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Abstract 

The information used in reaching a decision between alternatives is often gleaned through 

samples drawn from the distributions of their outcomes. Since in most cases it is the direction 

of the difference in value, rather than its magnitude, that is of primary interest, the decision 

maker may benefit from sampling data in a way that will accentuate, rather than accurately 

estimate, the magnitude of that difference, as it helps to reach a decision swiftly and 

confidently. A reanalysis of performance in a study by Fiedler, Brinkmann, Betsch, and Wild 

(Journal of Experimental Psychology: General, 2000, 129, 399-418), in which participants 

had the freedom to sample data any way they wished, demonstrates that their apparently poor 

performance as estimators of conditional probability may actually reflect sophisticated 

sampling, which resulted in accentuating the sample value of the degree of contingency in 

the data. Thus, participants might be characterized as “sensitive research designers”, intent 

on increasing the chances of detecting an effect (if one existed).  
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On the Accentuation of Contingencies: 

The Sensitive Research Designer versus the Intuitive Statistician 

 

Decisions often involve a choice based on the differences between alternatives on 

some criterion variable. The values to be compared may be means or probabilities, with the 

sign of the difference indicating which alternative is to be preferred. In such choice tasks, it is 

the direction of the difference (the ordinal information), rather than its magnitude (the 

interval information), that is of primary interest. When that is the case, an amplification, 

rather than an accurate estimate, of differences may be important, in that it helps the decision 

maker to reach a decision swiftly and confidently.  

Indeed, in spite of the distortion it involves, accentuation of differences has often 

been observed. For example, people tend to amplify differences between categories and 

attenuate differences within them (Goldstone, 1994; Goldstone, Lippa, & Shiffrin, 2001; 

Harnad, 1987; Livingston, Andrews, & Harnad, 1998). This tendency is particularly 

pronounced in social settings, where accentuation – amplification of differences between 

social groups beyond what is objectively warranted – has long been investigated (Krueger 

1991, Krueger & Rothbart 1990, Tajfel, 1957). Accentuation effects, though reflecting a 

perspective-related bias, facilitate inter-group discrimination and decisions based on 

differences between categories or social groups. 

The detection of differences and contingencies is also of major interest to scientists, 

who are always eager to detect effects and relationships.1 In fact, the sophisticated methods 

employed by scientists to quantify and infer the significance of effects have long been used 

as a yardstick against which the performance of lay people is evaluated. However, whereas 
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lay people’s behavior in cases that call for the application of descriptive and inferential 

statistics has been studied extensively (see, for example, the reviews in Allan, 1993; Alloy & 

Tabachnik, 1984; Peterson & Beach, 1967; Pollard, 1984), their use of principles of research 

design – another essential facet of scientists’ work – has not. This latter oversight apparently 

reflects the fact that, in most experimental setups, participants have very little control over 

aspects corresponding to research design. In real life, in contrast, people often have control 

over which groups or situations to observe and which samples to draw. Thus, they may have 

learned how to explore the environment in ways that increase the chances of detecting 

important differences and contingencies, and may conceivably use this procedural knowledge 

if presented with the opportunity to do so.  

When scientists test for the existence of an effect, they conduct a statistical test that 

reflects the ratio between effect size (the difference between two means, MSbetween) and error 

(the standard error of the difference between two means, MSwithin). To increase the chances of 

detecting an effect, textbooks of research design (e.g., Kerlinger, 1973) explicitly advise 

would-be researchers to design their studies so as to increase the expected value of that ratio. 

While following that advice will not increase the number of false alarms, it may result in 

inflated estimates of effect size. Still, since scientists’ primary concern is often to determine 

whether an effect exists at all, the amplification of effect size is viewed as a small price to 

pay for an increase in the probability of its detection.  

Clearly, then, the employment of methods that magnify the size of an effect and 

thereby increase the chances of detecting it may be inherently incompatible with the 

attainment of another venerable goal – that of obtaining an estimate of the original effect size 

or, more generally, an accurate description of the environment. Thus, if people were shown 

to act in ways that amplify differences, if they were shown to act as “sensitive research 
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designers”, that might explain some of their failures as intuitive descriptive and inferential 

statisticians (e.g., Hamilton & Guiford, 1976; Kahneman, Slovic, & Tversky, 1982; Kelly, 

1967, 1971; Langer, 1975; Ross, 1977; Tversky & Kahneman, 1974). In what follows, it will 

be shown that, when given the opportunity to sample data freely – to “design their research” 

– people will often spontaneously act in ways corresponding to methods employed by 

scientists to increase the chances of detecting effects. This will be done by reanalyzing the 

data observed in a recent study by Fiedler, Brinkmann, Betsch, & Wild (2000), from the 

perspective of the “sensitive research designer”.  

