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CHINESE POSTMAN GAMES ON A CLASS OF EULERIAN GRAPHS?

D. Granot, H. Hamers, J. Kuipers, M. Maschler

Abstract. The extended Chinese postman (CP) enterprize is induced by a connected and
undirected graph G. A server is located at some fixed vertex of G, to be referred to as the
post office. Each player resides in a single edge, and each edge contains at most one player.
Thus, some of the edges can be “public”. Each edge has a cost and a prize attached to it.
The players need some service, e.g., mail delivery, which requires the server to travel from
the post office and visit all edges wherein players reside, before returning to the post office.
The server collects the prize attached to an edge upon the first traversal of this edge, but
the cost of an edge is incurred every time it is traversed. The cost of a cheapest tour for
each coalition defines a CP cost game. The issue is how to allocate, among the players,
the cost that the server incurs. We study the class of extended CP enterprizes which are
induced by Eulerian graphs satisfying two properties: The 4-cut property (Definition 4.4) and
completeness (Definition 4.8). For this class we prove that the core, resp., the nucleolus when
the core is not empty, are Cartesian products of the cores, resp., nucleoli of CP enterprizes
whose graphs are simple cycles generated from G by identifying therein the end points of each
elementary path (Definition 4.3). Finally, for the class of extended complete Eulerian graphs
having the 4-cut property, we are able to test core membership in O(n) time, and when the
core is not empty, we show how to calculate the nucleolus in O(n2) time, n being the number
of players.
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1. Introduction

In the Chinese postman problem (Kwan [1962], Edmonds and Johnson [1973]), defined on
a weighted undirected connected graph G, one seeks a least weighted tour which starts at
some vertex v0, of G, traverses all the edges in G at least once and returns to v0.

Hamers et al. [1999] formulated and analyzed a cost allocation problem associated with
the Chinese postman problem which can be described as follows. A server is located at
some fixed vertex of a graph, G, to be referred to as the post office, and each edge of
G belongs to a different player. The players need some service, e.g., mail delivery, and
the nature of this service requires the server to travel from the post office and visit all
edges, before returning to the post office. The cost allocation problem associated with
this delivery problem is concerned with a fair allocation of the cost of a cheapest Chinese
postman tour in the graph. That is, the cost of a cheapest tour, which starts at the post
office, visits each edge of G at least once and returns to the post office. Following what is
by now an established line of research, Hamers et al. [1999] formulated this cost allocation
problem as a cooperative game, (N ; c), referred to as the Chinese postman (CP) game,
where N is the set of players (edges) in the graph, and c : 2N → R is the characteristic
function. For each S ⊆ N , c(S) is the cost of a cheapest tour, which starts at the post
office, visits each edge in S at least once and returns to the post office. Solution concepts
in cooperative game theory were then evaluated as possible cost allocation schemes for
the above delivery problem. In particular, Hamers et al. studied the core of such games;
namely, the set of all allocations having the property that no subset of players can achieve
the same service at a strictly lower cost. A cooperative game whose core is not empty is
said to be balanced, and if the core of any subgame of it is nonempty, it is said to be totally
balanced.

In general, a CP game associated with an undirected connected graph could have an empty
core. However, Hamers et al. [1999] have shown that a CP game induced by a connected
weakly Eulerian graph is balanced. Here, a graph G is called weakly Eulerian if it consists
of Eulerian components connected in a tree-like structure. Further, Hamers [1997] has
shown that if a connected undirected graph is weakly cyclic, that is, every edge therein is
contained in at most one cycle, then the associated CP game is convex, or submodular.

Granot et al. [1999] were interested in properties of CP games which hold for all non
negative edge costs and all locations of the post office. Define a graph to be Chinese
Postman-convex, Chinese Postman-totally balanced or Chinese Postman-balanced (or, for
short, CP convex, CP-totally balanced and CP-balanced), if the corresponding CP game
is convex, totally balanced, or balanced, respectively, for all non negative edge costs and
all locations of the post office. Granot et al. [1999] proved that an undirected graph is
CP-convex if and only if it is CP-totally balanced, which holds if and only if it is weakly
cyclic. An undirected graph was shown by them to be CP-balanced if and only if it is
weakly Eulerian. In contrast with the undirected case, they proved that any connected
directed graph is CP-balanced. Further, it was proven by Granot et al. [1999] that a CP
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game induced by a directed graph is convex if and only if the directed graph is weakly
cyclic. (In a directed weakly cyclic graph each arc is contained in exactly one circuit.)

In this paper we study an extended model of a CP-enterprize which allows for public edges;
namely, edges not belonging to any of the players, and prizes. The prizes, which are
associated with the edges, are collected only upon the first traversal of the edges. Inclusion
of prizes appeared already in the travelling salesman problem literature (see, e.g., Balas
[1989] and Bienstock et al. [1993]), and it is interesting to study it also in the context of
the CP problem. They occur naturally in our games, because the Davis and Maschler’s
reduced game [1965], when applied to a standard CP game, is not necessarily a model of
a standard CP enterprize, but rather, it is a model of an extended CP enterprize. The
objective of this paper is to study the structure of the core and the nucleolus of extended
CP games and to find efficient ways to compute them. The employment of the reduced
game for this purpose is very useful, because both the core and the prenucleolus satisfy
the reduced game property (see Theorem 3.10).

In the present paper we study the class of extended CP games induced by an extended CP
enterprize whose graph is Eulerian, having the 4-cut property.1 We further require that
the enterprize is complete.2 We prove that for this class, the core is a Cartesian product
of cores of extended CP enterprizes generated from the original enterprize, whose graphs
are simple cycles. These cyclic enterprizes are derived by identifying the endpoints of the
elementary paths3 of the original graph to form new post offices. The nucleolus has a
similar property whenever the core is not empty.

There remains to discuss the core and the nucleolus of extended CP enterprizes whose
graphs are simple cycles. For this class we show that the core is not empty if and only if
its characteristic function is non-negative, which holds if and only if the game is convex.
We prove that the core of a CP enterprize defined on a simple cycle graph is determined by
at most 2n+1 non-redundant constraints, where n is the number of players, and that core
membership can be tested in O(n) time. Further, we develop an O(n2) algorithm which
calculates the nucleolus of a CP enterprize defined on a simple cycle graph whose core is
not empty. Thus, for our class of extended CP games, one can test core membership in
linear time and if the core is not empty, the nucleolus can be computed in quadratic time.

