = {B} if
S /∈ W , S �= ∅; and E(B, ∅) = ∅. Then DK = {E(B, ·) | B ∈ P1(A)}, where K is
given by (4.1).

We prodeed now to our second example.

Example 4.3, continued. For B ∈ P1(A) we compute E(B, ·) = EK(B,·) (where
K is given by (4.2)): E(B, N) = P1(B); E(B, S) = {B′ | B′ ⊆ B and s(B) ∈ B′} if
1 ≤ |S| ≤ n − 1; and E(B, ∅) = ∅.

We conclude this section with the following remark.

Remark 4.5 An ER D = {E(B, ·) | B ∈ P1(A)} is monotonic and superadditive if
and only if it is the ER DK of some SCR K : P1(A)×LN → P1(A) that is monotonic
and satisfies unanimity.

5 Binary effectivity rules

In this section, we introduce the key notions of this paper, which are those of bina-
riness, for social choice rules as well as for effectivity rules.

The basic idea behind the notion of binariness for a social choice rule is that
(i) the alternatives chosen given any issue B and any profile RN are those that are
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maximal for a suitable binary relation R (so that the social choice rule is composed
of two operations, namely first a social welfare function assigning a binary relation
and secondly the operation of finding maximal elements for this relation), and (ii)
the binary relation is defined by the outcome of the social choice rule on subsets
containing only two alternatives. This is made precise in the following subsection,
where we introduce binary effectivity rules as the ERs associated with binary SCRs.
In Subsection 5.2 we show how to move backwards from effectivity rules satisfying a
suitable condition to binary SCRs. The correspondence between binary SCRs and
binary ERs is then exploited in the final Subsection 5.3 which contains a character-
ization of binary effectivity rules.

5.1 Binary SCRs

Let K : P1(A) × LN → P1(A) be an SCR and let RN ∈ LN . We define a binary
relation on A by

x R y ⇔ x ∈ K({x, y}, RN);

also, x R x for all x ∈ A. The SCR is binary if it can be rationalized by R, such as
described by the following definition.

Definition 5.1. An SCR K : P1(A) × LN → P1(A) is binary if for all B ∈ P1(A)
and RN ∈ LN ,

K(B, RN) = {x ∈ B | x R y for all y ∈ B}.

Example 4.2, continued. If G = (N, W ) is a monotonic and proper simple game,
and ν(G) > |A|, then C(G, B, RN) is a binary SCR.

Let again K : P1(A)×LN → P1(A) be an SCR and let RN ∈ LN . The asymmetric
part of R, P , is given by

x P y ⇔ {x} = K({x, y}, RN).

If K is binary, then it satisfies pairwise rejection (PRJ), that is for every B ∈ P1(A),

[x P y and x ∈ B] ⇒ y /∈ K(B, RN).

Thus, P must be acyclic. K satisfies also reward for pairwise optimality (RPO),

[x R y for all y ∈ B and x ∈ B] ⇒ x ∈ K(B, RN).

Clearly, binariness is equivalent to (PRJ) and (RPO).
Motivated by Remark 4.5, we define now binary EFs.

Definition 5.2. An ER D = {E(B, ·) | B ∈ P1(A)} is binary if there exists a
binary SCR K that satisfies (NI), such that DK = D.
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Clearly, the ER of Example 4.2 is binary. Our task now is to find “nice” prop-
erties of binary ERs that characterize them. Unfortunately, Definition 5.2 is too
broad and does not allow us to do this. Therefore we consider a subset of the set of
all binary EFs.

Let K : P1(A) × LN → P1(A) be an SCR. K satisfies independence of infeasible
alternatives (IIA) if for all B ∈ P1(A) and all QN , RN ∈ LN ,

[x Ri y ⇔ x Qi y, for all x, y ∈ B and i ∈ N ] ⇒ K(B, RN) = K(B, QN).

Definition 5.3 A binary SCR is regular if it satisfies unanimity, monotonicity,
and (IIA). A binary ER is regular if it is the ER of some regular SCR.

We make now the following observation.

Claim 5.4. Let K : P1(A) × LN → P1(A) be a regular binary SCR, let D = DK =
{E(B, ·) | B ∈ P1(A)}, and let RN ∈ LN . If B = {x, y} ⊆ A, {x} ∈ E(B, S), and
x Ri y for all i ∈ S, then K(B, RN) = {x}.

The proof of Claim 5.4 is straightforward. However, it enables us to prove our
first necessary condition.

Theorem 5.5. Let K : P1(A) × LN → P1(A) be a regular binary SCR, let D =
DK = {E(B, ·) | B ∈ P1(A)}, and let {x1, . . . , xq} ⊆ A. If {xi} ∈ E({xi, xi+1}, Si),
i = 1, . . . , q − 1, and {xq} ∈ E({x1, xq}, Sq), then ∩q

i=1Si �= ∅.
The proof of Theorem 5.5 is similar to the proof of the second half of Theorem

2.6.14 in Peleg (1984). For the sake of completeness it is included here.

