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We introduce a game form that captures a noncooperative dimension of the
consistency property of bankruptcy rules. Any consistent and monotone rule is fully
characterized by a bilateral principle and consistency. Like the consistency axiom,
our game form, together with a bilateral principle, yields the corresponding
consistent bankruptcy rule as a result of a unique outcome of Nash equilibria. The
result holds for a large class of consistent and monotone rules, including the
Constrained Equal Award, the Propositional Rule, and many other well known
rules. Moreover, all of the subgame perefect equilibria are coalition-proof in the
associated game in strategic form. Journal of Economic Literature Classification
Numbers: C72 and D63.  © 1997 Academic Press

1. INTRODUCTION

The consistency property has proved very powerful in characterizing
some of the most important solution concepts in cooperative game theory
(see, for example, the characterizations of the core and the pre-kernel by
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Peleg (1986) and of the Nash bargaining solution by Lensberg (1988)).
However, consistency alone does not isolate a unique rule in bankruptcy
problems, even after restricting attention to symmetric, scale-invariant,
and monotone rules. On the other hand, a simple extension of a result of
Aumann and Maschler’s (1985) shows that any monotone and consistent
rule is completely characterized by a two-person rule and consistency.

Consistency has also been suggested as a valuable guide in designing
noncooperative mechanisms that implement some cooperative solutions
(see, for example, Krishna and Serrano, 1996). Namely, extensive forms
can be constructed whose subgames relate to the respective reduced
cooperative problems. By concentrating on the subgame-perfect equilibria
of such mechanisms, one can hope to implement the underlying consistent
solution. This paper provides additional support for the idea that consis-
tency is a useful tool in the Nash program for cooperative games.

We introduce a game in extensive form that captures a noncooperative
dimension of the consistency property of bankruptcy rules. In the game
one of the creditors with the highest claim must make a proposal about
how to split the estate. Those creditors who accept the proposal receive
their shares, and those who reject may “‘appeal to the bilateral court” that
stands as an outside option. Our game form generates a large family of
consistent and monotone bankruptcy rules presented in the axiomatic
theory. It takes a two-person rule as an input and yields the unique
consistent generalization of that rule as an output. The unique equilibrium
outcome of the game associated with a specific two-person rule is the
allocation recommended by the unique consistent generalization of that
rule. In this sense our game form operates like the consistency property in
the axiomatic approach, capturing a noncooperative dimension of consis-
tency in the framework of bankruptcy problems. That is, by replacing the
consistency axiom in Aumann and Maschler’s (1985) result, our game form
provides its noncooperative counterpart.

Like other games based on consistency, our game allows for “partial
agreements,” where a player cannot be prevented from getting his offered
share if he is happy with it. The question arises of whether such equilibria
are coalitionally stable. Could the proposer offer a larger fraction of the
pie to a creditor and then split it with him? When deviations are “‘coali-
tionally credible,” the answer is negative: although they are not strong
Nash, we show that all the subgame-perfect equilibria of the game are
coalition-proof.

We will assume throughout that the claims are known by everybody
(including the court). As discussed above, our focus is the noncooperative
dimension of the consistency axiom in bankruptcy problems. In Dagan et

! For a good survey, see Thomson (1990) or Thomson (1996b).
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al. (1995), we analyze the related problem of implementing bankruptcy
rules when the claims are unknown to the court.

The paper is organized as follows: Section 2 is devoted to the axiomatic
treatment of bankruptcy problems. Section 3 discusses the relation be-
tween bilateral principles of justice and consistency. The multilateral
noncooperative model and the main result are presented in Section 4.
Coalition-proofness is discussed in Section 5. A result concerning strictly
monotone rules is the object of Section 6, and Section 7 concludes.

2. THE AXIOMATIC BANKRUPTCY MODEL

A bankruptcy problem is a pair (E;d) where d € R’ is a vector of
non-negative real numbers (claims), indexed by some finite non-empty
subset I of natural numbers (creditors), and 0 < E < Y¥,_,d,==D. E is
the estate to be allocated, and D is the sum of the claims.

An allocation in (E;d) is a vector x € R. such that &, _, x;, = E and
x; <d, for all i €1 The set of all allocations in (E;d) is denoted by
S(E; d).

1

Remark. For any list of claims d € R’ , any vector x € R. with
x; < d, is an allocation of the bankruptcy problem (X, ., x;; d). Therefore,
when there is no danger of confusion, we shall call any such vector x an
allocation without specifying the bankruptcy problem to which it refers.

