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Abstract

Let A be a finite set of m ≥ 3 alternatives, let N be a finite set of n ≥ 3 players and let RN

be a profile of linear preference orderings on A of the players. Throughout most of the paper

the considered voting system is the majority rule. Let uN be a profile of utility functions for

RN . Using α-effectiveness we define the NTU game VuN and investigate its Aumann-Davis-

Maschler and Mas-Colell bargaining sets. The first bargaining set is nonempty for m = 3

and it may be empty for m ≥ 4. Moreover, in a simple probabilistic model, for fixed m, the

probability that the Aumann-Davis-Maschler bargaining set is nonempty tends to one if n

tends to infinity.

The Mas-Colell bargaining set is nonempty for m ≤ 5 and it may be empty for m ≥ 6.

Moreover, we prove the following startling result: The Mas-Colell bargaining set of any

simple majority voting game derived from the k-th replication of RN is nonempty, provided

that k ≥ n + 2.

We also compute the NTU games which are derived from choice by plurality voting and

approval voting, and we analyze some interesting examples.
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1 Introduction

The Voting Paradox prevents us from applying the majority voting rule to choice problems

with more than two alternatives. The standard way to avoid the paradox is to assume that

the preferences of the voters are restricted so that the method of decision by majority yields

no cycles (see Gaertner (2001) for a recent comprehensive survey). In this paper we follow a

different path. It is well-known that the Voting Paradox is equivalent to the emptiness of the

core of the corresponding cooperative majority voting game. We investigate various bargaining

sets which include the core.

We shall now review our results. At the end of the review we shall present our main conclusions.

In Section 2 we derive the the exact form of the cooperative NTU games which correspond to

simple majority voting, plurality voting, and approval voting (see Brams and Fishburn (1983)).

We also recall the definitions of the Aumann-Davis-Maschler and Mas-Colell bargaining sets of

cooperative NTU games. Throughout our study we focus, almost exclusively, on the foregoing

two bargaining sets of simple majority voting games.

The Voting Paradox with three voters and three alternatives is analyzed in Section 3. Existence

of the two bargaining sets holds for the simple majority voting game. Only the Mas-Colell

bargaining set is also nonempty for the plurality and approval voting games.

The bargaining sets of simple majority voting games with three alternatives are almost com-

pletely characterized in Section 4. They are always nonempty (for three alternatives).

Section 6 contains our first non-existence result and our first asymptotic result. The Aumann-

Davis-Maschler bargaining set of a simple majority voting game with four alternatives may be

empty. Nevertheless, in a simple probabilistic model, if the number of alternatives is fixed, then

the probability that the Aumann-Davis-Maschler bargaining set is nonempty tends to one as

the number of voters tends to infinity.

Our main existence theorem is contained in Section 6: The Mas-Colell bargaining set of a simple

majority voting game with at most five alternatives is non-empty. For six or more alternatives

the Mas-Colell bargaining set may be empty.

We conclude in Section 7 with the following result: If RN is a profile of preferences of the

members of the set N of voters, kRN is the k-th replication of RN , k ≥ n + 2, where n is the

number of voters, then the Mas-Colell bargaining set of any simple majority voting game that

is derived from kRN is nonempty.

Let (N, V ) be a simple majority voting game and let x be an individually rational payoff vector.

The vector x is in a bargaining set if (i) x is (weakly) Pareto optimal and if (ii) for every

objection (in the sense of the bargaining set) there is a counter objection. Our study proves
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that the tension between (i) and (ii) is so strong that for six or more alternatives all bargaining

sets may be empty. This is our first conclusion. Our second conclusion is more vague: If

the number of players tends to infinity and the number of alternatives is held fixed, then the

bargaining set of (simple majority) voting games are likely to be non-empty.

2 Preliminaries

Let N = {1, . . . , n}, n ≥ 3, be a set of voters, also called players, and let A = {a1, . . . , am},

m ≥ 3, be a set of m alternatives. For S ⊆ N we denote by RS the set of all real functions on

S. So RS is the |S|-dimensional Euclidean space. (Here and in the sequel, if D is a finite set,

then |D| denotes the cardinality of D.) If x, y ∈ RS , then we write x ≥ y if xi ≥ yi for all i ∈ S.

Moreover, we write x > y if x ≥ y and x 6= y and we write x ≫ y if xi > yi for all i ∈ S. Denote

RS
+ = {x ∈ RS | x ≥ 0}. A set C ⊆ RS is comprehensive if x ∈ C, y ∈ RS , and y ≤ x imply

that y ∈ C. An NTU game with the player set N is a pair (N, V ) where V is a function which

associates with every coalition S (that is, S ⊆ N and S 6= ∅) a set V (S) ⊆ RS , V (S) 6= ∅, such

that

(1) V (S) is closed and comprehensive;

(2) V (S) ∩ (x + RS
+) is bounded for every x ∈ RS .

We shall focus on choice by simple majority voting, by plurality voting, and by approval voting.

The corresponding three strategic game forms leading to three kinds of NTU voting games may

be described as follows. The first game form consists of the voters selecting an element of A. If

a strict majority of voters agrees on α ∈ A, then the outcome is α; otherwise no alternative is

selected. The second game form is a multi-valued game form which differs from the first game

form only inasmuch as the set of all alternatives that are announced by a maximal number of

voters is selected. In the third game form each voter has to announce a nonempty subset – a

ballot – of alternatives. The outcome is the set of alternatives that are members of a maximal

number of ballots.

We shall now assume that each i ∈ N has a linear preference Ri on A. Thus, for every i ∈ N ,

Ri is a complete, transitive, and antisymmetric binary relation on A. Moreover, let ui, i ∈ N ,

be a utility function that represents Ri. We shall always assume that

min
α∈A

ui(α) = 0 for all i ∈ N. (2.1)

As we are going to break ties by even-chance lotteries, we shall further assume that the utilities

are weakly cardinal, that is, they satisfy the expected utility hypothesis for even-chance lotteries

(see Fishburn (1972)). For each of the three strategic game forms any utility profile uN = (ui)i∈N
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that satisfies the foregoing assumptions determines its corresponding strategic game. These

considerations motivate to define the cooperative NTU voting games that are associated (via

α-effectiveness) with our strategic games. Indeed, let uN be a utility profile that satisfies (2.1).