Proof of Theorem 5.5. Assume, on the contrary, that ∩q
i=1Si = ∅. We define

now RN ∈ LN in the following way. Let i ∈ N . Then there exists k = k(i) such
that i /∈ Sk. We define Ri ∈ L such that

xk+1 Ri xk+2 Ri . . . Ri xq Ri x1 Ri . . . Ri xk.

Now let i ∈ Sj, 1 ≤ j ≤ q. If j < q, then xj Ri xj+1, and if j = q, then xq Ri x1. By
Claim 5.4, K({xi, xi+1}, RN) = {xi}, i = 1, . . . , q − 1, and K({x1, xq}, RN) = {xq}.
Thus, the strict social preference relation P = P (RN) is cyclic, which is the desired
contradiction.

The property of regular binary SCRs established in Theorem 5.5 can be seen as
an extension to the present context (of SCRs and ERs) of the well-known condition
of Nakamura (1979) for a social choice function to be a selection from the core of a
simple game at the given profile. We shall refer to the condition as the generalized
condition of Nakamura:

(GN) If {x1, . . . , xq} ⊆ A, {xi} ∈ E({xi, xi+1}, Si), i = 1, . . . , q − 1, and
{xq} ∈ E({x1, xq}, Sq), then ∩q

i=1Si �= ∅.
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We shall now show that Theorem 5.5 is not valid without (IIA).

Example 5.6. Let A = {a, b, c} and let N = {1, 2, 3, 4, 5}. We now define a
binary SCR K as follows. Clearly, we have only to define K({x, y}, RN) for all
x, y ∈ A and RN ∈ LN . Let K({x, y}, RN) = {x} if Ri = (x, y, z) for all i ∈ S,
where S = S1 = {1, 2, 3}, or S = S2 = {3, 4, 5}; also, K({x, y}, RN) = {x} if
|{i | x Ri y}| ≥ 4; in all other cases K({x, y}, RN) = {x, y}.

Let RN ∈ LN and let P = P (RN). As the reader may easily verify, P is acyclic.
Thus, if we define

K(B, RN) = {x ∈ B | x R y for all y ∈ B},

where R = R(RN) is the social preference order, then we obtain a monotonic binary
SCR that satisfies unanimity. However, a ∈ E({a, b}, S1), b ∈ E({b, c}, S2), and
c ∈ E({a, c}, S3), where S3 = {1, 2, 4, 5}, DK = {E(B, ·) | B ∈ P1(A)}, and
S1 ∩ S2 ∩ S3 = ∅.

5.2 Binary SCRs that are defined by binary ERs

In the preceding subsection, we introduced the ER associated with a binary SCR.
It is now time to consider the converse construction. However, since binariness of
ER was defined (see Definition 5.2) with reference to a binary SCR, we shall have
to use another approach, to be described below.

Let D = {E(B, ·) | B ∈ P1(A)} be a superadditive and monotonic ER. Moreover,
assume that D satisfies the generalized condition of Nakamura: We define a regular
binary SCR K from D in the following way. Let RN ∈ LN be a profile. Clearly, to
define the value of a binary SCR K at RN it is enough to define the asymmetric part
P = P (RN) of the binary relation underlying K. Therefore, let x, y ∈ A, x �= y,
and let S = {i | x Ri y}. Define

x P y ⇔ {x} ∈ E({x, y}, S).

P is acyclic by (GN). For a, b ∈ A define now: a R b if not b P a. The desired SCR
K is given by

K(B, RN) = {x ∈ B | x R y for all y ∈ B}.
As the reader may verify easily, K is a regular binary SCR. Note, however, that
DK = {Ê(B, ·) | B ∈ P1(A)} may not coincide with D. Nevertheless, E(B, ·) =
Ê(B, ·) for all B ⊆ A such that |B| = 2.

Let K : P1(A) × LN → P1(A) be a regular binary SCR and let DK = {E(B, ·) |
B ∈ P1(A)} be the corresponding ER. If K∗ is the SCR which is defined by DK ,
then as the reader may verify, K = K∗. Hence, if two regular binary SCRs have the
same ER, then they coincide.

The approach described above enables us to construct all regular binary SCRs
from superadditive and monotonic ERs.
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If a regular binary SCR is neutral, that is, it is covariant under permutation of
the alternatives, then it is the core of a (proper and monotonic) simple game (see
Theorem 4.4.14 in Peleg (1984)).

It is obvious that (GN) is not sufficient to characterize regular binary EFs. A
complete characterization of regular binary ERs will be given in the next subsec-
tion. It depends on some results on von Neumann-Morgenstern solutions of almost
transitive binary relations that are presented in an appendix.