A rule is a function that assigns to each bankruptcy problem a unique
allocation.

ExAMPLES. (@) The proportional rule,
Pr(E;d) = Ad,

where AD = E.

The proportional rule, widely applied nowadays, allocates awards in
proportion to claim size. The proportionality principle was favored by the
philosophers of ancient Greece, and Aristotle even considered it as equiva-
lent to justice.

(b) The constrained equal award (CEA) rule:
CEA(E;d) = x

where x; = min(A, d;) and A solves the equation X,_, min(A,d,) = E2
This rule assigns the same sum to all creditors as long as it does not exceed

% This equation has a unique solution when D > E. If D = E, any solution A is greater
than or equal to the maximum claim and therefore x; = d; for all i.
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each creditor’s claim. This rule is also very ancient, and was adopted by
important rabbinical legislators, including Maimonides.

(c) The constrained equal loss (CEL) rule:
CEL(E;d) = x

where x; = max(0,d; — A) and A solves the equation ¥,_; max(0,d; — A)
= E.2 This rule assigns losses (d; — x;) in the same manner as the CEA
assigns awards.

(d) The Pineles Rule:
Pin(E; d) = CEA(min{D /2, E};d/2) + CEA(max{E — D/2,0};d/2).

When the estate does not exceed half the sum of the claims, the Pineles
rule assigns each creditor a fixed amount, as long as it does not exceed half
his claim (otherwise, it assigns him half his claim). When the estate
exceeds half the sum of the claims, it first gives each creditor half his claim
and then divides the remainder (which, by definition, cannot exceed half
the sum of the claims) according to the procedure described in the
previous sentence. This rule appears in Pineles (1861, p. 64), and is an
interpretation of a controversial mishna (Ketuboth 93).

(e) The Contested Garment Consistent (CGC) Rule:
CGC(E;d) = CEA(min{D/2, E};d/2) + CEL(max{E — D/2;0};d/2).

This rule was proposed by Aumann and Maschler (1985) as an alternative
interpretation of the mishna mentioned above.

(f) Equal Sacrifice Rules: Let U: R, — R be a continuous and strictly
increasing function that satisfies lim,_, ,U(x) = —o. The equal sacrifice
rule ¢ relative to U satisfies

¢(E;d) =x < dc > 0such that Vi € I with d; > 0,
U(d;) — U(x;) =c,when E > 0.

These rules assign awards so as to equalize absolute sacrifice evaluated
according to a prespecified utility function. Note that the equal sacrifice
rule with respect to the logarithmic function is the proportional rule. The
equal sacrifice principle in taxation appears in Mill (1848, Book V) and was
axiomatically derived by Young (1988).

With a few exceptions that will be indicated, all these rules satisfy the
properties discussed below. We begin with some basic ones and devote the
next section to properties concerning the concept of consistency.

® This equation has a unique solution when E > 0. If E = 0, any solution A is greater than
or equal to the maximum claim and therefore x; = 0 for all i.
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An allocation x in (E; d) is said to be symmetric if whenever d, = d,,
X; =X

A rule is symmetric if it always assigns symmetric allocations.

A rule ¢ is consistent if for any finite non-empty set I of creditors,

forall (E;d),d e R,, foral@+#JcCl,

S(Eid) =x = x|J = ¢( T, dlJ) (1)

iel

where when y € R’, y|J is the projection of y on R’ .

A weaker condition is bilateral consistency, which requires (1) only for
subsets J containing exactly two creditors. The interpretation of consis-
tency is as follows. Suppose that a rule ¢ assigns allocation x to the
bankruptcy problem (E; d). Suppose also that some subset of creditors
wants to reallocate the total amount X, _ ; x; assigned to them. If we apply
the same rule ¢ to allocate this amount among these creditors, each will
get the amount originally assigned to him, provided ¢ is consistent.
Consistency in the setup of bankruptcy problems was first discussed by
Aumann and Maschler (1985) and further analyzed by Young (1987, 1988).
For an extensive survey, see Thomson (1996a).

A rule ¢ is monotone if for all bankruptcy problems (E;d) and
O0<E <E, ¢(E";d) < ¢(E; d).

Monotonicity says that a decrease in the estate does not benefit any
creditor. A rule ¢ is strictly monotone if for all bankruptcy problems (E; d)
and 0 < E’' <E, if d; > 0 then ¢,(E’;d) < ¢,(E; d). Strict monotonicity
says that a decrease in the estate leaves every non-zero creditor worse off.
The rules in the above examples, with the exception of the proportional
and equal sacrifice rules, do not satisfy strict monotonicity.

