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Abstract 

Adaptive decision-making requires that environmental contingencies between decision 

options and their relative advantages and disadvantages be assessed accurately and quickly. 

The research presented in this article addresses the challenging notion that contingencies may 

be more visible from small than large samples of observations. An algorithmic account for 

such a "less-is-more" effect is offered within a threshold-based decision framework. 

Accordingly, a choice between a pair of options is only made when the contingency in the 

sample that describes the relative utility of the two options exceeds a critical threshold. Small 

samples – due to their instability and the high dispersion of their sampling distribution – 

facilitate the generation of above-threshold contingencies. Across a broad range of parameter 

values, the resulting small-sample advantage in terms of hits is stronger than their 

disadvantage in terms of false alarms. Computer simulations and experimental findings 

support the predictions derived from the threshold model. In general, the relative advantage of 

small samples is most apparent when information loss is low, when decision thresholds are 

high, and when ecological contingencies are weak to moderate.  
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Does Decision Quality (Always) Increase with the Size of Information Samples? 

Some Vicissitudes in Applying the Law of Large Numbers 

 

In cognitive psychology and decision-making research, amount of information is 

considered to be a function that cannot take negative values. Apparently, adding information 

can only increase its overall value, implying a monotonically increasing function. 

Psychologists implicitly agree with economists that the utility of information cannot decrease, 

just as the value of other resources (e.g., money, property, power, legal rights) can never 

decrease when its amount increases. To be sure, the function that relates usefulness or total 

value of information to the amount of evidence may be negatively accelerated, and level off 

asymptotically; however, the slope of the function is assumed to remain non-negative.  

For example, consider the typical form of a learning curve (see Figure 1). Performance 

increases monotonically with the number of learning trials, though the increment gets smaller 

as learning approaches an asymptote. The reason for concavity is easily understood. The 

increment that each trial adds is maximal at the beginning when there is little prior learning, 

when each trial is likely to contribute something new; however, as learning proceeds, the 

likelihood increases that further trials only reiterate what is already known. The concavity and 

the constantly positive slope would thus appear to be quite natural. Note that such a function 

is characteristic of information acquisition in general, and is not peculiar to human or animal 

learning. A similar function results when the overall reliability of a test is depicted as a 

function of test length, or number of items included (Kuder & Richardson, 1937). The same 

rationale applies to the accuracy of judgments or decisions as a function of the number of 

independent judges (Rosenthal, 1987). Increasing the number of test items or judges leads to 

the canceling out of errors, and a reduction in error with a corresponding increase in the 

proportion of systematic variance in the aggregate test score or judgment. In general, the 

function relating accuracy of predictions to sample size often resembles that of Figure 1.  
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Indeed, the logic underlying Bernoulli's law of large numbers appears so natural that we 

can hardly imagine that the monotonicity of information value might be questioned. Thus, if 

some researcher came up with data showing better learning following k trials in one 

experimental condition than following 2k trials in another, one would hardly postulate a new 

learning curve but try instead to find out what was wrong with these data: The two groups 

may differ in talent or motivation, or the researcher may have fallen prey to some artifact or 

uncontrolled factor such as fatigue arising from extended learning. Similar suspicion would 

arise if a psychometrician were to claim that a score based on a random subset of test items 

was more valid than a score based on all items, or if teachers were reported to discriminate 

more accurately between smart and poor students when they based their appraisal on a small 

rather than a large number of observations.  

Can Less be More? 

However, is the possibility that less information can be worth more or that decisions 

based on small samples can be superior to those based on larger ones really that far-fetched, 

or incompatible with logical and axiomatic underpinnings? Indeed, there is compelling 

anecdotal and experimental evidence that knowing or thinking too much can be of 

disadvantage. Just as the penalist in soccer should not dwell too long on where to kick the 

ball, consumers are typically most satisfied with their product choices when they make quick 

gut decisions based on minimal information. Additional product information can turn 

decisions into a torture and increase the likelihood of post-decision dissonance (Festinger, 

1957). Or, to give another example, for an electronic search, an output of, say, 50 references 

is more informative and useful than one of 5000. Relevant research to back-up such anecdotal 

experience includes Wilson and Schooler's (1991) findings of impaired decisions with 

extended thinking, Forest and Feldman (2000) demonstration that lie detection performance 

decreases with amount of reflection, or increasing conflicts experienced when judgments are 

based on a large rather than small amount of evidence (Fiedler, Semin, Finkenauer & Berkel, 
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1995; Sande, Goethals & Radloff, 1988). Ambady and Rosenthal's (1992) work on the 

amazing diagnosticity of "thin slices" of behavioral evidence is also relevant in this respect.  

Being confronted with such examples, one may still be inclined to dismiss the evidence 

regarding the benefits of scarce information as hardly bearing on the axiomatic view depicted 

at the outset. One may dismiss the performance impairment sometimes observed with high 

amounts of information as "just" due to cognitive overload, the inadequate administration and 

organization of resource-limited cognitive procedures applied to large arrays of information. 

Or one might reason that the examples reflect cases in which implicit, unconscious decisions 

are more appropriate than explicit, reflected decisions (Wilson, Dunn, Kraft, & Lisle, 1989).  

However, again, the spontaneous tendency to discount such counter-intuitive findings or 

reconcile them with the axiomatic view may not be warranted. Recent research on adaptive 

cognition has revealed a number of less-is-more effects (Borges, Goldstein, Ortman, & 

Gigerenzer, 1999; Gigerenzer & Goldstein, 1996; Hertwig & Todd, 2003; Krauss & Wang, 

2003; Martignon & Hoffrage, 1999) that cannot be reduced to inefficient cognitive 

procedures, as they also occur in computer simulations based on a fully rational, unbiased 

program. Another noteworthy phenomenon is evident in Elman's (1993) demonstration of the 

"importance of starting small". Using computer simulations of artificial language learning, 

Elman observed superior learning of a complex language system when the window size of the 

input utterances, or the short-term memory window of the learning individual, was limited 

rather than expanded in size in the early stage of learning. Allowing for more information in 

early learning impaired subsequent learning. Similarly intriguing evidence for less-is-more 

effects in language acquisition has been reported by Newport (1988, 1990).  

Sample Size and Contingency Assessment 

Our prime example, which is in the focus of the present research, refers to contingency 

assessment. Detecting environmental contingencies between signals and significant events, 

between causes and effects, or between situations and behaviors is a central module of 
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adaptive intelligence. As Kareev (1995, 2000; Kareev, Lieberman, & Lev, 1997) has shown, 

because of the skewness of the sampling distribution of correlations, and the fact that the 

skew is more pronounced the smaller the sample, the likelihood of detecting a contingency 

may, under certain conditions, be higher when the sample of observations is small rather than 

large – a phenomenon that we will elaborate on shortly. Again, one would assign almost 

axiomatic status to the assumption that accurate assessment of correlations increases with 

sample size. After all, sample size corresponds to number of learning trials, and additional 

trials can hardly reduce learning (cf. Figure 1). Imagine an animal exposed to the contingency 

between territories and danger. Choosing the less dangerous territory is crucial for survival in 

the long run. Is it not obvious that the probability of correct choices increases with the number 

of opportunities to learn about the environment? How could the animal ever be expected to 

reach a better decision with a smaller, rather than a larger sample of experience? 

An intriguing answer to this paradox can be derived from a statistical principle that 

governs all probabilistic ecologies. When repeated samples of a certain size are drawn from a 

universe in which two variables (e.g., territories and danger) are actually correlated, the 

resulting distribution of sample correlations r around the "true" value ρ is not symmetrical but 

skewed. Most sample correlations are higher than the correlation in the universe. Thus, one of 

nature's nice features is that empirical snapshots often amplify actual effects. Even more 

amazing, this tendency is more pronounced for small samples. Small samples are thus 

particularly likely to accentuate and to expose the contingencies that actually exist in the 

world (Kareev, 1995). Furthermore, Kareev (2000) has shown that for binary variables this 

property of the empirical world has its maximum at a sample size of 7 ± 2. The interpretation 

which suggests itself is that evolution may have tailored human working memory span to 

cover exactly this maximally sensitive "window size" (cf. Kareev, 2000).  

Regardless of the viability of such an evolutionary account (cf. Lewontin, 1979), the 

phenomenon suggests a serious violation of information monotonicity. Thus, an animal 



 7 Sample size and decision quality  

exposed to a smaller number of learning trials may be more likely to choose the safer of two 

territories than one exposed to a larger sample of trials. This paradox should generalize across 

many biologically important decisions. Let us quickly add that the precise conditions under 

which this striking implication holds still have to be specified. But the possibility of a less-is-

more effect in contingency assessment should be apparent, as supported by better contingency 

assessment performance in individuals with low rather than high memory capacity (Kareev et 

al., 1997). Note also that this less-is-more effect does not confound amount of information 

with complexity, memory organization, or the incomparability of cognitive procedures.  

Critical Appraisal Within a Cognitive-Ecological Framework 

Indeed, it should be realized that the small-sample advantage is logically independent of 

memory constraints because it originates in a statistical sampling process, which takes place 

in the environment, outside the individual's brain, prior to any cognitive processes. Kareev's 

main point is thus an ecological rather than a cognitive-psychologcal one. It suggests that any 

probabilistic ecology will generate samples that tend to overestimate existing contingencies. 

In contrast, whereas Kareev's framework is basically ecological, the monotonic learning curve 

in Figure 1 refers to cognitive laws of learning and memory. Critique and misunderstandings 

of less-is-more phenomena may arise from the failure to notice this distinction. In the 

remainder of this article, we develop an integrative, cognitive-ecological framework, taking 

into account both cognitive and ecological processes, within which both advantages and 

disadvantages of small samples can be reconsidered.  

As outlined in Figure 2, the entire process of assessing an actually existing correlation 

or contingency can be decomposed into two stages, the ecological sampling process and the 

cognitive assessment and decision process. For convenience, consider the simplest case of a 2 

x 2 contingency resulting from two dichotomous variables. For a sensible problem context, let 

us take the perspective of a teacher whose task is to figure out the performance differences 

that exist between students. The contingencies depicted in Figure 2 refer to different rates of 
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correct (+) and incorrect (–) responses given by two students, A and B. Let us further assume 

that the marginal proportion of correct responses in the population – i.e., the actual ability 

level – is rather high (e.g., a/(a+b) = .75) for Student A but rather low for Student B (e.g., 

c/(c+d) = .25). The actually existing contingency can thus be calculated as ∆ = (a/(a+b) – 

c/(c+d)) = .75 – .25 = .50. The teacher's task calls for, first, gathering a sample of observations 

about the two students' performance; for simplicity, we assume random sampling. This 

sampling process (see upper part of Figure 2) can be defined as the transition from the latent 

population contingency ∆ to the sample contingency ∆sample. Note that, according to the above 

rationale, the superiority of A over B is more likely to be amplified in ∆sample when the 

teachers' sample is small rather than large – an intriguing implication in its own right.  

However, up to here, human memory has not come into play; the transition from ∆ to 

∆sample reflects a statistical law applied to the probabilistic world. Replacing the human teacher 

by computer-based grading would not affect the logically antecendent transition from ∆ to 

∆sample. Figure 2 (bottom) then represents the cognitive decision-making stage, which involves 

the transition of the sample contingency ∆sample into the teacher's cognitive estimate ∆est, as 

evident in differential judgments of Student A and B. There are various reasons why ∆est can 

deviate from ∆sample: Impaired perception, inhibited learning, memory overload, or competing 

cognitive processes and distracters. An informed analysis of the relation between sample size 

and contingency assessment requires that both stages, ecological sampling and cognitive 

decision making, be taken into account within a cognitive-ecological framework.  

