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Abstract

Asymptotic results for the problem of optimal two choice stopping on an n element
long i.i.d. sequence Xn, . . . , X1 have previously been obtained for two of the three
domains of attraction. An asymptotic result is proved for the exponential distribution,
a representative from the remaining, Type I domain, and it is conjectured that the
same behavior obtains for all Type I distributions.

1 Introduction and Summary

In recent years the optimal stopping problem, when the “statistician” is given k > 1 choices
among the random variables X1, . . . , Xn, using k consecutive stopping rules, has been con-
sidered. The “reward” to the statistician is the expected value of the maximum of the k
chosen X-values.

Kennedy and Kertz (1991) study the asymptotic behavior of the reward sequence for
i.i.d. random variables, with distribution F , when k = 1, as n → ∞. They show that the
asymptotic behavior is determined by the domain of attraction, for the maximum, of F , and
is closely related to the asymptotic behavior of the maximum.

Here we study the case k = 2. Judging by the asymptotic behavior of the maximum, and
by the case k = 1, it is clear that the asymptotic behavior of the reward sequence for k = 2
will also depend on the corresponding domain of attraction.

In two recent papers, the following two of the three domains of attraction,

F ∈ D(exp(−(−x)α)I{x ≤ 0}+ I{x > 0}), α > 0 (III)

and
F ∈ D(exp(−x)−αI{x > 0}) and α > 1 (II)

are treated in some generality (Assaf, Goldstein and Samuel-Cahn (2004a and 2004b)).

∗AMS 2000 subject classifications. Primary 60G40.
†Key words and phrases: multiple choice stopping rules, domains of attraction, prophet value.
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For F in the remaining domain,

F ∈ D(exp(−e−x)I(−∞ < x < ∞)) (I)

we conjecture, with V 2
n denoting the optimal reward with two choices when there are n i.i.d.

observations, that

lim
n→∞

n(1− F (V 2
n )) = 1− e−1. (1)

Unfortunately we have not been able to establish this conjecture for the full domain (I). In the
present note we prove (1) for the special, exponential case where F (x) = (1−e−θx)I{x ≥ 0},
where without loss of generality, we set θ = 1.

In the papers considering domains (III) and (II), asymptotic results were proven for
large subclasses of the domains by first obtaining the results using a specific representative
distribution, and then extending to nearly the full domain. For class (I), however, it seems
that the methods developed there for extension cannot be applied. However, in contrast to
the previous two cases, the present results for class (I) are in some sense more explicit.

2 Preliminaries and Heuristics

Let V 1
n denote the one-choice reward sequence and Mn = max(X1, . . . , Xn). Then, for the

exponential distribution, by Kennedy and Kertz (1991) and Leadbetter (1983),

lim
n→∞

(V 1
n − log n) = 0 and lim

n→∞
(EMn − log n) = γ, (2)

where γ = .5772 . . . is Euler’s constant. It therefore makes sense to conjecture that

lim
n→∞

(V 2
n − log n) = c, where 0 < c < γ. (3)

In fact, we prove the following

Theorem 2.1 Let X1, . . . , Xn be i.i.d. exponential random variables and V 2
n the optimal

two choice value. Then (3) holds with c = 1− log(e− 1) = .4586 . . ., and hence (1) holds in
the exponential case.

For simplicity of notation we shall write Vn instead of V 2
n . Also, let V 1

j (x) denote the
expected reward when there are j observations and one choice left, but the value x is already
guaranteed. Clearly

V 1
1 (x) = E(x ∨X1) = x + e−x = g(x) = g1(x)

and

V 1
n+1(x) = E(V 1

n (x) ∨Xn+1) = gn+1(x) = g1(gn(x)), n ≥ 1.