2. Preliminary and Notation

We present in this section some elementary definitions in game theory and graph theory
which are needed for subsequent analysis. A (cost) cooperative game is a pair Γ = (N ; c),
where N is a finite set of players, c is a function, and c : 2N →R. In our applications, we
will not require that c(∅) = 0 although this will be the case for games with a nonempty

1Definition 4.4.
2Definition 4.8.
3Definition 4.3.
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core. A subset of N will sometimes be referred to as a coalition. A function c : 2N → R
is said to be submodular if

c(T ∪ {j})− c(T ) ≤ c(S ∪ {j})− c(S), (2.1)

for all j ∈ N with S ⊂ T ⊆ N \{j}. A game (N ; c) is convex, or submodular, if c : 2N →R
is submodular (Shapley 1971).

An allocation x = (xi)i∈N ∈ RN is a core-element of (N ; c) if
∑

i∈N xi = c(N) and∑
i∈S xi ≤ c(S) for all S ∈ 2N . These inequalities will be referred to as core constraints.

The core of a game, C(N ; c), consists of all core-elements. A game is called balanced if its
core is non-empty and it is totally balanced if for each S ⊆ N, S 6= ∅, (S; cS) is balanced,
where cS is the restriction of c to the family of subsets of S.

The set of all pre-imputations (resp., imputations) of Γ is denoted by X?(Γ) (resp., X(Γ)).
Thus, X?(Γ) = {x :

∑n
i=1 xi = c(N)} and X(Γ) = {x :

∑n
i=1 xi = c(N), xi ≤ c({i}), i =

1, ..., n}. For a game Γ = (N ; c) and x ∈ RN , let θ(x; Γ) be the |2N |-dimensional vector
whose components are the excesses, c(S)− x(S), for S ∈ 2N , arranged in a nondecreasing
order, where4 x(S) ≡ ∑

k∈S xk. Letº denote the lexicographically greater than relationship
between vectors of the same dimension, and let X0 ⊆ RN . The nucleolus of Γ with respect
to X0 is given by,

ν(Γ, X0) = {x ∈ X0 : θ(x; Γ) º θ(y; Γ), for all y ∈ X0}. (2.2)

If X0 = X?(Γ), ν(Γ, X0) is called the prenucleolus of Γ, and if X0 = X(Γ), ν(Γ, X0) is
called the nucleolus of Γ.

Schmeidler [1969] introduced the nucleolus and proved that if X0 is nonempty and compact
then ν(Γ, X0) 6= ∅, and if, furthermore, X0 is a convex set, then ν(Γ, X0) consists of a single
point. Similarly, if X0 is nonempty, closed and convex then the prenucleolus also consists
of a unique point.

Let G = (V (G), E(G)) be an undirected graph, where V (G) and E(G) denote the set of
vertices and the set of edges of G, respectively. A walk in G is a finite sequence of vertices
and edges of the form v1, e1, v2, ..., ek, vk+1 with k ≥ 1, v1, ..., vk+1 ∈ V (G), e1, ..., ek ∈
E(G), such that ej = {vj , vj+1} for all j ∈ {1, ..., k}. Such a walk is said to be closed if
v1 = vk+1. The vertices v1 and vk+1 are called the extreme vertices of the walk. We will
also refer to closed walks as tours.5

A path in G is a walk in which all edges are distinct (but vertices may coincide). A closed
path, or cycle is a path in which v1 = vk. We use the terms simple path and simple cycle to
indicate paths and cycles in which the vertices are distinct, except for the extreme vertices
in the case of a cycle. Finally, we refer to a graph induced by a simple path as a chain.

4By convention, x(∅) = 0.
5The term “tour” is usually used if the walk is related to a coalition.
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3. The Model

The extended Chinese postman enterprize is given by Γ = (G, v0, a, p,N), where G is a
connected undirected graph, containing a special vertex v0 called post-office, a nonnegative
cost function a(·) defined on the edges of G, a nonnegative prize function p(·), defined on
the edges of G, a set of players N , each residing and occupying an edge of G, so that each
edge contains at most one player. Edges without players residing in them are called public
edges. The postman travels along a tour, starting at the post office and ending there.
While making the tours the postman pays the cost of the tour which is the sum of the
costs of the edges he traverses minus the sum of the prizes encountered. However, there
is only a one-time prize per edge, so if during the tour he traverses an edge, say twice, he
pays twice the cost of that edge and collects the prize just once. The players are expected
to reimburse the postman for his expenses, and we are concerned with various allocations
of his expenses among the players.

For each Chinese postman enterprize Γ = (G, v0, a, p,N) we associate a cost game (N ; c),
where N is the set of players and the cost function c : 2N →R, is defined by

c(S) = the cost of a least expensive tour that serves all members6of S. (3.1)

We will refer to (N ; c) as the Chinese postman (CP) game. We will use the notation (N ; cΓ)
if there is a need to distinguish between various CP cost games.

Note that if prizes are large enough it may well be that c(∅) < 0, because it would benefit
the postman to serve the empty coalition by traversing a non-empty tour.

The following lemma follows directly from the definition.

Lemma 3.1. The Chinese postman game is monotonic; namely, if S ⊆ T then c(S) ≤
c(T ).

Proof. The coalition S can use the cheapest tour that serves all members of T . The
cheapest tour for S can only be cheaper or equally as expensive.

Corollary 3.2. The condition c(S) ≥ 0, for all S, is equivalent to the condition c(∅) = 0.

The following lemma is a direct consequence of the previous one:

6Namely, a tour contains all edges in which members of S reside.
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Lemma 3.3. Any core element of a CP game is non-negative.

Proof. Let x be a core element. Then, for each player i, x(N \{i}) ≤ c(N \{i}). However,
c(N) = x(N) = xi + x(N \ {i}) ≤ xi + c(N \ {i}). Thus, by Lemma 3.1, xi ≥ 0.

In this paper we assume that the graph G associated with an extended Chinese postman
enterprize is Eulerian; namely, the degree (valency) of each vertex is even. One reason for
this restriction is the following theorem due to Hamers et al. [1999].

Theorem 3.4. If the graph of a Chinese postman enterprize is Eulerian and if there are
no public edges and no prizes then the core is not empty.

This theorem ceases to be true if public edges and/or prizes are introduced, as the following
examples show.

Example 3.5. G is an “onion” with four edges. Each edge is occupied by a single player.
One edge has a prize equal to 2 and the cost of each edge is 1 (Figure 1). Here, c({1}) =
c({2}) = c({3}) = c({4}) = 0, and c({1, 2, 3, 4}) = 2, which implies that the core is empty.

Example 3.6. G is an “onion” with a single public edge whose cost is equal to 1.
The other edges are occupied by players 1, 2, 3 and each costs 2 (Figure 2). We have
c({1, 2, 3}) = 7, whereas c({1, 2}) = c({2, 3}) = c({1, 3}) = 4 and the core is empty.