In that study, participants were requested to estimate the value of a single conditional 

probability on the basis of a sample they could draw from a population of cases characterized 

by a combination of two binary variables. Unlike the case in most studies, participants 

actively sampled the data and hence enjoyed some of the freedom that research designers 

routinely have. Efficient sampling and unbiased estimation of the parameter requested could 

be obtained either by drawing a sample exclusively from one specific subset of the 

population or by sampling from the two subsets in proportion to their size in the population. 

However, sampling from only one subset of the population made it impossible to detect the 

contingency in the population, and proportional sampling did not accentuate that contingency 

(whereas some non-proportional sampling would have done so; see Fiedler, 2000, for an 

extensive discussion of the effects of sampling on estimates of contingencies). Thus, to the 

extent to which participants in the study deviated in their sampling from straightforward, 

normative sampling, which would have resulted in unbiased estimates of the requested 

parameter, that deviation may indicate the degree to which the goals of the “sensitive 

research designer” were prevailing over those of the “intuitive statistician”, even when the 

attainment of the latter was explicitly called for. 
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Description of the Study 

More specifically, participants were presented with four medical or diagnostic 

problems involving two binary variables, a predictor and a criterion. The judgment task 

called for an estimate of the conditional probability of a crucial criterion outcome (e.g., 

prenatal lung damage) given one specific predictor level (e.g., drug intake), based on a series 

of bi-variate stimulus observations describing the joint occurrence of criterion values (lung 

damage vs. no damage) and predictor values (drug intake vs. no drug). The other three tasks 

involved assessing the probability that dangerous complications would be suffered given 

hospitalization in one of two hospitals; of anorexia given unresolved sex role conflicts; and 

of breast cancer given positive results of a mammography test. Each participant estimated the 

conditional probability for all four data sets. Note that, although the stimulus information 

always made up a full 2x2 contingency, only two cells of the contingency table were relevant 

to the judgment of p(damage|drug). The two cells referring to the no-drug condition were 

fully irrelevant to the judgment task proper. Nevertheless, judges may act not like intuitive 

statisticians, concentrating only on the proportion of the crucial criterion event (lung damage) 

within the relevant condition (drug intake), but as intuitive research designers, who test for 

the presence of an effect by comparing an experimental and a control group (the damage rate 

when drug intake is present or absent). In other words, rather than judging a conditional 

probability, they may re-interpret the task as a full-blown contingency task. 

Three of Fiedler et al.’s (2000) experiments, those that afforded the freedom either to 

choose a sample or to judge the adequacy of one, are relevant for the purpose of the present 

note. In two of the experiments (Exp. 2 and Exp. 3), participants were presented with a set of 

cases, each represented by a card that had a predictor value on one side and a criterion value 

on the other. When an item was drawn, its other side was exposed, revealing the item’s value 
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on the other variable. In both Experiment 2 and 3, participants could draw any number of 

items (and in whatever order they wished) from either group. The two experiments differed 

in one important respect: In Experiment 3 participants first had to choose whether to use a 

file in which items were arranged by their values on the predictor or a file in which items 

were arranged by their values on the criterion; in Experiment 2, however, participants had no 

such choice, being provided instead either with a file arranged by predictor values or with 

one arranged by criterion values. The cards were arranged in two groups, either by the two 

predictor values or by the two criterion values. The number of cards in the two subfiles was 

clearly visible, thus revealing the relative frequency of the two values of the variable by 

which the file was arranged, even before any sample was drawn. In another experiment (Exp. 

4), participants were presented with a description of the sampling employed in three fictitious 

studies, allegedly conducted by scientists in order to estimate the same conditional 

probabilities described above, and the results observed in them. Participants were asked to 

evaluate the adequacy of the research.  

 To appreciate and understand the participants’ performance, it should be recalled that 

assessment of the conditional probability of a specific outcome event (the criterion), given a 

specific predictor condition, is straightforward: Only cases sharing the relevant predictor 

value have to be considered and the relative frequency of the relevant event in them noted. 

