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Abstract

Adding the Noise: A Theory of Compensation-Driven Earnings Manage-
ment

Empirical evidence suggests that the distribution of earnings reports is discontin-
uous. This is puzzling since the distribution of true earnings is likely to be continuous.
We present a model that rationalizes this phenomenon. In our model, managers re-
port their earnings to rational investors, who price the stock accordingly. We assume
that misreporting is costly, but since managers’ compensation is based on the stock
price, they may want to manipulate the reported earnings. The model fits into the
general framework of signaling games with a continuum of types. The conventional
equilibrium in this game is fully revealing (e.g. Stein 1989), and does not explain the
observed discontinuity of earnings reports. We show that a partially pooling equi-
librium exists in such games as well, and it generates an endogenous discontinuity
in reports. By pooling reports of different types, the informed manager introduces
“home-made” noise into his report. The resulting vagueness enables the manager
to reduce the manipulation costs. While a priori pooling looks manipulative, it is
actually a way to reduce earnings management. The empirical implications of our
model relate earnings management and price reaction to price- and earnings-based
compensation, growth opportunities of the firm, underlying volatility, and the strin-
gency of accounting rules. We show that this equilibrium arises due to stock-based
compensation of the managers, and does not arise when they are paid based on their
earnings directly. Finally, we present a general version of this model describing the
behavior of biased experts in many real-life situations.



1 Introduction

Managers of publicly traded firms possess information that is crucial to the valuation

of their firms. Lacking access to this information, investors must determine the stock

price primarily based on public information. Consequently, mandatory periodical

earnings announcements by the managers serve as the predominant source of infor-

mation for the investors. Earnings announcements have been studied extensively, and

were recently the subject of an intense scrutiny by the public and the regulators. We

know that managers have some leeway in reporting the earnings within the account-

ing conventions, and that managerial compensation is frequently related to earning

either directly, or indirectly via the stock price. Thus managers have the incentives

and the ability to “manage” (manipulate) earnings, and the empirical evidence sug-

gests that they frequently do so.1 There is also evidence that the compensation of

managers is a major determinant of the extent of earnings management.2

While it is reasonable to assume that the true earnings of a firm are drawn from

a continuous distribution, the empirical distribution of earnings reports is discontin-

uous. Burgstahler and Dichev (1997) and Degeorge, Patel and Zeckhauser (1999)

provide evidence on such discontinuity. They show that managers manage earnings

as if to meet exogenously pre-specified targets, such as avoiding losses, meeting ana-

lyst earnings forecasts (see also Abarbanell and Lehavy (2000)), or meeting the last

quarter earnings benchmark. The resulting discontinuity manifests itself as a dent

in the distribution of reports slightly below certain predetermined levels. Thus, the

unconditional distribution of reports often takes a bell shape with a dent located to

the left of the mean. From a rational point of view, this behavior is puzzling. If such

a manipulative conduct persists, then rational investors are not fooled, and discount

the stock price of manipulating firms. So what is the incentive for managers to en-

gage in such an exercise in the first place? Consequently, the conjectures offered to

explain this phenomenon are primarily based on behavioral arguments either on the

investor’s utility (see Burgstahler and Dichev 1997) or on their information processing

heuristics (see Degeorge, Patel and Zeckhauser 1999).3

We feel that it is important to understand this discontinuity in a fully rational
1The empirical literature on earnings management is voluminous. See Healy and Wahlen (1999)

for a review.
2See for instance: Healy (1985), Bergstresser and Philippon (2002), and Kedia (2003).
3The extant theoretical literature on earnings manipulations (see Verrecchia (2003) for an exten-

sive survey) focuses on equilibria in which the reported earnings distribution is continuous.
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model to gain insights into the manager’s overall reporting behavior. In this pa-

per we propose a game-theoretic framework in which the discontinuity phenomenon

arises endogenously in a game played between an informed manager and uninformed

investors. In our model the manager trades off the costs of earnings management

imposed by a third party, against his private benefits from such management in the

face of a rational response by uninformed investors. This trade-off determines the

optimal level of manipulation. We believe that our model contributes to a deeper un-

derstanding of the earnings reporting process, and the resulting stock price reactions.

We then argue that this framework fits many real-life situations in which potentially

biased experts are hired to observe the state of the world and report to their clients.

We use the framework of a signalling game, in which the private information of the

manager is considered to be his “type”. The manager provides his report (a costly

signal) and the investors value the stock conditional on the report. If we assume

a continuous “type” space to capture the fact that the true earnings come from a

continuous distribution, then a standard equilibrium in this setting is a perfectly

separating one (see Riley (1979)). In this equilibrium each manager “type” inflates

his report, however investors correctly interpret this action; the equilibrium is fully

revealing and the manager gains no benefit from this action. Tragically, the manager

cannot avoid this manipulation; indeed, were he to report truthfully, the investors

would mistake him for a lower “type” and his payoff would be even lower. Within this

equilibrium, developed by Stein (1989) in a dynamic setting, the manager inflates his

report, reveals the true earnings, but still incurs the costs of the earnings distortion.

The perfectly separating equilibrium creates a continuous distribution of reports,

and cannot explain the observed discontinuity of reported earnings. We show that

another equilibrium exists in this game, where the earnings report discontinuity arises

endogenously. We claim that the following is an equilibrium: if the earnings are either

low or high, the manager publishes a report that reveals his type, as in the fully re-

vealing equilibrium.4 However, if the manager observes earnings in the intermediate

range, he always reports the same amount; i.e., his report is not fully revealing. The

pooling behavior of the manager creates an endogenous discontinuity in the distrib-

ution of reports. We also show that this partially pooling equilibrium ex-ante Pareto

dominates the standard fully revealing equilibrium. Intuitively, the manager intro-

4The manager does not report the truth, but his report does reveal the true earnings to the
investors.
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duces “home-made” noise into his report by hiding among other intermediate types.

This camouflage enables the manager to moderate his manipulation activity and in-

cur lower (on average) manipulation costs. It follows that in this newly suggested

equilibrium, vagueness serves as an antidote to inherent inefficiency. Moreover, this

vagueness implies lower (on average) earnings management relative to the benchmark

separating equilibrium.

The empirical implications of this equilibrium relate the earnings’ volatility and

the incentives of the manager to the extent of earnings management, and the extent of

pooling behavior. We show that the pooling behavior is more pronounced, and hence

earnings management is lower in firms with low earnings volatility. We also show that

the pooling behavior is highly pronounced and still earnings management is high in

firms (also industries or countries) with a high level of stock based compensation,

high growth opportunities, and less stringent accounting rules.

We specifically make earnings manipulation costly in the model, assuming that

the marginal cost is increasing in the degree of earnings management. Managers can

distort the true earnings either by using discretionary accruals, or by taking real

actions (e.g., making suboptimal investments). The former may carry regulatory,

legal, or reputational cost, while the latter reduces the future earnings of the firm: in

either case earnings management is costly for the manager. This assumption places

our model within the costly signalling framework. A similar approach is taken by

Fischer and Verrecchia (2000), who study earnings bias: they limit their attention

to a continuous equilibrium, but allow for uncertainty regarding the incentives of

the manager. We propose a Pareto-dominant alternative that introduces noise into

reporting.5 Another relevant paper is Milgrom and Roberts (1986), who consider a

game where a manager attempts to increase the stock price by convincing investors

that the firm has favorable earnings prospects. The result is again a fully revealing

equilibrium, even in a non-competitive environment.

A different approach found in the “cheap talk” models pioneered by Crawford

and Sobel (1982), is to assume that managers bear no cost of earnings manipula-

tion. In these models the default equilibrium is a perfectly pooling one (“babbling”

equilibrium), where no one pays any attention to the managerial report. However,

Crawford and Sobel (1982) show that other equilibria also exist, in which the report

5A partially pooling equilibrium with a continuous type space also appears in Harrington (1987)
in the context of a limit-pricing model.
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takes a form of the increasing step function of earnings. These equilibria reduce the

uncertainty, yielding welfare improvement over the perfectly pooling one due to noise

reduction (exactly the opposite of our model). We feel that our assumption of costly

misreporting better fits the context of managerial incentives, and is also applicable

to a wide range of real-life situations where individuals reveal their true information

when it is extreme, while they try to be vague when the information quality is inter-

mediate. Such examples include analyst reports, expert opinions, recommendation

letters, and various political, administrative and regulatory processes.

Our model is a “one shot” game, thus does not address earnings smoothing across

periods. The theoretical literature on earnings smoothing (e.g. Dye (1988), Trueman

and Titman (1988), Fundenberg and Tirole (1995), and Goel and Thakor (2003)),

does not explain the discontinuity of earnings reports. Thus, the contribution of our

model is in explaining earnings management within a reporting period and not across

periods.6

The paper is organized as follows. In Section 2 we present the model, and the

benchmark fully revealing equilibrium. In Section 3 we study the partially pooling

equilibrium and compare it to the conventional fully revealing one. In Section 4 we

provide several extensions to the model. In Section 5 we investigate the comparative

statics of the partially pooling equilibrium, and point out the empirical implications.

Section 6 shows the model’s applicability to the case of an informed expert and

an uninformed decision-maker, and presents numerous examples. In Section 7 we

study the robustness of the partially pooling equilibrium, while Section 8 concludes.

Technical proofs are in the Appendix.

2 Model

We assume that the true earnings of the firm, x, are drawn from a normal distribution

with mean x0 and variance σ2. The cumulative distribution is denoted by F , and the

density is denoted by f . The parameters of the distribution are common knowledge;

however, only the manager observes the realization x.7 The manager is mandated

to publish an earnings report, xR, which the investors observe and use to price the

6Nevertheless, the managerial utility in our static model can be considered as a reduced from of
a broader model, which could include earnings smoothing considerations.

7While x denotes the realization of earnings known only to the manager, we denote by x̃ the
random variable of earnings observed by the uninformed investores.
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stock. The utility of a manager who reports xR after observing x is given by

UM(x, xR) = αP (xR)− β(x− xR)2, (1)

where α 6= 0, β > 0, and P (xR) is the market price of the firm given the report.

The second term of the manager’s utility function represents the cost of manipu-

lation, which is central to our paper. Positive β implies that higher deviations from

the truth carry higher legal, regulatory, or reputational penalties for the manager.

An alternative interpretation of this term is that the manager can take real actions

(e.g., asset sales, suboptimal investments, aggressive sales efforts) to generate earn-

ings that are different from the true earnings under the optimal policy. These actions

are costly in terms of the future earnings of the firm, and therefore are costly for the

manager.8 Parameter β is likely to be fairly stable over time for firms in the same

industry, since it is governed by accounting conventions and practices in the industry,

but it may also vary across managers depending on their reputations.