With respect to this analytical distinction between ecological sampling and cognitive 

processing, we can now locate two major critiques of Kareev's argument. The first objection 

comes from Juslin and Olsson (2004); it also pertains to the pre-cognitive, ecological 

transition stage, from the latent environment (i.e., population) to the sample. Juslin and 

Olsson claim that the seeming advantage of small over large samples is more apparent than 
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real. The "normal" advantage of large samples is evident as soon as the analysis is not 

confined to hits (i.e., detecting actually existing contingencies) but also takes into account 

false alarms (i.e., erroneously detecting non-existing contingencies). The second source of 

critique originates in empirical research on the cognitive stage of contingency learning 

(Fiedler, 1991, 1996; Fiedler, Russer & Gramm, 1993; Fiedler & Walther, 2003; Fiedler, 

Walther, Freytag & Plessner, 2002; Fiedler, Walther & Nickel, 1999), which provides 

evidence for improved contingency learning with a growing number of learning trials.  

Taking Both Hits and False Alarms into Account.  

Can it really be the case that small samples are more useful in detecting environmental 

laws than large samples? Or could Kareev's argument be flawed, reflecting only a one-sided, 

incomplete problem analysis? In response to this question – which is again reminiscent of the 

axiomatic status of a monotonic information function – Juslin and Olsson (2004) recently 

came up with the following argument. The small-sample advantage is only evident in the hit 

rate of correct sample-based decisions, but disappears when false alarms (i.e., incorrect 

inferences about environmental contingencies) are also taken into account. Although small 

samples may really exaggerate actually existing correlations, they also tend to produce 

illusory correlations that are not really there. After all, the skewed sampling distribution of r, 

from which the advantage of small samples emerges, presupposes that ρ is non-zero, that is, 

the analysis is confined to hits (i.e., the sample-based conclusion that a correlation exists 

when a non-zero ρ exists). However, in reality, when a sample contingency r is observed, the 

underlying ρ could be anything. Relative to the true ρ, a decision based on r that a correlation 

exists could represent a hit or a false alarm. Juslin and Olsson (2004) conducted computer 

simulations and concluded that if the underlying ρ is unknown so that decisions based on an 

observed r can represent hits as well as false alarms, the "normal" superiority of large samples 

reappears. Decisions were more accurate when based on large than on small random samples, 

at any level of ρ or any criterial value of r assumed to be required to make a decision.  
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However, although this critique seems compelling and logically sound, one should be 

cautious in discarding the less-is-more effect as due to an artifact or a one-sided emphasis on 

hits. One way to defend Kareev's standpoint would be to point out that specific problem 

contexts may render the benefits of hits more important than the costs of false alarms. In 

biological evolution, for instance, detecting dangerous predators or poisonous food is 

essential for survival, whereas the unnecessary effort involved in erroneously evading a 

harmless non-predator or avoiding an eatable piece of food would appear to be minimal. In 

general, to the extent that the costs or benefits of an environmental stimulus are higher than 

the costs or benefits of taking the right or wrong actions (cf. Swets, Dawes & Monohan, 

2000), maximizing hits is more adaptive than minimizing false alarms, thus reinstating the 

assets of small samples. At least, the functional value of sample size could be expected to 

vary with the problem context and with domain-specific weighting of costs and benefits. 

However, the viability of the small-sample advantage can be defended not only with 

reference to costs and benefits in certain ecological niches, but even at a more general level. 

When making choices – in the elementary case, binary choices between two options – we are 

not concerned with a precise estimation task (e.g., to estimate the true proportion of success 

with two options) but with the choice of that option that is better, or at least equivalent to 

other options, or simply "good enough". A "false alarm" or erroneous decision would not be 

one in which the r (between options and observed success) overestimates the true contingency 

ρ that has the same sign. Even when both options are equivalent (i.e., ρ=0), choosing one (i.e., 

assuming ρ≠0) should not be considered wrong, but satisficing (Simon, 1956; Gigerenzer, 

2001), given that one decision has to be made anyway. Whenever r deviates from ρ without 

reversing its sign, the resulting behavioral choice could still be considered a success within 

such a bounded-rationality approach. Only when the observed r reverses the sign of the true 

value could one talk of a genuine false-alarm decision. However, such reversals are quite 

unlikely even with small samples. Assuming ρ = .50, that is, assuming, for example, success 
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rates of .75 versus .25 for the two options, even a small sample of seven to ten items is rather 

unlikely to yield a reversal.  

Within such a behavioral-choice framework, the buffering of false alarms becomes even 

more effective when we introduce the assumption that organisms do not make choices, or take 

action, at any moment in time, but only when the sampled evidence favors one option clearly 

enough. Thus, only when the absolute sample contingency r exceeds some critical threshold c 

will the organism choose Option A (if r > +c) or Option B (if r < –c). As long as the sampled 

evidence does not clearly suggest either action, the organism may continue sampling or draw 

a new sample. Given this safeguard of a decision threshold c, which has to be substantially 

different from zero to be psychologically effective, the definition of a false alarm becomes 

even more conservative, making it rather unlikely that even a small sample correlation 

exceeds |c| in a direction opposite to that of ρ.  

The diagram in Figure 3 demonstrates that such a framework predicts – under 

specifiable boundary conditions – that the advantage of small, unstable samples in terms of hit 

rates can be stronger than their vulnerability to false alarms. For small samples, the deviations 

of observed correlations r from ρ tend to be generally larger than for large samples. However, 

the difference is asymmetric; the hit rate advantage (r > +c; right side) for small samples is 

larger than the false alarm disadvantage (r < –c; left side). Thus, granting ρ > 0 so that the 

distribution of r is not symmetrical around 0 but displaced toward the right, the very 

instability of small samples, results in more gains (hits) than losses (false alarms).  

It is important to recognize one crucial difference between the present model and the 

similar model that led Juslin and Olsson (2004) to conclude that the posterior probability of 

correctly detecting environmental contingencies increases with sample size under all 

reasonable conditions. A major source of divergence originates in different definitions of hits 

and false alarms. Assuming a positive correlation, ρ > 0, Juslin and Olsson code an obtained r 

a hit if both r > +c while ρ > +c, and a false alarm if r > +c while ρ < +c. Thus, whenever the 
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population correlation ρ underlying a supra-threshold r is lower than the criterion c+, the 

outcome is considered a false alarm, even when both ρ and r are positive so that a correct 

choice is made. Using such a definition, which requires quantitative precision in addition to 

the correct sign of a correlation, small samples will of course produce many false alarms.   

Within the present framework, in contrast, a false alarm is defined in terms of a wrong 

behavioral decision, that is, a false alarm is only coded if r > +c although ρ < 0 (and if r < -c 

although ρ > 0), whereas a hit means that r > +c while ρ > 0 (or that r < -c while ρ < 0). For 

any choice between two options, choosing the better option is a correct decision (a hit) and 

choosing the worse option is an incorrect decision (a false alarm). It is only the correct sign of 

the contingency that is relevant, regardless of the degree of over- or underestimation. In other 

words, the present approach pertains to correct choices rather than accurate estimations. 

 For example, if c = +.5 and ρ = +.3 or +.4, there is no reason to consider a choice based 

on an observed sample correlation of r = +.6 or .+7 a false alarm. After all, the sample has 

informed a correct choice. The assumption here is that consequences (i.e., benefits and costs) 

of decisions are only determined by whether the correct behavioral choice has been made.  

Note that the above notion of a "correct choice" presupposes only two decision options, 

A and B, such that a positive contingency ρ > 0 implies that A is the correct choice. If there 

were more decision options, A, B, C, ... K, an optimal choice (of the best option) would 

require more than correctly assessing a 2 x 2 contingency. In that case, one would have to 

consider all pairwise contingencies, which is tantamount to determining an optimal ordering 

of all decision options. As it is unlikely that all pairwise comparisons exceed the threshold c 

at the same time, the present heuristic can be hardly used to find an optimizing solution for a 

large number of options. Rather, the heuristic is suitable for satisficing choices (Gigerenzer, 

2001; Simon, 1956), that is, to decide whether a focused option A is at least as good as some 

comparison standard B, regardless of whether an even better option exists. Whenever decision 
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makers can resort to satisficing rather than optimizing strategies, particularly when choice 

problems are decomposed into sequences of binary choices, there is a reasonable chance of 

obtaining a small-sample advantage (see also Anderson & Doherty, 2004).  

Taking Cognitive Processes of Learning and Memory Into Account 

Having shown that small samples can, under specific assumptions, inform better 

decisions than large samples – in spite of "axiomatic feelings" and Juslin and Olsson's (2004) 

opposite conclusion – we now turn to the second source of criticism. Up to now, we have only 

been concerned with environmental sampling outside the human mind. The crucial question, 

however, is whether any advantage entailed in a small input sample will survive the cognitive 

learning and memory processes taking place inside the decision maker. To be sure, it should 

be clear that whenever decision makers use perfect actuarial strategies, registering data 

samples with perfect reliability and drawing a decision based on the calculated r in the 

sample, the model in Figure 3 applies, specifying conditions under which a small-sample 

advantage holds. However, in real life such an actuarial strategy may be unobtainable. Rather 

than registering all input observations objectively, individuals often have to learn and 

memorize information implicitly (Seger, 1994), whereby observations may be ill-defined, 

distributed over extended time, mixed-up with irrelevant information, and therefore hard to 

discern from background noise. In such a task context, when many stimuli compete with each 

other for attention and cognitive resources, small samples may be more vulnerable, and be 

particularly likely to be overlooked or overridden by other, more extended samples. It is hard 

to see why contingency learning should not obey normal learning functions, which increase 

monotonically with number of observations, or trials (Figure 1). 

Supportive evidence for this contention comes from a series of experiments on 

contingency learning in various social cognition paradigms (for an overview, see Fiedler & 

Walther, 2003). Whenever the task is to figure out the proportion of positive outcomes 

(success, desirable behavior, etc.) associated with different target persons or groups, 
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performance increases monotonically with increasing numbers of observations. Pertinent 

evidence comes, in particular, from a series of experiments in a simulated school class setting 

(Fiedler, Walther, et al., 2002). A classroom with sixteen students was represented on the 

computer screen and participants played the role of a teacher who could observe the students' 

achievement (i.e., their correct and wrong answers to questions in different lessons) across an 

extended period of time. The computer program that guided the experiment determined actual 

parameters of correct responses for each student. Moreover, students differed in their 

motivation parameter, as reflected in the frequency of raising hands, thus producing variation 

in the size of samples available for each individual student. For each pair of students, then, a 

contingency could be computed between students (A vs. B) and success (+ vs. –), exactly as 

in Figure 2. For instance, when the ability parameters for A and B were .8 and .2, the resulting 

contingency was ∆ = .80 – .20 = .60. At the beginning, of course, differences between 

students, or pairwise contingencies, were completely unknown to teachers, who only 

gradually learned the achievement differences as the number of observations increased. At the 

end, teachers' average judgments reflected these differences quite accurately. But still, 

existing contingencies were manifested more clearly for those student pairs for which teachers 

had gathered large rather than small samples. Thus, when learning and memory are taken into 

account, contingency assessment seems to obey the same monotonic laws as all learning. 

Note, however, that these findings from the simulated school-class differ in one crucial 

respect from the binary-choice situation of Figure 3. The teachers' judgment task is basically 

an estimation task rather than a choice task. Teachers estimate the proportion of correct 

answers they have received from different students, and the greater accuracy observed with 

larger samples refers to deviations of estimates averaged across teachers. There is little doubt 

that large samples lead to more accurate estimates than small samples, as evident in the lesser 

dispersion of the large-sample distribution in Figure 3. For a direct test of the possibility of a 
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small-sample advantage, one would have to analyze the teacher's pairwise choices between 

students in task contexts that call for a marked decision threshold.  

