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Introduction 

Suppose you drive on a long one-way highway, where each car travels at a constant 

speed. Assume that the distribution of the speeds is the same throughout the length of 

the highway. 

 You adjust your speed so that during a given time unit you overtake the same 

number of cars as the number of cars that overtake you. Does this mean that your 

speed is the median of the speeds of the cars on the highway? Surprisingly, the answer 

is no! (Clevenson, Schilling, Watkins, & Watkins, 2001). 

 Imagine further a radar device at the side of the highway, measuring and 

recording the speeds of all the cars that pass this point within a fixed time interval. 

Again, contrary to lay expectations, the arithmetic mean of these recordings would 

generally not reproduce the arithmetic mean of the speeds of all the cars on the 

highway (Stein & Dattero, 1985). 

 The above examples illustrate that identifying the correct average may have its 

difficulties (the correct answers for both cases will be detailed later). Average speed, 

in general, is not all that self-evident a concept. The apparently simple question “what 

is the average speed of the cars that drive on the highway?” is equivocal. As students 

of introductory statistics know, the term average may be interpreted in various ways 

and hence may assume several different forms. One needs to know in what sense the 

average is supposed to represent a set of observations. 

Four Faces of the Average Speed 

We consider four (mathematical) requirements that may be imposed on the average 

speed, each of which has its own answer, thus resulting in the definitions of the 

median, the harmonic mean, the arithmetic mean, and the self-weighted mean. In 
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parallel, the four averages are presented from the point of view of an observer on the 

highway, whether in a static position, or on the move. 

 We do not purport to offer practical traffic applications. Our aim is to 

highlight several distinctions that are instructive in principle for students of chance. 

Moreover, this understanding may spare us all some intuitively compelling fallacies. 

 The basic well-known relation connecting speed, or velocity (denoted V), time 

(t), and the distance (S) traveled during that time (in a constant-speed motion) is  

V =S/t. Speed is obtained by dividing the distance by the time it took to be traversed. 

Assume that all the cars on a very long highway drive in the same direction, each at 

some constant speed.  

Halving the Line 

Consider the case of n cars on the highway, and the following requirement:  

A car traveling at the average speed should have equal number of cars 

traveling faster and slower than itself. Evidently, the median speed, Me, 

satisfies this requirement. 

Some convention should be adopted in the problematic case of tied values at the 

location of the median (e.g., Downie & Heath, 1970, p. 36). However, accurate speed 

measurements are quite unlikely to be identical. 

On the highway: Suppose the n cars travel for a long time until the order of the cars 

stabilizes (i.e. no car passes another car, only gaps between cars traveling at 

different speeds  increase with time). If you adjust your speed so that, when 

achieving that stability, the number of cars driving ahead of you equals the number 

of cars driving behind you, then your speed is the median, Me, of all the speeds. 

This description (which disregards technical details such as the parity of n) captures 

the gist of the definition of the median. 

Accompanying a Relay Race 

Let n cars travel with speeds V1, V2, …, Vn (not all of which are necessarily different 

from each other), so that they traverse a fixed distance, S, during times t1, t2, …, tn, 

respectively. 
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Imagine a relay race in which all n cars drive consecutively, each covering the 

same distance S and starting to move at full speed when its predecessor 

arrives. Altogether, the cars will cross a distance nS. You start moving (in a 

parallel lane) with the first car (see Figure 1). If your constant speed is such 

that you reach the final point synchronously with the nth car, then your speed 

is the harmonic mean, H, of all the speeds.  

 

 

According to this description, you cover a total distance nS during a time interval that 

equals the sum of the driving times of the n cars. Therefore, your speed is: 
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 If  we replace every ti in the right hand of (1) by S/Vi  (for i = 1, 2, …, n), and 

then divide both numerator and denominator by S – we obtain:   

?V =

S SSS
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Figure 1 A relay race: n cars drive consecutively, each covering a distance S. You start moving with the 
first car. 
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The right-hand part of equality (1) conveys an equivalent (mathematical) definition of 

the harmonic mean: 

Let all n cars traverse a fixed distance S. A car moving at the average speed is 

required to cover the distance S during a time interval that equals the 

arithmetic mean of the traveling times of the n cars. The speed that satisfies 

this requirement is the harmonic mean, H, of the n speeds. 

Averaging the speeds according to this definition imparts greater weights to lower 

speeds, for which more time is needed to cross the same distance. It makes sense, 

therefore, that the harmonic mean will be smaller than M, the arithmetic mean of the 

same set of speeds. 