Cases with other predictor values are irrelevant for answering the question at hand and 

should therefore be disregarded; considering them is wasteful at best, and may lead to 

inaccurate estimates. Note that the normative method is also the simplest, as it requires only 

items bearing one predictor value. The method outlined above cannot be applied, of course, 

when the sample has to be drawn from a file organized by outcome (criterion) rather than 

predictor values. In that case, to assess conditional probability accurately, cases should be 
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sampled from each criterion value in proportion to their prevalence in the population. Such 

sampling will protect the sampler from the biased statistics that result from non-proportional 

sampling and will save him or her the need to employ the complicated correction procedure, 

calling for the use of the Bayes theorem required in that case.  

Normative expectations for the participants’ behavior in Fiedler et al. (2000) were 

therefore as follows: a) Participants given the choice between the two filing systems (Exp. 3) 

should choose the file arranged by predictor values. b) When sampling from a file arranged 

by predictor values, participants should sample only cases bearing the relevant predictor 

value. Such sampling should be performed by participants who chose the predictor filing 

system (Exp. 3) and by participants who were presented with files arranged by predictor 

values (half the participants in Exp. 2). c) Participants presented with files arranged by 

criterion values (the other half of the participants in Exp. 2) should sample items 

proportionally, to preserve the relative frequency of the two criterion values in the sample. d) 

Participants who evaluated the fictitious studies (Exp. 4) should rate the validity of studies 

highest when they involve predictor sampling, and only choose one predictor value and, 

when criterion sampling is used, should prefer studies that preserve the proportions of 

criterion values in their samples to studies that fail to preserve these proportions. 

The results observed by Fiedler et al. fulfilled none of these expectations: Of the 

participants given a choice, many preferred the file arranged by criterion over that arranged 

by predictor values; a majority of the participants using files arranged by predictor values 

sampled cases of both predictor values; finally, virtually no-one used proportional sampling. 

Furthermore, the participants’ estimates of the conditional probabilities reflected the biased 

proportions in the samples!2 These results are presented in greater detail in the next sections. 

Empirical Data 
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a) Criterion Sampling 

Our first analysis involves participants who had a choice by which variable – 

predictor or criterion – to sample. To the extent that many of them chose to engage in the 

laborious and error-prone (one is almost tempted to say “incorrect”) criterion sampling rather 

than in the straightforward predictor sampling, this would be a strong indication that it was 

not conditional probability, per se, that participants were seeking.  

Across all four scenarios, the proportion of participants who chose criterion sampling 

was .35 (these proportions were .37, .38, .42, and .23, for scenarios 1 through 4, 

respectively). Thus, a substantial proportion of the participants did not choose to use 

predictor sampling. A t-test, which assigned predictor sampling a score of 0 and criterion 

sampling a score of 1, revealed that in each of the four scenarios the average value (i.e., the 

proportion of criterion samplers) differed significantly from 0, the value expected if 

participants were to use the more efficient and appropriate predictor sampling (all p-values < 

.001).  

b) Predictor Sampling 

 Our second analysis involved the proportion of participants who, having engaged in 

predictor sampling, did not restrict themselves to cases with the relevant predictor value, but 

instead sampled cases with both predictor values. In carrying out this analysis we 

distinguished between participants who were assigned to predictor-based sampling (in 

Experiment 2) and participants who freely chose to engage in such sampling (in Experiment 

3). Of the participants assigned to predictor sampling, .71 sampled both predictor values (the 

values for problems 1 through 4 were .79, .70, .64, and .70, respectively). Of the participants 

choosing to sample by predictor, .65 sampled both predictor values in .65 (the values for 

problems 1 through 4 were .76, .59, .60, and .65, respectively). Scoring a choice to sample 
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both predictor values as 1, and a choice to sample only the relevant predictor value as 0, 

single sample t-tests showed that all eight values differed significantly from the value 0 

expected if participants were to conduct the more efficient sampling (all p-values < .001). In 

other words, in both experiments, and for all scenarios, the proportion of participants (out of 

those engaged in predictor sampling) who restricted themselves to the relevant predictor 

value was small.  

c) Proportion of Each Value that Was Sampled 

 For the large majority of people who – because they would not or could not – did not 

restrict their sample to the positive predictor value only, proportional sampling (drawing 

samples that preserve the relative frequency of each value in the population) could help to 

obtain accurate estimates of the values of interest: For participants sampling by criterion 

values, a proportional sample would provide the data necessary to derive an unbiased 

estimate of the conditional probability they had been asked to assess. A proportional sample 

would also provide all those participants, irrespective of sampling method, with the data 

necessary for direct derivation of an unbiased estimate of the contingency in the population.3 

Therefore, an analysis of the biases resulting from participants’ deviations from proportional 

sampling may provide a clue to the reasons underlying their sampling behavior.  