The NTU game (N, VuN ) associated with choice by simple majority voting and called simple

majority voting game (see Aumann (1967)) is defined by

VuN (S) = {x ∈ RS | x ≤ 0} if S ⊆ N, 1 ≤ |S| ≤
n

2
; (2.2)

VuN (S) = {x ∈ RS | ∃α ∈ A such that x ≤ uS(α)} if S ⊆ N, |S| >
n

2
. (2.3)

The coalition function of the plurality voting game, that is, the NTU game associated with choice

by plurality voting, is denoted by V pl

uN and it may differ from VuN only for coalitions S ⊆ N

such that |S| = n/2 and for the grand coalition N . Indeed, we define

V pl

uN (S) =

{
x ∈ RS

∣∣∣∣∃ α ∈ A such that x ≤
1

2
uS(α)

}
for all S ⊆ N, |S| =

n

2
, (2.4)

and

V pl

uN (N) =





x ∈ RN

∣∣∣∣∣∣∣∣

∃ B ⊆ A such that 1 ≤ |B| ≤ n,

([
n
|B|

]
− 1

)
|A| + |B| ≥ n, and x ≤

∑
β∈B uN (β)

|B|





, (2.5)

where [r] denotes the largest integer less than or equal to r. Indeed, if |S| = n/2 and all members

of S select the same alternative α, then a player i ∈ S cannot be prevented from the utility

ui(α)/2 even if all members of N \ S select i’s worst alternative (see (2.1)). Moreover, if B is

the set of alternatives that are announced by a maximal number t of voters, then 0 ≤ n− t|B| ≤

(t − 1)(|A| − |B|) and, hence, t ≤ [n/|B|] and

n − |B| ≤ ([n/|B|] − 1)|A|. (2.6)

If B ⊆ A satisfies (2.6), then there exists a profile of strategies that results in the outcome B.

Now, if approval voting is employed, if S ⊆ N satisfies |S| = n/2, and if each member j of S

selects a ballot Bj , then the strategies of the players in N \ S may induce the following sets of

outcomes: (1) Any subset of
⋃

j∈S Bj and (2) any superset of
⋂

j∈S Bj . Hence, if i ∈ S, then

N \ S may prevent i from receiving more than the utility

min



 min

β∈
⋃

j∈S Bj
ui(β), min

C⊇
⋂

j∈S Bj

∑

γ∈C

ui(γ)

|C|



 ≤ min



min

β∈Bj
ui(β), min

C⊇Bj

∑

γ∈C

ui(γ)

|C|



 ∀j ∈ S.

Also, if all members of the grand coalition select B ⊆ A, then the resulting utility profile is
∑

β∈B uN (β)/|B|. Hence, the NTU game associated with choice by approval voting, (N, V ap

uN ),

called approval voting game, differs from (N, VuN ) only inasmuch as for any S ⊆ N, |S| = n
2 ,

V ap

uN (S) =

{
x ∈ RS

∣∣∣∣∣∃ ∅ 6= B $ A such that xi ≤ min

{
min
β∈B

ui(β), min
∅6=C⊆A\B

∑
β∈B∪C ui(β)

|B| + |C|

}
∀ i ∈ S

}
, (2.7)
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and

V ap

uN (N) =

{
x ∈ RN

∣∣∣∣∣∃ ∅ 6= B ⊆ A such that x ≤

∑
β∈B uN (β)

|B|

}
. (2.8)

Hence, for each coalition S, VuN (S) (or V pl

uN (S), V ap

uN (S), respectively) consists of all vectors

x ∈ RS that S can get at least, regardless of the strategies chosen by the members of N \S, with

respect to choice by simple majority voting (or plurality voting, approval voting, respectively).

Note that the selection of no alternative in the context of choice by simple majority voting is

assumed to result in the utility 0 for each voter.

Notation 2.1 In the sequel let L = L(A) denote the set of linear preferences on A. If RN ∈ LN ,

then denote

URN

= {(ui)i∈N | ui is a representation of Ri satisfying (2.1) ∀i ∈ N}.

Remark 2.2 Let RN ∈ LN . Then the associated simple majority voting games are derived from

each other by ordinal transformations. The associated plurality voting games and the associated

approval voting games may not be derived from each other by an ordinal transformation, because

weakly cardinal utilities may not be covariant under monotone transformations.

Let (N, V ) be an NTU game. The pair (N, V ) is zero-normalized if V ({i}) = −R{i}
+ (= {x ∈

Ri | x ≤ 0}) for all i ∈ N . Also, (N, V ) is superadditive if for every pair of disjoint coalitions

S, T , V (S)× V (T ) ⊆ V (S ∪ T ). It should be remarked that the three foregoing NTU games are

zero-normalized and superadditive.

Now we shall recall the definitions of two bargaining sets introduced by Davis and Maschler

(1967) and by Mas-Colell (1989). Let (N, V ) be a zero-normalized NTU game and x ∈ RN . We

say that x is

• individually rational if x ≥ 0;

• Pareto optimal (in V (N)) if x ∈ V (N) and if y ∈ V (N) and y ≥ x imply x = y;

• weakly Pareto optimal (in V (N)) if x ∈ V (N) and if for every y ∈ V (N) there exists i ∈ N

such that xi ≥ yi;

• a preimputation if x is weakly Pareto optimal in V (N);

• an imputation if x is an individually rational preimputation.

A pair (P, y) is an objection at x if ∅ 6= P ⊆ N , y is Pareto optimal in V (P ), and y > xP .

An objection (P, y) is strong if y ≫ xP . The pair (Q, z) is a weak counter objection to the

objection (P, y) if Q ⊆ N , Q 6= ∅, P , if z ∈ V (Q), and if z ≥ (yP∩Q, xQ\P ). A weak counter
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objection (Q, z) is a counter objection to the objection (P, y) if z > (yP∩Q, xQ\P ). A strong

objection (P, y) is justified in the sense of the bargaining set if there exist players k ∈ P and

ℓ ∈ N \ P such that there does not exist any weak counter objection (Q, z) to (P, y) satisfying

ℓ ∈ Q and k /∈ Q. The bargaining set of (N, V ), M(N, V ), is the set of all imputations x that

do not have strong justified objections at x in the sense of the bargaining set (see Davis and

Maschler (1967)). An objection (P, y) is justified in the sense of the Mas-Colell bargaining set

if there does not exist any counter objection to (P, y). The Mas-Colell bargaining set of (N, V ),

MB(N, V ), is the set of all imputations x that do not have a justified objection at x in the sense

of the Mas-Colell bargaining set (see Mas-Colell (1989)).

Notation 2.3 If RN ∈ LN and α, β ∈ A, α 6= β, then α dominates β (abbreviated α ≻RN β) if

|{i ∈ N | α Ri β}| > n
2 . For R ∈ L and for k ∈ {1, . . . , m}, let tk(R) denote the k-th alternative

in the order R. Also, for B ⊆ A let R|B denote the restriction of R to B.