The first term represents the fact that managerial compensation depends on the

stock price, which makes the manager potentially biased.9 Usually, managers prefer

to see higher stock prices, but it well may be that temporarily they may be interested

in reducing the price of the stock, e.g., to improve the price of awarded options, to

buy back shares, or to make the next period price increase more dramatic. Thus, α

may be positive or negative, and is likely to vary over time and across firms. For

clarity of presentation we provide a detailed analysis of the case α > 0 (a positive

bias). The case α < 0 yields parallel results, and is presented in Section 4. All

parameters are common knowledge.

We assume that investors are risk neutral and study the consequences of risk

aversion in Section 4. It follows that investors price the stock proportionally to the

expected value conditional on all the available information. We denote by c > 0

the Price-Earnings (P/E) ratio for this firm. Thus, the price of the stock prior to

the manager’s report is p0 = cx0 - the prior mean, while the post-report price is

8This interpretation implies that the value of the firm is reduced due to these actions. The
investors must take this into account when pricing the stock. We do not model this effect for
expositional clarity; however, we conjecture that putting it in would only reinforce the attarctiveness
of the proposed equilibrium, since it reduces the manipulation cost (see below).

9The pay-for-performance sensitivity of compensation has been increasing over the years. See
Hall and Liebman (1998) compared to the findings of Jensen and Murphy (1990).
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p1 = P (xR) = cE(x̃|xR).10 We conclude that for all pairs x and xR we have

UM(x, xR) = αcE(x̃|xR)− β(x− xR)2. (2)

The manager has two conflicting interests: on the one hand, he would like to boost

(if α > 0) the stock price by manipulating his report; on the other hand, he does not

want to manipulate his report too much, because the marginal cost is increasing. The

relative weight that the manager assigns to each of these two incentives is determined

by the ratio α
β . The higher this ratio is, the more inclined is the manager to deviate

from the truth. The combination of the normal prior distribution of earnings with a

quadratic cost function yields a tractable model.

A reporting strategy for the manager is a real function ρ : R → R that maps

true earnings into reports: xR = ρ(x). A pricing function for the investors is a

function P : R→ R that maps the manager’s report into a price. A perfect Bayesian
equilibrium is defined as a reporting strategy ρ∗ for the manager, joint with a pricing

function P ∗ for the investors such that:

1. The pricing function P ∗ is consistent with the strategy ρ∗, by applying Bayes

rule whenever possible.

2. For all x ∈ R, ρ∗(x) ∈ argmax
xR

UM(x, xR).

Observe first that truthful reporting, i.e., ρ(x) = x, is not an equilibrium. Indeed,

if ρ(x) = x for all x ∈ R, then investors adjust their beliefs to reflect this strategy;
thus, P (xR) = xR for all reports xR. If a manager who observes real earnings of x

reports truthfully, he obtains αcx. If this manager raises his report to x+ ε (ε > 0),

he obtains αc(x + ε) − βε2. Thus, deviation is beneficial for all sufficiently small

ε. It is also easy to verify that a perfect pool (a babbling equilibrium), i.e., ρ(x) is

constant for all x ∈ R, cannot be an equilibrium for any pricing function.

We show below the existence of two types of equilibria in this model. The first

and conventional equilibrium is the perfectly separating (fully revealing) one. This

equilibrium serves as a benchmark for our analysis.

10Note that in our model, c stands for the “true” P/E ratio of the firm - the ratio between price
and true earnings. Earnings management renders this ratio somewhat different from the implied
P/E ratio - the ratio between price and reported earnings.
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Proposition 1 There exists a unique perfectly separating, continuously differentiable

equilibrium. The equilibrium strategy of the manager is linear in x: ρ∗s(x) = x+ αc
2β

for all x ∈ R. The pricing function is linear in the report: P ∗s (xR) = c
³
xR − αc

2β

´
for

all xR ∈ R.

Proof: In the Appendix.

This perfectly separating equilibrium is characterized by a constant earnings ma-

nipulation. Regardless of the realization of true earnings, the manager inflates his

report by αc
2β . Thus, a high level of stock based compensation, a high P/E ratio, and

a low level of accounting standards imply a higher level of earnings management.11

Naturally, the investors are not fooled and price the stock correctly. This kind of

equilibrium is standard in the continuous type, costly signalling literature (e.g., Riley

(1979) and Stein (1989)). Notice that this equilibrium is tragically inefficient. The

manager cannot avoid the costly information management, and pays the costs that

it imposes on him. Unfortunately, he gains nothing from this behavior, because it

is correctly interpreted by the investors.12 In the next section we show that there

exists another equilibrium in this model such that the manager is able to reduce his

manipulation cost.

3 Pooling Reports and Home-Made Noise

We transform the fully separating equilibrium in Proposition 1 into a partially pooling

equilibrium. We conjecture the existence of an interval [a, b] such that the following

partially pooling strategy is optimal for the manager:

ρ∗p(x) =

⎧⎨⎩
b x ∈ [a, b]

x+ αc
2β otherwise

(3)

The conjectured strategy ρ∗p(x) is a simple modification of the fully revealing

equilibrium strategy ρ∗s(x). For high or low values of earnings outside the interval [a, b]

the manager sticks to the same strategy as in Proposition 1: ρ∗p(x) = ρ∗s(x) = x+ αc
2β .

11This is consistent with the findings of Leuz, Nanda, and Wysocki (2003).
12The empirical evidence on whether investors are actually fooled by earnings management is

mixed. Rangan (1998) and Teoh, Welch and Wong (1998) claim that managers succeed in fooling
investors by manipulating reports. On the contrary, Shivakumar (2000) concludes that investors are
not misled and account correctly for the manipulative behavior of managers. Some of the evidence
may be driven by the investor’s uncertainty about the manager’s bias as in Fisher and Verrecchia
(2000).
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a b

x+αc/2β

x+αc/2β

b

Earnings (x)

R
ep

or
t

Figure 1: The Partially Pooling Equilibrium Reporting Strategy

He does not report truthfully (this is suboptimal), but does reveal his true type. For

the intermediate values that fall inside the interval [a, b], the manager always reports

b, the upper bound of the interval. Figure 1 depicts this partially pooling strategy.

We show below that an equilibrium of this kind exists, is unique (in the sense that the

interval [a, b] is determined uniquely), and ex-ante Pareto dominates the separating

equilibrium ρ∗s(x).

The first step in proving the existence of equilibrium is to find necessary conditions

for ρ∗p(·) to be an equilibrium. First, note that if ρ∗p(·) is an equilibrium then the type
is fully revealed for all reports xR < a+ αc

2β , or x
R > b+ αc

2β . On the contrary, when

the investors observe a report of b, they can only deduce that the type is somewhere

in the interval [a, b]. Using Bayes rule, it follows that conditional on a report of b,

the posterior beliefs of the investors are distributed according to a truncated normal

distribution on [a, b].13 Thus, the first necessary condition for a partially pooling

13This means that for all s ∈ [a, b], Pr(x̃ ≤ s|πR = b) = Pr(x̃ ≤ s|x ∈ [a, b]) = F (s)−F (a)
F (b)−F (a) .
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equilibrium is that the pricing function of the investors must satisfy

P ∗p (x
R) =

⎧⎪⎨⎪⎩
c
³
xR − αc

2β

´
xR < a+ αc

2β or xR > b+ αc
2β

cd(a, b) xR = b,

(4)

where d(a, b) ≡ E(x̃|x̃ ∈ [a, b]) is the mean of true earnings conditional on the infor-
mation that they are in [a, b]. Next, notice that in order for ρ∗p(·) to be an equilibrium,
a manager with type x = a must be indifferent between reporting a+ αc

2β and report-

ing b. Similarly, the manager with type x = b must be indifferent between reporting

b+ αc
2β and reporting b. Evaluating the manager’s utility given by (2) at these points,

and using (4) we obtain a system of equations:

αca− β(
αc

2β
)2 = αcd(a, b)− β(b− a)2 (5)

αcb− β(
αc

2β
)2 = αcd(a, b).

Solving it yields

b = a+
αc

β
, (6)

and

d(a, b) ≡ E(x̃|x̃ ∈ [a, b]) = a+
3αc

4β
. (7)

The intuition behind these necessary conditions is as follows. Both the ‘a’ and

the ‘b’ types must be indifferent between the two alternatives they face. While the

‘a’ type increases his earnings manipulation from αc
2β to

αc
β (he reports b = a + αc

β

instead of a + αc
2β ), the ‘b’ type gains by reducing his earnings manipulation costs

to zero (he reports truthfully, instead of reporting b + αc
2β ). Thus, the increase in

earnings manipulation by the ‘a’ type is exactly identical to the decrease in earnings

manipulation by the ‘b’ type. However, because the manipulation cost is convex, the

compensation in terms of price required by the ‘a’ type exceeds the price concession

made by the ‘b’ type. Thus, cd(a, b), the price given a report of b, must be strictly

higher than c times the midpoint of the interval [a, b], namely ca+b2 . This implies that

d(a, b) lies to the right of the midpoint of the interval [a, b]. Given the quadratic cost

function assumption, this conditional expectation lies exactly three quarters of the

way between a and b (see (7)).

The pricing function in (4) is formed using Bayes rule given the conjectured equi-

librium ρ∗p(·). However, there are potential reports that never appear in this equilib-
rium. Specifically, no type will ever publish a report that lies in [a+ αc

2β , b)∪(b, b+
αc
2β ].
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a+
αc
/2
β

cd(a,b)

a+
3α

c/
2β

ca

c(a+αc/β)

a+
αc
/β

πR−α/2β

c(xR−αc/2β)

Report (xR)

Figure 2: The Pricing Function in the Partially Pooling Equilibrium

To complete the picture, and fully delineate the partially pooling equilibrium, we have

to specify the out-of-equilibrium pricing. Since Bayes rule does not apply we have

some leeway in this choice. Actually, there exists a continuum of out-of-equilibrium

pricing functions that support this equilibrium. By way of introduction we use the fol-

lowing: for all reports xR ∈ [a+ αc
2β , b)∪ (b, b+

αc
2β ], the price is P (x

R) = c
³
xR − αc

2β

´
.

Thus, if investors observe an unexpected report, they conclude that the manager

is “mistakenly” playing the benchmark separating equilibrium ρ∗s(·). These out-of-
equilibrium beliefs are fairly weak, and are only used here for simplicity. In Section

7 we show that the partially pooling equilibrium is robust to much stricter out-of-

equilibrium pricing that satisfies a monotonicity requirement. Figure 2 depicts the

pricing function of the investors in the partially pooling equilibrium. The dotted

line describes the out-of-equilibrium pricing, while the bold dot is cd(a, b): the price

conditional on observing a report of b = a+ αc
β .