We learn from (1’) first, that the harmonic mean is the reciprocal of the arithmetic 

mean of the reciprocals of the averaged values. This is, in fact, the most common 

definition of the harmonic mean in the literature (e.g., Downie & Heath, 1970, p. 50; 

Hoehn & Niven, 1985; Yule & Kendall, 1953, pp. 120-121). Second, H equals (see 

the right-hand expression) the weighted mean of the speeds in which each speed is 

weighted by its reciprocal. This confirms the conclusion that for a given set of speeds, 

the harmonic mean, H, is less than (or equal to) the arithmetic mean, M, because in  H 

the weights of low speeds are greater than those of high speeds, whereas in M all the 

speeds are weighted equally. 

 Apparently, the harmonic mean is hardly people’s primary intuitive choice, 

even when appropriate. In a typical word problem, high-school and college students 

are told that a car goes from city A to city B at, say, 30 mph, and back from B to A at 

50 mph, and they are asked about the car’s average speed for the round trip. The 

prevalent preference of students is the answer M=40 mph, whereas the correct answer 

is the harmonic mean of the two speeds, H=37.5 mph. Average is too often identified 

with the arithmetic mean. 
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Monitoring Overtakings 

Consider now n cars per mile. In each mile, the cars’ speeds are V1, V2, …, Vn mph 

(not all these speeds are necessarily different from each other). The requirement for 

the average speed is: 

During a fixed time interval, a car traveling at the average speed should 

overtake the same number of cars as the number of cars by which it is 

overtaken. The arithmetic mean, M, of the n speeds, that is, the familiar mean 

obtained by adding all the speeds and dividing the sum by the number of 

speeds, is this average. 

The procedure, from the point of view of a driver on the highway, as an observer, is: 

You have to count how many cars you pass and how many pass you, during, say, 

an hour. If you adjust your speed so that these two numbers are equal, your speed 

is the arithmetic mean, M, of all the speeds. 

On the Way Back 

Gardner’s (1982, p. 142) young skier is impatient with the slow cable car climbing up the 

slope at 5 km/h. By skiing faster downhill, he wants to raise his mean speed for the round 

trip up and down the slope to 10 km/h. How fast must he ski down? Most readers’ first 

attempted answer is 15 km/h, whereas in fact no speed could accomplish this goal. In 

order for the mean speed for the whole trip to be double the speed up the slope, the skier 

should make the distances up and down in the same time it took him to go up. But all this 

time has already been consumed on the way up. Formally, let the respective speeds up and 

down be a and b. The mean speed for the round trip is the harmonic mean of these speeds, 

a
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ba 2221
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. The skier’s wish that Ha,b would equal 2a can 

never be achieved, because for positive a and b it is always true that Ha,b< 2a. 

In contrast, given a value a>0, one can easily find a value b so that the arithmetic mean of 

a and b would equal 2a. The solution is b=3a. 
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This assertion is not trivial. Upon first encounter, many would opt for the median as 

the average that satisfies the above requirement. The misleading first impression can, 

however, be counteracted by careful analysis. 

 Suppose you drive at speed A=30 mph. Let us look at cars that drive 

constantly at speed Vi = 20 mph (recall that there is a car of speed Vi per every mile). 

Figure 2 presents your starting position, at milestone 0, and your position after one 

hour, at milestone 30, as well as the positions (indicated by the black rectangle), at the 

same points of time, of all cars traveling at 20 mph that, at the beginning, are located 

within 30 miles ahead of you. 

 

The rectangular black area between two milestone marks, 5 miles apart, represents 5 

cars of speed 20 mph. The cars that you pass during one hour are indicated by the 

rectangular black area between milestones 20 and 30. Hence you overtake  

(30 - 20) = 10 = A - Vi  such cars in an hour. By the same token, it is easy to see that if 

Vi > A, then the number of cars of speed Vi that overtake you, in an hour, is Vi - A. 

If your speed, A, is such that the number of cars that you pass is equal to the 

number of cars that pass you, in one hour, we have ).()( i
AV

i
AV

VAAV
ii

−=− ∑∑
<>

Your speed is A = 30 mph;  Vi = 20 mph; 

 

5 miles  

The area of this rectangle represents 5 cars of speed 20 mph. 

At the beginning 

You are here 

 

 
0               5              10      15            20    25          30                35        40           45        50 
 
 

After one hour 
 

                          You are here 
 
 

 
 

 
  0                 5                  10                 15                20                 25                30                35                 40       45        50 
                             You passed these cars 
 

Figure 2 The positions of your car, and of all the cars that drive 20mph within a 
range of 30 miles, at two points of time, one hour apart. 
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Solving for A, we obtain A=M, where M is the arithmetic mean of all the speeds. This 

establishes that your speed is the arithmetic mean, M, of the speeds on the highway. 