Remark 2.4 Let uN ∈ URN
, let B $ A, let i ∈ N , and let

(t1(R
i
|A\B), . . . , tm−|B|(R

i
|A\B)) = (α1, . . . , αm−|B|)

be the vector of alternatives in A \ B ordered by Ri. For j = 1, . . . , m − |B|, define

zj =
1

m − j + 1




∑

β∈B

ui(β) +

m−|B|∑

k=j

ui(αk)


 .

It can be deduced that the sequence (zj)
m−|B|
j=1 is unimodal, i.e., there exists t ∈ {1, . . . , m−|B|}

such that zk > zk+1 for k ≤ t−1, zk < zk+1 for k > t, and zt ≤ zt+1 if t < m−|B|. We conclude

that

min
∅6=C⊆A\B

∑

β∈B∪C

ui(β)

|B| + |C|
= min

j=1,...,m−|B|
zj = zt.

This remark enables us to easily compute (2.7), taking (2.1) into account, that is,

tm(Ri) ∈ B ⇒ min
β∈B

ui(β) = 0 ≤ zt, (2.9)

tm(Ri) /∈ B ⇒ ui(αm−|B|) = ui(tm(Ri)) = 0. (2.10)

We shall say that an alternative α ∈ A is a weak Condorcet winner (with respect to RN ) if

β 6≻RN α for all β ∈ A.

3 An Example: The Voting Paradox

In this section we shall compute the bargaining sets of the Voting Paradox and interpret the

results.
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Table 3.1: Preference Profile of the Voting Paradox

R1 R2 R3

a c b

b a c

c b a

Let A = {a, b, c}, let n = 3, and let RN ∈ LN be given by Table 3.1.

For i ∈ N let ui be a utility representation of Ri satisfying (2.1) and let V = VuN (see (2.2) and

(2.3)).

We claim that M(N, V ) = {0}. Indeed, it is straightforward to verify that 0 ∈ M(N, V ). In

order to show the opposite inclusion let x ∈ M(N, V ). Then there exists α ∈ A such that

x ≤ uN (α). Without loss of generality we may assume that α = a. Assume, on the contrary,

that x > 0. If x1 > 0, then ({2, 3}, u{2,3}(c)) is a justified objection of 3 against 1 at x in the

sense of the bargaining set. If x1 = 0 and, hence, x2 > 0, then ({1, 3}, u{1,3}(b)) is a justified

objection of 1 against 2.

As we shall see in Section 4, if n > 3 then M may contain many non-zero vectors. In our present

example there are not enough partners for counter objections.

In order to compute the Mas-Colell bargaining set, we define x = (u1(b), u2(a), 0) and claim that

x ∈ MB(N, V ). Indeed, let (P, y) be an objection at x. Then |P | ≥ 2. As y is Pareto optimal in

V (P ), y ∈ {uP (α) | α ∈ A}. If y = uP (a), then (P, y) is countered by ({2, 3}, u{2,3}(c)). If y =

uP (b), then y > xP implies that P = {1, 3}. In this case (P, y) is countered by ({1, 2}, u{1,2}(a)).

Finally, if y = uP (c), then y > x implies that P = {2, 3} and that (P, y) is countered by

({1, 3}, u{1,3}(b)).

Now, we shall show that x is Pareto optimal in MB(N, V ). Indeed, if x̃ ∈ V (N) satisfies

x̃ > x, then x̃ ≤ uN (a), because x 6≤ uN (b) and x 6≤ uN (c). Hence, x1 = u1(b) < x̃1 and

x{2,3} = u{2,3}(a) = x̃{2,3}. Thus, ({2, 3}, u{2,3}(c)) is a justified objection at x̃.

In order to show that every x̂ ∈ RN satisfying 0 ≤ x̂ ≤ x is an element of MB(N, V ), it

should be noted that each objection at x̂ is also an objection at x if x̂1 > 0 and x̂2 > 0. If

x̂1 = 0 and x̂2 > 0, then the additional objections are of the form (P, uP (c)) for some P ⊆ N

and these objections can be countered by ({1, 3}, u{1,3}(b)). Similarly, if x̂1 > 0 and x̂2 = 0,

then the additional objections can be countered by ({1, 2}, u{1,2}(a)). Finally, if x̂ = 0, then

each additional objection can be countered by one of the foregoing pairs ({1, 3}, u{1,3}(b)) or
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({1, 2}, u{1,2}(a)).

Two other Pareto optimal members of MB(N, V ) are

y = (u1(b), 0, u3(c)) and z = (0, u2(a), u3(c)).

Also, if x̃ ∈ V (N) satisfies x̃1 > u1(b) and x̃2 = x̃3 = 0, then ({2, 3}, u{2,3}(c)) is a justified

objection in the sense of the Mas-Colell bargaining set at x̃. Similarly, for any ỹ, z̃ ∈ MB(N, V )

such that ỹ{1,2} = 0 and z̃{1,3} = 0 we may deduce that ỹ ≤ y and z̃ ≤ z. We conclude that

MB(N, V ) is the intersection of RN
+ and the comprehensive hull of {x, y, z}.

Discussion: The singleton M(N, V ) tells us that in order to achieve (coalitional) stability the

players have to give up any profit above their individually protected levels of utility. There

is no hint how an alternative of A will be chosen. The message of MB(N, V ) is much more

detailed. For example, the element x = (u1(b), u2(a), 0) tells us that the alternative a may be

chosen provided player 1 disposes of u1(a)−u1(b) utiles. Thus, we also see here that lower utility

levels guarantee stability. Actually, x implies that there is an agreement between 1 and 2, the

alternative a is chosen as a result of the agreement, and the utility of 1 is reduced (because of

the agreement) from u1(a) to u1(b). Note that cooperative game theory does not specify the

details of agreements that support stable payoff vectors.

We shall now show that, for any utility representation uN ∈ URN
, the Mas-Colell bargaining

sets of the associated plurality and approval voting games are nonempty. Indeed, we distinguish

two possibilities. If ui(t1(R
i)) ≤ 2ui(t2(R

i)) for some i ∈ N , let us say for i = 1, then we

claim that x = (u1(b), u2(a), 0) is an element of MB(N, V pl

uN ) and of MB(N, V ap

uN ). Indeed,

x is weakly Pareto optimal, because if z ∈ V pl

uN (N) or z ∈ V ap

uN (N) such that z1 > x1, then

z ≤ uN (a). Moreover, let (P, y) be an objection at x. If y ∈ V (P ), then we may proceed as in

the proof that x ∈ MB(N, V ). If y /∈ V (P ), then P = N and y ≤ 1
3(uN (a) + uN (b) + uN (c)) or

y ≤ 1
2(uN (a) + uN (c)). In both subcases ({1, 3}, u{1,3}(b)) is a counter objection to (P, y). Now,

if ui(t1(R
i)) > 2ui(t2(R

i)) for all i ∈ N , then 1
3(uN (a) + uN (b) + uN (c)) is Pareto optimal and

it belongs to the Mas-Colell bargaining sets and to the bargaining sets of the plurality and of

the approval voting game, because it has no objection at all.