The recursion relation for Vn is as follows:

V2 = E[X1 ∨X2]

Vn+1 = E[V 1
n (Xn+1) ∨ Vn], n ≥ 2, (4)
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where the present observation Xn+1 is chosen when it is large enough, and then one is
left with one additional choice only, and otherwise Xn+1 is passed and two choices remain.
Equation (4) can be written as

Vn+1 =

∞∫
0

[gn(x) ∨ Vn]e−xdx, (5)

or, if we let bn > 0 denote the unique value such that gn(bn) = Vn (also called the “indifference
value”) then (5) can be rewritten as

Vn+1 = (1− e−bn)Vn +

∞∫
bn

gn(x)e−xdx. (6)

Set

hn(x) = gn(x + log n)− log n, an = log ((n + 1)/n) , (7)

Bn = bn − log n, and Wn = Vn − log n = hn(Bn). (8)

Then (6) can be rewritten as

Wn+1 =

(
1− 1

n
e−Bn

)
Wn +

1

n

∞∫
Bn

hn(x)e−xdx− an (9)

or

n(Wn+1 −Wn) = −e−BnWn +

∞∫
Bn

hn(x)e−xdx− nan. (10)

To motivate our result, consider the following heuristics. Assume that for some B and h,

n(Wn+1 −Wn) → 0, Bn → B and hn(y) → h(y) as n →∞.

Then under regularity (10) yields

0 = −We−B +

∞∫
B

h(x)e−xdx− 1 (11)

where limn→∞Wn = W . Since gn(bn) = Vn implies Wn = hn(Bn), we anticipate, in the limit,

W = h(B). (12)

Substituting (12) in (11) gives an equation for the unknown B, thus yielding W if h were
known.

Here is a heuristic for determining h. By (2),

lim
n→∞

[V 1
n − log(n + 1)] = 0.
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Since V 1
n is the value when nothing is guaranteed, we have V 1

n = gn(0), and thus gn(0) ≈
log(n + 1). Suppose that for large enough n and a fixed guaranteed value x, there is t such
that

gn(x) = gn+t(0) = gn(gt(0)). (13)

That is, there is some number of ‘extra observations’ t such that the statistician is indifferent
to having n + t variables from which to chose, or the guaranteed x and n variables.

Equation (13) implies x = gt(0) ≈ log(t + 1), yielding t + 1 ≈ ex. But on the other hand
gn+t(0) ≈ log(n + t + 1) ≈ log(n + ex) ≈ gn(x). Using (7), we have

hn(x) ≈ log(n + ex+log n)− log n = log(1 + ex).

This suggests

lim
n→∞

hn(x) = h(x) = log(1 + ex) = x + log(1 + e−x), −∞ < x < ∞. (14)

From (11), (12) and (14), B solves

1 = − log(1 + eB)e−B + e−B

∞∫
0

log(1 + eB+u)e−udu. (15)

Letting s = e−u, the integral in (15) can be evaluated as

∞∫
0

log(1 + eB+u)e−udu =

1∫
0

log(1 +
eB

s
)ds = eB

(
(1 + e−B) log(1 + eB)−B

)
,

and now substitution back into (15) yields 1+B = log(1+ eB), the unique solution of which
is

B = − log(e− 1) = −.54132 . . . ,

and now, from (12) and (14), W = 1 − log(e − 1) = .45867 . . ., implying the conclusions of
the Theorem subject to the heuristics being made rigorous.

3 Properties of hn and the limiting h

Lemma 3.1 hn(x) is strictly monotone increasing for − log n ≤ x < ∞.

Proof. We have that g(x), and hence gn(x), are strictly monotone increasing for x ≥ 0, and
now the result follows by (7). �

Lemma 3.2 Let h(x) be given in (14). Then hn(x) > h(x) for x ≥ − log n, n = 1, 2, . . .