A rule ¢ is supermodular if for all (E;d) and 0 < E' <E, if d, < d,
then ¢(E;d) — ¢(E';d) < ¢(E;d) — ¢,(E"; d). A supermodular rule
allocates each additional dollar in an “order preserving” manner.*

A rule ¢ is anonymous if for every bankruptcy problem (E,(d,,...,d,))
and for all permutations 7 of the set of creditors, we have

S E (dyay- o doy)] = ol Ei(dy,. 0 d)] i=1,2,..,n.

Anonymity requires that the rule ¢ be independent of the names of the
creditors.

4 Equal sacrifice rules relative to non-concave utility functions are not necessarily super-
modular.
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The following lemmas will be useful in the rest of the paper.
LEMMA 2.1, Any supermodular rule ¢ is symmetric.
Proof. Left to the reader. =

LEMMA 2.2. Let (E;d) be a bankruptcy problem and let i be a cred-
itor with the highest claim. If ¢ is supermodular and 0 < E' < E, then
d(E; d) > ¢.(E'; d). That is, i’s award is strictly monotone in the estate.

Proof. Left to the reader. =

3. ON BILATERAL COMPARISONS, JUSTICE,
AND CONSISTENCY

Since every bankruptcy problem is a legal problem, its solutions should
be guided by the principle of justice. Whatever form this principle may
take, it should enable us to determine whether any one creditor received
better or worse treatment than another at any given allocation. For
example, if we believed, like Aristotle, that justice is proportionality, then
we would say that i is treated better than j at allocation x if i receives a
larger proportion of this claim than j does. According to this principle of
justice, an allocation will treat ; and j equally if they receive the same
proportion of their claims. Obviously, we can think of other notions of
justice, but in order to make these pairwise comparisons we clearly need
only a bilateral principle.

A bilateral principle is a function that assigns a unique allocation to
every two-person bankruptcy problem. We interpret this unique allocation
as the just solution to the bilateral problem. We shall say that any other
allocation in a two-person problem treats one creditor better than the
other since it awards one creditor more than his “fair” share. Any rule
induces a bilateral principle, when it is projected on the class of 2-person
bankruptcy problems. We denote a generic allocation rule by ¢ and its
induced bilateral principle by f. Monotonicity, anonymity, and supermodu-
larity of bilateral principles are defined in an obvious way.

Given a bankruptcy problem (E; d) and a bilateral principle f, we shall
say that an allocation x treats i and j f-equally if (x;, x;) = flx, + x;;
(d;, d)]. An allocation in (E; d) is said to be f-just if it treats every two
creditors f-equally. Aumann and Maschler (1985) showed that if a bilateral
principle f is monotone, then there is at most one f-just allocation for
each bankruptcy problem. If a unique f-just allocation exists for any
bankruptcy problem, then we can define the f-just rule to be the rule that
assigns to each bankruptcy problem its unique f-just allocation. Conditions
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on a bilateral principle that guarantee the existence of the associated
f-just rule can be found in Dagan and Volij (1996).

We explore some relations between f-justice and properties of alloca-
tion rules.

LEMMA 3.1. Let f be a monotone bilateral principle and let ¢ be the f-just
rule, then ¢ is consistent.

Proof. See Aumann and Maschler (1985, Corollary 3.1). =

LEMMA 3.2. Let ¢ be a monotone and bilateral consistent rule, and let f
be the bilateral principle induced by ¢. Then ¢ is the f-just rule.

Proof. Left to the reader. B

COROLLARY 3.3. Let f be a monotone bilateral principle. The f-just rule is
the unique consistent rule that coincides with the bilateral principle f in
two-creditor problems. Moreover, when ¢ is monotone, consistency of ¢ is
equivalent to bilateral consistency of ¢.

Proof. The first part follows directly from Lemma 3.2. As for the
second part, if ¢ is monotone and bilaterally consistent, then by Lemma
3.2 it is the f-just rule, which by Lemma 3.1 is consistent. =

The following lemma shows that monotonicity and supermodularity of
the bilateral principle f are properties inherited by the corresponding
f-just rule.

LEMMA 3.4. Let f be a bilateral principle and let ¢ be the f-just rule.