Related to the distinction between estimation and choice is Hogarth and Einhorn's 

(1992) distinction between continuous updating and end-of-sequence judgments. The 

teachers' evaluation task involves continuous updating over time. Information sampling never 

comes to an end, rendering it quite unlikely that a finite sample is ever compared to a 

threshold. Continuous-updating is easily interpreted as an estimation task but hardly ever 

involves discrete choices. According to the model in Figure 3, any advantage of small 

samples should be more apparent in task settings that call for end-of-sequence judgments or 

choices based on the comparison of finite samples with a threshold or standard (e.g., deciding 

whether Student A is better than B, or exceeds some graduation threshold). 

Evidence From Computer Simulations and Pertinent Experiments 

In any case, it would appear to be an open empirical question, rather than a logical 

impossibility whether, under specific conditions, an advantage of small samples may survive 

the cognitive decision making process. The remainder of this paper is devoted to exploring 

this question. First, a straightforward computer simulation of the sampling stage is presented, 

based on the aforementioned definitions of hits and false alarms in a satisficing model. In a 

second results section, computer simulations of the cognitive decision-making stage are 

reported, using a simulation model (Fiedler, 1996) that orignally served to demonstrate the 

superiority of large samples in associative learning. The remainder of the article is then 

devoted to a comparison of  the major simulation results with empirical evidence from several 

experiments involving binary choice, in which sample size was manipulated.   

Simulation of Sampling Stage 

Although the small-sample advantage depicted in Figure 3 exists on purely logical 

grounds – under auspicious conditions – the following computer simulation is quite 

informative about the quantitative degree of the less-is-more effect and its parametric 
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boundary conditions. The simulation approach was simple and straightforward. The model 

was confined to dichotomous variables. We used ∆, rather than ρ, because ∆ is the normative 

measure of contingency between binary variables, as well as less vulnerable to small cell 

frequencies and ∆ provides a natural model of a choice task, based on the comparison of the 

success rate of two options A and B (i.e., two conditional probabilities). The population 

correlation was represented as a 2 x 2 table containing 1000 observations. For instance, to 

represent ∆ = .20, the population would include a = 300 positive outcomes for option A, b = 

200 negative outcomes for A, c = 200 positive outcomes for B, and d = 300 negative 

outcomes for B, yielding ∆ = a/(a+b) – c/(c+d) = 300/(300+200) – 200/(200+300) = .6 – .4 = 

.2. To represent ∆ = .10, the respective distribution of cases in the total population would 

include a = 275, b = 225, c = 225, and d = 275. For simplicity, and similarity with Juslin and 

Olsson’s (2004), we used only equal marginal distributions, such that (a+b) = (c+d), and 

symmetrical correlations, such that (a–b) = (d–c). In this case, ∆ is identical to ρ. For 

asymmetrical cases, ρ is the geometric mean of the two measures ∆ and ∆' that result when 

either the two row proportions or the two column proportions are compared, respectively.  

The sampling simulation involved drawing repeated random samples (with 

replacement) of a given size n from the N = 1000 cases comprising each population (i.e., each 

level of ∆) and assessing the sampling distribution of the resulting estimates ∆sample across a 

total of 10000 trials. Five contingency levels were included (∆ = .1 vs. .2 vs. .3 vs. .4 vs. .5); 

samples size varied from n = 4 to 8 to 16 to 24 to 32. For convenience, the sign of the actual 

contingency was always positive so that hits were defined as observed contingencies that 

exceed the positive threshold (∆sample > +c), whereas false alarms were defined as ∆sample < –c. 

The range of possible contingencies (–1.0 to +1.0) was subdivided into 21 categories (–1.0 to 

–.9; –.9 to –.8, ..., up to +.9 to +1). The boundaries of these categories can then be used to 

analyze the impact of different decision thresholds c, by considering the cumulative frequency 
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of cases falling in categories that are as extreme as or more extreme than c. The hit rate is the 

summed frequency of all categories > +c, whereas the false-alarm rate is the summed 

frequency of all categories < –c. Because the total number of simulated cases is 10000, the hit 

and false alarm rates in Table 1 can be interpreted on an "out of ten thousand" scale. The table 

covers a subset of data for three contingency levels, ∆ = .1, .2, and .4.  

In general, across all levels of ∆, c, and n, hit rates are higher than false-alarm rates, 

and, at all c and ∆ levels, both hits and false alarms are more frequent for small than for large 

samples, reflecting the higher dispersion of the sampling distribution. More importantly, 

Table 1 reveals that when the decision threshold c is higher than ∆, the advantage of small 

samples in terms of hits is typically larger than the disadvantage in terms of false alarms, as 

anticipated analytically in Figure 3. For instance, given ∆ = .1, at criterion levels higher than 

|c| = .4 (i.e., above the dotted line), the difference between hit and false alarm rates (i.e., 

between adjacent columns) decreases from left to right with increasing sample size.  

To render this small-sample advantage more visible, the graphs in Figure 4 show the 

differential frequencies of hits minus false alarms of all sampled contingencies exceeding 

particular levels of c. Different charts are included for different ∆ levels. In fact, the 

preponderance of decreasing curves indicates that over a wide range of the parameter space, 

the difference of hits minus false alarms decreases with increasing sample size – if the 

threshold c is strong enough. The small-sample advantage also depends on ∆, showing a 

maximum at intermediate ∆ levels. At the upper end of contingency strength (∆ = .5) the 

curves become flatter, but accuracy is rather high anyway, regardless of sample size. At the 

lower end (∆ = .1), the paucity of systematic variance weakens small samples more than large 

samples; a small-sample advantage is only visible for extremely high values of c. Note that 

the lines hardly ever increase (i.e., hardly ever exhibit an advantage of the larger samples). 

We deliberately exclude the ∆ = 0 case, because if ∆ = 0 any decision would be equally 
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"correct" or satisficing. Thus, although given ∆ = 0 small samples lead to more ∆sample > c 

cases than large samples, those "alarms" need not be considered wrong decisions. In any case, 

computer simulations demonstrate quite impressively that over a wide area of the parameter 

space small samples outperform large samples, and are hardly ever outperformed, when 

decision processes follow the assumptions of the threshold model depicted in Figure 3. 

Simulation of Sample-Based Decisions 

Let us now turn to the issue of whether any small-sample advantage can survive the 

cognitive process stage. Computer simulation can again answer the basic question of whether 

algorithms exist at all that produce better decisions from small than from large samples. 

However, while the simulation of drawing a sample from a universe was straightforward, 

simulating the cognitive process in the decision maker would appear to be more difficult. It is 

nevertheless quite easy to simulate a mental operation that corresponds to the ∆ interpretation 

of a contingency: Scan the data base for all information relevant to a decision option A and 

sum over all associated evaluations. Then repeat the same operation for option B. The 

difference between the two summed evaluations affords a measure of ∆.  

Exactly such an evaluative comparison underlies a simple connectionist feedforward 

model called BIAS (Fiedler, 1996), which has been shown to account quite well for the 

cognitive process of contingency assessment (Fiedler, 2000; Fiedler, Kemmelmeier & 

Freytag, 1999) and which was also used for the present study. The algorithm used for the 

BIAS simulation of contingency assessment is explained in Figure 5. All information is 

represented distributively, using 12-element vectors or patterns of binary features to denote 

variable levels. The ideal types on the left side of Figure 5 indicate the patterns denoting 

options A versus B, and positive (☺) versus negative ( ) evaluation. Each bivariate 

observation is a concatination of an option vector with an evaluation vector, however, 

degraded by a proportion of inverted vector elements reflecting noise. The first 12 columns of 

the matrix in Figure 4 represent observations that resemble the ideal combination of A (in the 
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upper segment) and ☺ (lower segment), though they are not identical to the ideal type. The 

respective numbers of items in each column block represent the distributions of a = 12, b = 6, 

c = 6, and d = 12 items in a 2 x 2 contingency table. The noise factor is introduced to 

acknowledge that some information is lost, either in the environment, or in memory.  

Given such a representation of (degraded) stimulus information about an observed 

sample contingency, the simulation of a ∆-like algorithm proceeds as follows. For an overall 

evaluation of option A, the ideal type of A is used as a prompt and compared to all column 

vectors (in the upper segment). The degree of match, defined as the dot product between the 

prompt and all column vectors, is computed and each column is weighted (i.e., multiplied) 

with this dot product. This amounts to amplifying items which resemble A and reducing items 

unrelated or dissimilar to A; if a dot product is negative, the item weight is actually reversed. 

The weighted matrix is then summed across all columns and the evaluation segment of the 

resulting sum vector (i.e., the bottom segment) is correlated with the ideal type for positive 

evaluation. To the extent that the resulting correlation is positive, the evaluation of A can be 

assumed to be positive; a negative correlation with the ideal pattern of positivity indicates 

negative evaluation. The evaluation for option B is then computed in the same fashion, and 

the difference between the two resulting evaluative correlations for A and B provides the 

simulated measure of the contingency, quite analogous to ∆.  

Using this algorithm, the simulation routine again started with a population defined by a 

1000-cases 2 x 2 table, from which random samples of n cases were drawn. The resulting 

sample of a + b + c + d = n observations for all combinations of A vs. B and ☺ vs.  were 

translated into vectors composed of the corresponding ideals. A proportion of i vector 

elements were then reversed; the noise parameter was manipulated (i = .1 vs. .2 vs. .3) to 

simulate different degrees of noise in the environment. The algorithm described above was 

then applied to compute the subjectively experienced contingency ∆est arising from the given 

sample drawn from an environment with a given ∆. This procedure was repeated 10000 times, 
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starting with new random vectors for the ideal types and different random productions of 

noise. Separate simulation series were run for different ∆ values, samples sizes n, and noise 

parameters i. In each case, the 10000 simulated contingency judgments were then compared 

to varying decision thresholds c, to capture the rate of resulting hits and false alarms.  

Figure 6 portrays the major results analogous to the sampling stage results in Figure 4. 

Again, it is evident that some of the curves exhibit a descending trend, indicating the 

possibility that under certain conditions the small sample advantage can even survive a 

cognitive process that underlies the constraints of monotonically increasing learning 

functions. To be sure, the residual small-sample advantage is clearly lower than for the 

environmental sampling stage. However, within reasonable confines, small samples still exert 

their assets. When the actual contingency is different from zero but not too high, when the 

noise parameter is low, and when the decision threshold c is substantial, small samples' 

tendency to increase the hit rate is stronger than their tendency to increase the rate of false 

alarms. Large samples, in contrast, demonstrate their superiority when c becomes lower and 

when the proportion i of noise in the system increases.  

Discussion. This pattern, encountered in many related simulations, offers an account for 

the boundary conditions under which use of small samples has an advantage. Whenever 

behavioral choices are contingent on an evidence threshold that is high enough and when 

there is not too much information loss or unreliability in the data, then small samples are the 

equal of large samples, or even outperform them. This notable advantage of small samples is 

most visible for moderate contingency values between ∆ = .1 and ∆ = .3. However, it does not 

strongly depend on the value of ∆, as very high ∆ values produce a ceiling effect (i.e., hardly 

any false alarms) and ∆ = 0 renders any decision satisficing. However, for lower decision 

thresholds (i.e., when a growing proportion of the entire distribution of outcomes leads to 

decisions) and for higher noise ratios (i.e., when the aggregation effect of large samples 

cancels out errors), the "normal" advantage of large samples is borne out inevitably.  
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It should be noted what these parameter boundaries mean, psychologically. High 

decision thresholds – the domain where small samples “excel” – can be expected to be 

applied to important decisions, that is, when significant consequences are at stake. 