Finally we shall show that M(N, V pl

uN ) = M(N, V ap

uN ) = ∅ for any uN ∈ URN
such that

ui(t1(R
i)) < 2ui(t2(R

i)) for all i ∈ N . Let V pl = V pl

uN and V ap = V ap

uN . Assume that

x ∈ M(N, V pl). We distinguish the following 2 possibilities. If x ≤ uN (α) for some α ∈ A,

then we may assume that α = a. As in the proof of the inclusion M(N, V ) ⊆ {0}, we

conclude that x = 0 which now contradicts the assumption of weak Pareto optimality. If

x ≤ 1
3(uN (a) + uN (b) + uN (c)), then our assumption on the utility representations imply that

xi ≪ (u1(b), u2(a), u3(c)). Hence, ({1, 2}, u{1,2}(a)) is a strong objection of 2 against 3. We

conclude that x3 = 0. Similarly we may deduce that x1 = x2 = 0 and, so, we have de-

rived the desired contradiction. Now assume that x ∈ M(N, V ap). The cases x ≤ uN (α) and
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x ≤ 1
3(uN (a) + uN (b) + uN (c)) may be treated as before. Hence, just the case x ≤

∑
β∈B

uN (β)
|B|

for some B ⊆ N , |B| = 2, has to be considered. We may assume that B = {a, b}. Then

x ≪ (u1(a), u2(a), u3(c)) and, so, ({1, 2}, u{1,2}(a)) is a strong objection of 2 against 3. As

there is a weak counter objection, x3 = 0. Similarly, the fact that ({2, 3}, u{2,3}(c)) is a strong

objection of 2 against 1 implies that x1 = 0. Now, ({1, 3}, u{1,3}(b)) is a strong objection of 1

against 2 and, hence, x2 = 0 and the desired contradiction has been obtained.

4 Three Alternatives

Throughout this section let RN ∈ L(A)N , uN ∈ URN
(see Notation 2.1), V = VuN (see (2.2)

and (2.3)) and let ≻ = ≻RN (see Notation 2.3).

Theorem 4.1 If |A| = 3, then M(N, VuN ) 6= ∅.

Proof: Let A = {a, b, c}. If there exists a weak Condorcet winner α ∈ A, then uN (α) ∈

M(N, V ). Otherwise we may assume without loss of generality that a ≻ b, b ≻ c, and c ≻ a.

We claim that

for any α ∈ A there exists i ∈ N such that t3(R
i) = α. (4.1)

Indeed, if α ∈ {t1(R
i), t2(R

i)} for all i ∈ N and if β ≻ α, then |{i ∈ N | β = t1(R
i)}| > n

2 and β

is a Condorcet winner which was excluded. We conclude that 0 ∈ RN is weakly Pareto optimal.

Hence 0 ∈ M(N, V ). q.e.d.

Lemma 4.2 Let |A| = 3 and x ∈ M(N, V ). If there is no weak Condorcet winner, then

xi ≤ ui(t2(R
i)) for all i ∈ N .

Proof: Let i ∈ N and Ri = (α, β, γ). Assume, on the contrary, that xi > ui(β). We distinguish

the following cases:

(1) γ ≻ α. Let S = {j ∈ N | γRjα}. Then |S| > n
2 and i 6∈ S. If k ∈ S, then (S, uS(γ)) is

a strong objection of k against i. Any weak counter objection must be of the form (T, y)

where i ∈ T 6∋ k and yi ≥ xi. We conclude that y ≤ uT (α) which is impossible.

(2) β ≻ α. This case may be treated similarly. q.e.d.

We are now ready for a partial characterization of the bargaining set. For α, β ∈ A, α 6= β, let

Dαβ(RN ) = Dαβ = {i ∈ N | α Ri β}.
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Theorem 4.3 Let A = {a, b, c}. Assume that a ≻ b, b ≻ c, c ≻ a, and that

|Dαβ | >
n

2
+ 1 for all (α, β) ∈ {(a, b), (b, c), (c, a)}.

If x ∈ RN satisfies

0 ≤ x ≤ uN (α) for some α ∈ A (4.2)

and

xi ≤ ui(t2(R
i)) for all i ∈ N, (4.3)

then x ∈ M(N, V ).

Proof: By (4.1), x is weakly Pareto optimal. Assume without loss of generality that x ≤ uN (a).

Let (P, y) be a strong objection of k against ℓ at x. As P 6= ∅, as y ≫ xP ≥ 0, and as y is

Pareto optimal in V (P ), we conclude that |P | > n
2 and that there is some β ∈ A such that

uP (β) = y. If β = a, then define Q = (P \ {k}) ∪ {ℓ} and observe that (Q, uQ(a)) is a weak

counter objection to (P, uP (a)). If β = b, then define Q = (Dab \ {k}) ∪ {ℓ} and observe that

(Q, uQ(a)) is a counter objection to (P, uP (b)). If β = c, then the following two cases may occur.

Case 1: uℓ(b) ≥ xℓ. Define Q = (Dbc \ {k}) ∪ {ℓ}. We claim that in this case (Q, uQ(b)) is a

weak counter objection to (P, uP (c)). Indeed, for all i ∈ P ∩ Q, ui(b) > ui(c) > xi. Also, if

i ∈ Q \ P , i 6= ℓ, then ui(b) > ui(c) and, hence, by (4.3), ui(b) ≥ xi.

Case 2: uℓ(c) ≥ xℓ. Define Q = (P \ {k}) ∪ {ℓ} and observe that (Q, uQ(c)) is a weak counter

objection to (P, uP (c)) in this case. q.e.d.

Remark 4.4 A careful inspection of the foregoing proof shows that |Dca| > n
2 + 1 is not used

when x ≤ uN (a). Thus, we have proved the following stronger result.