An important tool for the study of the core and the nucleolus of a cost game (N ; c) is
the reduced game (S; ĉS) on S at x, which was first studied by Davis and Maschler [1965].
Here S is a non-empty subset of N and ĉS(R), for x in the core, is defined to be:

ĉS(R) = min
Q⊆Sc

[c(R ∪Q)− x(Q)], for all R ⊆ S. (3.2)

Here, Sc := N \ S. We employ the following notation: Let G = (V (G), E(G)) be a
graph with costs, a(e), and prizes, p(e), e ∈ E(G), and let Q = (V (Q), E(Q)) be a “multi-
subgraph” of G, where V (Q) ⊆ V (G), and where E(Q) may contain several copies7 of
the same edge in E(G). We denote by k(Q) the cost associated with Q, i.e., k(Q) =∑

e∈E(Q) a(e)−∑
e∈E1(Q) p(e), where E1(Q) is the set of all distinct edges in E(Q).

7Hence the title“multigraph”. Usually Q will be a walk.
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1 1 11

2

3 421

v0

Fig. 1. CP with prizes
and empty core

2 2 12

321

v0

Fig. 2. CP with public edges
and empty core

Theorem 3.7. If (N ; c) is a CP game corresponding to an extended Chinese postman
enterprize Γ = (G, v0, a, p, N), and x ∈ C(N ; cΓ), then the reduced game (S; ĉS) corresponds
to the enterprize Γ̂ = (G, v0, a, p+ x̂, S), where x̂i = 0 if i ∈ S, and x̂i = xi if i /∈ S. Thus,
Γ̂ is obtained from Γ by making the edges, which were previously occupied by members of
N \ S, public, and the prize of each such edge i increases by xi.

Proof. Denote by (S; c̃) the game that corresponds to the enterprize Γ̂. We have to show
that c̃(R) = ĉ(R) for every coalition R, R ⊆ S. Let R be a subset of S. Let

ĉS(R) = c(R ∪Q0)− x(Q0), Q0 ⊆ Sc. (3.3)

Here, Q0 is a set in N \ S for which the minimum in (3.2) is achieved. Take a tour, ŵ,
whose cost in Γ is equal to c(R∪Q0). In view of Lemma 3.3, and the minimum requirement
in (3.1), we can assume that Q0 is the set of all the players that reside in edges traversed
by ŵ and belong to N \S. The tour ŵ is a valid tour also in Γ̂ and its cost there is equal to
ĉS(R), because the prize collected in each j in N \ S is xj-higher in Γ̂. Thus, c̃(R) ≤ ĉ(R)
for all R ⊆ S. Conversely, let w̃ be a tour whose cost in Γ̂ is equal to c̃(R). Then, it is a
closed walk in Γ̂ and its cost is equal to k(w̃)−x(Q), where Q are the players that reside in
edges traversed by w̃ and are in Sc and k(w̃) is the cost of w̃ in Γ. w̃ is a valid tour also in
Γ for the coalition R, and its cost there is higher by x(Q); consequently, it is a candidate
for the minimum problem in (3.2) and so, c̃(R) ≥ ĉ(R). It follows that c̃(R) = ĉS(R).

We call Γ̂ of the last theorem the reduced enterprize of Γ on S, at x. When needed, we
denote it as Γ̂x

S .

In view of the above discussion we have:

Corollary 3.8. The extended class of Chinese postman enterprizes is closed under the
reduced enterprize operation, provided that it is taken at a core vector x.
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Remark 3.9. If x is not a core point, the reduced game is somewhat more complicated.
It still corresponds to a certain Chinese postman enterprize, but this enterprize need not
belong to the class treated in this paper.

We close this section by reminding some well known facts concerning the core and the
nucleolus of a game (see, e.g., Maschler et al [1979]). For the literature concerning these
results see Maschler [1992].

Theorem 3.10. The core and the prenucleolus of a cooperative game satisfy the reduced
game property; namely, if x is a core/prenucleolus point for a game (N ; c) then its restric-
tion x|S to a nonempty subset S of N belongs to the core/prenucleolus of the reduced game
on S at x. Moreover, the prenucleolus coincides with the nucleolus if the core is not empty,
because it is a core point and therefore an imputation.

4. Chinese Postman on Eulerian Graphs Having the 4-cut Property

In this section we study the class of extended (defined in Section 3) and complete (Defini-
tion 4.8) CP enterprizes induced by Eulerian graphs having the 4-cut property (Definition
4.4). We show that the core and the nucleolus of such CP games is the Cartesian product
of the cores and the nucleoli of extended CP games, whose graphs are simple cycles that
are generated from the original graph. In the next section we show that the core of an
extended CP game whose graph is a simple cycle has only a linear number of non redun-
dant core constraints and we develop therein an algorithm which computes the nucleolus of
such games in quadratic time.8 Thus, results we obtain in this section, coupled with those
obtained in the next section, imply that for an extended CP game belonging to our class,
verifying whether a given vector is in the core can be done in linear time and computing
the nucleolus, if the core is not empty, can be done in quadratic time.

Theorem 4.1. Let (N ; c) be the game corresponding to an extended Chinese postman
enterprize Γ = (G, v0, a, p, N) in which G is a simple cycle. The following statements are
equivalent:

(1) c(S) ≥ 0 for all S ⊆ N.
(2) C(N ; c) 6= ∅.
(3) (N ; c) is a convex game.

Proof. By Shapley [1971], (3) implies (2). Further, (2) implies (1) since, if for some S,
c(S) < 0, then for all x ∈ C(N ; c), xj < 0 for some j ∈ S, contradicting Lemma 3.3.
It remains to show that (1) implies (3). It is known (Shapley [1971]) that convexity is
equivalent to the condition: c(T ∪ {i}) − c(T ) ≤ c(S ∪ {i}) − c(S) whenever S ⊆ T and

8Similar results can be proved for CP enterprizes whose graph is a chain.
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i /∈ T , provided that c(∅) = 0. By Corollary 3.2, (1) is equivalent to c(∅) = 0. Let S ⊂ T
and i /∈ T . Denote by V (Q) a maximal, under inclusion, vertex set of an optimal Chinese
postman (CP) tour for Q. Since we are dealing with a cycle graph, V (Q) is either the
whole cycle, or a connected part of it, in which every edge in the optimal path is traversed
twice. In both cases, V (S) ⊆ V (T ).