5.3 Complete characterization of regular binary ERs

We find first an additional neccessary condition which is satisfied by regular binary
ERs. The new condition and the old (GN) are sufficient for a complete characteri-
zation.

Let K : P1(A) × LN → P1(A) be a regular binary SCR and let DK = {E(B, ·) |
B ∈ P1(A)} be the associated regular binary ER. For each S ∈ P1(N) we define a
binary relation �S on A as follows,

x �S y ⇔ x �= y and {x} ∈ E({x, y}, S).

�∗
S will denote the almost transitive closure of �S (see Example A.2).

Example 5.7. Let A = {a, b, c}, let N = {1, 2, 3}, let W = {{1, 2}, {1, 3}, {1, 2, 3}),
let G = (N, W ), and let K(B, RN) = C(G, B, RN) for all B ∈ P1(A) and RN ∈ LN .
Then �S= {(x, y) | x �= y, x, y ∈ A} if S ∈ W , and �S= ∅ otherwise.

We are now ready for the following theorem.

Theorem 5.8. Let K : P1(A) × LN → P1(A) be a regular binary SCR, and let
DK = {E(B, ·) | B ∈ P1(A)} be the associated regular binary ER. Then for every
S ∈ P1(N) and B ∈ P1(A)

E(B, S) = {B′ ∈ P1(B) | B′ contains a vNM solution of (B,�∗
S)}.

Thus, the minimal (under inclusion) members of E(B, S) are the vNM solutions
of (B,�∗

S).

Proof: The proof consists of several steps.
Step (a): Let B ∈ P1(A) and S ∈ P1(N). If U0 is a vNM solution of (B,�∗

S),
then U0 ∈ E(B, S).

Let {U0, U1, . . . , Uh} be the partition of B associated with U0 (see Remark A.4).
Choose RS ∈ LS such that x Ri y for all i ∈ S, x ∈ Uj, and y ∈ Uj+1, j =
0, 1, . . . , h − 1. By (IIA), Claim 5.4, and (PRJ),

K(B, (RS, QN\S)) ⊆ U0, for all QN\S ∈ LN\S.

Thus, U0 ∈ E(B, S).
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Step (b): K(B, ·) is Maskin monotonic for every B ∈ P1(A).
Let B ⊆ A, RN ∈ LN , and x ∈ K(B, RN). If QN ∈ LN satisfies [x Ri y ⇒

x Qi y], for all i ∈ N and y ∈ B, then, by monotonicity, x R y ⇒ x Q y for all
y ∈ B. (Here Q is the social preference induced by QN .) As x ∈ K(B, RN), x R y
for all y ∈ B. Hence, x Q y for all y ∈ B. By (RPO), x ∈ K(B, QN).

Step (c): If B∗ ∈ E(B, S) is minimal for inclusion (in E(B, S)), then B∗ is a
vNM solution of (B,�∗

S).
Let RS ∈ LS satisfy K(B, (RS, QN\S)) ⊆ B∗, for all QN\S ∈ LN\S. By Maskin

monotonicity, we may assume that B∗ RS B\B∗. We claim now that B∗ is ex-
ternally stable (with respect to (B,�∗

S)). Let Dom(B∗,�∗
S) = {x ∈ B | ∃y ∈

B∗ such that y �∗
S x}. Assume, on the contrary, that B1 = B\[B∗ ∪ Dom(B∗,�∗

S)]
is non-empty. Define a binary relation � on B by

x � y ⇔ x �T y and x Ri y for i ∈ T for some ∅ �= T ⊆ S.

Clearly, x � y ⇒ x �S y. Hence, if y ∈ B1 and x ∈ B∗∪Dom(B∗,�∗
S), then x �| y.

As K is binary, � is acyclic. Let x̄ be a �-maximal member of B1. If Q
N\S
0 ∈ LN\S

satisfies x̄ Qi
0 y for all i /∈ S and y ∈ B, then x̄ ∈ K(B(RS, Q

N\S
0 )) by (RPO), which

is the desired contradiction.
We conclude that B∗ ⊇ B∗∗, where B∗∗ is a vNM solution of (B,�∗

S) (see the
proof of Theorem A.3). By Step (a), B∗∗ ∈ E(B, S). Hence, by the minimality of
B∗, B∗ = B∗∗.

Let D = {E(B, ·) | B ∈ P1(A)} be an ER. D satisfies the condition (called the
vNM condition) of Theorem 5.8 if:

(vNM) For each S ∈ P1(N) and each B ∈ P1(A),

E(B, S) = {B′ ∈ P1(B) | B′ contains a vNM solution of (B,�∗
S)}

We summarize now the results of this section.

Corollary 5.9. A monotonic and superadditive ER D is a regular binary ER if
and only if it satisfies (GN) and (vNM).