(@) If f is supermodular, then ¢ is supermodular as well.
(b) If f is monotone, then ¢ is monotone as well.
(¢) If f is supermodular, then ¢ is anonymous.

Proof. Let (E;d) be a bankruptcy problem and let 0 < E' < E. Let
x = ¢(E,d)and x' = ¢(E’, d) be their corresponding f-just allocations.

(@) Assume that d; < d;. We need to show that x; — x; < x; — x}. By
definition of ¢ and by supermodularity of f we have

x; = x;=fi(x; + x5 (di dy)) = fi( x5 + x5 (d;, d)))
< fi(xi +x;:(din d))) = f(x; + x5 (di d))
=X, —x}.
(b) Assume by contradiction that for some creditor i € I,

x> x;. (2)
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Since

Z‘x}(< Zxk

kel kel

there must exist a creditor j with

x> X (3)

Case 1. x;+ x; <x; + x;. By definition of ¢ and monotonicity of f,
x; = fi(x; + %55 (dy, dy)) < fix + x5 (di d))) = x,

which is a contradiction to (2).

Case 2. x; + x; > x; + x;. By definition of ¢ and monotonicity of f
X =fi(xi + x50 (di dy)) = fi(x + x5 (dy dy)) = x

which contradicts (3).

(c) Let (E;(d,,...,d,)) be a bankruptcy problem and let a:
{1,...,n} » {1,...,n} be a permutation. Consider the auxiliary replica
bankruptcy problem {(nE;(d,...,d,,...,d,...,d,,), Where d, =
d; = d, for all L, jyke{l,...,n}. Let (xyg, ..., Xg, ey Xpp, -0y X,,) DE
the corresponding allocation recommended by ¢. Since f is supermodular,
by part (a) and Lemma 2.1 ¢ is symmetric. Therefore, x,, = x; = x, for

all i,j,k €{1,...,n}. Consequently, since 7 is a permutation,

n

n
Z X1k = Z Xim(ky = E.
k=1 k=1

By Lemma 3.1, ¢ is consistent. Therefore, by the definition of d,, and the
consistency of ¢,

¢[E;(d1w--:dn)] = ¢ ixlk;(dll""’dln)
k=1

= (Xg300-00 %g,)

= (X100, X,).
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Analogously,

¢[E; (dﬁ(l): cees dﬂ'(n))] =¢ kglka(k); (dlﬂ-(l)l cees dnﬂ'(n))

= (xlﬂ-(l)' cee xnrr(n))

= (Xr@yr e Xrm) -

But since {E;(d,,...,d,)) is an arbitrary problem and 7 is an arbitrary
permutation, the above two equalities imply that ¢ is anonymous. ®

LEMMA 3.5. Let f be a monotone bilateral principle, let (E;d) be a
bankruptcy problem, and let x* be its f-just allocation. Let x be an allocation
in (E; d) in which there are two creditors i and j with x; < x} and x; > x}.
Then, flx; + X, (d,, dj)] > x;. Moreover, if both inequalities are strict, then
filx; +xj;(dA d)]l > x,.

i Y
Proof.

Case 1. x;+x;>x} +x¥. By monotonicity and f-justice of x*,
filx; + x;(d;, d)) = flxf + xf;(d;, d)] = x7 = x;. Hence, flx;, +x;
(d;,d)] = x;.

]
Case 2. x;+x; <xj +xf. By monotonicity and f-justice of x*
filx; + x;(d;, dP] < filxf +xF;(d;, d)] = xf < x;. Hence, flx; +x;;
(d;, d)] = x;.

[2ad |
This proves the first part of the claim. As for the second part, it is
proved analogously and is left to the reader. =

Lemma 3.5 says that the f-just allocation of a bankruptcy problem is a
good benchmark for bilateral comparisons: if at some allocation x player j
gets more than the f-just allocation assigns to him and if player i gets less
than his f-just share, then j must be receiving better treatment than i at
the allocation x. The next two lemmas have independent interest. They
relate f-justice and the allocation prescribed by a consistent bankruptcy
rule.

LEMMA 3.6. Let (E;d) be a bankruptcy problem, let ¢ be a consistent
and monotone rule, and let x be an allocation in (E;d). If there exists a
creditor i such that for all j, x; = ¢[x; + x;;(d;, d)), then x; = $,(E; d).