Now, if c(T∪{i}) = c(T ), then, 0 = c(T∪{i})−c(T ) ≤ c(S∪{i})−c(S), where the inequality
follows from the monotonicity of (N ; c) (Lemma 3.1). So, assume that c(T ∪ {i}) 6= c(T ).
If c(S ∪ {i}) 6= c(N), denote by C1 the closed walk in the cycle graph, whose addition to
the CP tour corresponding to S would result with the CP tour corresponding to S ∪ {i}
(see Figure 3).

Let C ′1 be the closed walk which is contained in C1, but is not contained in the tour
corresponding to c(T ) (see Figure 4). Clearly, the cost k(C ′1) of C ′1, is smaller than or
equal to the cost k(C1), of C1. Otherwise, k(C1 \ C ′1) is strictly negative, implying that
the tour corresponding to S was not optimal. Now, c(T ∪ {i})− c(T ) ≤ k(C ′1) ≤ k(C1) =
c(S ∪ {i})− c(S).

Finally, if c(S∪{i}) = c(N), then c(T ∪{i}) = c(N), and c(T ∪{i})−c(T ) = c(N)−c(T ) =
c(S ∪ {i})− c(T ) ≤ c(S ∪ {i})− c(S), where the last inequality follows by monotonicity.

v0

i

C1

S

Fig. 3. Tours for S and S ∪ {i}

v0

i

C ′1

T

Fig. 4. Tours for T and T ∪ {i}

We need the following notation:

Notation 4.2. Let H = (V (H), E(H)) be a subgraph of G = (V, E). We denote:

G \H := (V \ V (H), E \ E(H)), (4.1)

G \H := the subgraph of G, whose edge set is E \ E(H). (4.2)

Thus, G \H is the closure of G \H. For T = (V (T ), E(T )), we also denote

H ∪ T = (V (H) ∪ V (T ), E(H) ∪ E(T )), (4.3)
10



and
H ∩ T = (V (H) ∩ V (T ), E(H) ∩ E(T )). (4.4)

The concept of an elementary path is used extensively in this section.

Definition 4.3. A path in a graph G whose interior vertices have degree 2 and is maximal
under this property is called an elementary path.

Definition 4.4. A connected graph G is said to have the 4-cut property, if the cardinality
of every edge-cut set that intersects each elementary path at most once is at least 4.
(Thus, by the max flow min cut theorem (Ford and Fulkerson [1962]), between every pair
of extreme vertices there exist at least four edge disjoint paths.)

Lemma 4.5. Let G be a connected graph having the 4-cut property. Let P be an elemen-
tary path in G. There exists two cycles in G whose intersection is P .

Proof. If P is a simple cycle, we take P itself for both cycles. Suppose P is not a simple
cycle. Then, since G is connected and has the 4-cut property, there exists at least three
edge disjoint paths between the two extreme vertices of P which do not use edges in P .
Two of these three paths, together with P , form the two requires cycles.

Lemma 4.6. Let G be a connected Eulerian graph having the 4-cut property. Denote by
v0 one of its vertices which is an extreme vertex of an elementary path in G. Let P be an
elementary path in G. There exist two cycles in G which traverse v0 and whose intersection
is P .

Proof. The proof is by induction on the elementary-path distance r of P from v0; namely
the minimal number r of elementary paths needed to connect v0 with P . The case r = 0,
was proved in Lemma 4.5. Suppose the current lemma is true for elementary paths whose
distance from v0 is r − 1. Let P = [BC] be an elementary path whose distance from v0

is r, r ≥ 1. Denote by Q = [AB] the preceding elementary path on the path connecting
v0 to P , whose distance from B to v0 is r − 1. By the induction hypothesis, there exist
two cycles in G, which traverse v0 and whose intersection is Q = [AB]. Thus, there exist
four edge-disjoint paths α, β, γ and δ, connecting v0 to the extreme vertices of Q — two
to each extreme vertex. Suppose P is not a simple cycle. By Lemma 4.5, there exist two
edge-disjoint paths η and ζ, connecting B and C. Figures 5 to 9 show these paths, which
are drawn only until they first vertex-intersect one of the other four paths, and cover all
the various possibilities. In all cases we can identify a cycle which contains P and traverses
v0. The cycle is denoted by a heavy line and, as it will turn out, it is the first of the two
cycles required by the lemma. Removing this cycle, we obtain a possibly disconnected
graph, in which B, C and v0 belong to the same component. Indeed, the remaining paths

11



described above exhibit the connection to the origin in all the cases. This component is
Eulerian; therefore, there exists a cycle C1 in this component which traverses C, B and
v0. Indeed, since the component is Eulerian, C1 could be the tour which traverses all the
edges therein precisely once. Now C1 contains at least two paths, a1 and a2, between B
and C. If, say, a1 does not traverse v0, then upon replacing a1 with P in C1, we derive the
second cycle which contains P and traverses v0, as required. If both a1 and a2 traverse v0,
then replacing any one of them with P in C1 would produce the second cycle as required.
If P is a simple cycle, we do not need η and ζ and the relevant figure is Figure 10. One
cycle is composed of α, β, the elementary path [AB] and P . Removing it,9 we are left with
a Eulerian graph with a connected component C1, containing B and v0. This component,
together with P is the second required cycle.

v0

A

B

C

α

β

γ

δ

ηζ P

Fig. 5. Paths η and ζ

initially intersect path β

v0

A

B

C

α

β

γ

δ

ηζ P

Fig. 6. Paths η and ζ

initially intersect paths β and α

v0

A

B

C

α

β

γ

δ

η ζP

Fig. 7. Paths η and ζ

initially intersect paths β and δ

v0

A

B

C

α

β

γ

δ

η ζP

Fig. 8. Paths η and ζ

initially intersect paths α and γ

9If AB is itself a simple cycle, the two edge-disjoint cycles that exist by the induction hypothesis satisfy
the requirement of the theorem when we replace AB by P .
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v0

A

B

C

α

β

γ

δ

η
ζP

Fig. 9. Paths η and ζ initially intersect path γ

v0

A

B

α

β

γ

δ

P

Fig. 10. P is a simple cycle.

For a subgraph H of G we denote by N(H) the set of all players that reside in edges of H.

Remark 4.7. Obviously, Lemma 4.6 is incorrect when v0 is an interior point of an ele-
mentary path, different from P .

Consider an extended CP enterprize Γ = (G, v0, a, p,N). For each elementary path P
in G which contains players in some of its edges, we define an extended CP enterprize
ΓP := (GP , vP , a|P , p|P , N(P )), where GP is a simple cycle whose edges, their costs and
prizes are in 1-1 correspondence with those in G and are, respectively, occupied by the
players in P . Here, the endpoints v̂P and ŵP of P correspond to a single post office vP of
GP . Thus, ΓP is obtained from P by identifying its end points to become the post office
of ΓP .