Below we prove the existence and uniqueness of the conjectured partially pooling

equilibrium.
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Proposition 2 There exists a unique interval [a, b] such that the reporting strategy

ρ∗p(x) ≡

⎧⎨⎩
b x ∈ [a, b]

x+ αc
2β otherwise

joint with the pricing function

P ∗p (x
R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c
³
xR − αc

2β

´
xR < a+ αc

2β or xR > b+ αc
2β

cd(a, b) = c
³
a+ 3αc

4β

´
xR = b

c
³
xR − αc

2β

´
xR ∈ [a+ αc

2β , b) ∪ (b, b+
αc
2β ]

constitute an equilibrium.

Proof : In the Appendix we prove that there exists a unique interval [a, b] such that

the necessary conditions (6) and (7) are satisfied. In particular, this interval makes

the types x = a and x = b indifferent between reporting b and reporting x + αc
2β .

We claim that ρ∗p(·) applied to this interval is an equilibrium strategy. The pricing

function on the equilibrium path satisfies Bayes rule, given the manager’s strategy

by construction. Since ρ∗s(·) is an equilibrium, and ρ∗p(·) differs from ρ∗s(·) only on
[a, b], we only have to rule out deviations to and from the pooling interval [a, b].

Consider first a type x̂ ∈ (a, b). The conjectured equilibrium strategy ρ∗p(·) spec-
ifies that he should report b. Since the out-of-equilibrium pricing is identical to the

pricing given ρ∗s(·), Proposition 1 implies that his best possible deviation is to report
ρ∗s(x̂) = x̂+ αc

2β . However, using the facts that d(a, b) = a+ 3αc
4β , and b = a + αc

β we

obtain

UM(x̂, ρ∗p(x̂))− UM(x̂, ρ∗s(x̂)) = UM(x̂, b)− UM(x̂, x̂+
αc

2β
) (8)

= αcd(a, b)− β(b− x̂)2 − [αcx̂− β(
αc

2β
)2]

= β(x̂− a)(b− x̂) > 0,

where the inequality follows since x̂ ∈ (a, b). Therefore, type x̂ is better off reporting
b as required.

Consider now a type x̂ /∈ [a, b]. According to ρ∗p(·) he should report x̂ + αc
2β .

Since the out-of-equilibrium pricing is identical to the pricing function given ρ∗s(·),
Proposition 1 implies that this type would not deviate to any report in [a+ αc

2β , b) ∪

11



(b, b+ αc
2β ]. Thus, his only potential beneficial deviation is to report b. However, using

the facts that d(a, b) = a+ 3αc
4β , and b = a+ αc

β we obtain:

UM(x̂, x̂+
αc

2β
)− UM(x̂, b) = αcx̂− β(

αc

2β
)2 − αcd(a, b) + β(x̂− b)2

= αcx̂− β(
αc

2β
)2 − αc(a+

3αc

4β
) + β(x̂− a− αc

β
)2

= β(x̂− a)(x̂− b) > 0,

where the inequality follows since x̂ /∈ [a, b]. Therefore, no deviation is beneficial.
A direct application of Proposition 2 yields

Corollary 1 The partially pooling equilibrium satisfies the following properties:

a. b = a+ αc
β .

b. d(a, b) ≡ E(x̃|x̃ ∈ [a, b]) = a+ 3αc
4β .

c. d(a, b) < x0, and cd(a, b) < p0.

Properties (a) and (b) are satisfied by construction given the choice of the inter-

val [a, b]. As for property (c), it follows directly from property (b), unimodality, and

symmetry of the normal distribution. Indeed, given that d(a, b) = a + 3αc
4β , it must

be that the distribution mass on the right hand side of the interval outweighs the

distribution mass on the left hand side of the interval. Under the normal distribu-

tion (as well as under any unimodal symmetric distribution) this is possible only if

the conditional mean lays strictly to the left of the unconditional mean. Figure 3

illustrates this argument.

By pooling all types in the interval [a, b], the manager introduces vagueness into

his reports. This home-made noise enables him to reap ex-post economic rents com-

pared to the fully separating equilibrium. Indeed, if the real earnings x fall outside

of the pooling interval, then both equilibria are identical. However, if x ∈ [a, b], the
pooling report dominates. Formally:

Lemma 1 For all x ∈ [a, b], UM(x, ρ∗p(x)) > UM(x, ρ∗s(x)).

Proof : Follows directly from equation (8).
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Figure 3: The Partially Poolling Equilibrium and the Underlying Distribution

Intuitively, the vagueness in the manager’s report has two effects on his utility

compared to the fully separating equilibrium. On the one hand, it changes the extent

of the earnings management by the manager. On the other hand it affects the pricing

of the stock given this manipulation. The net effect is always positive within the

pooling interval [a, b] and is zero outside of this interval. If the manager is forced

to manipulate more, then he is more than compensated by price increase, while if

he manipulates less, then the price decline is not sufficient to offset the reduction in

cost.

From the point of view of the uninformed investors, this pooling behavior can be

either ex-post beneficial or harmful, compared to the fully separating equilibrium.

Specifically, if x ∈ [a, d(a, b)), the investors end up paying cd(a, b) for a stock that is
worth less, but for x ∈ (d(a, b), b] the investors pay cd(a, b) and get a stock that is

worth more. The probability mass on the right half of the pooling interval is larger

than the probability mass on the left half to such an extent that the investors are

ex-ante indifferent between the two reporting strategies. We obtain

Proposition 3 The partially pooling equilibrium ex-ante Pareto dominates the sep-

arating equilibrium.
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Proof : For the manager: from Lemma 1, we have UM(x, ρ∗p(x)) > UM(x, ρ∗s(x)) for

all x ∈ [a, b]. As the probability mass of [a, b] is positive we obtain immediately that:
ExU

M(x, ρ∗p(x)) > ExU
M(x, ρ∗s(x)).

For the investors: the investors’ payoff is the price they pay less the actual value

of the stock: P (ρ(x)) − cx. In the fully separating equilibrium we have P (ρ∗s(x)) =

cx; hence the payoff is identically 0. In the partially pooling equilibrium we have

P (ρ∗p(x)) = cE(x̃|ρ∗p(x)). Hence, from an ex-ante point of view, the payoff to the

investors is

Ex(P (ρ
∗
p(x))− cx) = cEx(E(x̃|ρ∗p(x))− x) = cExE(x̃|ρ∗p(x))− cEx(x) = 0.

Thus, ex-ante the risk neutral investors are indifferent between these two equilibria.

Grossman and Stiglitz (1980) argue that residual noise must remain in equilib-

rium with costly information acquisition. Our model suggests that noise may arise

endogenously even when the information can be acquired costlessly. The informed

party - the managers, may reap information rents by pooling their signals and creat-

ing home-made noise. The investors get the same payoff on average in both equilibria,

and risk neutrality makes them indifferent between the two. In Section 4 we discuss

the implication of investor risk aversion on our results.

At a first glance, the endogenous noise demonstrated in our partially pooling

equilibrium seems highly manipulative. However, it is important to notice that costly

earnings management is inevitable in equilibrium. Hence, the pooling behavior should

be viewed as a way to reduce the extent of earnings management and its cost as is

shown in the next proposition.

Proposition 4 The following holds:

1. The expected earnings management in the partially pooling equilibrium is lower

than the expected earnings management in the separating equilibrium.

2. The expected cost of earnings management in the partially pooling equilibrium

is lower than the expected cost of earnings management in the separating equi-

librium.

Proof: The expected earnings management in the separating equilibrium is αc
2β . The

expected earnings management in the pooling equilibrium is:
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Z a

−∞

αc

2β
f(x)dx+

Z b

a
(b− x)f(x)dx+

Z ∞

b

αc

2β
f(x)dx (9)

=
αc

2β
− αc

2β
(F (b)− F (a)) +

Z b

a
(b− x)f(x)dx

=
αc

2β
− αc

2β
(F (b)− F (a)) + b(F (b)− F (a))− d(a, b)(F (b)− F (a))

=
αc

2β
− αc

4β
(F (b)− F (a)),

where the second equality follows since by definition: d(a, b) =
R b
a xf(x)dx

F (b)−F (a) , and the

last equality follows from the fact that b−d(a, b) = αc
4β (Equations (6) and (7)). This

implies that the expected earnings management in the pooling equilibrium is strictly

lower than in the separating equilibrium.

As for the second part of the proposition. Proposition 3 implies that the total

expected utility of the manager is strictly higher in the partially pooling equilibrium.

From the law of iterated expectations we obtain that the expected price is identical in

the two equilibria. It follows, then, that the expected manipulation costs are strictly

lower in the pooling equilibrium.

In summary, the benchmark in our model is not the truthful reporting, because it

is not an equilibrium; instead, the benchmark is the inefficient separating equilibrium.

Introducing noise into the reports, while a priori looks like a manipulative behavior,

is actually a way to reduce the extent of manipulation relative to the benchmark.

This renders the partially pooling equilibrium “less inefficient” than the relevant

benchmark.

4 Extensions

In this section we analyze several extensions of our base model. We start by consid-

ering earnings based compensation, then we introduce risk aversion on the side of the

investors, and finally we consider the case of α < 0, representing a downward bias by

managers.

4.1 Earnings vs. Stock-Based Compensation

Managers are frequently paid bonuses based directly on their reported earnings. We

would like to know how does this compensation scheme affect the incentive of the
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managers to manipulate the reported earnings.14 We assume for simplicity that such

bonuses are linear in reported earnings: the manager maximizes the following utility

function

UM(x, xR) = αP (xR) + γxR − β(x− xR)2,

where γ > 0 represents the strength of the earnings-based compensation. The fully

revealing equilibrium is similar: the optimal earnings report is

xR = x+
αc+ γ

2β
.

The addition of the earnings-based compensation affects the incentive to inflate earn-

ings, and changes the manipulation cost for the manager.

Using the same reasoning as in our base model we can show that the partially

pooling equilibrium is determined by the two equations:

αca+ γa+ γ
αc+ γ

2β
− β(

αc+ γ

2β
)2 = αcd(a, b) + γb− β(b− a)2

αcb+ γb+ γ
αc+ γ

2β
− β(

αc+ γ

2β
)2 = αcd(a, b) + γb

Solving these yields the following generalization to Equations (6) and (7):

b = a+
αc+ γ

β
, and

d(a, b) ≡ E(x̃|x̃ ∈ [a, b]) = a+
(3αc+ γ)

4αc
(b− a).