Fortunately, the buffering function of a high threshold protects the organism under such 

problem conditions from too many false alarms and thereby warrants high success rates based 

on small samples. Another advantage may be that small samples increase the likelihood that 

action can be taken anyway, because the sampled evidence exceeds the threshold. Not being 

paralyzed in a passive, inactive state, may be of high functional value. However, the 

advantage of small samples for important decisions is lost when there is too much noise. 

When input data are invalid or unreliable, or likely to be lost in memory, this will be most 

detrimental for decisions based on small samples, whereas increasingly larger samples serve 

to filter out noise and to extract the systematic variance even under such conditions.  

Thus, an organism that is about to profit from the small-sample advantage runs the 

danger of committing consequential mistakes in noisy environments. It is therefore of utmost 

importance for organisms to recognize the amount of noise in the input and to adjust sample 

size accordingly. Organisms that lack this sensitivity for the degree of noise will probably fail. 

Therefore, individual differences in decision-making ability may reflect to a larger degree 

performance with small samples than with large samples or, conversely, the superiority of 

good inductive decision makers should be manifested mainly on small-sample tasks.  

Other inductive tasks 

Before we turn to empirical results from decision-making experiments, it should be 

mentioned that the circumscribed small-sample advantage is not peculiar to the standard 

contingency paradigm alone, but is a general feature of inductive inferences in different 

paradigms, such as the detection of elementary proportions or conditional probabilities. For 

the purpose of the present article, let us briefly consider one other inductive task that might be 

called competing-tendencies. Competing-tendency tasks are structurally similar to the 
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assessment of contingencies, but distinct in lacking dimensional constraints. An implicit 

assumption in the 2 x 2 structure in Figure 2 is that the two levels of each dichotomous 

variable are mutually exclusive. An observation pertains either to Student A or to B; it is 

either correct or incorrect, such that the sum of all four frequencies in the 2 x 2 table amounts 

to the total number of observations. Observed outcomes (+ and –) refer exclusively to one 

student. Such exclusiveness constraints do not hold for many real-world tasks that call for a 

choice between competing but not mutually exclusive tendencies. For instance, with regard to 

professional choice, Student A may have two competing interests, biology and medicine. A 

counselor wants to find out which tendency is stronger. However, biology and medicine are 

not mutually exclusive; they overlap in contents. Any evidence that the student is interested in 

biology also provides some evidence for interest in medicine. Observations about the two 

tendencies are not additive, due to overlap. Many real-world decisions and choices fit the 

competing-tendency structure rather than the idealized case of strictly complementary 

dichotomies: What’s the degree of interest in related professions? How much do I like 

different friends from the same group? How dangerous are various risks associated with the 

same environmental causes? What political goals are most important? Is the patient manic or 

depressive? Although competing tendencies in these decision problems do not exclude each 

other and mutually imply each other, they differ in strength and adaptive behavior calls for the 

assessment of the relative strength of competing tendencies.  

Within this problem context – which may be much more common than it is prominent 

in statistics books – another advantage (and disadvantage) of small sample size becomes 

apparent. It can be shown that although large samples maximize the assessment of both (all) 

tendencies that are at work, small samples often differentiate better between strong and weak 

tendencies – which is crucial for making choices. This is because, over a wide part of the 

parameter space, insufficient learning due to paucity of observations hampers the assessment 

of weak tendencies more than the assessment of strong tendencies, which do not require large 
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samples. The ironic consequence is that small samples may allow for better discrimination 

than large samples, as illustrated in the difference between two learning curves – one easy to 

learn and one hard to learn – in Figure 7. Learning of the hard-to-discern tendency is retarded, 

that is, the lower curve starts to rise later, has a lower slope, and takes more trials to reach the 

asymptote. As one can easily see, the difference between the strong and the weak tendency is 

most pronounced for small and medium numbers of trials and diminishes gradually as the 

weak tendency is also understood after a large number of trials.  

For a simple computer simulation, the BIAS model (Fiedler, 1996) was used once more. 

Each of two of competing tendencies, U and V, was represented by a 12-element binary 

vector, but the last six elements of the vector defining tendency U was identical to the first six 

elements defining tendency V. Consider the case when there are 5 observations for U and 3 

observations for V. As already shown in Figure 5 above, BIAS adds a new column vector for 

each of the 8 observations to a stimulus matrix, in which the upper 12 rows represent the one 

(stronger) and the last 12 rows represent the other (weaker) tendency. However, due to the 

overlap, the total number of rows is not 24 (2 times 12) but only 18, because the middle six 

elements overlap. Thus, as a column vector for an U observation is appended in the upper 

segment, six of the 18 elements provide overlapping information about V in the lower 

segment, and vice versa. For each learning trial, again, we did not append a perfect copy of 

the U or V vector, but a noisy copy in which a proportion of i = .1, .2 or .3 elements had been 

inverted. To quantify learning strength, again, the vector defining a particular tendency was 

used as a prompt (i.e., each matrix column was weighted by its similarity (dot product) with 

the ideal tendency vector in the respective segment), and the resulting sum across all columns 

(in the segment of the tendency) was compared (i.e., correlated) with the ideal vector. To the 

extent that the resulting correlation approaches unity, the respective tendency has been 

learned perfectly. However, note that observations of one tendency will also influence the 

computation of the learning of the other tendency, due to overlap in the middle elements.    
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Figure 8 summarizes the major results, with reference to differential learning (i.e., the 

difference between learning the dominant and the inferior tendency). The dominance of one 

tendency over the other was varied from a ratio of 5:3 observations, respectively, to 6:2 to 

7:1. The total number of observations (sample size) varied from n = 8 to 16 to 24 to 32 

(multiples of 8 to conserve the above dominance ratios).  

Figure 8 shows that differential learning decreases from small to large samples. 

Although learning of both tendencies increases slightly with sample size, the dominance of 

one tendency over the other decreases as learning proceeds, from 8 to 16 to 24 to 32 

observations. This is evident in the number of simulation trials on which the learned 

difference between dominant tendency ("hits") and inferior tendency ("false alarms") exceeds 

various thresholds. As in the preceding simulations, the small sample advantage increases 

from lower to higher thresholds. It is also apparent that a rather low threshold of c = .2 is 

already sufficient to establish equality or even a small-sample advantage.  

 

EXPERIMENTAL EVIDENCE FOR DECISIONS BASED ON VARYING NUMBERS OF 

OBSERVATIONS 

Thus far, we have provided an algorithmic proof of existence for the seemingly 

paradoxical claim that, under specific conditions, small samples can lead to better decisions 

than larger ones. We have described a decision-threshold model from which the small-sample 

advantage can be deduced analytically, and have presented the results of simulation studies 

demonstrating that this curious advantage covers a considerable part of the relevant parameter 

space. Moreover, our simulations have shown that this phenomenon is not confined to the 

statistical sampling stage but can even survive the learning and memory processes in a human 

decision maker. Now the crucial question that suggests itself is whether this conclusion can be 

substantiated in real decision-making experiments. What empirical evidence is there for the 
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less-is-more effect for the impact of the parameters that were shown to moderate the 

advantages and disadvantages of small and large samples in computer simulations?   

To be sure, an existence proof was already provided by Kareev (1995), showing that 

reduced information samples can in principle improve correlation assessment and subsequent 

decisions. In the present article, we report some preliminary evidence that expands the scarce 

evidence that exists on this intriguing topic  (e.g., Kareev et al., 1997), and also explore some 

of the parameters or boundary conditions that simulations have shown to affect the optimal 

samples size. At the moment, we cannot provide truly comprehensive experimental evidence 

for the full parameter space used for the simulations – covering three levels of noise x six 

degrees of contingency x six samples sizes x multiple decision thresholds. Collecting such 

data would not only require a long-term research effort, but also presupposes ingenious means 

of manipulating the parameters directly or indirectly. However, in a few experiments we have 

already conducted we have included manipulations that can be clearly interpreted in terms of 

specific parameters. Altogether, these experiments corroborate the claim that small samples 

can be superior within the confines derived from the present model. Moreover, even under 

conditions in which performance with small samples were inferior, the differences were 

typically very modest. Thus any decision framework that also takes information costs – in 

terms of collecting it and deferred decisions – into account, in addition to correctness of 

decisions, will thus have a hard time to justify the investment in large samples.  

Experiment 1 

The task situation and stimulus materials used for this and the next two experiments 

were identical to the illustrative example used at the outset of this article. Experimental 

participants were presented with series of smilies and frownies, symbolizing positive and 

negative consumer reactions to a pair of products. Each trial was defined by four frequencies 

representing the respective numbers of smilies and frownies associated with two products to 

be compared, analogous to the 2 x 2 frame in Figure 2. Experiment 1 involved all six pairwise 
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comparisons that can be formed from a set of four products for which small samples were 

available (i.e., smily-frowny distributions of 6:2, 5:3, 4:4, 3:5). In addition, six pairs were 

formed from four other products characterized by the same ratios of smilies and frownies but 

twice as large samples (i.e., 12:4, 10:6, 8:8, 6:10). The contingency judgment task simply 

consisted of choosing the more preferred product from each pair. We were interested in 

whether preference decisions based on paired comparisons between small-sample products 

were more or less likely to be accurate than preference decisions based on larger samples 

representing exactly the same underlying contingencies.  

Two different modes of stimulus presentation were used in two experimental groups, 

supposed to affect difficulty of encoding and two relevant model parameters. In the 

successive-presentation condition, all smilies and frownies pertaining to one target product of 

a pair were first presented, one at a time, on the left half screen (shaded in turquoise), before 

the smilies and frownies for the other product appeared on the right half screen (shaded in 

pink). In the simultaneous-presentation condition, the two sub-samples were intermingled, 

with smilies and frownies for both products (also projected on the left and right half screen) 

occurring in random alternation. This manipulation should affect the relative efficiency of 

small versus large samples for two reasons. First, simultaneously presented stimuli should be 

more difficult to encode and thus increase the degree of noise, as evident in reduced overall 

performance. However, apart from this main effect (or manipulation check), the higher noise 

level should create a relative advantage for large over small samples. Second, simultaneous 

presentation might force participants to draw decisions under higher uncertainty, that is, to 

admit a more lenient decision criterion, or threshold. Confidence and latency data should 

provide a check on the viability of this assumption. Both assumptions together, higher noise 

and lower confidence after simultaneous than after successive presentation, predict a relative 

advantage of large samples after simultaneous presentation and a relative advantage of small 
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samples after successive presentation of the two subsamples. The major theoretical prediction, 

therefore, was that of a presentation mode x sample size interaction.  

Method 

Participants and Design. Thirty male and female students of psychology and other 

subject matters participated at the University of Heidelberg either for payment or to fulfill a 

study requirement. They were randomly assigned to one of two experimental groups 

representing the mode of presentation factor (simultaneous vs. successive). The second design 

factor, sample size (large vs. small), was manipulated within participants. 

Materials and Procedure. The entire experiment consisted of 22 contingency tasks, 

each describing several judges' positive or negative evaluations of two fictitious movies. For 

convenience, let the two movies be denoted A and B and positive (smilies) and negative 

reactions (frownies) be denoted + and –, respectively. Contingency assessment thus amounts 

to comparing the proportion of positive reactions to A and B; ∆ = p(+/A) – p(+/B). As already 

mentioned, the computer screen was partitioned vertically into two halvess, shaded constantly 

in turquoise and pink. The names of the two target movies (i.e., meaningless alphanumerical 

labels) were presented at the top of the left and right half screens, and smilies and frownies 

appeared in randomly varying locations within the left (A) and right (B) half screen. The 

stimulus frequencies as well as the mode of presentation were manipulated. Immediately after 

all smilies and frownies for a given pair of movies had been presented, participants had to 

make a choice, using the left or right arrow key, as to which movie received the more 

favorable evaluation. Decisions latency and subjective confidence (indicated by moving the 

computer cursor on a 42-digit horizontal graphical rating scale) were also measured. No 

feedback was provided after each trial, but participants received a tabular feedback of their 

trial-by-trial performance at the end of the experiment, as part of the general debriefing. 