Definition 4.8. A CP enterprize Γ = (G, v0, a, p, N) is called complete, if10

(1) The post office is an extreme vertex of an elementary path.
(2) Every elementary path P for which k(P ) > 0 has at least one resident.
(3) For each N(P ) there exists an optimal tour in GP , which traverses all the edges of

GP .
A CP game induced by an extended and complete CP enterprize will also be called com-
plete.

Lemma 4.9. Let Γ = (G, v0, a, p, N) be an extended complete CP enterprize induced by a
Eulerian graph having the 4-cut property. Under these conditions, c(N) = k(G).

Proof. Since G is Eulerian, there exists a path that traverses all edges precisely once.
Therefore, c(N) ≤ k(G). It remains to show that all other N -tours do not cost strictly
less. Let τ be any optimal N -tour. By (2), it must contain at least one edge in each
elementary path of positive cost. It may also intersect other elementary paths. Let P be

10With proper conventions, Condition (2) is implied by Condition (3).
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an elementary path with A and B being its extreme points, which τ intersects. Denote by
τP the multi-subgraph of the multigraph τ whose edges lie in P . It need not be connected;
however, one can enter P only via A, or B, or both. So, identifying A and B to get
GP , τP becomes an N(P )-tour for all the players in GP . Thus,11 by (3), k(τP ) ≥ k(P ).
Consequently, k(τ) =

∑{k(τP ) : τ intersects P} ≥ ∑{k(P ) : τ intersects P } = k(G).
The last equality follows from the fact that paths that τ does not intersect have zero cost.

Theorem 4.10. Let Γ = (G, v0, a, p, N) be a complete extended CP enterprize in which G
is a connected Eulerian graph having the 4-cut property. Let (N ; c) be the CP game induced
by Γ. Then, for every elementary path P in G and every core vector x, x(N(P )) = k(P ).

Proof 12. Denote by A and B the extreme vertices of P . By Lemma 4.6, there exists two
paths ᾱ and β̄ joining A with v0 and two paths γ̄ and δ̄ joining B with v0, such that all
these paths are edge-disjoint and neither of them contains P . These paths, together with
P are drawn in heavy lines in Figure 11. The graph G \ (ᾱ ∪ β̄ ∪ γ̄ ∪ δ̄) is Eulerian and
may be composed of several connected components. Call those components, that are not
connected to either v0, or A or B, η-components. Denote by α the union of ᾱ with those
η-components that have a vertex in common with ᾱ. Denote by β the union of β̄ with
those η-components that have a vertex in common with β̄ and do not intersect α. Denote
by γ the union of γ̄ with those η-components that have a vertex in common with γ̄ and do
not intersect α∪β. Denote by δ the union of δ̄ with those η-components that have a vertex
in common with δ̄ and do not intersect α∪ β ∪ γ. The graphs α, β, γ, and δ are Eulerian,
connected, edge disjoint and neither of them contains P . Let H = α ∪ β ∪ γ ∪ δ, then its
complement H̄c is a Eulerian subgraph having at most two components, one connected to
v0 and the other connected to both A and B. Indeed, the original graph was Eulerian and
connected, so, after removing α ∪ β ∪ γ ∪ δ, each component is Eulerian and connected to
either v0, or A, or B. Those components that are connected to A [resp. to B] are also
connected to B [resp. to A], because P is in H̄c.

Let x be a core point of (N ; c). Since α ∪ β is Eulerian, connected and contains v0, it
follows that

x(N(α)) + x(N(β)) ≤ k(α ∪ β). (4.5)

Similarly,
x(N(γ)) + x(N(δ)) ≤ k(γ ∪ δ). (4.6)

H̄c ∪ α ∪ β is Eulerian, connected and contains v0, therefore,

x(N(α)) + x(N(β)) + x(N(H̄c)) ≤ k(α ∪ β ∪ H̄c). (4.7)

Similarly,
x(N(γ)) + x(N(δ)) + x(N(H̄c)) ≤ k(γ ∪ δ ∪ H̄c). (4.8)

11This is true even if P contains no players. Indeed, by (3), k(GP ) = 0 and so, by (3), k(τP ) ≥ 0.
12Note that the proofs of this theorem as well as the proofs of Corollary 4.12 and Theorem 4.13 are valid
also if P is a simple cylcle.
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v0

ᾱ

β̄ γ̄

δ̄

A BP

η
η

η

Fig. 11. The determination of the η-components

Adding (4.5) — (4.8) we obtain 2x(N) ≤ 2k(G). However, by Lemma 4.9, the last in-
equality must be satisfied as an equality, because x(N) = c(N), so all inequalities in (4.5)
— (4.8) are, in fact, satisfied as equalities.

Similar arguments show that

x(N(P )) + x(N(α)) + x(N(δ)) ≤ k(P ∪ α ∪ δ), (4.9)

x(N(Hc \ P )) + x(N(β)) + x(N(γ)) ≤ k((H̄c \ P ) ∪ β ∪ γ), (4.10)

because P ∪ α ∪ δ as well as its complement (H̄c \ P ) ∪ β ∪ γ are Eulerian, connected
and contain v0. Adding these inequalities we conclude that they are, in fact, satisfied as
equalities.

In particular, we have proved that

x(N(P )) + x(N(α)) + x(N(δ)) = k(P ∪ α ∪ δ). (4.11)

In a similar fashion we prove that

x(N(P )) + x(N(β)) + x(N(γ)) = k(P ∪ β ∪ γ). (4.12)

Adding (4.11) and (4.12), taking into account the previous equalities, we obtain: 2x(N(P )) =
2k(P ).

Remark 4.11. Following the proof of Theorem 4.10, we see that we could have replaced
Conditions (2) and (3) of Definition 4.8 by the requirement that c(N) = k(G). This
is a somewhat more general result. However, it also follows from the proof that these
conditions plus non-emptiness of the core imply that every elementary path of positive
cost must contain players. Indeed, all inequalities and equalities of the proof are valid, so,
for an elementary path without players, 0 = x(N(P )) = k(P ) and k(P ) cannot be positive.

An important consequence of Theorem 4.10 is that for games satisfying the condition of
the theorem, it is not strictly profitable for an S-tour to traverse twice a proper subset of
an elementary path that does not contain members of S:
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Corollary 4.12. Let Γ = (G, v0, a, p, N) be a complete and extended CP enterprize, in
which G is a connected Eulerian graph having the 4-cut property. Let (N ; c) be the CP
game induced by Γ. Suppose that the core of (N ; c) is not empty. Then, for every closed
walk T in an elementary path P , which originates and terminates at one of the two extreme
vertices of P , k(T ) ≥ 0.