It is important to note that the pooling equilibrium exists if and only if the conditional

expectation d(a, b) is located in the pooling interval (between a and b). This implies

that

αc > γ > −3αc. (10)

Condition (10) imposes a bound on the extent of earnings based compensation that

is consistent with the pooling equilibrium. To understand this condition suppose

first that α = 0, namely that compensation depends on reported earnings only. In

this case, Condition (10) implies that the pooling equilibrium cannot exist. The

reason is that the pooling equilibrium depends on investors beliefs, represented by

the pricing function. In equilibrium, investors beliefs must support the strategy of

the manager. When the manager’s compensation does not depend on the stock price,

14The effect of earnings based compensation on earnings management has been studied empirically
in several papers. See for instance Healy (1985).
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investors beliefs are of no interest to him, and the first order condition makes the

separating equilibrium the only one. In a less polar case, the manager’s compensation

is based on both earnings reports and stock price. Condition (10) then tells us that

in order to get pooling, the extent of earnings based compensation relative to stock

based compensation cannot be too extreme. Thus, the manager’s compensation must

strongly depend on the stock price for him to pool. Incidentally, the reliance on

stock-based compensation has been steadily increasing over time (see Jensen and

Murphy (1990) and Hall and Liebman (1998)), which adds relevance to the proposed

equilibrium.

4.2 Risk Averse Investors

So far we made investors risk neutral. How does risk aversion affect our results? We

assume that the utility of a manager who observes x and reports xR is still given by

UM(x, xR) = αP (xR)− β(x− xR)2,

where α, β > 0. However, we assume that investors are risk averse and are not fully

diversified, thus they demand a risk premium for the variance of the stock value. In

particular, investors maximize the certainty equivalent (CE) of their expected utility

with respect to the number of shares they want to hold at the beginning of the period,

n. We assume that the CE takes a well-known form:

max
n

CE(xR) ≡ (E(x̃|xR)− P (xR))n− 0.5zn2V ar(x|xR), (11)

where z > 0 is a proxy for the investors’ coefficient of risk aversion.

The per-capita demand for stock is obtained by writing the first order condition

of (11):

n∗(p1) =
E(x̃|xR)− P (xR)

zV ar(x|xR) .

As usual in such models, the investor’s demand increases in the expected value, but

declines in the price of the stock, the coefficient of risk aversion, and the variance.

Market clearing condition requires that the per-capita demand must equal the per-

capita supply of the stock, S > 0, which is given exogenously. This yields the pricing

function of the stock

P ∗ra(x
R) = E(x̃|xR)− SzV ar(x̃|xR), (12)
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where the subscript ra represents the model with risk-averse investors. Thus, the

price for any given report must equal to the price in the model with risk-neutral

investors minus a risk premium that increases in the posterior variance.

Substituting the price (12) into the certainty equivalent, and using the fact that

n∗ = S we obtain:

CE(xR = b) = 0.5S2zV ar(x̃|xR ∈ [a, b]). (13)

Thus, the certainty equivalent increases in the variance of the value conditional on

the report. This implies that if the same two types of equilibrium exist in this case,

the investors and the manager ex-ante strictly prefer the partially pooling equilib-

rium. The intuition of this result is quite straightforward. Higher variance makes

the investors’ demand for shares less elastic, and since the holdings of the investors

remain the same (market clears) the price declines dramatically. This increases the

consumer surplus of the investors, as seen in equation (13). Those who bear the cost

of the price reduction are the owners of private firms, trying to go public. They get

lower prices for their shares in the pooling equilibrium relative to the fully revealing

one. However, they do not take part in the reporting game in the secondary market,

and thus are not likely to influence the choice of the equilibrium. Their utility must

be taken into account in the overall welfare analysis, but is not relevant here.

The final question is whether the same two equilibria exist in the model with risk-

averse investors. The fully separating equilibrium needs no modifications; after all,

V ar(x|xR) = 0, when ρ(x) = x+ α
2β . The existence of a partially pooling equilibrium

in this case depends on the existence of an interval [a, b] that satisfies:

b = a+ α
β , and

d(a, b) ≡ E(x̃|x ∈ [a, b]) = a+ 3α
4β + SzV ar(x|x ∈ [a, b]).

(14)

To show the existence of equilibrium in this case we must show that the system

of equations (14) has a solution. Unfortunately, we have not been able to provide

an analytical proof as we did in the risk-neutral case. At the same time, we have

performed a large number of numerical calculations for a variety of parameter values,

and in each case obtained a partially pooling equilibrium with the same features

as in the risk-neutral case. All these equilibria ex-ante Pareto dominate the fully

separating equilibrium according to the above arguments.
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4.3 Downward Bias

So far we have restricted our attention to the case of α > 0. If α < 0 we obtain sym-

metric results. The perfectly separating equilibrium in Proposition 1 is unaffected;

however, since α < 0, managers bias their earnings downwards by a constant αc
2β . As

for the partially pooling equilibrium we obtain the following parallel to Proposition

2:

Corollary 2 Suppose α < 0. There exists a unique interval [b, a] such that the

reporting strategy

ρ∗p(x) ≡

⎧⎨⎩
b x ∈ [b, a]

x+ αc
2β otherwise

joint with the pricing function

P ∗p (x
R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c
³
xR − αc

2β

´
xR > a+ αc

2β or xR < b+ αc
2β

cd(a, b) = c
³
a+ 3αc

4β

´
xR = b

c
³
xR − αc

2β

´
xR ∈ [b, a+ αc

2β ) ∪ (b+
αc
2β , b]

is an equilibrium.

In this case, the price conditional on observing a report of b is higher than the

unconditional price, namely, cd(a, b) > p0 = cx0.

5 Empirical Implications

In this section we study the comparative statics of the partially pooling equilibrium,

and provide empirical implications. In some cases we were not able to derive the

comparative statics analytically and used numerical methods instead. These are

indicated explicitly in the text.

5.1 Comparative Statics

We study the comparative statics of the partially pooling equilibrium with respect

to four parameters: the volatility of earnings, σ2; the P/E ratio, c; the degree of
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managerial stock-price-based compensation, α; and the cost of misrepresentation,

β.15 We then derive cross-sectional and time-series empirical predictions.

In the separating equilibrium, a change in the volatility of earnings has no effect

on the equilibrium. In particular, the earnings management is equal to αc
2β regardless

of σ. On the contrary, in the partially pooling equilibrium, a change in σ moves the

pooling interval [a, b] and hence affects the probability of pooling and the earnings

management we expect to observe.16 In order to study the impact of σ on the location

of the pooling interval we consider a, the left hand side of the interval, as a function

of σ: a(σ). The location effect is studied in the next proposition.

Proposition 5 A decrease in the underlying volatility moves the pooling interval

towards the unconditional mean:∂a(σ)∂σ < 0. Moreover, lim
σ→0

a(σ) = x0 − 3αc
4β , and

lim
σ→∞

a(σ) = −∞.

Proof : In the Appendix.

Proposition 5 shows that a’s distance from the unconditional mean is sensitive

to changes in the underlying information asymmetry. Higher σ moves the pooling

interval to the far left tails of the distribution, thus the probability of observing a

pooling report always goes to zero in the limit. On the other hand, as σ declines,

the pooling interval moves closer to the unconditional mean, eventually straddling it.

In the limit, as σ tends to 0, the unconditional mean x0 and the conditional mean

d(a, b) = a+ 3αc
4β coincide.

While we have established the impact of the change in σ on the location of the

pooling interval, it is not sufficient in order to establish that the probability of observ-

ing pooling behavior declines in σ. This probability is given by Fσ(b(σ))−Fσ(a(σ)).

The subscript σ reminds us that a change in σ affects the probability of pooling in

two ways: first, it affects the location of a(σ) as described in Proposition 5. But

it also affects the probability distribution itself. A higher variance puts more mass

in the tails of the distribution. The two effects act in opposite directions, thus the

overall effect is ambiguous. We have not been able to derive the net effect analyti-

cally, but in all of our extensive numerical calculations the location effect dominates:
15Any shift in the expected earnings form x0 to x0 + ∆ just shifts the location of the pooling

interval from [a, b] to [a + ∆, b + ∆]. Thus, it has no material effect on the equilibrium since the
probability of pooling is not changed. For this reason we do not study in details the comparative
statics with respect to x0, the prior mean.
16Notice that the size of the pooling interval is not affected by the volatility of earnings, and is

equal to αc
β .
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the probability of observing the pooling behavior, Fσ(b(σ)) − Fσ(a(σ)), declines in

σ. Recall from Equation (9) that the expected earnings management observed in the

pooling equilibrium for any given σ is given by: αc
2β −

αc
4β (Fσ(b(σ))− Fσ(a(σ))). This

implies that the expected earnings management is increasing in σ.

To demonstrate this result, Figure 4 plots the effect of a change in σ calculated

numerically. We use the following parameter values: αc
β = 1, x0 = 0, and let σ vary

between 0.1 and 1.5. The left box depicts the probability of pooling as a function of

σ. When σ is very low the probability of pooling is almost 1. This happens since

the pooling interval contains the unconditional mean x0 (Proposition 5), and the

underlying distribution is highly concentrated around this mean. On the other hand,

when σ is large, the probability of pooling is almost 0, and we are essentially back

in the perfectly separating equilibrium. The right box depicts the expected earnings

management. When σ is low, it is close to αc
4β = 0.25, while when σ is large it

converges to αc
2β = 0.5, which is the expected earnings management in the separating

equilibrium.

To interpret these findings recall that the pooling behavior, while seemingly ma-

nipulative, is actually a way to reduce the degree of earnings management (Proposi-

tion 4). When the underlying uncertainty is low, the manager is able to reap signifi-

cant benefits from this pooling behavior, since a large portion of the distribution falls

inside the pooling interval. Thus, in these cases, although the report is quite noisy,

the extent of earnings management is low on average. Actually, the low expected

manipulation is the direct consequence of the “home made” endogenous noise.

The incentive parameters α and β, and the P/E ratio, c, enter the model only

as a ratio αc
β . A higher

αc
β has three effects: (i) it induces a larger pooling interval,

which tends to increase the probability of pooling and hence lower the expected

earnings management; (ii) it moves the position of the pooling interval; and (iii) it

increases the earnings management outside the pooling interval. The net effect of

these three is hard to sign analytically. However, extensive numerical calculations

show that an increase in αc
β always increases the probability of pooling, but also

increases the expected earnings management. Thus, while an increase in αc
β induces

more pooling and less earnings management inside the pooling interval, it has a more

pronounced effect outside the pooling interval, hence induces higher manipulation

overall. Thus, a higher extent of stock based compensation, less stringent accounting
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Figure 4: The Effect of a Change in the Volatility of Earnings

rules, and a higher P/E ratio all induce more pronounced pooling and yet a higher

expected earnings management. We demonstrate this result in Figure 5. We use

x0 = 0, and σ = 0.7 and let αc
β vary between 0.5 and 3. The left box depicts the

probability of pooling. This probability is close to 0 when the ratio αc
β is small, making

the partially pooling equilibrium essentially identical to the separating one. As αc
β

increases, the probability of pooling increases. The right box depicts the expected

earnings management. When αc
β = 0.5 the probability of pooling is essentially zero,

hence the expected earnings management is almost equal to αc
2β = 0.25, which is

the expected earnings management in the separating equilibrium. As αc
β increases

the probability of pooling increases, however, the earnings management outside the

pooling interval increases as well. The latter effect dominates and the overall expected

earnings management increases.