Proof. For n = 1 the claim is simply that h1(x) = x + e−x > x + log(1 + e−x) = h(x) for all
x ≥ 0, which is immediate. Now suppose the claim holds for n. We show that it holds for
n + 1. By the induction hypothesis

gn(x) = log n + hn(x− log n) > log n + h(x− log n)

= log n + log(1 + ex−log n) = log(n + ex). (16)

4



Thus, since g is increasing

gn+1(x) = g(gn(x)) > g(log(n + ex)) = log(n + ex) + e− log(n+ex)

= log(n + ex) +
1

n + ex
. (17)

Thus, similar to (16) it suffices to show that the right hand side of (17) is greater than
log(n + 1 + ex). The latter statement is equivalent to 1

n+ex > log(1 + 1
n+ex ) which clearly

holds. �

Lemma 3.3 Let εn(x) = hn(x)− h(x). Then εn(x) < e−x/
√

n, for x ≥ − log n.

Proof. For n = 1 we have ε1(x) = e−x − log(1 + e−x), so clearly the statement holds for
n = 1. Now, using (7),

hn+1(x) = gn+1(x + log(n + 1))− log(n + 1)

= gn(x + log(n + 1)) + e−gn(x+log(n+1)) − log(n + 1)

= hn(x + an)− an + e−[hn(x+an)+log n]

= hn(x + an) +
1

n
e−hn(x+an) − an. (18)

In particular, for n = 1,

h2(x) = h1(x + a1) + e−h1(x+a2) − a1

= x + a1 + e−(x+a1) + e−(x+a1+e−(x+a1)) − a1.

We shall show directly that the lemma is true for n = 2, for which

ε2(x) =
1

2
e−x(1 + e−

1
2
e−x

)− log(1 + e−x). (19)

For − log 2 ≤ x ≤ 0 we shall show

ε2(x)− e−x

√
2

< 0, that is,

1

2
e−x(1−

√
2 + e−

1
2
e−x

)− log(1 + e−x) < 0. (20)

Differentiation shows that the left hand side of (20) is increasing in x for x ≤ 0. Thus we

shall show that for x = 0 inequality (20) holds, that is, that 1
2
(1 −

√
2 + e−

1
2 ) − log 2 < 0,

which is equivalent to 1−
√

2 + e−
1
2 − log 4 < 0, which clearly holds.

Now for x > 0 the inequality log(1 + e−x) > e−x − e−2x

2
holds. Substituting this in (19)

we have

ε2(x) <
1

2
e−x(−1 + e−

1
2
e−x

+ e−x). (21)
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We shall show that the right hand side of (21) is less than e−x/
√

2, which is equivalent to

−1 + e−
1
2
e−x

+ e−x <
√

2. (22)

Now the left hand side of (22) is decreasing in x, thus it suffices to show (22) for x = 0,

where the inequality simplifies to −1 + e−
1
2 + 1 <

√
2, which clearly holds. Thus the lemma

holds for n = 2.
Suppose the lemma holds for n ≥ 2. We shall show that it holds for n + 1. By (18), for

x ≥ − log n

hn+1(x− an) = hn(x) +
1

n
e−hn(x) − an. (23)

We show that, for x ≥ − log n, εn+1(x − an) < n+1
n

e−x/
√

n + 1 =
√

n+1
n

e−x by a Talylor
expansion of h(x− an). Note

h′(x) = ex/(1 + ex), h
′′
(x) = ex/(1 + ex)2 > 0,

thus for some θ ∈ (0, 1)

h(x− an) = h(x)− an
ex−θan

1 + ex−θan
> h(x)− an

ex

1 + ex
. (24)

Thus by (23) and (24),

εn+1(x− an) < εn(x) +
1

n
e−hn(x) − an + an

ex

1 + ex

< εn(x) +
1

n(1 + ex)
− an

1 + ex

< εn(x) +
1

n(1 + ex)
−

(
1

n
− 1

2n2

)
1

1 + ex

= εn(x) +
1

2n2(1 + ex)

<
e−x

√
n

+
e−x

2n2(1 + e−x)

where the second inequality uses hn(x) > h(x) by Lemma 3.2, the third inequality uses

log(1 + y) > y − y2

2
for 0 < y < 1 and the last inequality uses the induction hypothesis.