Minimal instructions used a cover story saying that consumer evaluations are often quickly 

conveyed by symbols and that the present study is concerned with the ergonomic value of two 
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quite natural symbols, smilies and frownies, thought to convey valence quite effectively. They 

were asked to work as carefully as possible, for the sake of the scientific investigation. 

The contingency tasks were constructed by pairing two sets of four movies, each 

characterized by a specific distribution of smilies and frownies. For one set, small samples 

were available: 6+/2–,  5+/3–, 4+/4–, 3+/5–. For the other set, the same +/–  proportions held, 

but samples were twice as large: 12+/4–,  10+/6–, 8+/8–, 6+/10–. The entire set of 22 trials 

included all six contingencies that could be formed from small samples (presented in 

positions 1, 6, 11, 15, 17, 19), six paired contingencies from large samples (in positions 3, 7, 

14, 16, 18, 22), and the four contingencies relating small and large samples sharing an equal 

ratio (e.g., 6+/2– vs. 12+/4–). The remaining eight contingencies involved comparisons 

among small and large samples reflecting unequal but similar ratios (e.g., 6+/2– vs. 10+/6–). 

Only the first two sets of paired-comparisons are of interest for the present purpose.  

Each trial started with the two half screens assuming their color and the names of the 

two movies being inserted at the top of the two half screens. All smilies and frownies 

pertaining to the same movie appeared at once. In the successive-presentation condition, the 

subsample for the left film was presented before the subsample for the other movie on the 

right. In the simultaneous-presentation condition, symbols pertaining to both movies 

(presented on different sides of the screen) appeared at the same time.  

Results and Discussion 

For a sensible and statistically quite powerful comparison of binary decisions based on 

small and large sample contingencies, we aggregated the performance across all six paired 

comparisons between small-sample targets and across all six paired comparisons between 

large-sample targets. The proportions of correct decisions (i.e., favoring the movie with the 

higher proportion of smilies) for comparisons of small and large sample contingencies, 

respectively, yielded two repeated measures to be analyzed in a two-factorial ANOVA, 

together with the between-participants factor, mode of presentation. Table 2 gives the relevant 
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means as a function of experimental conditions. Two significant effects emerged. A 

presentation mode main effect, F(1,28) = 8.58, p < .01, confirmed that simultaneous 

presentation causes more cognitive load and reduces overall performance. Pooling over 

sample sizes, the respective proportions of correct choices are .76 for successive and .53 for 

simultaneous presentation. This preliminary finding is consistent with the premise that 

simultaneous presentation serves to induce a higher degree of noise that should give a relative 

advantage to large samples. In contrast, successive presentation should serve to lower noise 

and should support a decision process that requires a binary choice between two coherent 

subsamples, presented one at a time, rather than a continuous updating of two parallel 

estimates. Consistent with this assumption, indeed, a significant disordinal interaction, 

F(1,28) = 9.27, p < .01, reflects better performance on small samples (.82) than large samples 

(.71) after successive presentation, but an advantage of large samples (.64) over small samples 

(.42) after simultaneous presentation. There was no sample-size main effect, F(1,28) = 1.03.  

An analogous ANOVA on decision latencies corroborates the assumption of more 

uncertainty induced by simultaneous (M = 2.80) than successive presentation (M = 1.55), 

yielding a presentation mode main effect, F(1,28) = 9.80, p < .01. Latencies were also 

generally longer for small (2.37) than for large samples (1.98), F(1,28) = 9.89, p < .01. A 

sample size x presentation mode interaction, F(1,28) = 4.64, p < .05, reflects a stronger 

influence of presentation mode for small than for large samples (see Table 2).  

The ANOVA of confidence ratings produced only one significant main effect – that for 

sample size, F(1,28) = 7.88, p < .01, indicating generally higher confidence when decisions 

were based on large (M = 25.29) than on small samples (M = 24.20), regardless of 

presentation mode. Although simultaneous presentation induced somewhat lower confidence 

(M = 24.08) than successive presentation (M = 25.40), the corresponding main effect fell 

short of significance, F(1,28) = 2.79, p = .102, suggesting that subjective confidence was not 

very sensitive to the between-participants manipulation of presentation mode.  
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Altogether these findings are consistent with the contention that small samples are not 

generally inferior to large samples. Small samples can even be superior under specific 

conditions, and the (relative) advantage of small samples can survive the cognitive laws of 

learning and memory. As predicted by the simulation results, small samples unfold their 

relative assets under conditions that keep information loss, or the noise factor in learning and 

memory, at a relatively low or moderate level. As noise increases and cognitive performance 

declines, the advantage of small samples is overridden by the aggregation advantage of large 

samples, which are needed for a difficult learning process.  

The present preliminary study does not speak to several other parametric implications of 

our threshold-based decision framework. As to the ∆ parameter, a within-participants 

comparison of different contingency levels would have lacked statistical power, given that 

each participant was only exposed to a single contingency at each level of ∆ and sample size. 

Moreover, no evidence was obtained for the decision criterion c, which can be hardly 

manipulated in a straightforward fashion. To analyze the impact of c statistically, one would 

have to compare judgments based on different confidence levels, which again calls for a 

larger number of judgments within participants. In two other experiments, we therefore 

increased the number of data points by exposing each participant to 120 contingency 

judgment trials (40 at each level of ∆) in an attempt to base the empirical results on more solid 

ground and to learn more about the moderating role of the model parameters.  

Experiment 2 

The same basic task situation was used as in Experiment 1, except for the following 

notable changes. First, the stimulus series included 120 trials, 20 for each combination of 

sample size and ∆. Second, a generally higher sample size range appeared appropriate given 

that performance in (the simultaneous condition of) Experiment 1 was hardly above chance 

level and self-determined sample length under the present task conditions turned out to be 

larger than 20 observations (see Experiment 3). Sample size was therefore manipulated to 
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vary between two fixed levels, 16 versus 32 observations. Third, the 120 contingency tasks 

were not based on fixed 2 x 2 distributions, but each trial involved a new random sample 

drawn from three 1000-items populations representing true contingencies of ∆ = .1 or .2 or .4, 

respectively. Thus, unlike Experiment 1, the environmental sampling stage was not cut short, 

but the effective stimulus input was allowed to vary like true random samples of a given size.  

Finally, four different presentation modes were used in different experimental groups, 

resulting from the combination of two binary factors, whether each presented smily or frowny 

was erased before the next symbol versus all smilies and frownies of a sample remained on 

screen, and whether the two subsamples (for the two products) appeared successively on the 

two sides of the screen versus simultaneously, with smilies and frownies from both 

subsamples appearing in randomly alternating fashion. Recall that in Experiment 1, the 

relative advantage of small samples had been confined to the successive presentation mode, 

which was interpreted in terms of reduced noise. If this interpretation is correct and small 

sample do not profit from a specific presentation mode per se, generally higher performance 

in Experiment 2 (due to larger samples eliminating noise) would speak against the contention 

that the small-sample advantage is peculiar to the specific case of successive presentation. 

Method 

Participants and Design. Ninety-two male and female students at the University of 

Heidelberg participated, either for payment or to meet a study requirement. They were 

randomly assigned to four experimental groups resulting from the manipulation of two 

between-participants factors, presentation time (symbols remain on screen vs. disappear) x 

order (successive vs. simultaneous). Two further factors were varied within participants, 

sample size (small = 16 vs. large = 32) and contingency level (∆ = .1 vs. .2 vs. .4).  

Materials and Procedure. The task situation and instructions were similar to those used 

in Experiment 1. Participants were told that each trial consists of smilies and frownies 

(reflecting positive vs. negative evaluations, respectively) associated with two products, 
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represented by two 5-digit strings on the two sides of the screen. The task was to make a 

decision as to which product is superior, in terms of the relative proportion of smilies in the 

population. Participants were explicitly told that stimulus samples were drawn from a larger 

population and that making a correct decision was defined in terms of a correct inference from 

the sample to the population. After each sample contingency was presented, participants could 

choose between three response options: Pressing the left arrow key on the keyboard to decide 

for the left product, pressing the right arrow key to decide for the right product, or pressing 

the downward key to indicate that no difference was discerned.  

During a 2000 ms inter-trial interval the screen remained black. After the two sides of 

the screen assumed their color shading and the product labels were inserted at the top, similies 

and frownies appeared at a rate of 400 ms per symbol in random locations of the appropriate 

half screen. In the successive presentation-order condition, the left subsample was completed 

before the right subsample was started. In the simultaneous presentation-order condition, all 

items from both samples appeared in random order. In the symbol-erase condition, each 

smiley or frowny was erased immediately after its presentation period. In the symbol-remain 

condition, all previously presented symbols (on either side of the screen) remained on screen 

until the sample was complete. Then, however, all smilies and frownies were erased as the 

prompts for the three response options were inserted, in order to prevent participants from 

counting the symbols on the screen. If one of the two products was chosen, participants were 

also asked to indicate their confidence on a four-point scale ranging labeled 1 = very 

uncertain, 2 = hardly certain, 3 = quite certain, 4 = very certain. Each participant was paid 

2.50 Euro plus five cent for each correct decision minus five cent for each wrong decision. 

The amount won or lost was doubled on trials with a confidence level of 3 or 4.  

The presentation order of the 120 trials was randomized within participants. The 20 

samples for each combination of sample size n (16 or 32) and ∆ (.1 vs. .2 vs. .4) were drawn 

randomly, with replacement, from a 1000-item population (e.g., including, for ∆=.2, 300 
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smilies vs. 200 frownies for one product and 200 smilies vs. 300 frownies for the other 

product). Out of these 20 contingencies per condition, the actually superior product appeared 

on the left side on 10 trials, whereas on the other 10 trials the superior product appeared on 

the right side. The population distributions were always symmetrical (i.e., 275, 225, 225, 275 

vs. 300, 200, 200, 300 vs. 350, 150, 150, 350 for ∆ = .1, .2, and .4, respectively). The starting 

value for the computer’s random generator was reset for each participant.  

Results and Discussion 

Hits and False Alarms in Large and Small Samples. For an initial check on the premise 

of the decision-threshold approach, we first inspected the effective stimulus contingencies that 

provided the input to the cognitive decision task, that is, the distribution of hits and false 

alarms produced by small and large samples at different ∆ levels, as a function of variable 

decision thresholds c. Table 3 shows that, consistent with earlier simulations, small samples 

produced more hits than large samples, especially when the decision threshold c is moderate 

or high. Small samples also produced more false alarms than large samples, to be sure, but the 

false alarm costs were often smaller than the hit benefits, provided c is at least .4 or .5. This 

small-sample advantage at the sampling stage occurs if, and only if, the threshold c is higher 

than the actual contingency ∆ in the population.  