Indeed, M can be defined as the value from which the sum of all deviations is zero 

and which satisfies ∑∑
<>

−=−
MV

i
MV

i
ii

VMMV )()( . This equality does not generally 

imply that the number of speeds greater than M equals the number of speeds that are 

less than M, confirming what is well known, that the median, Me, may be different 

from M. 

 

Observing From the Side 

Consider again n cars per mile traveling in the same direction with speeds V1, V2, …, 

Vn, as before. The following procedure for obtaining the average speed is described in 

terms of observations taken on the highway. At the same time, this method entails a 

mathematical definition of that average: 

Suppose a radar gun, hidden at a fixed arbitrary location along the highway, 

measures the speeds of all the cars that pass that point during a fixed time 

interval. The arithmetic mean of these measurements is the self-weighted 

mean, SW, of the speeds of all the cars that drive on the highway. SW is a 

Mean Versus Median 

The following is a much simplified numerical example for comparing the number of cars 

that overtake you with the number that you overtake, in an hour, when you drive either at 

the median or at the mean speed (see also Clevenson et al., 2001). 

Let three cars of constant speeds 15 mph, 20 mph, 55 mph drive (in respective parallel 

lanes) in each mile along the highway. Our averages of interest are: 

Me=20 mph  ;   M=30 mph 

If you drive at the median speed, the number of cars that you overtake in an hour:  

20–15=5, differs from the number of cars that overtake you: 55–20=35. 

If you drive at the mean speed, the number of cars that you overtake in an hour:  

(30–15)+(30–20)=25, equals the number of cars that overtake you: 55–30=25. 
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weighted mean in which the weight of each speed equals (or is proportional to) 

the speed itself (Haight, 1963, pp. 114-116): 

                                     
VVV

VVV

n

nSW
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+++

=
...
...

21

22
2

2
1                                             (2) 

This result is rather counterintuitive (try your uncultivated tendencies). It might 

appear paradoxical that one computes the arithmetic mean of what, on the face of it, 

seems a random (perfectly representative) sample of observations of speeds on the 

highway and obtains (an estimate of) the self-weighted mean of the population of 

speeds. However, this sampling method is biased in favor of higher values. To justify 

formula (2), we may let our stationary point of measurement play the role of a car 

traveling at speed A=0. We learned from the analysis of the previous section that the 

number of cars traveling at Vi mph that overtake a car of speed A<Vi (during an hour) 

is Vi–A. Therefore, when A=0, the number of cars of speed Vi that pass the radar point 

is Vi. Each speed is thus weighted by its own magnitude. 

As can easily be seen from (2), weighting a speed by itself implies M ≤ SW 

(for the same set of speeds), because, in SW, higher values are weighted more heavily 

than lower values. Note that both (1’) and (2) present weighted means of the speeds  

V1, V2, …, Vn, but with inverse respective weights.  
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This method of collecting observations is known in the literature as size-biased or 

length-biased sampling (Patil, Rao, & Zelen, 1988). It makes sense that fast cars are 

measured by this method more frequently than slow cars, even when there are equal 

In Absence of a Timetable 

The following story is about waiting times, not speeds. But our averages are involved. 

In a certain Middle-Eastern country, two trains per hour were regularly going from city A 

to city B. But the public often complained about waiting too long in the station. In 

response, the management added a third train per hour. For security reasons no timetable 

was published. Passengers were expected to come to the station and wait for the 

forthcoming train. 

Curiously, the number of complaints about excessive waiting rose after the introduction of 

the third train. Apparently, the mean waiting time increased, instead of decreasing, as a 

consequence of that addition. How did this happen? 

This ostensible-paradox can easily be resolved if one considers, not only the number of 

trains per hour, but also the variability among the time intervals between successive trains 

(see van Dijk, 1997). To illustrate, consider an extreme (admittedly contrived) example: 

 Suppose that initially the trains came exactly each half hour. A passenger, arriving at a 

random moment, would have to wait 15 min, on the average. Suppose, further, that after 

introducing a third train per hour, the intervals between trains were, in turn, 6 min, 50 min, 

and 4 min. Arriving at a random point of time during any of these intervals, a passenger 

would wait, on the average, for half its length, but the chances of arriving during a given 

interval are proportional to its length. Therefore, although the arithmetic mean of the half-

intervals {3, 25,2} is 10 min (i.e., less than 15 min), a passenger’s mean waiting time (in 

minutes) would be greater after the addition of the third train: 

00.1527.21
2253

22252533
>=

++
×+×+×  

Note that the mean waiting time is the self-weighted mean of the half-intervals. The mean 

waiting time increased (after adding the third train) from 15 min to over 21 min, despite the 

decline of the mean interval from 30 min to 20 min. 
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numbers of cars per mile of both kinds (see Figure 3). The chances that a car’s speed 

will be recorded by the radar are proportional to the distance traveled by that car in an 

hour, and this, in turn, is proportional to the car’s speed. Hence, in the set of measured 

speeds, the frequency of each speed is proportional to its own size, and the mean of all 

these values is, according to (2), SW of the original set of speeds. 