The above comparative statics lead to the following list of empirical predictions:

• Controlling for the incentive schemes, the P/E ratio, and the accounting rules,
we expect to observe more pronounced pooling behavior and less earnings man-
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Figure 5: The Effect of a Change in αc
β

agement in firms and industries with lower degree of information asymmetry

between managers and investors (lower volatility of earnings). The same pre-

diction applies to time periods with relatively predictable earnings.

• Controlling for the volatility of earnings, the P/E ratio, and the accounting
rules, stronger stock-based incentives imply a larger degree of pooling behavior

and a higher level of earnings management. Firms with a higher proportion

of managerial ownership should exhibit this effect. Reliance on options and

stock compensation differs across countries and industries; and in the US the

use of stock-based compensation has been rapidly increasing over time. Cross-

sectional variations in the P/E ratio generate the same predictions as variations

in α.

• More stringent accounting rules, ceteris paribus imply less pooling and less
earnings management in general. This prediction is consistent with the findings

of Luez, Nanda and Wysocki (2003), and Bhattacharya, Daouk and Welker

(2003). They show that more stringent accounting rules are associated with
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less earnings management around the world.

Example: High tech firms vs. public utilities.

High tech firms rely on stock-based compensation to a large extent (high α); while

utilities have weak stock-based compensation. The accounting rules for high tech

firms with mostly human capital allow them to manipulate earnings to a larger extent

(low β). Utilities have been around for over a century, and they are regulated, which

implies that their earnings accounting numbers are scrutinized by many authorities

and are harder to manipulate. High tech promises a bright future; thus the P/E

ratio, c, of these firms is very high: even after the 2000-2001 bear markets, the P/E

ratio on Nasdaq 100 is around 30. Public utilities earnings grow approximately at

the rate of population growth (low c). All these suggest a higher level of earnings

management and more pronounced pooling in the high tech firms. Moreover, the

volatility of earnings in high tech firms tends to be high, inducing an even higher

level of expected earnings management due to reduction in pooling.

5.2 Meeting Targets

The behavior of the manager in the pooling interval resembles an attempt to meet a

target. Indeed, looking at the data, one might be tempted to consider b, the upper

bound of the pooling interval, as an exogenously determined target. All the types

above b stick to the perfectly revealing strategy and ignore this target since their

reports exceed it anyway. Types lower than a do not pay attention to it either, since

it is too costly for them to attain it. Intermediate types in the interval [a, b] manage

their report in a way that will make them meet the target and report b exactly.

Naturally, the investors interpret this correctly, and price the stock at the expected

value conditional on being in the interval [a, b].

We must stress however, that there is no exogenously imposed target in this model,

and b, which looks like a target, is endogenously determined in the partially pooling

equilibrium. Moreover, in our model the behavior of the manager depends only on

the investors’ beliefs. To the extent an exogenous “target” affects these beliefs, it

also affects the manager’s actions. However, when managers are said to be striving

to “meet targets”, as in Degeorge, Patel and Zeckhauser (1999), it is implied that a

change in the exogenous target by itself can alter the behavior of the manager. This

is not the case in our model. For example, suppose that analysts (who set the targets)

24



always add 2 cents to every earnings forecast, and this is a common knowledge. This

behavior raises the target, yet does not alter the investors’ beliefs. In our model

the manager’s actions are unaffected by it, while it should change the report if the

manager truly wants to meet the target.

We do not claim that exogenous targets are not important in driving managerial

behavior. In particular, the roles of analysts as information providers and target

setters require an extensive study that is outside the scope of this paper. Guttman,

Kadan, and Kandel (2003) incorporate the analysts into the manager-investor game

and study equilibria corresponding to information provision and target setting.

6 Biased Experts and Recommendation Letters

All of us are constantly asked to provide letters of recommendation for students and

colleagues. Suppose, for the sake of argument, that we do know the true quality of

these individuals. We may have preference for the direction of their advancement,

which introduces a potential bias in our letters (let’s assume that the bias is always

positive). On the other hand, an exaggeration imposes an externality on us in the

sense that our future recommendations (judgement) will be more heavily discounted.

Thus we balance the desire to promote a student, or a colleague, and the cost of this

action. Our model applied to this scenario, predicts that recommendation letters

for extremely good or extremely bad students will reveal their true type (in many

cases we will abstain from writing the letter altogether in the latter case, which intro-

duces another pooling, which is not modeled here). For intermediate-value students,

recommendation letters will be vague and will pool many student types.

This is just one example of a biased agent reporting to a decision-maker. We can

generalize this example to include many real-life situations. Formally, suppose that

the true state of nature x is drawn from a normal distribution with mean x0 and

variance σ2 (we denote the cumulative distribution by F , and the density by f). A

decision-maker, who knows this prior distribution, but does not know the true state

of nature, has to take an action q ∈ R. Her utility from taking an action q given the

state of nature x is given by

UD(q, x) = −ψ(q − x)2,

where ψ > 0 is a scaling parameter. Thus, the best action is x = q, and any deviation

is costly. Given that the true state of nature is not known, it is easy to see that the
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optimal choice for the decision maker is q∗ = Ex = x0. Consequently, the expected

utility of the uninformed decision-maker is

EUD
uninformed(q

∗, x) = −ψσ2.

In this context we can interpret ψ as the decision-maker’s degree of risk aversion:

lower ψ makes the informational asymmetry less costly for her.

As an alternative to an uninformed decision, the decision-maker may hire an

expert who has the skills to identify the true state of nature. The decision-maker

gets a report xR ∈ R from the expert, forms posterior beliefs based on the report,

and takes an action q = Q(xR).

We assume that the utility of the expert who observes the true state of nature,

x, and reports xR is given by:17

UE(x, xR) = αQ(xR)− β(x− xR)2, (15)

where α, β > 0. The utility function (15) of the expert captures two conflicting

interests. On the one hand, we assume that the misrepresentation is costly for the

expert. This cost may come from many sources: there is a possibility of a legal

or regulatory action; the act of misrepresentation may involve real costs (more on

this below); or the expert’s reputation (self-esteem) may suffer as a result. This

assumption clearly differentiates this model from the models of experts based on

the “cheap talk” assumption (see Crawford and Sobel (1982), and recent papers by

Krishna and Morgan (2001) and Morgan and Stocken (2003)), which in this case is

tantamount to β = 0. The specific functional form we use implies that the marginal

cost increases in the degree of misrepresentation, and β represents the severity of the

penalty. This cost provides an incentive for the expert to tell the truth. On the other

hand, the expert may be biased: in our specification the bias takes the form of his

preference for a “larger” action. This may come directly form the expert’s preferences,

i.e., a “green minded” expert trying to influence environmental regulation, or be

motivated by his compensation. This bias causes the expert to misrepresent his report

in such a way as to increase the action chosen by the decision maker. Parameter α

represents the degree of the bias. The relative importance of the two incentives is

represented by the ratio α
β .

17Notice that his utility does not include the compensation from the decision-maker, which is
assumed to be constant. Derivation of the optimal expert contract in this case is outside of the scope
of this paper, and is left for future research.
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Both agents maximize their expected utility. Since, the decision maker minimizes

a quadratic function conditional on the report, his optimal decision is

Q(xR) = E(x̃|xR). (16)

Plugging (16) in (15) we obtain that the expert maximizes:

UE(x, xR) = αE(x̃|xR)− β(x− xR)2. (17)

Notice that we are back to the optimization of the manager in Equation (2), thus

the remaining derivations are identical (assuming c = 1). The two types of equilib-

rium exist. The only significant difference is that the partially pooling equilibrium

does not always Pareto dominate the perfectly revealing one. In fact the efficiency

depends on the value of parameter ψ. To formalize this statement we analyze the

total surplus to both agents in the separating and partially pooling equilibria, given

by

Γs ≡
Z ∞

−∞

£
UE(x, ρ∗s(x)) + UD(x, x)

¤
f(x)dx

Γp ≡
Z ∞

−∞

£
UE(x, ρ∗p(x)) + UD(x,Q∗p(ρ

∗
p(x))

¤
f(x)dx.

We prove the following proposition:18

Proposition 6 There exists a ψ∗ > 0, such that for all 0 < ψ < ψ∗, Γs < Γp.

The intuition behind this result is clear: in the partially pooling equilibrium

the expert gains by introducing noise, while the decision-maker suffers from making

mistakes in the pooling region. If the penalty for mistakes (also her risk aversion),

ψ, is sufficiently low, then the imposed additional variance is not very costly for the

decision maker. An adjustment of the expert’s fee is sufficient in this case to convince

her to play the partially pooling equilibrium.

The above framework applies to many examples in all areas of life. Many experts

suffer a cost for misrepresentation. At the same time these experts frequently have

a direct interest in the action their client will take, which may cause some bias in

their report. A litigant in a tort case needs a legal opinion on his chances of winning

before deciding on whether to settle. A lawyer on a contingent contract will tend
18The proof is straightforward. It is omitted for brevity, but is available from the authors upon

request.
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to understate his chances of winning a larger award, while a lawyer charging an

hourly fee will tend to overstate it. A real estate agent has an incentive to bias

information to buyers and sellers alike to facilitate a deal; and any salesman tries

to exaggerate his product advantages over the competition. Auto mechanics are

notorious for their pessimism about the state of our cars, while money managers

are equally famous for their overoptimism about the returns they promise. Various

interest groups lobby regulators and politicians to make decisions favorable to their

cause; in the process they are not averse to manipulating the information. Sell-side

stock analysts who want future business for their investment banks from firms they

cover may inflate their reports. Line workers may misreport to middle managers, who

in turn may misreport to top management. Military commanders in the battlefield

may overstate the severity of an attack to obtain air support for their unit. The

higher-up military staff and intelligence officials routinely modify information they

supply to politicians to secure funding and influence policy (the recent inquiries in

the US, UK and Australia about the intelligence on weapons of mass destruction in

Iraq are alleged to be examples of such behavior). The list goes on.

The cost for misrepresenting agents may be quite substantial. The Bible tells us

about the spies that Moses sends to the land of Canaan (Numbers, 13-38). They

come back with two reports: a few, apparently not eager to fight, grossly exaggerate

the danger, claiming they had seen giants, while others paint a more accurate picture.

The former are consequently put to death by the Higher Authority, while the latter

live. While such severity of punishment is unusual in our times, it is reasonable

to assume that misrepresentation of information is potentially costly to experts in

all cases presented above. In the legal and medical professions malpractice suits,

and sanctions by professional associations impose significant costs on false advice.

Salesmen (or their employers) have to worry about repeat customers, and word-of-

mouth reputation. Sell-side analysts may lose credibility with the investors, which

would make them useless to their employers. Managers can be fired, or prosecuted

for significant misreporting, and military commanders can be discharged or even

court-martialed for misconduct of this sort. Even politicians, who never seem to bear

the full cost of making false statements to their constituents, have to worry about

reelection. In all these cases an increase in misrepresentation is likely to increase its

marginal cost.