Proof: If D is a regular binary ER then it satisfies (GN) and (vNM) respectively
by Theorems 5.5 and 5.8. If D satisfies (GN), then it defines a regular binary SCR
K. By Theorem 5.8, D = DK .

6 Concluding remarks

We have shown first in this paper that every monotonic and superadditive EF can
be obtained as the EF of some SCC. This result motivated our definiiton of binary
ERs. A binary ER is the ER of some binary SCR. Binary ERs proved to be too
difficult to characterize (see Example 5.6). Therefore we restricted our investigation
to regular binary ERs. A regular binary ER is the ER of some regular binary
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SCR, that is, a binary SCR that is monotonic and satisfies unanimity and (IIA).
Regular binary ERs were characterized by two properties: (GN) and (vNM). (GN)
is the generalization of Nakamura’s condition for the non-emptiness of the core of a
simple games to regular binary ERs (notice that a regular binary SCR that satisfies
neutrality must be the core correspondence of some simple game, by Section 4.4 in
Peleg (1984)). The second condition, (vNM), is more involved and it uses certain
von Neumann-Morgenstern solutions in the characterization of regular binary ERs
(see Subsection 5.3).

We relate now our analysis to (part of) the existing literature. Theorem 3.1
relies heavily on some results in Chapter 7 of Abdou and Keiding (1991). A survey
of binary SCRs may be found in Sen (1986, pp. 1097 – 8). Our terminology is
somewhat different from Sen’s, and it is borrowed from Pattanaik (1978). The core
of simple games is treated, for example, in Section 2.6 of Peleg (1984).

The results obtained may be used also as a characterization of social welfare
functions, since the basic idea of a binary SCR is to select the maximal elements
of a suitable binary relation depending on the profile. Previously, results on acyclic
social welfare functions satisfying IIA, monotonicty, and neutrality (anonymity) were
characterized by Nakamura (1979) (Moulin (1985)). Our results generalize both by
leaving out both neutrality and anonymity.

It is worthwhile to mention that it is possible to use a less demanding definition
of regularity of binary SCRs in Section 5. An SCR K : P1(A) × LN → P1(A)
is monotonic (respectively satisfies unanimity, satisfies (IIA)) in the limited sense
if every SCC K(B, ·) with |B| = 2 is monotonic (respectively satisfies unanimity,
satisfies (IIA)). A binary SCR is regular in the limited sense if it is monotonic in the
limited sense and satisfies unanimity and (IIA) in the limited sense. As the reader
may verify, if a binary SCR is regular in the limited sense, then it is regular. Thus,
we could have used binary SCRs that are regular in the limited sense in Section 5
instead of regular binary SCRs.

7 Appendix. Von Neumann-Morgenstern solu-

tions of almost transitive binary relations

Let B be a finite set and let � be an irreflexive binary relation on B. The binary
relation � is almost transitive if for all x, y, z ∈ B:

[x � y, y � z, and x �= z] ⇒ x � z.

Example A.1. Let �∗ be an irreflexive and transitive binary relation on B. Then
�∗ is almost transitive.

Example A.2. Let �∗ be an irreflexive binary relation on B. Define the almost
transitive closure �1 of �∗ as follows. Let x, y ∈ B, x �= y. Then x �1 y if there
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exist distinct members of B, z0, z1, . . . , zq+1, q ≥ 0, such that z0 = x, zq+1 = y, and
zi �∗ zi+1 for i = 0, 1, . . . , q. As the reader may verify easily, �1 is almost transitive.

We recall now that Be ⊆ B is externally stable if for all x ∈ B\Be there exists
y ∈ Be such that y � x. Bi ⊆ B is internally stable if there exists no pair x, y ∈ Bi

such that x � y. A set B0 ⊆ B is stable if it is both externally and internally stable.
Stable sets are also called von Neumann-Morgenstern (vNM) solutions (of (B,�)).

The following theorem is used in subsection 5.3.

Theorem A.3. Let B be a finite set and let � be an (irreflexive and) almost
transitive binary relation on B. Then there exists a stable set B0 ⊆ B.

Proof: B is externally stable. Therefore, there exists a minimal externally stable
set B0. If x, y ∈ B0 and x � y, then B0\{y} is externally stable. Hence, B0 must
also be internally stable.

We conclude with the following remark.

Remark A.4. Let B be a finite set and let � be an irreflexive binary relation on B.
Let �∗ be the almost transitive closure of �, let U = U0 be a stable set of (B,�∗),
and define

Uk+1 = {x ∈ B\ ∪k
i=0 Ui | ∃y ∈ Uk such that y � x},

k = 0, 1, . . .. Then there exists h ≥ 0 such that Uh �= ∅, Uk = ∅, k > h, and
{U0, . . . , Uh} is a partition of B.
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