 

Reckless drivers should thus be doubly cautioned not to exceed the speed 

limit. Against the feeling that by going fast one may evade the trap altogether, one 

could argue that: If there is a radar somewhere, operating during an hour, the faster 

you go the greater your chances of being caught by this method of sampling. You are 

“self weighting” your probability of detection. 

 

 

 

Figure 3 A radar gun measures the speeds of fast and slow cars that pass its location 
during an hour. The number of recorded (circled) cars is proportional to their speed. 

Slow cars

Fast cars

Radar

30mph
60mph

Again…after one hour 

1st car 

nth car 
3rd car 

2nd car 

1st car 

1st car 

2nd car 

2nd car 

3rd car 

3rd
 car nth car 

nth car 
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Authors’ Compromise 

Perfectionists would protest that our background assumptions, on which the derivation 

of the formulas of the averages relied, are not strict enough. They would be right. 

 Indeed, for the definition of M to be tight, the equalities that should hold 

“during a fixed time interval” or “during an hour” should hold for any duration. The 

same is true for the measurements of speeds “during a fixed time interval” at an 

arbitrary point on the highway, in the definition of SW. Likewise, the “fixed distance” 

that all the cars traverse, in the definition of H, should ideally be a segment of any 

length on the highway. 

 In order for our analysis to be independent of choice of units of time and/or 

distance, that may get as small as one pleases, there seems to be no way out of 

assuming that all traveling cars – whatever their distribution of speeds per mile (or per 

Data From Old Faithful 

Real data sets of wait times between eruptions of the Old Faithful geyser in Yellowstone 

National Park are presented by Shaughnessy and Pfannkuch (2002). For example, one list 

(for one day) of minutes between eruptions is (p. 253): 

51      82      58      81      49      92      50      88      62 

93      56      89      51      79      58      82      52      88 

Suppose some friends were planning to visit Yellowstone. The authors ask "how long 

should we tell them to expect to wait between eruptions of Old Faithful?" (p. 253). Their 

answer is the arithmetic mean of these 18 values, M=70.06 min. 

The arithmetic mean indeed answers the above question as phrased. However, the more 

relevant, or practical question would be: "how long should a prospective visitor, arriving at 

a random moment, expect to wait until the next eruption?"  

A visitor who arrives randomly during a certain interval would have to wait for half its 

length, on the average. However, the chances of arriving during a given interval are 

proportional to its length, just as the probability that the radar will sample a car's speed is 

proportional to that speed. The expected waiting time would thus be the self-weighted 

mean of the half-intervals. The answer for the above data is 36.99 min. This is greater than 

half the arithmetic mean: 70.06/2 = 35.03 min. 
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any unit of distance) – are spread continuously along the highway. This means that 

fractions of cars might be counted if necessary. 

 Assumptions of this kind would have created conceptual and technical 

difficulties. They bring up the age-old dilemma of crossing the unbridgeable gap 

between the discrete and the continuous. Cars on the road are definitely discrete 

entities, hence their behavior might only approximate a continuous model. The denser 

the traffic on the highway, the closer it would be to an assumed continuous model 

(Haight, 1963, pp. 125-126). But presuming continuity would have considerably 

interfered with the fluency, readability, and acceptability of the exposition. 

 

 To promote understanding and ease the reading, we had to skip some 

mathematical rigor and to compromise over “elegance” as well. For instance, we 

considered a total of n cars when introducing the median and the harmonic mean, 

whereas for the sake of presenting the arithmetic and the self-weighted means we 

looked at n cars per mile all through the highway. 

 An ideal, flawless derivation of the arithmetic mean and the self-weighted 

mean should have presupposed an unbounded linear highway (or, as in Haight, 1963, 

p. 114, a circular highway). To be realistic, we had again to compromise over a long 

highway. 

Rigor 

“Mathematical rigor is like clothing: in its style it ought to suit the occasion, and it 

diminishes comfort and restricts freedom of movement if it is either too loose or too 

tight.” 