The message is quite clear: our model suggests that when an expert is somewhat

28



biased, yet suffers negative consequences if the truth is distorted, she may prefer the

partially pooling equilibrium, since it reduces the expected penalty for misrepresen-

tation. The expert will intentionally obfuscate the signal in the intermediate range

(home-made noise), while making it precise, if biased, for extreme realizations. The

client, as long as he is not too risk averse, may play along in choosing to play this

equilibrium, since it reduces the expert’s fees.

7 Robustness

In this section we test the robustness of the partially pooling equilibrium. First, we

refine the out-of-equilibrium pricing, by making it monotone. Then, we demonstrate

the existence of other partially pooling equilibria, and show that they all possess

the same attributes. In particular, they all ex-ante Pareto dominate the perfectly

separating equilibrium. This family of equilibria nests our suggested partially pooling

equilibrium as a special case.

7.1 Out-of-Equilibrium Beliefs

The literature on equilibrium refinements offers a multitude of concepts to limit the

freedom of the modeler in choosing “reasonable” out of equilibrium beliefs in sig-

nalling games. The most prevalent criterion for refinement is the “intuitive criterion”

of Cho and Kreps (1987). It is straightforward to verify that our partially pooling

equilibrium, as specified in Proposition 2 survives this criterion. Actually, the intu-

itive criterion works best in models with just two types of informed parties, therefore

it doesn’t impose much restriction on out of equilibrium beliefs in our continuous

type framework. Other criteria such as the “divinity criterion” (Banks and Sobel

(1987)) were developed for finite type games, and we find them hard to interpret in

our framework. Consequently, we follow a direction introduced by Harrington (1987),

requiring that the pricing function be monotonically increasing in reports (on and off

the equilibrium path).

In Section 3 we assumed that if investors observe an out-of-equilibrium report

xR ∈ (a + αc
2β , b) ∪ (b, b +

αc
2β ) then they believe that the manager is “mistakenly”

playing the benchmark linear equilibrium. This out-of-equilibrium pricing function

has the undesirable property of non-monotonicity (see Figure 2). For instance, if

a manager increases his report from b to b + ε where ε > 0 is sufficiently small the
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price drops. Although this price reaction cannot happen in equilibrium, this property

of the pricing function is highly counter-intuitive. In this section we show that our

equilibrium does not hinge on this choice, and that the out-of-equilibrium pricing

function can be made monotone, preserving all the other properties obtained so far.

To show this, we show in the following lemma that a sufficient condition for an out-

of-equilibrium pricing function to support our partially pooling equilibrium, is that

the types ‘a’ and ‘b’ are indifferent between following the equilibrium strategy and

deviating from it.

Lemma 2 Consider any out-of-equilibrium report xR ∈ (a+ αc
2β , b)∪ (b, b+

αc
2β ) com-

bined with an out-of-equilibrium pricing function P (xR). The following holds:

1. If xR ∈ (a+ αc
2β , b), and if type ‘a’ is indifferent between the equilibrium report

of b, and the out-of-equilibrium report of xR, then all other types x0 6= a strictly

prefer the equilibrium report b over the out-of-equilibrium report xR.

2. If xR ∈ (b, b + αc
2β ), and if type ‘b’ is indifferent between the equilibrium report

of b, and the out-of-equilibrium report of xR, then all other types x0 6= b strictly

prefer the equilibrium report b over the out-of-equilibrium report xR.

Proof: In the Appendix.

Based on Lemma 2, the partially pooling equilibrium strategy ρ∗p(·) is said to
be supported by a tight pricing function P (xR), if for all xR ∈ (a + αc

2β , b), type

‘a’ is indifferent between the equilibrium strategy and deviating to xR, and for all

xR ∈ (b, b+ αc
2β ), type ‘b’ is indifferent between following the equilibrium strategy and

deviating to xR. We can now prove the following:

Proposition 7 There exists a unique tight pricing function that supports the par-

tially pooling strategy ρ∗p(·). This pricing function is given by

P ∗t (x
R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
³
xR − αc

2β

´
xR < a+ αc

2β or x
R > b+ αc

2β

c · d(a, b) xR = b

c
³
a− αc

4β +
β
αc(x

R − a)2
´

xR ∈ [a+ αc
2β , b)

c
³
b− αc

4β +
β
αc(x

R − b)2
´

xR ∈ (b, b+ αc
2β ]

.
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Figure 6: The Monotone Pricing Function

Proof: The cases xR < a+ αc
2β , x

R > b+ αc
2β , and xR = b are identical to these cases

in Proposition 2, and are determined uniquely using Bayes rule. As for the pooling

region: for all xR ∈ [a + αc
2β , b), we look for a pricing function P ∗t (x

R) that makes

type ‘a’ indifferent between deviating to xR and sticking to the equilibrium. This

indifference implies that this pricing function must satisfy

αca− β(
αc

2β
)2 = αP ∗t (x

R)− β(xR − a)2.

Solving for P ∗t (x
R) yields the required result. A similar calculation applies for the

case xR ∈ (b, b+ αc
2β ). Lemma 2 implies that this out-of-equilibrium pricing guarantees

that no type will be willing to deviate from the partially pooling strategy ρ∗p(·).
It is easy to verify that the unique tight pricing function given in Proposition 7 is

strictly increasing and continuous. Figure 6 presents the pricing function using the

tight out-of-equilibrium beliefs.
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7.2 Other Partially Pooling Equilibria

In Section 3 we have shown the existence and uniqueness of a partially pooling equi-

librium, in which the manager reports the upper bound of the pooling interval. That

equilibrium, however, is not the only partially pooling equilibrium in this model. Ac-

tually, there exists a continuum of similar partially pooling equilibria. Equilibria in

this family differ by the pooling report the manager makes when the realized earnings

are in the interval [a, b]. While in our original equilibrium all managers with earnings

in [a, b] report the upper bound b, we can create other equilibria in which managers

report b+ η, for all η ∈ (−αc
2β ,

αc
2β ). Our original equilibrium corresponds to the case

η = 0. All the equilibria in this family have similar attributes; moreover, they all ex-

ante Pareto dominate the benchmark separating equilibrium. This is demonstrated

in the next proposition.

Proposition 8 For all η ∈ (−αc
2β ,

αc
2β ), there exists a unique interval [aη, bη] such that

the reporting strategy

ρηp(x) ≡

⎧⎨⎩
bη + η x ∈ [aη, bη]

x+ αc
2β otherwise

,

joint with the pricing function

P η(xR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c
³
xR − αc

2β

´
xR < aη +

αc
2β or xR > bη +

αc
2β

c
³
bη − αc

4β +
β
αcη

2
´

xR = bη + η

c
³
xR − αc

2β

´
xR ∈ [aη + αc

2β , bη + η) ∪ (bη + η, bη +
αc
2β ]

,

constitute an equilibrium. This equilibrium ex-ante Pareto dominates the perfectly

separating equilibrium.

Proof: Similar to the proofs of Propositions 2 and 3.

The family of equilibria described above nests our original partially pooling equi-

librium as a special case. We have chosen to focus on this equilibrium because it is

the simplest one analytically, and completely represents the family. All the welfare

implications, comparative statics, and empirical predictions carry on to the entire

family of equilibria. The choice of η just changes the length, and position of the

pooling interval.
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8 Conclusions

Managers have some leeway in earnings reporting but these distortions are not cost-

less for them. Managers’ compensation is based on the stock price, which depends

on investors’ beliefs about the true earnings. The result is that managers can and

do manipulate earnings in their favor. To infer the true earnings from the report, in-

vestors try to undo the manipulation. The conventional equilibrium in the literature

is perfectly revealing: the investors are not fooled, yet the manager pays the cost

of manipulation. We show an alternative equilibrium in which managers add home-

made noise to their reports, which prevents investors from inferring the truth, and

reduces the cost of manipulation for the managers. This equilibrium ex-ante Pareto

dominates the fully revealing equilibrium, and endogenously generates discontinuity

in the earnings reports. Such discontinuity is well documented in the literature, yet

there has been no theory to generate such discontinuity endogenously. Instead, the

literature has interpreted this behavior as “meeting and beating” targets, which arises

from behavioral arguments on investors’ information processing. While not mutually

exclusive with the extant explanations, the advantage of this approach is that the

behavior arises endogenously in equilibrium, and thus we can generate new empir-

ical predictions with respect to several measurable parameters. In particular, we

can make comparisons across various levels of reliance on stock-based compensation,

accounting standards, growth options, and degree of information asymmetry.

The model is not specific to managers and investors. In fact we conjecture that

many situations in which a decision-maker hires a better-informed, yet biased expert,

will tend to exhibit similar pooling behavior. We show that the pooling equilibrium

can Pareto dominate the fully revealing one in this setting as well, but not for all

parameter values.
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9 Appendix

Proof of Proposition 1

Let ρs(·) be a perfectly separating, continuously differentiable reporting strategy.
Since ρs(·) is perfectly separating it can be inverted; thus, let ϕs = ρ−1s . It follows

that the only pricing function consistent with ρs(·) is given by Ps(·) = cϕs(·). The
utility of the manager given earnings of x and a report of xR is given by

UM(x, xR) = αcϕs(x
R)− β(xR − x)2. (18)

The first order condition of (18) with respect to xR is

d

dxR
ϕs(x

R)− 2β
αc

xR +
2β

αc
x = 0.

Since in equilibrium x = ϕs(x
R), we obtain the following linear, first-order differential

equation for an equilibrium

d

dxR
ϕs(x

R) = −2β
αc

ϕs(x
R) +

2β

αc
xR.

All potential solutions of this equation are given by

ϕs(x
R) = xR − αc

2β
+Ke−

2xRβ
cα ,

where K is a constant. We claim that K = 0. Indeed, suppose on the contrary

that K > 0, then a simple calculation shows that ϕs(x
R) is strictly convex and has
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a unique minimum at xR = − cα
2β ln

cα
2kβ . This implies that ϕs(x

R) is bounded from

below, contrary to the fact that x can take any value in R (it is drawn from a normal
distribution). Similarly, we can rule out the case K < 0. Therefore, we obtain

ϕs(x
R) = xR − αc

2β , Ps(x
R) = c

³
xR − αc

2β

´
and ρs(x) = x+ αc

2β , as required.