Corollary 4.5 Let A = {a, b, c}. Assume that x ∈ RN satisfies 0 ≤ x ≤ (ui(t2(R
i)))i∈N and

assume that a ≻ b, b ≻ c, and c ≻ a. Then x ∈ M(N, V ) in each of the following three cases:

(
x ≤ uN (a) and |Dab|, |Dbc| > n

2 + 1
)
, or

(
x ≤ uN (b) and |Dbc|, |Dca| > n

2 + 1
)
, or

(
x ≤ uN (c) and |Dca|, |Dab| > n

2 + 1
)
.

Example 4.6 Let N = {1, . . . , 9} and let RN be given by Table 4.1. Then a ≻ b ≻ c ≻ a.

Also, x = (min{ui(a), ui(b)})i∈N ∈ M(N, V ). Indeed, by (4.1), x is weakly Pareto optimal.

Let ∅ 6= P $ N , let k ∈ P and ℓ ∈ N \ P . Assume that (P, y) is a strong objection of

k against ℓ at x. If y ≤ uP (a), then (N \ {k}, uN\{k}(a)) is a weak counter objection. If

y 6≤ uP (a), then P = {4, 5, 6, 8, 9}. If k 6= 4, then define Q = {1, 2, 3, 4, 7}, and if k = 4, then

define Q = {1, 2, 3, 7, 9}. Observe that (Q, uQ(b)) is a weak counter objection to (P, y). Let z =

(0, 0, 0, 0, u5(a), 0, 0, 0, 0). By (4.1), z is weakly Pareto optimal. Also, with P = {1, 2, 3, 4, 6, 7, 9},
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Table 4.1: Preference Profile of a 9-Person Voting Problem

R1 R2 R3 R4 R5 R6 R7 R8 R9

a a b b c c a c b

b b a c a b b a c

c c c a b a c b a

(P, uP (b)) is a justified objection at z from 1 against 5. We conclude that z /∈ M(N, V ), precisely

because |Dab| = 5 < n
2 + 1.

Now we shall consider MB. It is straightforward to verify that, for any weak Condorcet winner

α with respect to RN , uN (α) belongs to MB(N, V ) (regardless of the number of alternatives).

Moreover, the following “opposite” result is true for m = 3.

Remark 4.7 Let m = 3, RN ∈ L(A)N , and uN ∈ URN
. If there exists a weak Condorcet winner

with respect to RN , then MB(N, VuN ) is the set of the utility profiles of all weak Condorcet

winners. Indeed, let x ∈ MB(N, VuN ) and assume that x is not the utility profile of any weak

Condorcet winner. Then 0 ≤ x ≤ uN (α) for some α ∈ A. If α is a Condorcet winner, then

x < uN (α) by our assumption. Hence, (N, uN (α)) is a justified objection in this case. If α

is not a weak Condorcet winner, then there exists β ∈ A such that β ≻RN α. Hence, let

P = {i ∈ N | β Ri α} and observe that (P, uP (β)) is an objection at x. As x ∈ MB(N, VuN ),

there exist a counter objection (Q, uQ(γ)) to (P, uP (β)). We conclude that γ 6= α and γ ≻RN β.

According to our assumption there is a weak Condorcet winner. Hence γ is a - the unique -

weak Condorcet winner and (Q, uQ(γ)) is a justified objection at x in the sense of the Mas-Colell

bargaining set which is impossible.

The following example shows that the foregoing remark is not valid if m ≥ 4.

Example 4.8 Let n = 6, let A = {a, b, c, d}, and let RN be given by Table 4.2.

Similarly as in Section 3 we may deduce that (u1(c), u2(b), u3(a), 0, 0, 0) ∈ MB(N, VuN ). How-

ever d is the unique weak Condorcet winner. Moreover, this example may easily be generalized

to m > 4 by adding alternatives a5, . . . , am such that tj(R
i) = aj for all i ∈ N and j = 5, . . . , m.

We shall now return to three alternatives.

Example 4.9 Let n = 4 and let RN be given by Table 4.3.
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Table 4.2: Preference Profile of a 6-Person Voting Problem

R1 R2 R3 R4 R5 R6

a c b d d d

b a c a c b

c b a b a c

d d d c b a

Table 4.3: Preference Profile of a 4-Person Voting Problem

R1 R2 R3 R4

a a c c

b b b b

c c a a

Then x = (min{ui(b), ui(a)})i∈N ∈ M(N, V ), because there is no strong objection at x. In view

of Remark 4.7, x /∈ MB(N, V ) = {uN (a), uN (b), uN (c)}.

Remark 4.7 and the following result partially characterize MB in the case of three alternatives.

Theorem 4.10 If |A| = 3 and if there is no weak Condorcet winner with respect to RN and if

x ∈ RN satisfies

0 ≤ xi ≤ ui(t2(R
i)) for all i ∈ N ; (4.4)

there exists α ∈ A such that x ≤ uN (α), (4.5)

then x ∈ MB(N, V ).

Proof: Let A = {a, b, c}. Without loss of generality we assume that a ≻ b ≻ c ≻ a and that

x ≤ uN (a). Let (P, uP (α)) be an objection at x. If α = a, then (Dca, u
Dca(c)) is a counter

objection. If α = b, then (Dab, u
Dab(a)) is a counter objection. Finally, if α = c, then we

claim that (Q, uQ(b)), where Q = Dbc, is a counter objection. Indeed, if i ∈ P ∩ Q, then

ui(b) > ui(c) ≥ xi. If i ∈ Q \ P , then ui(b) > ui(c) and, hence, by (4.4), ui(b) ≥ xi. As

|P |, |Q| > n/2, P ∩Q 6= ∅. Thus, uQ(b) > (uP∩Q(c), xQ\P ) and (Q, uQ(b)) is a counter objection

and the proof is complete. q.e.d.
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Corollary 4.11 If |A| = 3 and there is no weak Condorcet winner with respect to RN , then

M(N, V ) ⊆ MB(N, V ).

The following example shows that the inclusion in the foregoing corollary may be strict.

Example 4.12 (Example 4.6 continued) We claim that

x̂ =
(
u1(b), u2(b), u3(b), u4(c), 0, u6(b), u7(b), 0, u9(c)

)
∈ MB(N, V ).

Indeed, if (P, uP (α)) is an objection at x̂, then there exists β ≻ α. The reader may easily check

that
(
Dβα, uDβα(β)

)
is a counter objection. Thus MB may violate (4.4).

5 The Bargaining Set for Four and More Alternatives

By means of an example we shall show that M (N, VuN ) may be empty for any uN ∈ URN
,

provided |A| ≥ 4.