Correctness of Decisions. Let us now look at whether the original diagnostic value of 

small samples may, at least under specific conditions, survive the cognitive decision stage in 

human decision makers. We first consider the overall correctness rates across all experimental 

conditions, regardless of subjective confidence and the presumed decision threshold. Even at 

this crude level of analysis, small samples already fare quite well, both absolutely and relative 

to large samples. Across all 92 participants of all four presentation mode conditions, the 

average within-participant correlation between the contingency-based decision (counting –1 

and +1 for right and left product choices, respectively) and the actual population contingency 

(∆ varying from –.4 to –.2 to –.1, when the right product was superior, to +.1 to +.2 to +.4, 
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when the left product was superior) amounts to r = +.72 for large samples and r = +.62 for 

small samples, reflecting remarkable sensitivity to the choice implicated by environmental 

contingencies in a modest range. The respective average (within-participants) correlations 

between decisions and the contingencies manifested in the sample was .80 for large samples 

and .77 for small samples. These preliminary data also testify to the generally high motivation 

of the participants and the general reliability of the whole data array. 

For a more systematic analysis of decision accuracy, still across all trials, regardless of 

decision threshold, we computed two indices within each participant and separately for each 

sample size x contingency level condition. The first index, correctness, is simply based on 

coding correct and incorrect decisions +1 and –1, respectively, and computing the average 

value on this scale, across all trials where a decision has been made. The second score, 

confident correctness, uses the same positive and negative coding for correct and incorrect 

decisions, respectively, but weighted by the corresponding confidence level. Accordingly, this 

score can vary between –4 and +4. Table 4 gives the means of both indices as a function of 

experimental conditions, together with other relevant statistics.  

The overall level of accuracy is clearly evident in the positive range, suggesting that our 

attempt to raise performance above chance was successful. One can also see from Table 4 that 

correctness increased markedly with contingency levels. Correctness was consistently slightly 

higher for large than for small samples, although the difference was only in the range of .1 on 

the –1 to +1 correctness scale. A similar pattern was obtained across all presentation mode 

conditions (see Table 4). For the Successive/Symbol-Remain, Simultaneous/Symbol Remain, 

Successive/Symbol Erase, and the Simultaneous/Symbol Erase conditions, respectively, both 

a very strong contingency level main effect, F(2,44) = 106.57, 96.16, 71.61, and 88.80, all p < 

.001, (in the same order) and a significant sample-size main effect F(1,22) = 7.02, 21.72, 

15.54, and 27.37 were obtained. A modest interaction term was found in two of the four 

analyses (Remain / First Left), F(2,44) = 4.34, p < .05, and Successive/Symbol Erase, F(2,44) 
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= 3.58, both ps < .05), mainly reflecting a ceiling effect for almost perfect performance at ∆ = 

.4. When the two presentation mode factors were included in the ANOVA, no interaction 

emerged between the two main effects for sample size and contingency level and any 

presentation mode factor, suggesting a fairly general pattern.  

Even at this overall level of analysis, independently of decision threshold, the accuracy 

obtained by increasing samples from 16 to 32 items was only modest. Given as many as 20 

contingencies of the same type within participants, it is interesting to look at inter-individual 

differences. The number of participants out of 92 whose average performance was not higher 

for large than small samples was 36 at ∆ = .1, 22 at ∆ = .2, and 36 at ∆ = .4. Note that it is 

uncontestable that accuracy increases with sample size when all trials are included (except for 

a few non-decisions), regardless of decision threshold. Nevertheless, the present results 

demonstrate that even this advantage is only modest and absent altogether in about one third 

of individual judges, in spite of a rather large number of observations within judges.  

Subjective Confidence. Before we consider the analysis for confident correctness (i.e., 

correctness scores weighted by confidence), let us look at the pure confidence measures. In 

general, mean decision confidence increased from ∆ = .1 (M = 2.80) to .2 (M = 2.93) to .4 (M 

= 3.33), as reflected in a contingency level main effect, F(1, 176) = 219.567, p < .001, in a 

four-factorial overall ANOVA. The sample size main effect was also significant, F(1,88) = 

4.91, p < .05, reflecting somewhat higher confidence with small (M = 3.05) than with large 

samples (M = 2.98). The contingency level x sample size interaction, F(1,176) = 12.47, p < 

.001, indicates that the enhanced confidence for small samples is confined to ∆ = .1 to .2 and 

disappears for ∆ = .4. The relatively high confidence of small-sample decisions is consistent 

with the notion that small samples often provide a clearcut picture of evidence that can be 

assumed to often exceed some decision threshold – whatever the value of that threshold is. 

The only other significant result was due to higher confidence for remaining rather than 

removed samples, F(1,88) = 8.18, p < .01. We refrain from discussing this plausible finding.  
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Confident Correctness. Accordingly, weighting the correctness scores by subjective 

confidence should strengthen performance for small samples, relative to large samples. 

Indeed, the sample-size main effect was weaker and no longer significant in the ANOVA for 

the Symbol Remain / First Left condition, F(1,22) = 3.20. For the other three presentation 

mode conditions, the sample size main effect was significant, F(1,22) = 13.10, 9.68, and 

29.23, for Symbols Remain / Alternating, Symbols Erase / First Left, and Symbols Erase / 

Alternating conditions, respectively. Two comments on these findings are in order. First, the 

degree of large-sample superiority is reduced when correctness is weighted by confidence, 

consistent with the notion that high confidence reflects having passed a tight decision 

threshold. Second, the residual superiority of large samples is highest in the most difficult 

Symbols Erase / Alternating condition, in which the noise ratio appears to be highest (see 

Table 4) but no longer significant in the Symbols Remain / First Left condition that is most 

likely to facilitate the encoding of small-sample packages without too much information loss.  

Conditionalizing Correctness on Decision Threshold. In accordance with the decision-

threshold model, high decision thresholds should render the assets of small samples most 

apparent. We thus computed conditional correctness scores, conditionalized on the threshold 

assumption, that is, counting only those trials on which the evidence given in the stimulus 

sample can be expected to have exceeded a certain decision threshold. The present data offer 

two ways of running such a conditionalized analysis. Either we can count only those trials in 

which the sample ∆ exceeded a certain level, assuming that decision makers are sensitive to 

the sample contingency. Or, we count only those trials in which the judge’s own subjective 

confidence rating exceeds some critical value, assuming that these post-hoc ratings provide a 

useful measure of the implicitly used decision threshold. Both operationalizations are 

imperfect, but both analyses shed some interesting light on the influence of the decision 

threshold on the relative performance triggered by large and small samples.  
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We first consider an analysis that includes all decisions made at the highest confidence 

level of 4. Analogous to the simulation analyses, we computed for all combinations of sample 

size and ∆ within each participant the number of hits minus the number of false alarms (out of 

20 trials) obtained with this confidence threshold. The resulting difference score turned out to 

have rather equal variance so that the analysis could be conducted immediately on the f(hits) 

– f(false alarm) scores. As evident from Table 4, only the huge contingency size main effects 

remained significant, whereas the sample size main effect was eliminated in three of the four 

ANOVAs conducted for each presentation mode condition. The only sample-size main effect, 

F(1,22) = 5.48, p < .05, for the Symbols Erase / Successive condition, was rather weak.  

When similar f(hits) – f(false alarms) scores were computed within each participant (for 

all combinations of sample size and ∆) but conditionalized on a sample contingency of ∆Sample 

≥ .4, the sample size main effect vanished in all four presentation mode conditions (bottom of 

Table 4). Thus, both ways of operationalizing a high decision threshold serve to eliminate the 

modest large-samples advantage. Although at the end of the ecological sampling and 

cognitive decision-making process there is not a small-sample advantage, but merely a tie, 

this finding can be interpreted as a small-sample advantage in efficiency when information 

costs are taken into account. Moreover, the relative advantage of small samples became 

apparent and the normal superiority of large samples was most likely to be eliminated under 

conditions that could be derived from our threshold-based decision model.  

Experiment 3 

For still another way of operationalizing the interplay of sample size and decision 

thresholds, we ran another experiment. Rather than controlling sample size experimentally 

and letting confidence and evidence strength vary, we made an attempt to build the threshold 

into the decision task and to let sample size vary as a dependent measure. Thus, using a self-

determined sampling paradigm, we instructed participants to sample data as long as necessary 

to make an informed (i.e., above-threshold) decision. Specifically, participants observed 
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growing samples of smilies and frownies, again referring to two target products that were 

drawn from a universe defining the objectively true contingency. At any point in time when 

the participant felt that the evidence was sufficient to make a choice, he or she could truncate 

the information search process. Note that this self-determined sampling paradigm is quite 

representative of the ecological task setting that motivates the decision-threshold model, 

assuming that organisms defer decisions until they have gathered satisficing information, and 

do not make a decision if the strength of the evidence in the sample is insufficient.  

As sample size becomes a dependent variable in this paradigm – with large samples 

reflecting a longer period of uncertainty – we discover another intriguing aspect of the 

cognitive-environmental interaction that gives an advantage to small samples. If on easy trials 

the first few observations in a sample already provide clearcut evidence, then a confident and 

often correct decision can be based on few data. If, however, on difficult trials the initial 

evidence happens to be unclear, the required sample size will be larger while confidence and 

accuracy may often remain low. Thus, whenever information search is self-determined – so 

that decision makers design their own samples (Kareev & Fiedler, 2004) – it is likely that 

easy samples tend to be small whereas difficult samples tend to be larger. Within the 

framework of threshold-based decision making, this must not be discarded as an artifact. The 

correlation between sample size and difficulty is a natural consequence of a cognitive process 

that defers a decision until sufficient evidence is available.  

Method 

Participants and Design. Seventeen male and female students of the University of 

Heidelberg participated for payment (about 2 €). The only experimental variable, degree of 

contingency, was manipulated within participants. Each participants completed 120 trials, 30 

at each level of ∆ (0 vs. .1 vs. .2 vs. .4). The dependent variables of interest were correctness 

and sample size required to make a decision, as well as the relationship between both.  
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Materials and Procedure. The basic experimental task was similar to that of Experiment 

1. Instructions explained that smilies and frownies represent positive and negative evaluations 

of two products, using the same basic cover story. Instructions emphasized the goal to make 

as many correct decisions as possible and to avoid wrong decisions. However, the total time 

would be restricted so that they should not lose more time on individual trials than necessary 

to make a correct decision. Thus the experimental procedure encouraged them both to try to 

be correct, and to use a sample as small as possible to achieve that goal. After a clear-screen 

inter-trial interval of 2000 ms, each trial started with the presentation of two products labels 

(random strings of five letters and numbers) on top of the left and right side of the screen, 

respectively. Then a smily or frowny was added every 500 ms, in a random location of the 

appropriate side of the screen, under the constraint that no other symbol already occupied that 

location. Symbols were not erased so that the growing record of smilies and frownies 

associated with the two products could be pursued on the screen. 

Information search could be stopped at any time, by releasing the space bar, when the 

participant felt the evidence would be sufficient to make a decision. At that moment, all 

smilies and frownies were erased, but the product labels and screen colors remained as 

participants were offered three response options: choosing the left product (using the left 

arrow key), choosing the right product (right arrow key), or not making a decision (downward 

arrow key). Immediately afterwards, they were asked to indicate their subjective confidence 

by adjusting a light pointer on a 42-segment graphical rating scale.  

Symbols were randomly sampled from a population defined by a certain ∆. Each 

participant was administered 120 trials, 30 at each of the four levels of ∆ (0 vs. .1 vs. .2 vs. 

.4). Trials of the ∆ = 0 condition were treated as fillers and excluded from the analysis. The 

superior product was presented on the left and the right side on one half of the trials of each ∆ 

condition. Order of presentation of the 120 trials was randomized.  