Proof of Proposition 2

It is sufficient to show that there exists a unique a ∈ R, such that E(x̃|x̃ ∈
[a, a+ αc

β ]) = a+ 3αc
4β . As b = a+ αc

β we shall denote the conditional expectation by

d(a) = E(x̃|x̃ ∈ [a, a + αc
β ]) instead of d(a, b). Thus, we will show that there exists

a unique a ∈ R, such that d(a) = a + 3αc
4β . The conditional expectation d(a) is the

expectation of a truncated normal random variable over the interval [a, a+ αc
β ]. It is

well known (see Johnson, Kotz and Balakrishnan (1994)) that d(a) may be expressed

using the following formula:

d(a) = x0 − σ2
f(a+ αc

β )− f(a)

F (a+ αc
β )− F (a)

a ∈ R. (19)

Also, notice that the first derivative of the normal density satisfies:

f 0(x) = −x− x0
σ2

f(x). (20)

The following two lemmas are needed in order to establish the existence of the required

a.

Lemma 3 The following holds for any s > 0:

lim
x→∞

f(x+ s)

f(x)
= 0

lim
x→−∞

f(x+ s)

f(x)
= ∞.

Proof. For any s > 0, and x ∈ R we have

f(x+ s)

f(x)
=

1√
2πσ2

exp− (x+s−x0)
2

2σ2

1√
2πσ2

exp− (x−x0)22σ2

= exp−s(2x− 2x0 + s)

2σ2
.

The result follows by taking the appropriate limits.

Lemma 4 The following holds:

lim
a→∞

[d(a)− a] = 0

lim
a→−∞

[d(a)− a] =
αc

β
.
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Proof. By (19), and using L’Hopital’s law we have

lim
a→∞

d(a) = x0 − σ2 lim
a→∞

f(a+ αc
β )− f(a)

F (a+ αc
β )− F (a)

= x0 − σ2 lim
a→∞

f 0(a+ αc
β )− f 0(a)

f(a+ αc
β )− f(a)

= x0 + σ2 lim
a→∞

a+αc
β
−x0

σ2
f(a+ αc

β )−
a−x0
σ2

f(a)

f(a+ αc
β )− f(a)

= x0 + lim
a→∞

(a+ αc
β − x0)f(a+

αc
β )− (a− x0)f(a)

f(a+ αc
β )− f(a)

= lim
a→∞

"
a+

αc

β

f(a+ αc
β )

f(a+ αc
β )− f(a)

#
Now, by plugging s = αc

β in Lemma 3 it follows that

lim
a→∞

d(a)− a =
αc

β
lim
a→∞

f(a+ αc
β )

f(a+ αc
β )− f(a)

=
αc

β
lim
a→∞

1

1− f(a)
f(a+αc

β
)

= 0,

as required.

As for the second part, repeating the previous analysis we obtain

lim
a→−∞

d(a) = lim
a→−∞

"
a+

αc

β

f(a+ αc
β )

f(a+ αc
β )− f(a)

#
.

Using Lemma 3 it follows that

lim
a→−∞

[d(a)− a] =
αc

β
lim

a→−∞

f(a+ αc
β )

f(a+ αc
β )− f(a)

=
αc

β
lim

a→−∞
1

1− f(a)
f(a+αc

β
)

=
αc

β
,

as required.

It is now easy to prove the existence of a required a. Indeed, define H(a) ≡
d(a)−a− 3αc

4β . From Lemma 4 it follows that lim
a→−∞

H(a) = αc
4β > 0, and lim

a→∞
H(a) =

−3αc4β < 0. Thus, from the continuity of H(a) we conclude that there exists an a ∈ R
such that H(a) = 0.

Our next step is to prove the uniqueness of the chosen a. We shall accomplish

this by showing that H(a) is strictly decreasing, namely, that d0(a) < 1. For brevity

we shall assume that x0 = 0. This shortens the presentation and has no effect on the

results.

From Lemma 4: lima→∞ d0(a) = lima→−∞ d0(a) = 1. Also, denote k(a) ≡ d(a)−a.
Notice that, for all a ∈ R: 0 ≤ d(a) ≤ αc

β , and k
0(a) = d0(a)− 1. Also from Lemma 4:

lima→∞ d(a) = 0, lima→−∞ d(a) = αc
β .
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Differentiating d(a) and using the fact that f 0(x) = − x
σ2 f(x) we obtain

d0(a) =
(a+ αc

β )f(a+
αc
β )− af(a)

F (a+ αc
β )− F (a)

+ σ2
µ
f(a+ αc

β )− f(a)

F (a+ αc
β )− F (a)

¶2
(21)

= − a

σ2
d(a) +

d(a)2

σ2
+

αc
β f(a+

αc
β )

F (a+ αc
β )− F (a)

=
1

σ2
d(a)k(a) +

αc
β f(a+

αc
β )

F (a+ αc
β )− F (a)

.

Using this equation we can evaluate d0(·) at a = −αc
2β . We accomplish this in the

next lemma.

Lemma 5 d0(−αc
2β ) =

αc
β
f(αc

2β
)

F (αc
2β
)−F (−αc

2β
) < 1.

Proof. From (21) we have:

d0(−αc
2β
) =

1

σ2
d(−αc

2β
)k(−αc

2β
) +

αc
β f(

αc
2β )

F (αc2β )− F (−αc
2β )

.

Since f(αc2β ) = f(−αc
2β ) we have: d(−

αc
2β ) = 0; therefore d

0(−αc
2β ) =

αc
β
f(αc

2β
)

F (αc
2β
)−F (−αc

2β
) .

Now, suppose on the contrary that
αc
β
f(αc

2β
)

F (αc
2β
)−F (−αc

2β
) ≥ 1. Since αc

β > 0, this implies
F (αc

2β
)−F (−αc

2β
)

αc
β

≤ f(αc2β ). However, by the mean value theorem we have
F (αc

2β
)−F (−αc

2β
)

αc
β

=

F (αc
2β
)−F (−αc

2β
)

αc
2β
−(−αc

2β
) = f(ξ) for some ξ ∈ (−αc

2β ,
αc
2β ). But since f is normal with mean zero,

it follows that f(ξ) > f(αc2β ) for all ξ ∈ (−
αc
2β ,

αc
2β ). This constitutes a contradiction.

In order to proceed we need the following lemma, which uses the symmetry of the

normal distribution.

Lemma 6 k(a) = αc
2β if and only if a = −

αc
2β .

Proof. If a = −αc
2β then by the symmetry of f around 0: f(a) = f(a+ αc

β ), and thus

d(a) = 0, and k(a) = αc
2β .

To prove the “only if” part of the lemma recall that d(a) =
R a+αc

β
a f(x)dx

F (a+αc
β
)−F (a) . Denote

∆(a) ≡ d(a)− (a+ αc
2β ). We may write

∆(a) =
1

F (a+ αc
β )− F (a)

Z a+αc
β

a
(x− (a+ αc

2β
))f(x)dx

=

R a+αc
2β

a (x− (a+ αc
2β ))f(x)dx+

R a+αc
β

a+αc
2β
(x− (a+ αc

2β ))f(x)dx

F (a+ αc
β )− F (a)

.
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Changing variables in the right hand integral to η = 2a+ αc
β − x we obtain:

∆(a) =

R a+αc
2β

a (x− (a+ αc
2β ))f(x)dx−

R a+αc
2β

a ((a+ αc
2β )− η)f(2a+ αc

β − η)dη

F (a+ αc
β )− F (a)

(22)

=

R a+αc
2β

a (x− (a+ αc
2β ))[f(x)− f(2a+ αc

β − x)]dx

F (a+ αc
β )− F (a)

.

Now, suppose that k(a) = αc
2β , namely, ∆(a) = 0, and suppose on the contrary

that a 6= −αc
2β . Consider first the case of a < −αc

2β . In this case, the symmetry of f

around 0 implies that for all x ∈ (a, a+ αc
2β ) : f(x) < f(2a+ αc

β − x). But from (22)

it follows that ∆(a) > 0 - a contradiction. A similar argument shows that it cannot

be the case that a > −αc
2β . We conclude that a =

αc
2β .

The condition H(a) = 0 implies that k(a) = 3αc
4β . Thus, Lemma 6 implies that

we can assume a 6= αc
2β . Since d(a) is increasing in a, and d(αc2β ) = 0, it follows that

d(a) 6= 0, and f(a + αc
β ) 6= f(a). Using this observation we can solve (21) for k(a)

and obtain

k(a) =
σ2d0(a)

d(a)
− αc

β
σ2

f(a+αc
β
)

F (a+αc
β
)−F (a)

d(a)
=

σ2d0(a)

d(a)
+

αc
β f(a+

αc
β )

f(a+ αc
β )− f(a)

(23)

Differentiating (23) yields

k0(a) =
σ2d00(a)

d(a)
− σ2

µ
d0(a)

d(a)

¶2
+

αc

β

−a+αc
β

σ2
f(a+ αc

β )[f(a+
αc
β )− f(a)]

[f(a+ αc
β )− f(a)]2

(24)

+
αc

β

[
a+αc

β

σ2
f(a+ αc

β )−
a
σ2
f(a)]f(a+ αc

β )

[f(a+ αc
β )− f(a)]2

=
σ2d00(a)

d(a)
− σ2

µ
d0(a)

d(a)

¶2
+
(αcβ )

2

σ2

f(a)f(a+ αc
β )

[f(a+ αc
β )− f(a)]2

The following notation is useful. For all a ∈ R denote Q(a) ≡ (αc
β
)2f(a)f(a+αc

β
)

[F (a+αc
β
)−F (a)]2 . Notice

that Q(a) > 0 for all a. The next lemma shows that Q(·) is bounded from above by

1.
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Lemma 7 For all a ∈ R, Q(a) < 1.

Proof. Differentiating Q we obtain for all a ∈ R:

Q0(a) = (
αc

β
)2
− a

σ2
f(a)f(a+ αc

β )−
a+αc

β

σ2
f(a)f(a+ αc

β )

[F (a+ αc
β )− F (a)]2

−(αc
β
)2
2(f(a+ αc

β )− f(a))f(a)f(a+ αc
β )

[F (a+ αc
β )− F (a)]3

= − a

σ2
Q(a)−

a+ αc
β

σ2
Q(a) +

2

σ2
d(a)Q(a)

=
Q(a)

σ2

∙
2(d(a)− a)− αc

β

¸
.

Since Q(a) > 0 for all a, it follows that Q0(a) = 0 if and only if d(a) − a = αc
2β .

And from Lemma 6 we conclude that Q0(a) = 0 if and only if a = −αc
2β . We shall

now show that a = −αc
2β is a global maximum for Q. Indeed, differentiating Q once

again we obtain

Q00(a) =
Q0(a)

σ2

∙
2(d(a)− a)− αc

β

¸
+

Q(a)

σ2
[2(d0(a)− 1)].

It follows that

Q00(−αc
2β
) =

Q(αc2β )

σ2
[2(d0(−αc

2β
)− 1)].

Thus, from Lemma 5 we conclude that Q00(−αc
2β ) < 0, and a = −αc

2β is a global

maximum. Given this, in order to show that Q(a) < 1 for all a, it is sufficient to

show that Q(−αc
2β ) < 1. Indeed:

Q(−αc
2β
) =

(αcβ )
2f(αc2β )

2

[F (a+ αc
β )− F (a)]2

.