From the introduction to a book on differential equations by G. F. Simmons. 

Highway Contemplations 

Daughter, D. (4-years old) while traveling on the highway in a long trip:  

“Mom, does the road go to infinity?" 

Mother, M: “No, the road has an end." 

D. (pondering the answer for a while): 

“Yes, the road has an end, but the direction goes to infinity." 

We thank Mara Beller and her daughter, Dana, for letting us use their dialogue. 
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Quasi-Realistic Representation 

Trains, made up of contiguous wagons, may better fit the image of a continuum of 

vehicles along a line. Although nonexistent in reality, such trains are imaginable. 

Envision n immensely long trains composed of many adjoining wagons of the same 

length. The (continuous) wagons now take the place of cars on the highway in the 

previous presentations. The trains travel on parallel rails in the same direction, each at 

its own constant speed. Let the speeds of the n trains be V1, V2, …, Vn. These trains 

satisfy the continuity assumption. The number of wagons in any rail segment, and/or 

any time interval, may be easily determined, counting fractions of wagons if 

necessary. Moreover, all the trains are so long, that viewed from our observation 

point(s), no problem of reaching the ends during the observation period arises. 

This representation may aid in visualizing the real-life interpretations of M (versus 

Me) and SW: 

You travel at a constant speed in a train on one of these rails, and you observe all 

the other parallel rails. Your speed is the arithmetic mean, M, of the speeds of all 

the trains, iff the number of wagons that pass you equals the number of wagons 

that you pass, during some time interval. Note that when moving at a constant 

speed, it feels after a while as if you are immobile. In that case, your speed is the 

median of the speeds of all the trains when you see equal numbers of trains that 

move forward and backward. 

Suppose you are stationed at a fixed arbitrary point on the side of the parallel rails. 

You record the speeds of all the wagons that go by that point during some time 

interval. The arithmetic mean of these measurements is the self-weighted mean, 

SW, of the speeds of all the trains that travel on the rails.  

Evidently, more wagons of fast trains pass your station than wagons of slow trains. In 

the set of measurements, the frequency of wagons of a given speed is proportional to 

that speed, which is the speed of the train to which the wagons belong. 

 

In Conclusion 

Averaging speeds (or any other values) requires a careful approach to sort out which 

mean does one mean. Assumptions should be explicitly spelled out. Extra care should 



   Average speed 
– 15 –  

be taken to clarify what is the method of collecting observations and what 

consequences it has for the weights of the values that should be averaged. It turns out 

that the good advice “drive carefully” applies not only to moving on the roads but also 

to manipulating this situation mathematically. 



   Average speed 
– 16 –  

 

References and Further Reading 

Beckenbach, E. F. (1950). "A Class of Mean Value Functions."  American 

Mathematical Monthly, 57 (1), 1-6. 

Clevenson, L., Schilling, M. F., Watkins, A. E., & Watkins, W. (2001). "The Average 

Speed on the Highway."  College Mathematics Journal, 32(3), 169-171. 

Downie, N. M., & Heath, R. W. (1970). Basic Statistical Methods (3rd ed.). New 

York: Harper & Row. 

Gardner, M. (1982). Aha! Gotcha: Paradoxes to Puzzle and Delight. New York: 

Freeman. 

Haight, F. A. (1963). Mathematical Theories of Traffic Flow. New York: Academic 

Press. 

Hoehn, L., & Niven, I. (1985). "Averages on the Move." Mathematics Magazine, 

58(3), 151-156. 

Patil, G. P., Rao, C. R., & Zelen, M. (1988). "Weighted Distributions." In: S. Kotz, & 

N. L. Johnson (Eds.), Encyclopedia of Statistical Sciences. Vol. 9, pp. 565-571. New 

York: Wiley.  

Shaughnessy, J. M., & Pfannkuch, M. (2002). "How Faithful is Old Faithful? 

Statistical Thinking: A Story of Variation and Prediction." Mathematics Teacher, 

95(4), 252-259. 

Stein, W. E., & Dattero, R. (1985). "Sampling Bias and the Inspection Paradox."  

Mathematics Magazine, 58(2), 96-99. 

van Dijk, N. M. (1997). "To Wait or Not to Wait: That is the Question." Chance, 

10(1), 26-30. 

Yule, G. U., & Kendall, M. G. (1953). An Introduction to the Theory of Statistics 

(14th ed.). London: Charles Griffin. 



   Average speed 
– 17 –  

Acknowledgments 

This study was partly supported by the Sturman Center for Human Development, The 

Hebrew University of Jerusalem.  

We thank Raphael Falk for his advice and dedicated help.  