[Aed |
Proof. If x; > ¢,(E; d) then there exists a creditor j with x; < ¢,(E; d).
Hence, by Lemma 3.5, x; > ¢[x; + x;;(d;, d))], contradicting the assump-
tion of the lemma. Analogous arguments are used if x; < ¢,(E;d). ®
LEMMA 3.7. Let (E;d) be a bankruptcy problem, let ¢ be a consistent,
monotone, and supermodular rule and let x be an allocation in (E; d). Let i
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be a creditor with the highest claim. If for all creditors j, x; = ¢lx; + x;;
(d;, d))] then x = ¢(E; d).

(A}

Proof. By Lemma 3.6, x; = ¢,(E; d). Now assume there exists a credi-
tor j with x; < ¢j(E; d). By consistency, supermodularity, and Lemma 2.2,
x; > ¢lx; +x;;(d;, d))], contradicting the assumption. So it must be that
for all j, x; > ¢,(E; d). Since x is an allocation, this implies that x =
H(E;d). m

Lemma 3.7 says that if an allocation is such that all creditors are treated
f-equally to one with a maximum claim, then this allocation is the f-just
allocation. Thus, only n equations (the n — 1 conditions of f-equality with
one of the highest claimants and the efficiency condition) are needed to
calculate the f-just allocation of any n-creditor bankruptcy problem.

4. A MULTILATERAL NONCOOPERATIVE MODEL

Let (E; d) be a given bankruptcy problem. We are interested in defining
an extensive form game for each bilateral principle f. The game, denoted
by G/(E;d) is defined as follows. Creditor 1 proposes an allocation x in
~(E; d); following this proposal all the other creditors respond sequen-
tially, either by accepting or rejecting the offer. The order of responses
follow the protocol induced by the creditors’ indices, namely creditor 2 is
the first to respond and creditor n is the last.

In order to define the players’ payoffs, it is convenient to define the
following state variable of “interim shares” for the proposer. Given a
proposal x and a profile of responses to it, define

Wy =X
and for t = 2,...,n,
W,_4 if ¢+ accepted x
w, = . . (4)
o fu[we +x,,(dy,d)] if ¢ rejected x

An accepting creditor ¢ receives as a payoff z, = x,, a rejecting creditor
t receives z, = f,(w,_, + x,;d;, d,), and the proposer receives z, = w,.

Note that creditor 1’s payoff is determined in several steps. The variable
w, represents creditor 1's interim share of the total estate after a proposal
is made and the payoffs to all responders with indices no greater than ¢
are decided. That is, when creditor 1 proposes x he determines w,. To
determine w,, we need to know creditor 2’s response to x. If creditor 2
accepts it, w, = w, (creditor 2 finds no grounds to appeal to the bilateral
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court about the unfairness of the proposal); otherwise, w, = fi[w, +
x,;(dy, d,)] because creditor 2 “renegotiates” with creditor 1 over his fair
share of w, + x,, and so on.

In sum, creditor 1 may be interpreted as the administrator of the estate.
He proposes an allocation x and he is entitled to award the proposed
shares to the accepting creditors. However, he must be open to counterar-
guments made by those who reject the offer, who may hold him responsi-
ble for his proposal before the court (by claiming their fair share of the
amount w,_, + x,). That is, we assume that the bilateral principle f is
commonly accepted in society, or that resorting to litigation is an outside
option for the creditors. The administrator then receives the remainder of
the estate after all the other creditors received their shares.

Note that every play of the game G/(E, d) results in an allocation of
(E, d). To see this let o be an arbitrary strategy profile, let (x, x,,..., x,)
be the proposal, let {w, ]}/ ; be the associated interim payoff sequence, and
let (z,, z,, ..., z,) be the corresponding payoff vector. By the definition of
the payoff vector, 0 < z, < d,, for t = 1,2,..., n. Therefore it is enough to
show that X7_, z, = E. Note that by the definition of w,, for ¢t = 1,2,...,n
and of the payoff vector,

Z,=W,_, — W, +Xx, fort=2,3,...,n
Therefore,
n n
Yz= Yz +w,
=1 =2

=2
n
=w, + ) X
=2
n
= sz
=1
=E.

The introduction of the bilateral principle to calculate the proposer’s
payoff may seem arbitrary. However, we want to emphasize that our
purpose is not to characterize a certain consistent rule or any bilateral
principle; instead, we are more interested in the relationship between the
bilateral principles and their consistent generalizations. For a model in
which the bilateral principle does not appear in the extensive form game
see Serrano (1995), who characterized the contested garment consistent
rule.