Thus we must show that for x ≥ − log n we have 1√
n

+ 1
2n2(1+e−x)

<
√

n+1
n

, and hence it is

sufficient to show 1 + 1
2n3/2 <

√
n+1

n
. But (1 + 1

n
)1/2 > 1 + 1

2n
− 1

8n2 , hence sufficient to show
1

2n3/2 < 1
2n
− 1

8n2 , or equivalently that 1 <
√

n− 1
4
√

n
, which holds for n ≥ 2. �

4 Proof of Theorem 2.1

Lemma 4.1 For some constant Aq, let q be a continuous and strictly monotone increasing
function in the interval [Aq,∞) such that for all y ≥ Aq the integral

∫∞
y

q(x)e−xdx is finite.
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Further, defining

Q(y) =

∞∫
y

q(x)e−xdx− q(y)e−y − 1, (25)

suppose Q(Aq) > 0. Then

lim
y→∞

Q(y) = −1, (26)

Q(y) is monotone decreasing, and there exists a unique value β ∈ [Aq,∞) such that Q(β) = 0.

Proof. The assumption the the integral in (25) be finite and q increasing implies that
q(y)e−y → 0 as y → ∞, thus (26) holds. The function Q is differentiable with dQ(y)/dy =
−q′(y)e−y < 0, thus Q is monotone decreasing. Since Q(Aq) > 0, Q(y) is continuous and
negative for y sufficiently large, the root β exists and is unique in [Aq,∞). �

Theorem 4.1 Let Aq and q be as in Lemma 4.1. Then there exists n0 such that for any
r ≥ n0 and βr ∈ [Aq,∞), the sequence βn for n ≥ r is well defined by the recursion

q(βn+1) = q(βn)

(
1− 1

n
e−βn

)
+

1

n

∞∫
βn

q(x)e−xdx− an, (27)

and satisfies
lim

n→∞
βn = β,

where β is the root of (25) whose existence and uniqueness in [Aq,∞) is guaranteed in Lemma
4.1.

Proof. First, rewrite (27) as

q(βn+1)− q(βn) =
Q(βn)

n
+ (

1

n
− an). (28)

Note that for all n ≥ 1

0 <
1

n
− an <

1

2n2
, (29)

and that
Q(c)

n
+ (

1

n
− an)

is positive and decreasing in n with limit 0 for all c ≤ β, and is decreasing in n and negative
for all n sufficiently large with limit 0 for c > β.

We show that for any β and β with Aq < β < β < β, for all n sufficiently large βn is well

defined and β < βn < β; clearly the theorem follows.
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Let Aq < β < β < β be given, and let n0 be so large that for all n ≥ n0

(i)
Q(Aq)

n
+ (

1

n
− an) < q(β)− q(β) (30)

(ii) (
1

n
− an) < q(β)− q(

β + β

2
)

(iii)
1

n
Q(

β + β

2
) + (

1

n
− an) < 0

(iv) an < q(β)− q(β).

We first show that if Aq < β < βn < β for n ≥ n0, then βn+1 is well defined and satisfies

β < βn+1 < β; thus the sequence βn remains in the interval (β, β) for all n ≥ n0. We show
this fact by considering the following cases.

Case (A):
β < βn ≤ β.

By (28), (29) and (30(i)), and the fact that q is increasing and Q decreasing,

q(βn) < q(βn) +
Q(βn)

n
+ (

1

n
− an) = q(βn+1) (31)

< q(βn) +
Q(Aq)

n
+ (

1

n
− an)

< q(βn) + (q(β)− q(β)) ≤ q(β);

thus βn+1 exists uniquely by the strict monotonicity of q and satisfies

β < βn < βn+1 < β.

Case (B):

β < βn <
β + β

2
.