Proof. Let x be a core element. Denote by w the vertex at which T originates. If w = v0,
the result follows from Theorem 4.1. Suppose w 6= v0, and assume that k(T ) < 0. Consider
a cycle C which traverses w and v0, which is edge-disjoint from P . Such a cycle exists
since G has the 4-cut property. Since C is a union of edge-disjoint elementary paths, it
follows from Theorem 4.10 that x(N(C)) = k(C). Note that C∪T is a feasible N(C)-tour.
A contradiction now follows from x(N(C)) = k(C) > k(C ∪ T ).

We can now demonstrate that the core and the nucleolus, when the core is not empty, of
an extended complete Chinese postman enterprize defined on a Eulerian graph G having
the 4-cut property is the Cartesian product of the cores/nucleoli of the extended CP games
defined on cycle graphs which are induced by the elementary paths of G.

Theorem 4.13. Let Γ = (G, v0, a, p,N) be a complete extended CP enterprize in which
G is a connected Eulerian graph having the 4-cut property. Let (N ; c) be the game that
corresponds to Γ. Then, the core of Γ is equal to the Cartesian product of the cores of ΓP ;
namely, C(Γ) =

/∖
P∈P

C(ΓP ), where
/∖

denotes the Cartesian product and P is the set of

all elementary paths of G.

Proof. A. Let x ∈ C(Γ). Then, by Theorem 4.10, x(Q) = k(Q) for every elementary path
Q of G. Let P be a single elementary path of G which contains players at some of its edges
and let ΓP be the CP enterprize corresponding to the cycle that is induced by P . We
propose to show that x|P belongs to the core of ΓP . By Theorem 3.10 it certainly is a core
element of the reduced game Γ̂P := Γ̂x

P which, by Theorem 3.7, is obtained by making all
edges outside P public and increasing the prize by xi for each edge occupied by a player
i, which does not reside in P . Thus, these prizes cancel the cost of an elementary path if
it is traversed once. It remains to show that ΓP and Γ̂P are isomorphic. This will be the
case if we show that for every coalition S whose members reside in P , a least-cost S-tour,
tS , in Γ̂P has zero cost outside P .

First, let us show that an S-tour exists, whose cost is zero outside P . Since G has the
4-cut property, for every elementary path P with extreme vertices u and v, there exists
at least two13 edge disjoint paths, say α and β, between u and the post office v0, and two
edge disjoint paths, say γ and δ, between v and v0, and all are also edge disjoint from P .
If the tour for coalition S, inside P , originates and terminates at u, (resp. v), the tour

13If u = v0 or v = v0, both of these paths are degenerate and consist of v0.
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outside P would consist of α and β (resp. γ and δ), and if it originates in P , say, at u and
terminates at v, then the tour outside P would consist of, say, α and γ. In both cases, it
follows from Theorem 4.10 that the cost of the tour outside P is zero.

Now, by Corollary 4.12, a least-cost S-tour, tS , in Γ̂P , would only consist of elementary
paths outside P . It is not cheaper to artificially traverse an elementary path, or part of
it, more than once, since prizes are collected only upon that first traversal of each edge.
Thus, if it is feasible, such a tour tS will only traverse once, and completely, elementary
paths once outside P and we already proved that such tours exist.

B. Let x ∈
/∖

P∈P
C(ΓP ). We have to show that x ∈ C(Γ). Note that, since x ≥ 0

(Lemma 3.3), the cost of every coalition in ΓP in non-negative. Therefore, it does not pay
to traverse unnecessarily edges merely in order to benefit from the prizes.

Consider a coalition S, S ⊆ N , and let tS be an optimal tour for S. Denote by T the
set of players that occupy the edges of tS , then c(T ) = c(S). It is sufficient to prove that
c(T )− x(T ) ≥ 0, because x ≥ 0.

Since x ∈
/∖

P∈P
C(ΓP ) and Γ is assumed to be complete, for every elementary path P

traversed by tS , x(N(P )) = k(P ). This is true also for elementary paths that contain
no player. Further, for any closed walk, Z, which is contained in some elementary path,
Q,Q ∈ tS , x(N(Z)) ≤ k(Z). Again, this is true also if Q contains no player. Now, the
set of players in T , corresponding to tS , consists of all players contained in the set, PS ,
of elementary paths traversed by tS , and all players in the set, ZS , of closed walks at
elementary paths which are contained in tS . Then

x(T ) =
∑

P∈PS

x(N(P )) +
∑

Z∈ZS

x(N(Z))

≤
∑

P∈PS

k(P ) +
∑

Z∈ZS

k(Z)

≤ c(T ),

(4.7)

where the last inequality follows since it is possible that an elementary path is traversed
by tS more than once, and the cost of traversing an elementary path, even on the first
time, is non-negative. Since G is Eulerian, and prizes are collected only upon the first
traversal of edges, x(N) =

∑{k(P ) : all elementary paths in G} = k(G), by Lemma 4.9.
This concludes the proof that x ∈ C(Γ).

Corollary 4.14. If C(Γ) = ∅ then C(ΓP ) = ∅ for some elementary path P .

Remark 4.15. Note that for part B of the proof of Theorem 4.13, we did not make use of
the 4-cut property. So,

/∖
P∈P

C(ΓP ) is always a subset of the core for a complete extended

CP-enterprize in which G is a connected Eulerian Graph.
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Theorem 4.16. Under the notation and conditions of Theorem 4.13, if the core of Γ is
not empty then the nucleolus of Γ is the Cartesian product of the nucleoli of ΓP :

ν(Γ) =
/∖

P∈P
ν(ΓP ). (4.8)

Proof. Since Γ has a nonempty core, ν(Γ) is a core point and the nucleolus coincides with
the prenucleolus. However, the prenucleolus satisfies consistency (reduced game property),
therefore ν(Γ)|P is the prenucleolus of Γ̂P . It is also a core point of Γ̂P , and therefore this
game has a non-empty core and therefore it is isomorphic to ΓP . Consequently, ν(Γ)|P is
the nucleolus of ΓP .

Corollary 4.17. Let Γ = (G, v0, a, p, N) be a complete extended Chinese postman enter-
prize in which G = (V, E) is the complete graph G2n+1, n ≥ 2 and a(e)−p(e) = 0 for edges
e that contain no player. Then, C(Γ) is not empty if and only if a(e) − p(e) ≥ 0 for all
e ∈ E. Further, if the latter condition is satisfied, then ν(Γ) = (a(e)− p(e))e∈E.