However, from Lemma 5 we know that d0(−αc
2β ) =

αc
β
f(αc

2β
)

F (αc
2β
)−F (−αc

2β
) < 1; therefore

Q(−αc
2β ) = (d

0(−αc
2β ))

2 < 1.

We are now ready to show that H(a) = d(a) − a − 3αc
4β is strictly decreasing

in a, namely, that d0(a) < 1 for all a ∈ R. We will show that this is true for all

a ∈ (−∞,−αc
2β ]. A parallel argument shows that this assertion is true also for all

a ∈ (−αc
2β ,∞).

Suppose on the contrary that d0(a) ≥ 1 for some a values in (−∞,−αc
2β ]. Note

that lima→−∞ d0(a) = 1, and from Lemma 5, d0(−αc
2β ) < 1. It follows that there exists
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an â ∈ (−∞,−αc
2β ) such that d

0(â) ≥ 1 and d00(â) = 0. Substituting â in (24) we

obtain

k0(â) ≤ −σ2
d(â)2

+
(αcβ )

2

σ2

f(â)f(â+ αc
β )

[f(â+ αc
β )− f(â)]2

= − 1
σ2

[F (â+ αc
β )− F (â)]2

[f(â+ αc
β )− f(â)]2

+
(αcβ )

2

σ2

f(â)f(â+ αc
β )

[f(â+ αc
β )− f(â)]2

=
(F (â+ αc

β )− F (â))2

σ2[f(â+ αc
β )− f(â)]2

"
(
αc

β
)2

f(â)f(â+ αc
β )

(F (â+ αc
β )− F (â))2

− 1
#

=
(F (â+ αc

β )− F (â))2

σ2[f(â+ αc
β )− f(â)]2

(Q(â)− 1).

But from Lemma 7 it follows that Q(â) − 1 < 0, and therefore: k0(â) < 0, or

equivalently d0(â) < 1 - a contradiction. This shows that there is a unique a that

satisfies H(a) = 0, as required.

Proof of Proposition 5

For brevity we assume x0 = 0.19 Since we are interested in the impact of σ, we

view a and d as functions of σ. Define

H(a, σ) ≡ d(a, σ)− a− 3αc
4β

.

The relation between a and σ is given by the implicit equation H(a, σ) = 0. In

the proof of Proposition 2 we have shown that ∂H(a,σ)
∂a < 0 for all a, σ ∈ R. By the

implicit function theorem we have

∂a(σ)

∂σ
= −

∂H(a,σ)
∂σ

∂H(a,σ)
∂a

.

Thus, to show that ∂a(σ)
∂σ < 0 it is sufficient to show that ∂H(a,σ)

∂σ < 0. We have

19A different choice of x0 would shift a(σ) by a constant, and thus it has no effect on ∂a
∂σ
.
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∂H(a, σ)

∂σ
=

∂d(a, σ)

∂σ
=

∂

∂σ

R a+αc
β

a xf(x)dx

F (a+ αc
β )− F (a)

=
∂

∂σ

1√
2πσ2

R a+αc
β

a xe−
x2

2σ2 dx

1√
2πσ2

R a+αc
β

a e−
x2

2σ2 dx

=

R a+αc
β

a
x3

σ3
e−

x2

2σ2 dx ·
R a+αc

β
a e−

x2

2σ2 dx−
R a+αc

β
a

x2

σ3
e−

x2

2σ2 dx ·
R a+αc

β
a xe−

x2

2σ2 dx∙R a+αc
β

a e−
x2

2σ2 dx

¸2
=

1

σ3

⎡⎣R a+αc
β

a x3e−
x2

2σ2 dxR a+αc
β

a e−
x2

2σ2 dx
−
R a+αc

β
a x2e−

x2

2σ2 dxR a+αc
β

a e−
x2

2σ2 dx
·
R a+αc

β
a xe−

x2

2σ2 dxR a+αc
β

a e−
π2

2σ2 dx

⎤⎦
=

1

σ3

⎡⎣R a+αc
β

a x3f(x)dxR a+αc
β

a f(x)dπ
−
R a+αc

β
a x2f(x)dxR a+αc

β
a f(x)dx

·
R a+αc

β
a xf(x)dxR a+αc

β
a f(x)dx

⎤⎦
=

1

σ3

∙
E(x̃3|a ≤ x̃ ≤ a+

αc

β
)−E(x̃2|a ≤ x̃ ≤ a+

αc

β
) ·E(x̃|a ≤ x̃ ≤ a+

αc

β
)

¸
=

1

σ3
Cov(x̃2, x̃|a ≤ x̃ ≤ a+

αc

β
).

Thus, the sign of ∂H(a,σ)
∂σ is equal to the sign of the Cov(ỹ, ỹ2), where ỹ is a random

variable obtained from a truncation of x̃ between a and a+ αc
β . It can be shown that

this covariance is strictly negative, as required.20

Given that a(σ) is decreasing in σ, we know that a0 ≡ limσ→0 a(σ) exists. It is easy

to see that for any fixed a < x0 and b > a we have

lim
σ→0

E(x̃|x̃ ∈ [a, b]) =

⎧⎨⎩
b x0 /∈ [a, b]

x0 x0 ∈ [a, b]
. (25)

We claim first that there exists an a0 > 0 such that a0+ αc
β > x0. Indeed, suppose on

the contrary that a0+αc
β ≤ x0. This implies by (25) that limσ→0E(x̃|x̃ ∈ [a(σ), a(σ)+

αc
β ]) = a0 +

αc
β , contradicting the fact that for all σ, E(x̃|x̃ ∈ [a(σ), a(σ) +

αc
β ]) =

a(σ) + 3αc
4β . Now, for all ε > 0 sufficiently small we have: a0 − ε + αc

β > x0. Thus,

by (25) we have: limσ→0E(x̃|x̃ ∈ [a0 − ε, a0 − ε+ αc
β ]) = x0. From the continuity of

the conditional expectation and since ε is arbitrary we conclude that limσ→0E(x̃|x̃ ∈
[a(σ), a(σ) + αc

β ]) = x0. And, hence limσ→0 a(σ) = x0 − 3αc
4β , as required.

20The proof is technical. It applies to any symmetric and continuous distribution, and not only
to the normal distribution. It relies on the fact that the truncation interval [a, a + α

β ] is tilted to
the left-hand side of the distribution. We omit the proof here for brevity, but it is available upon
request.
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As for the case of σ → ∞. For all fixed a and b we have: E(x̃|x̃ ∈ [a, b] → a+b
2 .

Indeed, by applying L’Hopital’s law we obtain

lim
σ→∞

∙
x0 − σ2

f(b)− f(a)

F (b)− F (a)

¸
= x0 − lim

σ→∞
σ2

e
−(b−x0)

2

2σ2 − e
−(a−x0)

2

2σ2R b
a e

−(x−x0)2
2σ2 dx

= x0 −
1

b− a
lim
σ→∞

e
−(b−x0)

2

2σ2 − e
−(a−x0)

2

2σ2

1
σ2

= x0 −
1

b− a
lim
σ→∞

e
−(b−x0)

2

2σ2 − e
−(a−x0)

2

2σ2

1
σ2

= x0 −
1

b− a
lim
σ→∞

(b−x0)2
σ3

e
−(b−x0)

2

2σ2 − (a−x0)2
σ3

e
−(a−x0)

2

2σ2

− 2
σ3

= x0 +
(b− x0)

2 − (a− x0)
2

2(b− a)
=

a+ b

2

This calculation implies that if a∞ ≡ limσ→∞ a(σ) were finite, we would have that

d(a(σ))→ a∞ +
αc
2β - a contradiction to the fact d(a(σ)) = a(σ) + 3αc

4β for all σ.

Proof of Lemma 2

We shall prove Part 1 of the lemma. The proof of Part 2 is symmetric.

Suppose xR ∈ (a + αc
2β , b) is an out-of-equilibrium report, and let P (xR) be the

price in case a report of xR is observed. We claim that in this case, if the ‘a’ type is

indifferent between submitting a report of b (equilibrium report) or xR (deviating),

then all other types x0 6= a strictly prefer to stick to their equilibrium report. We

shall consider three cases.

Case 1: x0 ∈ (a, b]. Since the ‘a’ type is indifferent between submitting b, and

deviating to xR, we obtain

αcd− β(b− a)2 = αP (xR)− β(xR − a)2. (26)

The payoff to type x0 ∈ (a, b] from reporting xR is: αP − β(xR − x0)2. It follows

that the largest benefit from deviating to a report of xR is incurred when the type

is equal to the report, namely: x0 = xR. In this case, the payoff in case of deviation

is αP , while the payoff on the equilibrium path is: αcd − β(xR − b)2. By (26),

the difference between the payoff on the equilibrium path, and the payoff in case of
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deviation is

αcd− β(xR − b)2 − αP = −β(xR − b)2 + β(b− a)2 − β(xR − a)2

= 2β(xR − a)(b− xR) > 0.

Thus, type x0 strictly prefers to stick to his equilibrium report.

Case 2: x0 < a. Since the ‘a’ type is indifferent between submitting a+ αc
2β , and

deviating to xR we obtain

αca− β(
αc

2β
)2 = αP (xR)− β(xR − a)2. (27)

Now, if type x0 follows the equilibrium he obtains: αcx0 − β(αc2β )
2. If on the other

hand he deviates to xR he obtains: αP (xR)−β(xR−x0)2. Using (27) we obtain that

the difference is

αcx0 − β(
αc

2β
)2 − αP (xR) + β(xR − x0)2 = αcx0 − αca− β(xR − a)2 + β(xR − x0)2

= β(a− x0)(2xR − x0 − a− αc

β
)

> β(a− x0)(2(a+
αc

2β
)− x0 − a− αc

β
)

= β(a− x0)2 > 0,

where the penultimate inequality follows since xR > a+ αc
2β . Thus, type x

0 is better

off sticking to the equilibrium strategy.

Case 3: x0 > b. In Case 1, we have shown that if type ‘a’ is indifferent between

the two alternatives, then type ‘b’ strictly prefers to stick to the equilibrium. Thus

αcb− β(
αc

2β
)2 > αP (xR)− β(xR − b)2.

Therefore

αP (xR) + β(
αc

2β
)2 < αcb+ β(xR − b)2.

We conclude that

αcx0 − β(
αc

2β
)2 − αP (xR) + β(xR − x0)2 > αcx0 − αcb− β(xR − b)2 + β(xR − x0)2

= β(x0 − b)(x0 + b+
αc

β
− 2xR)

> β(x0 − b)(x0 − b+
αc

β
) > 0,

where the penultimate inequality follows since xR < b. Thus, the deviation is not

profitable. This concludes the proof.
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