In all scenarios employed by Fiedler et al., the two values of interest – the base  rates 

of positive predictor value (e.g., sex-role conflict in youth) and the focal criterion value (e.g., 

anorexia) – were less frequent than their complementary values. The relative frequencies of 

the positive predictor value were .29, .30, .26, and .19, for scenarios 1 through 4, 

respectively; the relative frequencies of the focal criterion value were .05, .13, .09, and .05, 

for the four scenarios, respectively.  
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 An analysis of the samples drawn revealed that, of the people engaged in criterion 

sampling, the proportion of cases with the focal criterion value were, in Experiment 2, .29, 

.44, .40, and .29, for problems 1 through 4, respectively; in Experiment 3, the corresponding 

values were .30, .49, .45, and .28. In all eight cases the proportion of cases with the focal 

criterion value was significantly higher that the actual proportion (all 8 p-values<.001). In all, 

the proportion of the focal criterion value, whose average frequency across all four scenarios 

was .08, rose in the samples more than four fold, to .37. Fully .97 of the participants engaged 

in criterion sampling sampled cases such that the proportions of the two criterion values in 

their samples were closer to .5:.5 than they were in the population. 

 Of the people engaged in predictor sampling,4 the proportion of cases sampled having 

the positive predictor value were, in Experiment 2, .42, .54, .42, and .39, for problems 1 

through 4, respectively; in Experiment 3 the corresponding values were .50, .53, .52, and .48. 

In all eight cases the proportion of predictor-positive cases was significantly higher than that 

in the population (all p-values≤.006, 5 of the 8 p-values<.001). In all, the proportion of the 

‘positive’ predictor value, whose average frequency across all four scenarios was .26, was 

almost doubled in the samples, to .48. Fully .83 of the participants engaged in predictor 

sampling sampled cases, such that the proportions of the two predictor values in their 

samples were closer to .5:.5 than they were in the population. Thus, for all problems and in 

all conditions, sampling behavior was characterized by large and highly significant 

deviations from proportional sampling, with the proportion of cases sampled closer to .5:.5 

than that in the population.  

 The results of Experiment 4 further indicated that equal sampling was considered 

adequate: When presented with the design of (fictitious) studies, in which the use of data 

gleaned through more proportional sampling would result in a less biased estimate of the 
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quantity in question, participants judged research employing .5:.5 criterion sampling to be 

superior to research employing a more extreme, but proportional, criterion sampling scheme, 

one that led to more accurate estimates.  

Summary and Discussion of Empirical Data 

 The behavior of Fiedler et al.’s participants could be summarized as follows: 

1. When given a choice, many participants preferred to employ the patently 

inefficient criterion sampling rather than predictor sampling. 

2. Of the participants engaged in predictor sampling, a majority were not satisfied 

merely to sample cases with the relevant predictor value; in addition they also sampled cases 

with a predictor value that was completely irrelevant for the task at hand.  

3. Irrespective of sampling mode, participants did not engage in (the more efficient) 

proportional sampling; instead they drew samples in which the relative frequency of the two 

values was more evenly distributed than it was in the population. In a similar vein, 

participants evaluating the validity of the fictitious research regarded equal, rather than 

uneven, sampling of criterion values to constitute superior research, even though uneven 

sampling resulted in a more accurate estimate of the conditional probability whose estimate 

was the objective of that fictitious study. 

These results could not have been obtained if participants were only interested in 

estimating the conditional probability they had been asked to assess. Since a large majority of 

the participants sampled items so as to view both values of the predictor and the criterion, it 

is clear that they were intent on assessing the overall contingency, rather than the single 

conditional probability they had been asked about. With contingencies (i.e., differences 

between different levels of an independent variable) playing a vital role in the efficient 

functioning of organisms, their detection and assessment is obviously a major concern of the 
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cognitive system. The format in which the data in the Fiedler et al. study were presented, 

with both predictor and criterion values explicitly mentioned, surely rendered the 2x2 

contingency highly prominent. Thus it is not surprising that most participants sampled cases 

that enabled them to sensitively detect the contingency. However, the sampling behavior 

exhibited by the participants was incompatible with an attempt to obtain an accurate estimate 

of either the contingency or the conditional probability in question. To obtain such an 

unbiased estimate, they should have engaged in proportional sampling, sampling each value 

of the predictor (or the criterion) in proportion to its incidence in the population. Instead, the 

less common value of the sampled variable was greatly over-represented.  