Example 5.1 Let A = {a, b, c, d}, let n = 3, let RN be given by Table 5.1, let uN ∈ URN
, and

Table 5.1: Preference Profile of a 4-Alternative Voting Problem

R1 R2 R3

a c b

b a c

d d d

c b a

let V = VuN . We claim that M = ∅. Let x be an imputation of (N, V ). In order to show that

x /∈ M(N, V ) we may assume without loss of generality that x1 ≥ u1(d). We distinguish the

following possibilities:

(1) x ≤ uN (a) or x ≤ uN (d). Then
(
{2, 3}, u{2,3}(c)

)
is a justified objection (in the sense of

the bargaining set) of 3 against 1.

(2) x ≤ uN (b). If x3 < u3(c), then we may use the same justified strong objection as in the

first possibility. If x3 ≥ u3(c), then
(
{1, 2}, u{1,2}(a)

)
is a justified objection of 2 against

3.
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Example 5.1 shows the tension between (weak) Pareto optimality and stability (à la Aumann

and Maschler (1964)) may result in an empty bargaining set.

Example 5.1 may be generalized to any number m ≥ 4 of alternatives. Indeed, let A =

{a, b, c, d1, . . . , dk}, where k = m − 3, and define RN by

R1 = (a, b, d1, . . . , dk, c),

R2 = (c, a, d1, . . . , dk, b),

R3 = (b, c, d1, . . . , dk, a),

and note that M (N, VuN ) = ∅ for any uN ∈ URN
. More interestingly, Example 5.1 can be

generalized to yield an empty bargaining set for simple majority voting games on four alternatives

with infinitely many numbers of voters.

Example 5.2 (Example 5.1 generalized) Let

R1 = (a, b, d, c), R2 = (a, c, d, b), R3 = (b, a, d, c),

R4 = (b, c, d, a), R5 = (c, a, d, b), R6 = (c, b, d, a),

and let k ∈ N. Let N = {1, . . . , 6k − 3} and let RN ∈ LN satisfy

|{j ∈ N | Rj = Ri}| =





k , if i = 1, 4, 5,

k − 1 , if i = 2, 3, 6.

Then M (N, VuN ) = ∅ for any uN ∈ URN
. Indeed, k = 1 coincides with Example 5.1. The reader

may check e.g. the case k = 2 (see Table 5.2) by repeating the arguments of Example 5.1.

Table 5.2: Preference Profile for k = 2

R1 R2 R3 R4 R5 R6 R7 R8 R9

a a b b c c a c b

b c a c a b b a c

d d d d d d d d d

c b c a b a c b a
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Notwithstanding Example 5.1, there is a simple probabilistic model in which most preference

profiles lead to a nonempty bargaining set M as the number of players becomes large. Let

|A| = m ≥ 4 and let L(A) = L. Assume that each R ∈ L appears with positive probability

pR > 0 in the population of potential voters, where
∑

R∈L pR = 1. Now let (Ri)i∈N be a sequence

of independent and identically distributed random variables such that Pr({Ri = R}) = pR

for all i ∈ N, R ∈ L. Call RN ∈ LN good if for all α ∈ A there exists i ∈ N such that

α = tm(Ri). If RN is good, then
(
ui(tm(Ri))

)
i∈N

∈ M(N, VuN ) for any uN ∈ URN
. By the

law of large numbers, limn→∞ Pr
({

RN is good
})

= 1, where RN =
(
R1, . . . ,Rn

)
. Hence,

limn→∞ Pr
({

M
(
N, V

(
RN

))
6= ∅

})
= 1, where

(
N, V

(
RN

))
is a random NTU game which is

a simple majority voting game VuN , uN ∈ URN
, for any realization RN of RN .

6 MB for Four and More Alternatives

We shall show that MB is nonempty for any simple majority voting game on less than six

alternatives. Also, we shall show that there is a simple majority voting game on six alternatives

whose Mas-Colell bargaining set is empty. We shall always assume that |A| = m ≥ 3, RN ∈

L(A)N , and ≻ = ≻RN . We start with the following simple lemma.

Lemma 6.1 Let uN ∈ URN
and x ∈ RN

+ . Assume that there is no weak Condorcet winner.

If xi ≤ ui
(
tm−1(R

i)
)

for all i ∈ N and if x is weakly Pareto optimal in VuN (N), then x ∈

MB (N, VuN ) .

Proof: If (S, y) is an objection at x, then |S| > n/2 and there exists α ∈ A such that uS(α) = y.

Choose β ∈ A such that β ≻ α. Then there exists T ⊆ N , |T | > n/2 such that uT (β) ≫ uT (α).

Thus, (T, uT (β)) is a counter objection. q.e.d.

Theorem 6.2 If m ≤ 5, then MB (N, VuN ) 6= ∅ for all uN ∈ URN
.

Proof: Let V = VuN . By Remark 4.7 and Theorem 4.10 our claim is valid for m = 3. In

order to prove the theorem For m = 4 we may, by Remark 4.7, assume that there is no weak

Condorcet winner. Then, for each α ∈ A,

there exists i ∈ N such that α ∈ {t3(R
i), t4(R

i)}. (6.1)

Indeed, if for some α ∈ A, α ∈ {t1(R
i), t2(R

i)} for all i ∈ N , then β ≻ α implies that β is a

Condorcet winner which was excluded. For α ∈ A, define xα =
(
min{ui(α), ui(t3(R

i))}
)
i∈N

.

By Lemma 6.1, xα ∈ MB(N, V ), if xα is weakly Pareto optimal. Hence, in order to complete

the proof for m = 4, it suffices to show that there exists α ∈ A such that xα is weakly Pareto
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optimal. Two possibilities may occur: If there exists α ∈ A such that α 6= t4(R
i) for all i ∈ N ,

then, by (6.1), xα is weakly Pareto optimal. Otherwise, any xα is weakly Pareto optimal.

Now, let m = 5, let A = {a1, . . . , a5}, and assume that MB(N, V ) = ∅. Then, for each α ∈ A

(1) there exists β ∈ A such that β ≻ a (by Remark 4.7);

(2) uN (α) is Pareto optimal (because MB is nonempty when we restrict our attention to the

game corresponding to the restriction of uN to A \ {α}).

For α ∈ A denote ℓ(α) = max{k ∈ {1, . . . , 5} | ∃i ∈ N : tk(R
i) = α}. Let ℓmin = minα∈A ℓ(α).

We distinguish cases:

(i) ℓmin ≥ 4: Then there exists a weakly Pareto optimal x ∈ V (N) such that xi ≤ ui(t4(R
i)) for

all i ∈ N which is impossible by Lemma 6.1.

(ii) ℓmin ≤ 2: Let α, β ∈ A such that ℓ(α) = ℓmin and β ≻ α. Then β is a Condorcet winner,

which is impossible by (1).