There are two subcases

B1)
Q(βn)

n
+ (

1

n
− an) > 0, which may happen for small n, and

B2)

Q(βn)

n
+ (

1

n
− an) ≤ 0. (32)

In subcase B1), by (30(ii)),

q(β) < q(βn) < q(βn) +
Q(βn)

n
+ (

1

n
− an) = q(βn+1)

< q(βn) + (
1

n
− an) < q(βn) + (q(β)− q(

β + β

2
)) < q(β),
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so again βn+1 is well defined and β < βn+1 < β. The subcase B2) can be combined with
Case (C).

Case (C):
β + β

2
≤ βn < β.

In this case by (30(iii)), and in B2) by (32), if βn+1 exists, it must be smaller than βn, thus
q(β) > q(βn+1), but also

q(βn+1) = q(βn) +
Q(βn)

n
+ (

1

n
− an) > q(βn)− an > q(βn)− (q(β)− q(β)) > q(β), (33)

where the inequalities are justified by (26), (30(iv)), and βn > β, this last which holds for
(C) as well as for (B), so in particular for B2). Thus again βn+1 exists and β < βn+1 < β.

It remains to show that for any r ≥ n0 and any starting value βr ∈ [Aq,∞)∩(β, β)c, βn is

well defined and that βn will eventually enter the interval (β, β). First suppose βr ∈ [Aq, β].
Then the sequence will be well defined and start out monotone increasing, and (31) and
its subsequent inequalities continue to hold as long as βn ≤ β, and for all such n one has
βn+1 < β. There are two possibilities: (a) Either for some k the inequality

β < βk < β

holds, in which case we have shown that β < βn < β for all n > k.
(b) The sequence βn is monotone increasing throughout with lim βn = β0, which neces-

sarily satisfies β0 ≤ β. We show that (b) leads to a contradiction. Clearly Q(β0) > 0. By
(28),

q(βn+1)− q(βn) >
Q(β0)

n
+ (

1

n
− an)

thus for n arbitrarily large and m > n,

q(βm)− q(βn) > Q(β0)
m−1∑
k=n

1

k
+

m−1∑
k=n

(
1

k
− ak).

Now the right hand side tends to infinity as m → ∞, thus the value q(βm) must also tend
to infinity, contradicting the fact that βm ≤ β.

Now consider a starting value βr for r ≥ n0 satisfying β ≤ βr < ∞. By (30(iii)) the
sequence will be well defined and decreasing, as long as βn ≥ (β + β)/2, and (33) continues
to hold, thus βn+1 > β. Again there are two possibilities. Either (a), for some n we have

β > βn > β, in which case the theorem holds, or (b) the sequence is monotone decreasing

for all n, with βn ≥ β, and thus the limit β0 ≥ β exists, and clearly satisfies Q(β0) < 0. We
suppose (b) and show that this leads to a contradiction. By (28) and (29)

q(βn+1)− q(βn) <
Q(β0)

n
+

1

2n2
,

thus for m arbitrarily large,

q(βm)− q(βn) < Q(β0)
m−1∑
k=n

1

m
+

1

2

m−1∑
k=n

1

k2
. (34)
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Now the last summand on the right hand side of (34) converges to a finite limit, while the
first term there tends to −∞ as m →∞. Thus q(βm) must also tend to −∞, contradicting
the fact that q(βm) ≥ q(β). �

Let H be given by (25) with q replaced by h of (14); the change of variable x = B + u
in the integral in this definition of H shows that (15) is the equation H(B) = 0, and using
Lemma 4.1 we conclude that the solution − log(e − 1) is unique. Let −∞ < A ≤ −1 be
some constant, and define

h̃j(x) = h(x) +
e−x

√
j

for A ≤ x < ∞.

Then by Lemmas 3.2 and 3.3, for all j > j(A) = e−A we have

h(x) < hj(x) < h̃j(x) for A ≤ x < ∞. (35)

Also, since there is some j0(A) ≥ j(A) such that for all j ≥ j0(A)

dh̃j(x)

dx
=

ex

1 + ex
− e−x

√
j

> 0,

the functions h̃j(x), j ≥ j0(A) are strictly increasing in [A,∞).