To explain this “poor” performance, we suggest not only that the participants, 

unawares, were making an attempt to find out if a contingency existed,  but also that their 

choice of sampling was designed to increase the chances of detecting that contingency, by 

sampling in a way that would amplify its sample value. In other words, we suspect that the 

results reflect a case of the intuitive research designer gaining the upper hand over the 

intuitive statistician. 

As we shall demonstrate in the theoretical analysis that follows, under almost all 

conditions, non-proportional sampling such as that employed by Fiedler et al.’s participants 

amplifies the statistic used to infer an existing relationship (or a difference). Analysis of the 

data actually observed by the participants then shows that this was indeed the outcome for 

the participants of the study: The data they sampled conveyed a relationship much stronger 

than that actually existing in the population from which the sample had been drawn. 

The Theoretical Analyses 

 The measure of contingency in a 2x2 table is ∆p, defined as the difference between 

the two conditional probabilities – the probability of one criterion value given one of the 
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predictor values and the probability of observing the same criterion value given the other 

predictor value. With reference to Table 1, ∆p is defined as  

∆p = 
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 To determine the significance of ∆p requires using the Z test for the difference 

between two unknown proportions.6 Under the null hypothesis that the proportion of the 
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or, after some algebra,  

Z = Nϕ . 

The last formula indicates that, for a given sample size, any manipulation that renders 

the sample value of ϕ – the geometric mean of ∆p and ∆c – more extreme, will increase the 

chance of concluding that an effect exists. 

Implications of Participants’ Sampling 

As described above, the participants sampled items in such a way that the distribution 

of the values of the variable by which they sampled would be less extreme (i.e., closer to 

.5:.5) than that in the population. What effect would such non-proportional sampling have on 

the expected value of the Z-test, the normative statistic calculated to infer the existence of a 

relationship between the two variables? Since the value of that statistic equals ϕ*√N, and it is 

assumed that N (i.e., the effort put into sampling) remains unchanged, the answer lies in the 
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effect of non-proportional sampling on the expected value of ϕ. Table 2 presents the entries 

of the 2x2 table following non-proportional sampling by criterion values (assuming that the 

less frequent value of the variable sampled is over-represented, but that its frequency in the 

new sample does not exceed .5). Table 3 presents the entries of the 2x2 table following non-

proportional sampling by predictor values. 

When based on a sample in which the less common value of the variable used for 

sampling is over-represented (as is the case in Tables 2 and 3), the new value of ϕ tends to be 

more extreme than that in the population. This assertion is based on the results observed in a 

computational analysis that systematically covered all combinations of marginal distributions 

of predictor and criterion and all possible ϕ values. Distributions of predictor and criterion 

values were systematically varied in the range of .5:.5 to .05:.95. Then for each combination 

of marginal values, each possible ϕ value (from maximally negative to maximally positive in 

steps of .05) was generated, by gradually changing the cell entries. Each of these 

combinations defined a “parent” population with its characteristic value of ϕ. To explore the 

effects of non-proportional sampling, we now systematically modified the marginal 

distribution of the predictor values (and then that of the criterion values) for each of the 

parent populations, so that it became less extreme than that in the parent population. That 

modification was carried out in steps of .01, up to the point at which the marginal distribution 

of the variable the frequency of whose values was modified reached .50:.50. For each such 

new 2x2 table, we calculated the value of ϕ and compared it to the value observed in the 

parent population. That comparison revealed that with the less extreme margins, the new 

value of ϕ was more extreme than that in the original population in fully .933 of cases!  