 40 Sample size and decision quality  

Results and Discussion 

Self-Determined Sample Size. Under the task conditions of this experiment (contingency 

levels, presentation duration and speed, motivation, memory overload etc.), the mean self-

determined sample size required to make a decision, averaged across participants and trials 

within participants, was 28.1 for ∆ = .1, 26.9 for ∆ = .2, and 25.7 for ∆ = .4. The standard 

deviation of individual self-determined mean sample sizes was 5.35 for ∆ = .1, 5.27 for ∆ = 

.2, and 5.59 for ∆ = .4. The relative constancy of sample sizes across contingency levels 

suggests that judges were not particularly sensitive to the different amounts of information 

required to detect a contingency at different levels of ∆. The relative independence of sample 

size from from effect size (∆) may reflect the aforementioned stopping rule. Information 

search may have been truncated whenever the first few observations of a sample revealed a 

clear-cut picture, and this primacy effect might have occurred at all three contingency levels. 

For an empirical check, one has to look at the sample contingencies associated with small and 

large numbers of trials.  

Sample Size and Sample Contingency. Accordingly, we calculated, within each 

participant, the correlation between the size of the various samples gathered on different trials 

and the observed ∆ in the sample (coded positive if the sign was correct). If this correlation 

was negative, small samples were indeed reflective of stronger sample contingencies – the 

kind of primacy effect depicted above. Furthermore, this would yield another reason for a 

small-sample advantage at the sampling stage – namely, when active information search 

renders sample size a dependent variable. Indeed, the average correlation between sample size 

per trial and (correct) contingency size in the sample (within each individual participant) 

turned out to be clearly negative, r = –.37. Testing the vector of all 17 individual correlations 

against zero resulted in a highly significant t(16) = –7.46, p < .001.  
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Thus, the present experiment corroborates that in the context of self-terminated 

information search, when information is sampled until a satisficing amount of evidence is 

found in the sample, the resulting relation between samples size and contingency strength in 

the sample can be negative. That is, not only do small samples reflect actually existing 

contingencies more pronouncedly than large samples (that much has already been revealed by 

our statistical analyses and simulations), but it is also the case that people are satisfied with 

the evidence, terminate the search, and reach a decision. Obviously, if human decision makers 

assess the samples they have observed objectively (using notebooks or computers or other 

devices to avoid error or inaccuracy), their decisions will exhibit a small-sample advantage. 

However, let us now also consider the fate of small and large samples in a cognitive decision 

process that cannot rely on such external-memory devices. Note that under the brief and 

demanding exposure and learning conditions of the present experiment, participants had to 

capture contingencies from a single presentation of a series of stimuli (one per .5 sec), forcing 

them to rely on a highly fallible learning and memory process. Would the performance on 

small-sample trials, which allow for only a little learning under ill-suited conditions, still be 

higher or comparable to the performance on large-sample trials?     

Sample Size and Correctness. For an empirical answer to this crucial question, we 

calculated, within each participant, the correlation between the correctness of decisions and 

the size of the sample drawn on corresponding trials. The pertinent results appear in Table 5. 

Across all contingency levels and without any restriction of reasonable sample size, the 

average overall correlation between sample size and correctness is essentially zero (r = –

.014), reflecting that over a wide range of sample sizes (the middle 80% of the sample size 

distribution fell between 14.91 and 44.97 trials) performance was not inferior (to say the least) 

with smaller sample sizes.  

Because some judges were obviously ill-calibrated, basing many decisions on too small 

sample sizes, we re-computed the size-correctness correlations within judges, counting only 
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those trials on which the sample sizes were in a reasonable range around the average of 

spontaneously sought sample sizes (i.e., between 20 and 32) and only for trials with a 

correlation of at least ∆ = .2. Note that this sample-size range is centered around the average 

self-selected sample sizes, which can be assumed to represent the actually chosen decision 

criterion. Under these more auspicious conditions for small samples, the average size-

correctness correlation became r = –.09, and the vector of all 17 individual correlation 

actually had a central tendency that was significantly negative, t(16) = –2.36, p < .05. All 

other combination of sample size range and contingency level included in Table 5 revealed no 

significant differences from zero, suggesting a generally constant performance across 

considerable variation in sample size.   

Interindividual Differences. Out of all 17 participants, the correlation between sample 

size and correctness was negative for 13 individuals across all trials with ∆ ≥ .2 and for 11 

individuals across all trials with ∆ ≥ .1. We finally calculated the correlation across 

participants between individual size-correctness correlation and confident correctness scores 

(i.e., correctness weighted by average an individuals confidence). Those who were generally 

more correct tended to be those who were better on small than on large samples, as reflected 

in a negative correlation of r = –.23 for ∆ ≥ .1, r = –.20 for ∆ ≥ .2, and r = –.39 for ∆ = .4.  

General Discussion 

The starting point of the present article was the intriguing possibility – recently pointed 

out by Kareev (1995, 2000) – that small samples of observations may reveal existing 

environmental contingencies more clearly and more regularly than larger samples of 

observations. Due to the skew of the sampling distribution, a majority of sample correlations 

exceeds the population correlation, and this characteristic of the empirical world reaches, for 

binary variables, a maximum at about 7±2 observations, fitting the window size of human 

short-term memory (cf. Kareev, 2000). Moreover, because the sampling distribution is 

skewed only for existing, but not for zero correlations, the accentuating effect of small 
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samples is likely to be diagnostic of actual environmental contingencies. This demonstration 

adds a new and potentially important item to a growing list of less-is-more phenomena 

(Elman, 1993; Gigerenzer, 2001; Hertwig & Todd, 2003, Newport, 1988, 1990) that have 

become prominent in recent research on adaptive cognition.  

Fascinating as the small-sample advantage might be, however, two sources of criticism 

seemed to challenge Kareev's argument and to reduce its psychological significance. On one 

hand, the seeming advantage of small samples over large ones may disappear as soon as both 

hits and false alarms are taken into account (Juslin and Olsson, 2004). On the other hand, any 

advantage of small samples, may be overridden by the effect of an opposing principle that 

governs the cognitive process fed by environmental samples. Whenever information 

processing is not error-free – due to noise or imperfect learning and memory – the beneficial 

effect of aggregation comes into play (Fiedler, 2000; Fiedler & Walther, 2003): Error is 

gradually reduced and existing statistical relationships become increasingly visible as the 

number of observations increases. Thus, whereas small samples tend to amplify existing 

contingencies in the environment, there is benefit in large samples, as evident in 

monotonically increasing learning curves (cf. Figure 1).   

The present approach speaks to both sources of criticism and eventually arrives at the 

conclusion that the effect of the feature of the empirical world that was highlighted by Kareev 

(2000) is not at all illusory. Small samples may under certain conditions inform better 

decisions than large samples, and this advantage need not be confined to hits but persists even 

when false alarms are considered and when memory loss is taken into account.  

We have proposed a threshold-based decision framework within which the confines of 

the small-sample advantage can be deduced, tested, and understood. The basic assumption 

underlying this framework is that adaptive intelligence relies heavily on binary choice –

choosing the better of two options – based on a restricted sample of observations. The 

elementary model of this binary-choice situation is a 2 x 2 contingency between dichotomous 
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variables (2 options x 2 outcomes). Within a satisficing rather than an optimizing approach, it 

is often not necessary to estimate the strength of such contingencies precisely; rather, it 

suffices to figure out the sign of the contingency, in order to identify the better option. 

According to the threshold-based decision model, decisions are contingent on the sampled 

evidence favoring one option over the other to a sufficient degree. Our analyses demonstrated 

that sufficiently large differences are more likely to occur when the sample size is small rather 

than large, reflecting not only the greater lability and higher dispersion, but also the greater 

skew in the distributions of small samples. To be sure, the same lability of small samples may 

not only produce many hits (i.e., evidence exceeding the threshold for the correct option) but 

also false alarms (i.e., evidence exceeding the threshold for the incorrect option). However, 

our analyses indicate that the small samples' gains in terms of hits are larger than their losses 

in terms of false alarms (see Figure 3), provided the decision threshold is high enough. A 

similar conclusion was recently reached independently Anderson & Doherty (2004).  

Note that the rationale derived within this decision-threshold framework for sometimes 

expecting better performance with small than with large samples is no longer the same as in 

Kareev’s (2000) original phenomenon. Whereas Kareev (2000) was solely concerned with the 

enhanced skew of small-sampling distributions, in the framework presented here the curtosis 

of sampling distributions plays a major role: It is the high dispersion of sampling distributions 

obtained from small samples that facilitates observing many above-threshold contingencies. 

This characteristic is not confined to strong or very strong contingencies, which are required 

to produce a marked skew in sampling distributions. Rather, the present argument applies to 

all non-zero contingencies – weak, medium and moderately strong – that can be expected to 

hold in reality. The only restriction to the size of contingencies is that they must allow for an 

even higher decision threshold.  

Several computer-simulation studies were reported to test this contention and to explore 

the generality of the small-sample advantage. The first set of simulations pertained to the pre-
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cognitive sampling stage, that is, the transition of a latent population contingency into 

environmental samples. Three parameters were varied in these initial simulations: Sample size 

n, contingency strength ∆, and the decision threshold c. As predicted on analytical grounds, 

the difference between the numbers of above-threshold hits and false alarms actually 

decreased with increasing sample size (from 4 to 32) when the decision threshold c was 

substantial and when the environmental contingency ∆ was different from zero but lower than 

c. For strong and very strong contingencies, the simulation results approached a ceiling effect 

anyway, that is, the difference between hits and false alarms was very large, and similar with 

both large and small samples. Overall, the small-sample advantage at this environmental 

sampling stage (i.e., the downward inclination of curves in Figure 4) covers a remarkable part 

of the parameter space.  

The next set of simulations applied a connectionist algorithm that has been shown to 

describe quite well cognitive processes of judgment and decision making, in particular, the 

aggregation effect – a monotonic increase of probabilistic learning with number of trials. As 

the algorithm depends on the amount of noise in the input data, the noise ratio i was included 

as a fourth parameter. Even though learning always increases with the number of trials, and 

especially so for high-noise environments (thus counteracting the small-sample advantage in 

the environment), decision accuracy still did not generally increase with sample size. Rather, 

under conditions derivable from the decision-threshold model, the small-sample advantage 

outweighed or even overrode the learning effect, producing fairly horizontal or even slightly 

decreasing performance curves (Figure 6). In particular, this was evident in cases of low noise 

and decision thresholds higher than the environmental contingency.  

We then went on to simulate a variant of cognitive contingency assessment, referred to 

as competing tendencies. Though much less popular than standard contingencies and hardly 

covered in statistics books, competing-tendency tasks are quite common in everyday decision-

making. The crucial feature of this class of tasks is that information about the two options is 
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not independent but, due to meaning overlap, all information bears on the other option as 

well. To the extent that many comparisons and dichotomies are not strictly exclusive (e.g., a 

student’s performance in math and physics; two computer brands sharing the same technical 

modules; love and hate), small samples may more effectively discriminate between the 

superior and the inferior option than do large samples (which result in about equal learning 

for the weaker as for the stronger option; cf. Figure 7). In fact, an additional set of simulations 

for the competing tendencies variant resulted in some marked decrement in the discriminating 

ability between the strong and the weak tendencies as sample size increased.  

Altogether, these findings demonstrate that an advantage of small over large samples is 

neither impossible on purely logical grounds nor a miracle from a psychological point of 

view. Whenever the assumptions of the threshold-based decision model are met – that is, 

when satisficing, above-threshold choices are called for rather than accurate quantitative 

estimation – then a smaller sample may well lead to a better decision than a large sample, just 

because the small-sample contingency is more likely to exceed the decision threshold (in the 

correct direction) than the large-sample contingency. As long as the sampled data are assessed 

reliably, with no information loss, using external memory devices (notebooks, recorders etc.), 

the advantage of small samples is immediately manifested in better decisions. If, however, 

contingency assessment relies on fallible human learning and memory processes, then the 

advantage of small samples is reduced due to the competing advantage that large samples 

have in learning in noisy environments (i.e., the aggregation effect). Even then, however, it 

was shown that the less-is-more phenomenon may survive the cognitive stage of decision 

making under notable auspicious conditions. 