Now we are ready to state the main result of this paper.
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THEOREM 4.1. Let (E; d) be a bankruptcy problem where creditor 1 has
the highest claim, let f be a monotone and supermodular bilateral principle,
and let ¢ be the f-just rule. The unique Nash equilibrium outcome of
G/(E;d) is ¢(E;d). Moreover, it can be supported by a pure strategy
subgame perfect equilibrium.

Some remarks are in order.

(1) The theorem holds for the case in which the proposer is a creditor
with a highest claim. Otherwise uniqueness is not obtained (see Example
6.1 in Section 6). On the other hand, as will be shown in Section 6, for
strictly monotone rules the identity of the proposer is of no importance.
Note also that the result is invariant to the order of responders.

(2) The result does not use any refinement of Nash equilibrium. This
is in contrast to other models that relate noncooperative models with pure
bargaining problems. When the underlying model is more complex, as in
general cooperative games, a refinement of subgame perfect equilibrium is
usually needed in order to get uniqueness (see, for example, Hart and
Mas-Colell (1996) and Gul (1989)).

(3) Unlike some other models, which provide a noncooperative view
of a cooperative solution concept, our result yields a noncooperative view
of a large family of allocation rules for bankruptcy problems. The two
critical properties that characterize this family are consistency and mono-
tonicity. These two properties guarantee that the allocation assigned by
the consistent rule can be supported by a Nash equilibrium. These proper-
ties are the ones that drive the results of other consistency-based non-co-
operative mechanisms (see, for example, Krishna and Serrano (1996) and
Chae and Yang (1994)).

(4) Our result holds for the whole family of bankruptcy problems. This
is in contrast to other models, such as those mentioned in the previous
remark, where the unique subgame-perfect equilibrium outcomes converge
to the Nash bargaining solution agreement for “dividing a dollar” bargain-
ing problems, in which the Nash solution is monotone (see Chun and
Thomson, 1988). The reason why these models do not yield a similar result
in all bargaining problems becomes apparent: the Nash bargaining solution
is not monotone in general.®

(5) The unique equilibrium agreement is not achieved necessarily
after unanimous agreement. This feature of the model agrees with the

® When the Nash solution is not monotone, the strategies proposed by Krishna and Serrano
(1996) and by Chae and Yang (1994) do not constitute even a Nash equilibrium. The proposer
could find a profitable deviation by offering more than his equilibrium share to one of the
responders, in the hope of benefiting from a bigger share in a smaller pie.
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consistency principle. As we know, after applying a consistent rule any
subset of agents is indifferent between accepting their shares and renegoti-
ating among themselves.

(6) The possible emergence of an equilibrium without unanimous
agreement is due to the fact that there is no cost of renegotiation, such as
discounting, fixed renegotiation fees, or the random elimination of players.

Proof of Theorem 4.1. We denote ¢(E;d) by x* and equilibrium
outcomes by z. The proof follows from the following steps.

Step 1. In any equilibrium of G/(E; d), z; = x¥.

Proof. Creditor 1 can guarantee a payoff of x§ simply by proposing x*.
To see this, note that if the proposal is x*, then w, = x¥, and if w,_; = x}
then by the definition of w, and consistency of ¢, w, = x¥ independent of
the responses. So in any equilibrium, the proposer gets at least x¥.

STep 2. Let z be an equilibrium outcome of G'(E; d). Then f(z, + z,;
(dy,d)) =z, forallt > 1.

Proof. Let o be an equilibrium of G/(E;d) and let {w}/, be the
interim payoff sequence determined by the equilibrium path. Given the
equilibrium proposal x and the responses of the others, creditor ¢’s payoff
is either f,(w,_, + x,;(d;,d,)) or x, depending on whether he rejects or
accepts the proposal, respectively. Therefore in equilibrium we must have

z, = max{f,(w,_, +x,;(dy, d,)), x,} (5)
and
w,=w,_, +x,—z,. (6)
By (6) and the definition of z; we have
zi=w,<w, forall¢. (7)

Given the identity f(z; + z,;(d,,d) + f(z, + z,;(d,,d)) =z, + z,, it
follows from (7) and monotonicity that
fl(Zl +z,,(dy, d,)) +ft(wt +z,:(dy,d)) =2z, +z,.
By (6), fi(z; +z,;(d,d)) +fw,_, +x,(d,d)) >z +z and by (5),
fl(Zl + Zt; (dl’ d[)) > Zy.
Step 3. z; <«xf.