A regression analysis was then conducted, to determine the relationship between the 

pertinent variables and the degree to which the value of ϕ, following non-proportional 
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sampling, becomes more extreme than the original population value of ϕ. As independent 

variables we considered the original distribution of the variable by which values are sampled, 

the original distribution of the other variable, the degree of change in the marginal 

distribution of the variable used for sampling, and the population value of ϕ. Table 4 presents 

the correlation matrix for those variables. The regression analysis revealed a total multiple 

correlation of R=0.702. The variable most strongly related to the change in the strength of ϕ 

(r=.604) and the first to enter the multiple regression is the initial imbalance in the 

distribution of the variable by which values are sampled: The more skewed the distribution, 

the greater was the increase in the strength of ϕ when the values in the sample were less 

extreme than those in the original population. The second strongest predictor of the degree of 

change (r=.561) and the second to enter the multiple regression is the degree of change in the 

marginal distribution: The larger the change in the distribution of values, the larger was the 

increase in the value of ϕ. The third variable to enter the multiple regression equation was the 

imbalance in the population between values of the variable that was not used for sampling: 

The change in ϕ values was smaller, the more extreme the distribution. Its correlation with 

the degree of change was -.102. The last variable to enter the regression was the original 

correlation – ϕ. The more positive it was, the smaller was the change in its value. Its 

correlation with the degree of change was -.132.7  

The computational analysis just described demonstrates that, in the vast majority of 

cases, the drawing of non-proportional samples with marginal distributions less extreme than 

those in the original population yields an accentuation of the value of ϕ. With that 

established, we inspected the actual outcomes of the non-proportional sampling conducted by 

the participants of Fiedler et al. (2000), to determine how it affected the value of the Z  test in 

the data they observed. To that end, we calculated the value of Z test expected for each 
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participant if he or she were to engage in proportional sampling (by whatever variable they 

sampled), and compared it to the value of the Z test calculated on the basis of the sample 

actually drawn. As might be expected, the actual value of the Z test was much stronger than 

that expected under proportional sampling: An analysis of the difference between the 

observed and expected results of the Z tests revealed that for participants engaged in 

predictor sampling the mean difference was .26 (t(170)=2.52, p=.013). For participants 

engaged in criterion sampling, the mean difference was 1.99 (t(156)=7.25, p<.001). For all 

participants combined, the mean difference was 1.09 (t(327)=7.28, p<.001). In other words, 

the sampling engaged in by the participants in the study resulted in greatly exaggerated 

values of ϕ, and hence in the values of the Z test used to detect a relationship between 

variables. 

Conclusion 

 Our reanalysis of the data observed by Fiedler et al. (2000) suggests that, given the 

freedom to design their own “research”, people do that in a way that will help them to 

confidently answer the question of “is there a contingency?” (or more generally, “is there an 

effect?”), rather than to accurately assess the strength of the contingency (or the size of the 

effect). Even when explicitly asked to assess a single value, they sample data in a way that 

will not only make it possible to detect the original difference, but will also amplify it. In 

other words, not only do people care about differences between distributions; it is the 

information about the existence of a difference and its direction, rather than its size that they 

care most about.  

 Scientists, in designing their studies, often manipulate the situation, sampling data in 

a way that will expose a relationship, and will let an effect, if it exists, be detected. The 

present results show that lay people are also quite adept at using similar procedures when 
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deciding what samples to draw. Fiedler (2000) has demonstrated that sampling effects may 

underlie many of the biases evident in people’s judgments, including such phenomena as 

illusory correlations (Hamilton & Guiford, 1976) and base-rate neglect  (Kahneman & 

Tversky, 1972). He noted that, while people’s judgments quite accurately reflect the value of 

the statistics in the samples they observe, they suffer from a deficit in metacognitive 

monitoring and control, as evidenced by their apparent unawareness of the distortions 

induced by the sampling schemes they employ. Our current analysis suggests one reason why 

that happens. 

To our mind, the fact that the values observed in the non-representative samples that 

people draw are used, incorrectly, to estimate population parameters confirms that the 

detection of differences and relationships is more important than the accurate assessment of 

their values. Sampling that would help to reach correct decisions with confidence is 

apparently preferred to sampling that would lead to more accurate estimates, but that could 

render the difference more obscure and difficult to rely upon in deciding how to act. The 

sampling of data so as to accentuate differences should thus be viewed as an indication of the 

skills of the sensitive research designer, rather than of the shortcomings of the intuitive 

statistician. 
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 Footnotes 

1Whenever two or more groups differ in their value on some criterion, it can be said that the 

values of the criterion are contingent on the values of the variable defining the groups. Thus, 

contingencies are synonymous with differences, with the variable defining the groups – the 

independent variable – regarded as the predictor. The correspondence of differences between 

groups with contingencies is most evident when both predictor and criterion are binary 

variables (see Kareev, 2000). 