Proof. G2n+1, n ≥ 2, is Eulerian and has the 4-cut property. Further, Γ is a complete
extended CP enterprize. Thus, by Theorem 4.13, if the core is not empty then each
elementary path P has a non-empty core. However, ΓP is a single-edge e, single-player
game, so, by Lemma 3.3, a(e)− p(e) ≥ 0. Conversely, if a(e)− p(e) ≥ 0 for every edge e,
the vector which assigns a(e)− p(e) to the player residing in e, for each e, is a core point,
by Theorem 4.13. In fact, it is the unique core point, therefore it is the nucleolus.

Finally, we note that one can test very efficiently whether a graph G has the 4-cut property.
Indeed, all interior vertices of the elementary paths of G can be removed in O(|V |) time,
to produce a graph G′ = (V ′, E′) in which all elementary paths are edges. One can then
verify in O(|V ′|) time if the resulting graph is Eulerian and then employ Gomory and Hu
[1961] algorithm to solve |V ′| − 1 maximum flow problems in order to check whether G′,
and thus G, has the 4-cut property.

In the main theorems of this section we insisted that the enterprize is complete. We
conclude this section by counter examples that show that this requirement is necessary.

Example 4.18. Figure 12 shows a 4-person extended CP enterprize whose graph is an
“onion”. Three elementary paths consist of a single edge occupied by the players 1, 2
and 3. The fourth elementary path consists of two edges and only the edge which is not
incident to the post office is occupied by player 4. The other edge is public. The costs
of the edges are denoted by boxed numbers. There are no prizes. The fourth elementary
path gives rise to an extended 1-person CP cyclic enterprize, GP , whose game satisfies
cP ({4}) = 2 6= k(P ) = 3. Thus, the enterprize is not complete. If Theorem 4.13 were true
without the requirement of completeness, then x = (4, 4, 4, 2) would have been the only
core point. But it is not, because c(N) = 15 > x(N).
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Example 4.19. Figure 13 shows a 5-person extended CP enterprize in which v0 is an
interior point of an elementary path. There are no public edges but there are prizes that
are encircled and in bold font. Here c(N) = 4 and, in fact, c(S) = 4 for all nonempty
coalitions, because it pays to travel all the edges in order to benefit from the prizes. Thus,
all the players are symmetric and (.8,.8,.8,.8,.8) is the nucleolus. This example contradicts
Theorem 4.10. It also contradicts Theorems 4.13 and 4.16, because the Cartesian product
of the cores of the cyclic games induced by elementary paths is the empty set.

4 4 4 2

1

v0

3

4

21

Fig. 12. Incomplete CP

5

5

10 10 10

v0 4 53

2

1

12 12 12

Fig. 13. v0 is an interior point

5. Chinese Postman Game on Simple Cycle Graphs

In the previous section we showed that both the core and the nucleolus of a CP game in-
duced by a complete extended Eulerian enterprize having the 4-cut property are Cartesian
products of the cores and the nucleoli of CP games induced by simple cycle graphs derived
from elementary paths in the original graph.14 It remains to study how to compute these
solutions concepts for CP games induced by simple cycles.

In this section we shall not require that the cyclic enterprize is complete, since it is not
needed for the proofs. Moreover, the proof with several simplifications can be adapted to
the case when G is a chain.

I. The core of a CP game induced by an extended cyclic enterprize.

The following definitions will prove helpful to state our results.

Definition 5.1. A coalition S in a CP enterprise is called saturated if an optimal S-tour
exists, whose residents comprise of the members of S only.15

14The result for the nucleolus is valid only to games in which the core is not empty.
15The optimal S-tour may contain public edges.
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Definition 5.2. A coalition S in a CP cyclic enterprise is called one-sided if an optimal
S-tour exists that does not contain the post office, except as an origin or a terminal vertex.

Lemma 5.3. Let Γ = (G, v0, a, p, N) be an extended CP enterprize whose graph G is a
simple cycle. Let (N ; c) denote its induced game. Then the core of (N ; c) is determined by
x(N) = c(N) and x(S) ≤ c(S) for all coalitions that are saturated and one-sided and all
coalitions of size n− 1, where n is the number of players.

Proof. The efficiency x(N) = c(N) and the constraint x(N \ {i}) ≤ c(N \ {i}) imply
xi ≥ c(N) − c(N \ {i}) ≥ 0 for all i ∈ N . Let S be a non-saturated coalition and let T
be the set of players that reside in the edges of an optimal S-tour. Then S ⊂ T , T is
saturated and c(S) = c(T ). Consequently, x(S) ≤ x(T ) ≤ c(T ) = c(S), hence the core
constraint for S is implied by the core constraint for T together with the nonnegativity
constraints. Now let S be a saturated coalition which is not one-sided. Then S = S1 ∪S2,
where the coalitions Sj are non-empty, disjoint, saturated and one-sided. Thus, x(S) =
x(S1) + x(S2) ≤ c(S1) + c(S2) = c(S) if the core constraints are satisfied for saturated
one-sided coalitions. Thus, core constraints corresponding to saturated coalitions that are
not one-sided are redundant.

Note that there are at most 2n − 1 saturated and one-sided coalitions. Of these, we can
eliminate all coalitions whose values are equal to c(N), because their core constraint is
automatically satisfied if x is non-negative and satisfies x(N) = c(N). In fact, there are
at most n relevant saturated and one sided coalitions, as Lemma 5.4 shows.

Lemma 5.4. Let Γ = (G, v0, a, p, N) be an extended cyclic enterprize, where G = (V, E).
Let (N ; c) denote its induced game. Let S and T be two saturated and one-sided coalitions
whose cost is different from c(N). Then, either S ⊆ T , or T ⊆ S, or S ∩ T = ∅.

Proof. Let S and T be two such coalitions and suppose that S 6⊆ T , T 6⊆ S and S ∩T 6= ∅.
Then E(S) ∪ E(T ) = E.

Since S is saturated and one-sided and since c(S) < c(N), an optimal S-tour is a closed
walk, which traverses twice the edges in E(S). Then,∑

{a(e) : e ∈ E(S)}
<

∑
{a(e)− p(e) : e ∈ E \ E(S)}

≤
∑

{a(e) : e ∈ E \ E(S)}
≤

∑
{a(e) : e ∈ E(T )},

(5.1)

where the first inequality follows since travelling back to the post-office along the edges in
E(S) (i.e. without collecting prizes) is strictly cheaper than travelling back to the post-
office along the edges in E \ E(S). The second inequality follows since p(e) ≥ 0 for all e,
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and the third inequality follows since E \ E(S) ⊆ E(T ). In the same way we prove that∑{a(e) : e ∈ E(T )} <
∑{a(e) : e ∈ E(S)}. This contradiction shows that no such pair of

coalitions exists.