Systematic experimental work on decision performance as a function of sample size 

lags behind the wide set of conditions explored in the simulation studies. Up to now, we have 

run only a few experiments designed to measure contingency-based decision making in task 

situations that speak to the decision-threshold model. Although the stimulus presentation 
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conditions were quite demanding in these experiments (e.g., a single brief exposure of 

sampled items), resulting in a good deal of noise and suboptimal contingency learning, no 

substantial advantage of large over small samples was observed. Moreover, when specific 

conditions derived from the threshold model could be assumed to be met – namely, low noise, 

sufficiently high contingencies and rather high thresholds – the small samples led to equally 

good and, at least sometimes, even better decisions than large samples.  

It should be mentioned that these findings appear to be quite stable as they were also 

obtained in several other data sets not reported here. This conclusion even holds for the 

“home domain” of the typical aggregation effect, the simulated classroom experiments 

mentioned at the outset (Fiedler et al., 2002). Participants (‘teachers’) who had to discern the 

ability and motivation parameters of 16 students in a simulated school class from observed 

samples of correct and incorrect responses, and from the frequency of raising hands, clearly 

performed better for those students for which larger samples of performance were available. 

However, when decision-threshold assumptions were imposed on post-hoc analyses of the 

same data, by calling for above-threshold sample contingencies between pairs of students and 

the proportion of correct responses in the observed data, small samples more often exceeded a 

threshold than did large samples. And teachers’ above-threshold judgments of the difference 

between pairs of students were about equally accurate for large and small samples, provided a 

sufficiently strong threshold.  

Nevertheless, experimental evidence is still rather scarce and clearly lags behind the 

insights gained by computer simulations. Although the few experiments reported here are 

encouraging, further experimental evidence is clearly needed. One obvious goal would be to 

think of ways of manipulating the threshold and noise parameters in natural ways. Another 

important extension would be to include information cost in an experiment designed to 

control the precise payoffs (benefits and costs) of hits and false alarms of contingency-based 

binary choices. Finally, it would be particularly interesting to see whether a clearcut small-
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sample advantage can be demonstrated under less demanding exposure and encoding 

conditions than in the experiments reported above. 

Several psychological and pragmatical implications of these findings suggest 

themselves. From an economical point of view, the challenging idea that the added value of 

further information can be negative – an implication hard to reconcile with common notions 

of rational choice –  has to be tackled. The necessary costs for personnel selection decisions 

or investment choice may be reduced considerably by setting an optimal threshold and relying 

on small samples rather than large but overly conservative samples. A similar point can be 

made for scientific research. To the extent that research is not governed by rules of precise 

estimation but by rules of detecting strong effects, the present approach suggests that 

increasing sample sizes may not always be of advantage in scientific research.  

However, apart from such practical and methodological considerations, the main motive 

underlying the present investigation is theoretical. Our research on the advantages and 

disadvantages of small and large samples highlights the value and need for a genuinely 

cognitive-ecological theory approach. The interaction of cognitive strategies and constraints 

on one hand and properties of the information ecology on the other hand produces emergent 

models of adaptive cognition that can go way beyond the insights of a traditional, purely 

cognitive approach. What appears like a miracle or impossibility from a rationalist point of 

view – namely, that less can be more – turns out to be a natural product of cognitive-

ecological interaction.  
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Table 1 

Number of Hits and False Alarms (FA) out of 10000 Simulated Sampling Trials as a Function 

of Sample Size n, Three Levels of Contingency ∆, and Absolute Decision Criterion Values |c| 

       n = 4     n = 8   n = 12 n = 16           n = 24        n = 32 

  |c|    Hit FA  Hit   FA Hit   FA         Hit   FA        Hit   FA       Hit   FA 

∆ = 0.10 
 1.0    906  395     83   19      8    0      0    0      0    0      0    0   
 0.9    906  395     83   19     46    1      3    1      0    0      0    0   
 0.8    906  395    489   91    153    9     30    2      6    1      1    0   
 0.7   2199 1261    783  256    382   67    113    7     49    2      4    0   
 0.6   2199 1261   1038  391    637  139    322   45    147    9     46    1   
 0.5   3469 2132   2160  894   1391  364    903  155    395   32    227   11   
 0.4   3469 2132   2367 1049   2037  681   1728  395   1062  134    771   59   
 0.3   4559 3159   4119 1717   3362 1070   3097  760   2553  406   2084  261   
 0.2   4559 3159   4575 2592   4639 2118   4176 1523   4235 1214   3769  781   
 0.1   4559 3159   5488 3322   5532 2843   5788 2666   6067 2341   6169 2149   

∆ = 0.20 
 1.0   1221  291    158    1     23    0      6    0      0    0      0    0 
 0.9   1221  291    158    1     99    0     38    0      2    0      0    0   
 0.8   1221  291    866   37    288    1    120    1     27    0      7    0   
 0.7   2719  940   1280  135    751   16    307    4    124    0     43    0   
 0.6   2719  940   1629  201   1120   59    806   17    390    0    227    0   
 0.5   4186 1552   3008  558   2163  158   1691   60    974    4    715    0   
 0.4   4186 1552   3262  666   3083  351   2894  158   2240   36   1962    8   
 0.3   5228 2608   5230 1172   4630  587   4549  365   4266  130   4004   54   
 0.2   5228 2608   5707 1819   5881 1303   5673  812   6185  470   6089  224   
 0.1   5228 2608   6564 2425   6743 1838   7212 1562   7785 1102   8128  831   

∆ = 0.40 
 1.0   2414   84    600    0    123    0     41    0      0    0      0    0 
 0.9   2414   84    600    0    436    0    217    0     48    0     10    0   
 0.8   2414   84   2135    3   1053    1    627    0    343    0    141    0   
 0.7   4157  400   2845   18   2151    3   1255    0   1042    0    602    0   
 0.6   4157  400   3335   34   2921    8   2598    0   2322    0   1905    0   
 0.5   5960  723   5271  113   4653   21   4448    4   3888    1   3723    0   
 0.4   5960  723   5468  147   5695   48   6011   12   5937    3   6346    0   
 0.3   6785 1473   7400  347   7303  110   7570   44   7942    4   8229    1   
 0.2   6785 1473   7780  658   8269  289   8461  127   9053   27   9274    6   
 0.1   6785 1473   8377  998   8844  474   9247  340   9634  110   9822   56   
 

Note: Below dotted lines, the difference of hits – false alarms decreases with sample size 
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Table 2 

Summary of Results Obtained in Experiment 1 as a Function of Experimental Conditions 

 

 Simultaneous Successive 

Dependent Measure: Small Large Small Large 

Correct Choice .42 .64 .82 .71 

Latencies 3.12 2.47 1.62 1.49 

Confidence 23.66 24.51 24.74 26.06 
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Table 3  

Number of Hits and False Alarms, Relative to Different Criterion Values c, as a Function of 

Contingency Levels ∆ and Small (16) Versus Large (32) Sample Size 

   c=.1 c=.2 c=.3 c=.4 c=.5 c=.6 c=.7 c=.8 c=.9 c=1 

Small Hit 

FA 

1028 

476 

840 

343 

623 

202 

423 

101 

225 

40 

120 

18 

55 

6 

19 

4 

6 

1 

0 

0 

 

∆ = 

.1 Large Hit 

FA 

1086 

390 

819 

227 

480 

72 

236 

27 

63 

3 

12 

0 

1 

0 

0 

0 

0 

0 

0 

0 

Small Hit 

FA 

1260 

304 

1084 

205 

860 

110 

602 

56 

358 

23 

235 

5 

131 

3 

44 

1 

18 

0 

3 

0 

 

∆ = 

.2 Large Hit 

FA 

1419 

155 

1229 

70 

870 

16 

536 

2 

210 

0 

78 

0 

18 

0 

0 

0 

0 

0 

0 

0 

Small Hit 

FA 

1633 

47 

1566 

19 

1442 

12 

1220 

6 

916 

4 

691 

1 

436 

0 

215 

0 

78 

0 

10 

0 

 

∆ = 

.4 Large Hit 

FA 

1726 

7 

1690 

2 

1551 

0 

1326 

0 

942 

0 

539 

0 

208 

0 

43 

0 

10 

0 

0 

0 

 

Note: At c levels right of the bold vertical lines, the difference of hits – false alarms is higher 

for small than for large samples 
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Table 4  

Mean Correctness, Confident Correctness, and Conditional Correctness Scores Obtained in 

Experiment 2, as a Function of Experimental Conditions  

 Small Samples Large Samples Sample 
size effect  

Presentation mode ∆ = .1 ∆ = .2 ∆ = .4 ∆ = .1 ∆ = .2 ∆ = .4 F(1,22) 

Correctness  

Remain / First Left .25 .57 .91 .38 .66 .93 7.02* 

Remain / Alternating .40 .53 .89 .46 .76 .97 21.72* 

Erase / First Left .25 .57 .86 .46 .73 .91 15.54* 

Erase/ Alternating .20 .48 .80 .28 .70 .93 27.37* 

Confident Correctness 

Remain / First Left 0.73 1.80 3.18 1.06 1.99 3.24 3.20 

Remain / Alternating 1.22 1.63 3.09 1.27 2.30 3.36 13.10* 

Erase/ First Left 0.74 1.70 2.88 1.31 2.07 3.04 9.68* 

Erase/ Alternating 0.55 1.21 2.36 0.71 1.86 2.90 29.23* 

f(hits) – f(False Alarms) Conditional on Confidence = 4 

Remain / First Left 2.17 5.92 12.63 4.38 6.58 12.42 1.56 

Remain / Alternating 3.38 5.96 10.83 3.29 6.33 12.21 1.52 

Erase / First Left 2.35 4.96 10.04 4.74 5.48 11.13 5.48* 

Erase / Alternating 1.83 3.29 7.00 1.17 3.96 8.13 0.85 

f(hits) – f(False Alarms) Conditional on Sample ∆ ≥ .4 

Remain / First Left 2.13 3.63 10.58 2.13 2.21 9.79 2.66 

Remain / Alternating 2.00 3.71 9.92 1.75 2.17 10.21 1.78 

Erase / First Left 1.48 3.39 8.96 4.78 2.04 9.52 2.67 

Erase / Alternating 1.75 3.63 9.17 2.46 2.54 10.33 0.25 
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Table 5 

Mean Within-Judge Correlations Between Sample Size and Correctness of Decisions as  

Function of Contingency Levels ∆ and Limitations of Sample-Size Range 

 

     Range of Population Contingencies Included 

Sample Size Range  ∆ ≥ .1   ∆ ≥ .2   ∆ = .4 

Unlimited  –.014   +.024   +.011 

> 20   –.049   –.055   –.012 

  20 – 32  +.008   –.088*   –.021 
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Figure Captions 

Figure 1. The typical form of a monotonically increasing, negatively accelerated 

learning curve. 

Figure 2. Two transitions involved in environmental contingency assessment: 

Ecological sampling and cognitive processing.  

Figure 3. Sampling distributions within a threshold-based decision framework. 

Figure 4. Simulation of sample contingencies as a function of population contingency, 

sample size, and decision criterion.  

Figure 5. BIAS model simulation of the cognitive process of contingency assessment. 

Figure 6. Simulation of cognitive decision accuracy as a function of population 

contingency, sample size, noise ratio, and decision criterion. 

Figure 7. Illustration of learning curves for two competing tendencies. 

Figure 8. BIAS model simulation of for two competing tendencies in a sample. 
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