Proof. If z, >x¥, since z and x* are both allocations, there must
be some creditor ¢ with z, <x}. Then, by Lemma 3.5 we must have
fi(z, + z,;(d,, d,)) < z,, contradicting Step 2.
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STEP 4. Zz = Xx*.

Proof.  Assume by contradiction that z # x*. Then there is a creditor ¢
with z, < x}. By Steps 1 and 3 this creditor cannot be the proposer. Hence,
by Steps 2, 3, and 1 and by supermodularity of f (Lemma 2.2) we have that
fi(xF +x¥;,(dy, d)) > f(z, +z,;(d,,d,) >z, =xF. This is a contradic-
tion to the f-justice of x*.

As for existence, it can easily be seen that the following strategy profile
constitutes a subgame perfect equilibrium:

(1) Creditor 1 proposes x*; and

(1) Creditor ¢ accepts a proposal x if and only if x, > fi[w,_; + x,;
(dy, d,))], where w,_, is defined in 4.

This concludes the proof of the theorem. =

5. COALITIONAL STABILITY OF THE EQUILIBRIA

In the game presented in Section 4 creditors may exit with the share
proposed to them simply by accepting the proposal. The question arises of
whether the equilibria are coalitionally stable. Could the proposer offer a
larger share of the pie to a responder in the hope of profiting from a joint
deviation? To answer this question we consider the game I'/(E;d) in
strategic form that corresponds to the game G/(E; d) in extensive form.

We first consider any kind of coalitional deviation and ask if the
subgame perfect equilibria of our model are strong Nash in T'/(E;d)
(Aumann, 1959). This requires that no coalition of players have a joint
deviation which leaves all its members better off. We find that the
equilibria of our model fail in general to be strong. This is illustrated in
the following example.

ExAMPLE 5.1. Consider the bankruptcy problem problem (E;d) =
{99; (100, 100, 100)). Since this problem is symmetric, for all symmetric
bilateral principles the game G/(E;d) is the same. Clearly, the f-just
allocation in this problem, and hence the unique subgame perfect equilib-
rium outcome, is (33, 33, 33). Consider the following deviation by the first
and third creditors: The proposer offers x = (0,1,98), and the third
creditor, who was offered 98 dollars, rejects it. This deviation yields more
than 33 both to creditor 1 and creditor 3, no matter how creditor 2
responds. Therefore no equilibrium of G/(E, d) is a strong equilibrium.

Note that although this deviation improves creditor 3's payoff relative to
the f-just allocation, he can do even better by deviating from his joint
deviation with creditor 1 and accepting 1's offer. This makes the above
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deviation unstable. Examples of this sort motivated the alternative concept
of coalitional stability known as coalition-proof Nash equilibrium, intro-
duced by Bernheim et al. (1987).

The following definition® refers to games in normal form, I' =
(1,(8);c;,(g");c ), where I is the set of players, S; is the strategy set of
player i, and g’ is the payoff function of player i. Let J be a coalition, that
is, d#J I Wedenote S; = X,;.,;S;. Also, if c € §:= X, S, is alist
of strategies, o; denotes the restriction of o to coalition J. Given a game
G, alist o of strategies (one for each player), and a coalition J of players,
an internally consistent improvement of J upon o is defined by induction on
|[J]. If J={i} for some i in I, then 7, € S, is an internally consistent
improvement of J upon o if g'(r;, a;\;)) > g'(0). If |[J| > 1then 7, € S,
is an internally consistent improvement upon o if (i) g'(7;, oy ;) > g'(0)
for all i in J, and (ii) no T cJ, T # &, has an internally consistent
improvement upon (¢;, oy ;). The profile o is a coalition-proof Nash
equilibrium if no J CI,J # J, has an internally consistent improvement
upon o.

In contrast to strong Nash, the coalition-proof Nash equilibrium
requires that no coalition should have a profitable and self-enforcing
deviation.

THEOREM 5.2.  Let f be a monotone and supermodular bilateral principle
and let ¢ be the f-just rule. For all bankruptcy problems (E;d), all the
subgame-perfect equilibria of G/(E;d) are coalition-proof equilibria of
I/(E; d).

Proof. Let (E; d) be a bankruptcy problem and let f be a monotone
and supermodular bilateral principle. Let o be a subgame perfect equilib-
rium and suppose there is a coalition of creditors that has an internally
consistent improvement upon o.