Lemma 4.2 Let H̃j(x) be defined as in (25), with q(x) replaced by h̃j(x). Then for all
j ≥ j0(A) there exists a value β̃j ∈ [A,∞) such that H̃j(β̃j) = 0,

lim
j→∞

β̃j = − log(e− 1), and lim
j→∞

h̃j(β̃j) = h(− log(e− 1)) = 1− log(e− 1). (36)

Proof. Since H̃j(x) → H(x) uniformly on [A,∞), in particular lim
j→∞

H̃j(A) = H(A) >

H(− log(e−1)) = 0. Thus for all j > j0(A) the value β̃j exists uniquely in [A,∞). Now (36)
follows from the uniform convergence of H̃j(x) and h̃j(x) to H(x) and h(x), respectively, on
[A,∞). �

Note (9) can be rewritten as

Wn+1 = hn+1(Bn+1) =
1

n

∞∫
− log n

[hn(Bn) ∨ hn(y)]e−ydy − an, (37)

whereas (27) can be rewritten, with h instead of q, (keeping the βn notation) as

h(βn+1) =
1

n

∞∫
− log n

[h(βn) ∨ h(y)]e−ydy − an. (38)

Comparing (37) and (38) we see that the only difference between the two expressions is that
in (37) the function in the integral depends on n, whereas in (38) this function is fixed.

We can now prove our main result:

10



Proof of Theorem 2.1. We apply Theorem 4.1 to (38) for n ≥ n0 with starting value
βn0 = Bn0 as in (8), where n0 is the value given by Theorem 4.1 for A and h, after which
recursion (38) is well defined. For all j > j0(A) let rj = max{n0, j}, and for n ≥ rj, define
the sequence β̃j,n through (38) with h replaced by h̃j, and initial value β̃j,rj

= Brj
. Then by

(35), (37) and (38), the inequality

h(βn) < Wn < h̃j(β̃j,n)

holds for all n > rj, noting that the right hand side of (38) say, is made larger by replacing
h by a larger function. Thus as n →∞,

1− log(e− 1) = lim h(βn) ≤ lim inf Wn ≤ lim sup Wn ≤ lim h̃j(β̃j,n) = h̃j(β̃j). (39)

Now by Lemma 4.1, if we let j →∞, from (39)

1− log(e− 1) ≤ lim inf Wn ≤ lim sup Wn ≤ 1− log(e− 1),

from which the first claim of the theorem follows. The other assertion follows as an immediate
consequence. �

Remark 4.1 The limiting one-choice value can be obtained in a similar, but simpler way.
Let {V 1

n } denote the sequence of one-choice optimal values and let W 1
n = V 1

n − log n. Since
V 1

n+1 = E[Xn+1 ∨ V 1
n ] it follows that the {W 1

n} sequence satisfies (27) with q(x) = x and
βn = W 1

n . By Theorem 4.1 it therefore follows that limn→∞W 1
n = W 1 is the solution β of

Q(β) = 0, where

Q(y) =

∫ ∞

y

xe−xds− ye−y − 1, i.e. Q(y) = e−y − 1,

which implies W 1 = 0. This clearly agrees with the more general result of Kennedy and Kertz
(1991), see (2) above.

Remark 4.2 A measure of the limiting effectiveness of having a second choice is the value
lim

n→∞
(V 2

n − V 1
n )/(EMn − V 1

n ). It compares the relative advantage of having two choices over

having only one choice, divided by the similar advantage for the “prophet”, whose value is
EMn. For the exponential distribution we have

lim
n→∞

V 2
n − V 1

n

EMn − V 1
n

=
1− log(e− 1)

γ
= .7946 . . . , (40)

where γ is the Euler constant. For the large subclasses of distributions of Types III and II,
treated in Assaf, Goldstein and Samuel-Cahn (2004 a and b), the corresponding minimal
values over all α-values is (40) and .7880 . . . respectively. Thus the minimal saving in all the
known cases is near 80%.
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