(iii) ℓmin = 3: Let B = {β ∈ A | ℓ(β) = 3}. If |B| = 3, then any α ∈ A \ B violates Pareto

optimality. If |B| = 2, let us say B = {α, β}, then we may assume without loss of generality

that α 6≻ β. Let γ ∈ A such that γ ≻ β. Then none of the remaining δ ∈ A \ ({γ} ∪ B)

dominates any of the elements α, β, γ. By (1) we conclude that γ ≻ β ≻ α ≻ γ. Then

(min{ui(α), ui(β)})i∈N ∈ MB(N, V ).

Now we turn to the case |B| = 1, let us say B = {a3}. Let Ŝ = {i ∈ N | t3(R
i) = a3}. For any

k ∈ Ŝ there exists xk ∈ RN such that xk is Pareto optimal, xk
k = uk(a3), and xi

k ≤ ui(t4(R
i)) for

all i ∈ N \{k}. As xk /∈ MB(N, V ), there exists a justified objection (S, uS(α)) for some S ⊆ N ,

|S| > n/2, and some α ∈ A. Let β ∈ A such that β ≻ α. Then there exists T ⊆ N , |T | > n/2,

such that uS∩T (β) ≫ uS∩T (α) and uT\S(β) ≥ (ui(t4(R
i)))i∈T\S . As (T, uT (β)) is not a counter

objection, we conclude that k ∈ T , t4(R
k) = β, and t5(R

k) = α. We conclude that for any k ∈ Ŝ

the alternative t5(R
k) is only dominated by t4(R

k) and |{i ∈ N | t4(R
k) Ri t5(R

k)}\{k}| ≤ n/2.

If n is odd, we may now easily finish the proof by the observation that α dominates all but

one alternative. Hence we may assume from now on that n is an even number. As a3 6≻ α,

{i ∈ N | ui(α) > ui(a3)} ∩ {i ∈ N | ui(β) > ui(α)} 6= ∅. Thus, there exists j ∈ Ŝ such that

t1(R
j) = β and t2(R

j) = α. So far we have for any k ∈ Ŝ, where α = t5(R
k), β = t4(R

k):

α is only dominated by β; (6.2)

There exists j ∈ Ŝ such that t1(R
j) = α, t2(R

j) = β; (6.3)

|{i ∈ N | ui(α) > ui(a3)}| ≥
n
2 . (6.4)

Now, let k, j ∈ Ŝ have the foregoing properties, let us say k = 1 and j = 2. We also may assume

that t4(R
1) = a4, t5(R

1) = a5, t4(R
2) = a1, t5(R

2) = a2 (hence R2 = (a4, a5, a3, a1, a2)). So, for
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any k ∈ Ŝ, we have

{t4(R
k), t5(R

k)} = {a4, a5} ⇒ t4(R
k) = a4 (6.5)

t5(R
k) = a5 ⇒ t4(R

k) = a4 (6.6)

{t4(R
k), t5(R

k)} = {a1, a2} ⇒ t4(R
k) = a1 (6.7)

t5(R
k) = a2 ⇒ t4(R

k) = a1 (6.8)

We are now going to show that there exists k ∈ Ŝ such that t5(R
k) /∈ {a5, a2}. Assume the

contrary. Then {i ∈ N | ui(a5) > ui(a3)} ∩ {i ∈ N | ui(a2) > ui(a3)} = ∅ and, by (6.4),

a5 6≻ a3 and a2 6≻ a3. Hence, by (1), a1 ≻ a3 or a4 ≻ a3. However, note that by our assumption

ui(a1) > ui(a3) implies ui(a1) > ui(a5) for all i ∈ N . Thus, if a1 ≻ a3, then a1 ≻ a5 which

contradicts (6.2). Similarly, a4 ≻ a3 can be excluded.

Hence, we may assume without loss of generality, that there exists k ∈ Ŝ such that t5(R
k) = a1.

We now claim that there exists j ∈ Ŝ such that t5(R
j) = a4. By (6.2) and the fact that a1 ≻ a2,

t4(R
k) ∈ {a4, a5}. If t4(R

k) = a4, then by (6.3) there exists j ∈ Ŝ such that {t4(R
j), t5(R

j)} =

{a2, a5}. By (6.6), a5 6= t5(R
j), and by (6.8), a2 6= t5(R

j). Hence this possibility is ruled out.

We conclude that t4(R
k) = a5. By (6.3) there exists j ∈ Ŝ such that {t4(R

j), t5(R
j)} = {a2, a4}.

By (6.8), t5(R
j) = a4. So our claim has been shown.

So far we have deduced there exist kj ∈ Ŝ, j = 1, 2, 4, 5, such that t5(R
kj ) = aj . By (6.4),

|{i ∈ N | ui(aj) > ui(a3)}| ≥
n
2 for all j = 1, 2, 4, 5. We conclude that a3 = t3(R

i) for all i ∈ N

and |{i ∈ N | ui(aj) > ui(a3)}| = n
2 for all j = 1, 2, 4, 5. Therefore a3 is not dominated by any

alternative, which contradicts (1). q.e.d.

We shall now present an example of a simple majority voting game on six alternatives whose

Mas-Colell bargaining set is empty.

Table 6.1: Preference Profile leading to an empty MB

R1 R2 R3 R4

a1 a4 a3 a2

a2 a1 a4 a3

c c c b

b b b a4

a3 a2 a1 c

a4 a3 a2 a1
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Example 6.3 Let n = 4, A = {a1, . . . , a4, b, c}, let RN ∈ LN be given by Table 6.1 and let

uN ∈ URN
. We claim that MB(N, VuN ) = ∅. The proof of the claim in Example 6.4 also

shows our current claim. Note that the proof is similar to the proof of the emptiness of an

extension of the Mas-Colell bargaining set of a game derived from a 4-person voting problem on

ten alternatives (see Section 3 of Peleg and Sudhölter (2004)).

Example 6.3 may be generalized to any number m ≥ 6 of alternatives. Also, if Ri = Ri for

i = 1, . . . , 4, if

R5 = (a2, a1, c, b, a3, a4), R6 = (a4, a3, c, b, a1, a2),

if n = 4 + 2k for some k ∈ N, if R̃N ∈ LN such that

|{j ∈ N | R̃j = Ri}| =





k , if i = 5, 6,

1 , if i = 1, 2, 3, 4,

then MB(N, VuN ) = ∅ for all uN ∈ U R̃N
.