Assume that the proposer does not belong to the deviating coalition. Let
k be the member of the deviating coalition who has the lowest index, that
is, creditor k is the first to respond among the deviators. Consider the
node of the deviation path in which creditor k has to respond. Since his
payoff is independent of the strategies of the creditors with higher indices
than k, the mere existence of the assumed improvement contradicts the
fact that o is a Nash equilibrium. Therefore, the proposer must belong to
the deviating coalition.

Thus, suppose that the proposer is a member of the deviating coalition
and let x be the proposal made in the deviation. Denote by {v,} the
sequence of interim payoffs of the proposer determined by the joint

® It is taken from Peleg and Tijs (1996).
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deviation and by {w,} the sequence corresponding to the case in which all
responders follow their equilibrium strategies after x has been proposed.

We claim that v, = w, for all ¢. The proof is by induction. By definition
v, = w; =x;. Assume now that the equality is true for all *+ <s and
consider the node where creditor s has to respond. If creditor s does not
belong to the coalition of deviators, then it is clear that w, = v, because
v,_, = w,_, and he does not deviate. If creditor s belongs to the set of
deviators, then since the deviation is internally consistent it means that, in
particular, creditor s cannot find it profitable to deviate from the joint
deviation. Therefore v, > w,. On the other hand, since o is a subgame
perfect equilibrium and v,_, = w,_,, it must be the case that v, < w,.
Hence w, = v,.

This means that, following the proposal x, and whether the deviating
responders follow the deviation or not, the proposer’s payoff is the same.
But then, since o is a subgame perfect equilibrium, by Theorem 1
v, =w, <x7 which contradicts the fact that the proposer belongs to a

n

coalition that has an internally consistent improvement upon o. B

Remark. 1In fact, the proof above also shows that all the subgame-per-
fect equilibria of G/(E; d) are perfectly coalition-proof equilibria of the
same game. (For a definition of perfectly coalition-proof equilibrium, see
Bernheim et al. (1987)). This result, however, is not surprising since Peleg
(1992) showed that for extensive form games with perfect information, the
set of subgame perfect equilibria coincides with the set of perfectly
coalition-proof equilibria.

6. STRICTLY MONOTONE RULES

The uniqueness result in Theorem 4.1 is driven by the strict estate
monotonicity of rule ¢ with respect to the highest claim (Lemma 2.2). This
is why it is important that the proposer should be a creditor with the
highest claim. If the proposer’s component ¢, was not strictly monotone
in the estate, multiplicity of subgame-perfect equilibrium outcomes might
arise, as shown by the following example:

ExampLE 6.1. Let (E;d) = (100;(10,100,100)). If ¢ is the con-
strained equal award rule, ¢(E;d) = (10,45, 45). The reader can check
that all the outcomes of the form (10,45 — a,45 + a) for —35 <a < 35
can be supported by subgame perfect equilibria of the corresponding
extensive form game.

If we confine ourselves to consistent and strictly monotone rules, the
main result can be generalized to the case in which the proposer is any
creditor with a positive claim. These results are stated formally in Theo-
rem 6.2.
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THEOREM 6.2. Let (E;d) be a bankruptcy problem, let f be a strictly
monotone bilateral principle, and let ¢ be the f-just rule. Suppose creditor 1
has a positive claim. The unique subgame perfect equilibrium outcome of
G/(E;d) is ¢(E;d). Moreover, all subgame-perfect equilibria of G/(E; d)
are coalition-proof equilibria of T/(E; d).

Proof.  The proof is identical to the Proofs of Theorems 4.1 and 5.2
with the only exception that in Step 4 of Theorem 4.1, the words “‘super-
modularity (Lemma 2.2)”" should be replaced by ‘‘strict monotonicity.” m

7. CONCLUDING REMARKS

By giving a noncooperative view of a wide class of bankruptcy rules, we
believe we have provided additional support to the idea that the property
of consistency is useful in the Nash Program for cooperative games. On
the other hand, consistency alone, without the assistance of monotonicity,
is insufficient to reach the results. Thus, construction of consistency based
noncooperative models that support consistent cooperative solution con-
cepts which are not monotone seems to us a difficult task. Therefore there
might be problems in supporting the nucleolus or the Nash bargaining
solution on general pies by means of a noncooperative model.” In the
bankruptcy model, however, monotonicity is a natural requirement. More-
over, it is almost implied by consistency: Young (1987, Lemma 1) showed
that if a rule is symmetric, continuous, and consistent, then it is also
monotone.
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