Denote by B the set of one-sided saturated coalitions whose value is different from c(N)
and by B̄ the union of this set with the coalitions N \ {i}, i ∈ N . We can summarize the
finding by:

Theorem 5.5. Let Γ = (G, v0, a, p,N) be an extended CP enterprize whose graph G is a
simple cycle. Let (N ; c) denote its induced game. Then the core of (N ; c) is determined by
x(N) = c(N) and x(S) ≤ c(S) for all coalitions in B̄.

II. A prenucleolus algorithm.

Let Γ = (G, v0, a, p, N) be an extended enterprize whose graph G is a simple cycle. We
assume that its core is not empty. By Theorem 4.1, the induced game (N ; c) is convex.
Thus, its kernel is a unique point and coincides with the nucleolus (Maschler et al. [1972]).
However, since the kernel intersection with the core is a locus of the core; namely, it does
not change when we change the game, as long as the core remains unchanged (Maschler et
al. [1972]), we can compute the nucleolus of the original game by computing the nucleolus
of another game having the same core. We find it convenient to do so. Specifically, we
enlarge the values of all coalitions not in B̄ and different from N so much that their excesses
at any imputation x will always be larger than the excesses of the coalitions of B̄. Thus,
they will be irrelevant for the computation of the nucleolus.16

In order to proceed, we have to determine the relevant minimal balanced collections;
namely, minimal balanced collections with coalitions taken from B̄.

Lemma 5.6. The minimal balanced collections composed by coalitions from B̄ are:
(1) {N \ {i} : i ∈ N},
(2) A partition {S1, S2} of N , if such coalitions exist in B̄.
(3) {S} ∪ {N \ {i} : i ∈ S}, for every S in B.

Proof. The collections (1) – (3) are certainly minimally balanced. There is at most one
partition of type (2). Consider any minimal balanced collection D composed of coalitions
from B̄ and pay attention to E = D ∩ B. Since the characteristic vectors in E are either
vectors of the type (1, 1, . . . , 0, 0, . . . 0) or (0, 0, . . . , 1, 1, . . . , 1), we consider the coalitions
S and T in this collection which are maximal under inclusion from each side. We write
S = ∅ or T = ∅ if S, resp., T is not a member of D. All other coalitions in E are subsets of
these coalitions. If the union of the two maximal coalitions form a partition, this partition

16In fact, we will compute the B̄ nucleolus over the core (see Maschler et al. [1992]).
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is already balanced so no coalition of type N \ {i} is contained in D. This was covered
under (2).

We are left with collections such that, the incidence matrix of E contains at least one
column k of zeroes. Without loss of generality we assume that S 6= ∅. Then, each column
whose index is a member of S dominates column k. Since D is balanced, for each i in
S there must be a coalition in D \ B that contains 0 in a Column i and 1 in Column k.
This coalition can only be N \ {i}. We have proved that a subset of the minimal balanced
collection D contains a balanced collection of type (3), so D contains no other coalitions.

We shall now decrease the values of coalitions in B̄ in such a way that the core will shrink
but remain non-empty and the nucleolus will not change. The procedure is similar to the
method of finding the nucleolus by looking for the lexicographic center (see Maschler et al.
[1979]).

By Lemma 5.6, the relevant Bondareva-Shapley conditions are:
∑

i∈N

c(N \ {i}) ≥ (|N | − 1)c(N),

c(T ) + c(N \ T ) ≥ c(N), if {T,N \ T} is a partition of coalitions from B,

c(B) +
∑

i∈B

c(N \ {i}) ≥ |B|c(N) for all B ∈ B.

(5.2)

Here, |S| denotes the number of players in S. Let

t0 =
1
|N |

∑

i∈N

c(N \ {i})− |N | − 1
|N | c(N),

t1 =
1
2
[c(N)− c(T )− c(N \ T )]

tB =
1

|B|+ 1

∑

i∈B

c(N \ {i}) +
1

|B|+ 1
[c(B)− |B|c(N)], B ∈ B.

(5.3)

If we reduce each coalition of a balanced collection by its corresponding t, the corresponding
inequality becomes equality.

Choose t = min{t0, t1, tB : B ∈ B} and reduce each coalition of B̄ by t. Then at least one
inequality becomes an equality while the other inequalities in (5.1) remain valid. Thus,
the core of the resulting game remains non-empty, and by Kohlberg theorem (Kohlberg
[1971]) the nucleolus remains unchanged, because, for imputations x, the order of the first
2n + 1 coalitions of θ(x) is not effected by such a reduction, and these are sufficient in
order to determine the lexicographic order of θ(x).
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Remove all inequalities in (5.1), for which equality now prevails, fix the values of coalitions
that appear in inequalities that became equalities, and perform a similar reduction on the
remaining coalitions, whose value was just reduced by t. Again, at least one inequality will
become equality, the core will remain nonempty and the nucleolus will remain unchanged.

After at most n + 2 repetitions of this process, all inequalities will become equalities, and
the core will reduce to a single point. Indeed, x(N) = c(N) and

∑
i∈N c̃(N \ {i}) =

(|N | − 1)c(N) imply xi = c(N) − c̃(N \ {i}) for every x in the core of the last obtained
game17 (N ; c̃).

The complexity of this algorithm is O(|N |2). Indeed, it takes linear time to determine B,
the algorithm will terminate after at most |B|+ 2 iterations, and by Lemma 5.4, |B| ≤ n.
The values of coalitions that appear in (5.2), and the values of the left-hand-side of the
constraints in (5.2), which, in turn, are used to compute t0, t1 and tB , B ∈ B, in (5.3), can
be done in quadratic time. Finding the values of t, t0 and tB , B ∈ B and the minimum
value t can be done in linear time. Finally, the values of the left-hand-side of the constraints
in (5.2) that are satisfied as strict inequalities at any iteration, can be obtained in linear
time, from their values in the previous iteration. Indeed, this is done for each constraint
by subtracting the value of t in the previous iteration times the number of coalitions in
that constraint whose values were not fixed in previous iterations.

Conclusion 5.7. Recall that by Theorem 4.16, the nucleolus of an extended complete
CP game defined on a Eulerian graph, G, having the 4-cut property, whose core is not
empty, is the Cartesian product of the nucleoli of the CP games defined on the cycle graphs
induced by all the elementary paths of G. Since all elementary paths of a Eulerian graph
having the 4-cut property can be found in linear time, it follows that the nucleolus of such
a CP game can be computed in O(|N |2) time.
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