In what follows we shall show that a suitable choice of utilities in Example 6.3 shows that the

Mas-Colell bargaining set of a plurality or of a approval voting game on six alternatives may be

empty.

Example 6.4 (Example 6.3 continued) We now specify a utility representation uN ∈ URN

by

ui(tj(R
i)) = 65 − 6j−1 for all i ∈ N and j = 1, . . . , 6.

Let (N, V ) the corresponding plurality or approval voting game, that is, V ∈ {V pl

uN , V ap

uN}.

Claim: MB(N, V ) = ∅.

As VuN (S) ⊆ V (S) for all S ⊆ N satisfying |S| = n/2 or |S| = n and by Remark 2.2, the

following proof may also be used to show that MB specifies the empty set when applied to any

simple majority game corresponding to RN .

Proof: For any B ⊆ A and each i ∈ N ,

∑

β∈B

ui(β)

|B|
< ui(α) for all α ∈ A such that ui(α) > min

β∈B
ui(β) (6.9)

and ∑

β∈B

ui(β)

|B| + 1
< 65 − 64 = ui(t5(R

i)). (6.10)

For x ∈ V (N), x ≥ 0, define x̃ ∈ RN by x̃i = max{ui(α) | α ∈ A, ui(α) ≤ xi} for all i ∈ N . By

(6.9) (see (2.5) or (2.8), respectively),

x̃ is weakly Pareto optimal in VuN (N) for all weakly Pareto optimal x ∈ V (N), x ≥ 0. (6.11)
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Now assume that there exists x ∈ MB(N, V ). Let α ∈ A such that x̃ ≤ uN (α). Let

S1 = {1, 2, 3}, S2 = {1, 2, 4}, S3 = {1, 3, 4}, S4 = {2, 3, 4}.

We distinguish the following possibilities:

(1) x̃ ≤ uN (a1). As uS4(a4) ≫ uS4(a1) ≥ x̃S4 , the definition of x̃ implies that (S4, u
S4(a4)) is

an objection at x. In view of (6.10) this objection has no counter objection of the form

(Q, z) satisfying |Q| ≤ 2. As uN (a4) is Pareto optimal and u1(a4) = 0, there does not exist

any counter objection of the form (N, z). We conclude that (S3, u
S3(a3)) is an objection

at x. Hence, x1 ≤ u1(a3). Moreover, by similar reasons as before, this objection has no

counter objection which uses a coalition of size less than or equal to 2 or which uses the

coalition N . We conclude that (S2, u
S2(a2)) is a counter objection. Hence, x ≪ uN (b) and

the desired contradiction has been obtained in this case.

(2) The possibilities x̃ ≤ uN (α) for α ∈ {a2, a3, a4} may be treated similarly.

(3) x̃ ≤ uN (b). Then (S1, u
S1(c)) is an objection at x which cannot be countered with the

help of coalitions of size less than or equal to 2. If there exists z ∈ RN such that (N, z)

is a counter objection, then x4 ≤ u4(c). Hence, (S4, u
S4(a4)) is an objection at x and

x4 ≤ u4(c). Now we conclude that (S3, u
S3(a3)) must be an counter objection and, hence,

an objection at x. We continue by concluding that (S2, u
S2(a2)) must be an objection and

that, hence (S1, u
S1(a1)) is a counter objection. Therefore, x ≪ uN (b) and the desired

contradiction has been obtained.

(4) x̃ ≤ uN (c). We consecutively deduce that (S4, u
S4

(a4)), . . . , (S1, u
S1(a1)) are objections.

The desired contradiction again is obtained by the observation that x ≪ uN (b). q.e.d.

Remark 6.5 It is possible to modify the utility profile uN of the foregoing example in such

a way that the Mas-Colell bargaining sets of the approval or the plurality voting game are

nonempty. Indeed, if we just replace ui, i = 1, 2, by ũi which differs from ui only inasmuch as

ũi(tj(R
i)) = 12 − 2j for j = 4, 5, then

x =

(
ũ1(a3) + ũ1(a4)

2
,
u2(a1)

2
, u{3,4}(a4)

)
= (1, 3885, 7770, 7560) ∈ MB(N, V ).

Indeed, weak Pareto optimality follows from the observations that x ≤ uN (a3)+uN (a4)
2 and

that x ≤
∑

β∈B
uN (β)
|B| implies B = {a3, a4}. Furthermore, there are only objections which

use N , S4, S3, and {1, 2}. These objections can be countered by (S4, u
S4(a4)), (S3, u

S3(a3)),(
{1, 2}, u{1,2}(a1)

2

)
, and (S4, u

S4(a4)), respectively.
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7 Replication

Let N = {1, . . . , n}, let A = {a1, . . . , am}, let RN ∈ LN , and let uN ∈ URN
. In order to replicate

the simple majority voting game (N, VuN ), let k ∈ N and denote

kN = {(j, i) | i ∈ N, j = 1, . . . , k}.

Furthermore, let R(j,i) = Ri and u(j,i) = ui for all i ∈ N and j = 1, . . . , k. Then (kN, VukN ) is

the k-fold replication of (N, VuN ).

Remark 7.1 If α is a weak Condorcet winner with respect to RN , then ukN (α)∈MB(kN, VukN ).

Theorem 7.2 If k ≥





n + 2 , if n is odd,

n
2 + 2 , if n is even,





then MB(kN, VukN ) 6= ∅.

Proof: Let V = VukN . By Remark 7.1 we may assume that for every α ∈ A there exists

β(α) ∈ A such that β(α) ≻RN α and such that uN (β(α)) is Pareto optimal in VuN (N). Let

x̃ ∈ RN
+ be any weakly Pareto optimal element in VuN (N). We define x ∈ RkN by x(1,i) = x̃i

and x(j,i) = 0 for all i ∈ N and j = 2, . . . , k and claim that x ∈ MB(kN, V ). Let (P, y)

be an objection at x. Then there exists α ∈ A such that y ≤ uP (α). Let β = β(α) and let

T = {i ∈ N | β Ri α}. Then

|T | ≥





n+1
2 , if n is odd,

n
2 + 1 , if n is even.

(7.1)

Let Q = {(j, i) | i ∈ T, j = 2, . . . , k} and define z ∈ RQ by z(j,i) = ui(β) for all i ∈ T and

j = 2, . . . , k. Then |Q| = (k − 1)|T | and z > (yP∩Q, xQ\P ). By (7.1), |Q| ≥ kn+1
2 . So, z is a

Pareto optimal element in V (Q) and (Q, z) is a counter objection to (P, y). q.e.d.

It should be remarked that the foregoing theorem remains valid for any ukN ∈ URkN
.
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