2Had a correction of sample values, resulting in accurate estimates, been observed, the 

participants’ sampling schemes could have been dismissed as being merely less efficient. 

3Recall that an estimate of the contingency was not required, but there could be hardly any 

other explanation why people who had a choice decided to sample by criterion or to sample 

cases from the ‘negative’ predictor value. 

4We have excluded participants who engaged in predictor sampling and drew a sample 

consisting exclusively of cases with the positive predictor value (i.e., we excluded that 

minority of the participants who performed the task in the normatively prescribed, most 

efficient manner). Not only were these participants engaged in an undertaking other than that 

of the majority of their colleagues, but by having 100% of their cases drawn from the less 

common predictor value, their inclusion in the present analysis would result in even higher 

estimates of the degree of non-proportional sampling. 

5A 2x2 table entails, in fact, two contingencies, the other, reflecting the contingency of 

predictor values on criterion values, which we shall call ∆c, to distinguish it from ∆p, is 

defined as 

∆c = 
)()( db

b
ca

a
+

−
+
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−  .  

ϕ, the symmetrical measure of correlation in a 2x2 table, is the geometric mean of ∆p and ∆c. 

The value of ϕ is 

ϕ = 
))()()(( dbcadcba

bcad
++++

−  

6It is highly unlikely, of course, that lay people calculate the Z test for a difference between 

proportions. However, it should be recalled that the ANOVA model (Kelly, 1967) was found 

to be quite a good description of people’s behavior in situations involving inferences of 

causal attribution. Similarly, Kareev, Arnon, & Horwitz-Zeliger (2002) found that, in a task 

that called for determining which of two distributions had the higher mean value, the result of 

the Z test for a difference between two means, and its significance, were the best predictors 

of lay people’s choices and confidence in them. Therefore, inspecting if people “design their 

research” in a way that increases the chances of observing a more extreme value of the 

inferential statistic appropriate for the task at hand is not as far-fetched as might seem at first.  

7All correlations are based on 3068 cases. All values of r reported are significant at the .001 

level. 
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Table 1:  Standard 2x2 Table of Frequencies. 

 

  Criterion  

  C1 C2 Total 

P1 a  b   )( ba +  
Predictor 

P2 c  d  )( dc +  

 Total )( ca +  )( db +  Ndcba =+++ )(  
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Table 2: 2x2 Table of Frequencies Resulting from Non-Proportional Sampling by the 

Criterion, So that the Resulting Distribution of Criterion Values is Closer to .5:.5 Than the 

Original One. 

 

  Criterion  

  C1 C2 Total 

P1 ( )ε−+
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ca
a  ( )ε++
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db

db
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b
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aba
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+
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−+
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Predictor 
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+
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 Totala )( ε−+ ca  )( ε++ db  Ndcba =+++ )(  

 

a  (a+c)>(b+d); ε >0; (a+c-ε)≥N/2
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Table 3: 2x2 Table of Frequencies Resulting from Non-Proportional Sampling by the 

Predictor, So that the Resulting Distribution of Predictor Values is Closer to .5:.5 Than the 

Original One. 

 

  Criterion  

  C1 C2 Totala 

P1 ( )ε−+
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ba

ba
a  ( )ε−+








+
ba

ba
b  )( ε−+ ba  

Predictor 

P2 ( )ε++
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dc
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c  ( )ε++








+
dc

dc
d  )( ε++ dc  

 
Total )(
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+

+
−+

εε  )(
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bdb
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+
+
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a  (a+b)>(c+d); ε >0; (a+b-ε)≥N/2 
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Table 4: Correlation Matrix, for Variables Entering the Multiple Regression for Increase in ϕ 

Following a Change in Marginal Distribution. 

 

 

 Increase in ϕ Imbalance, P  Change (ε) Imbalance, Q Original ϕ 

Increase in ϕ 

Imbalance, P 

Change (ε) 

Imbalance, Q 

Original ϕ 

-- 

.604 

.561 

-.102 

-.132 

.604 

-- 

.549 

.159 

.040 

.561 

.549 

-- 

.087 

.025 

-.102 

.159 

.087 

-- 

.232 

-.132 

.040 

.025 

.232 

-- 

 

 


