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Abstract

Animal conflicts are often characterized by time dependent strategy sets.

This paper considers the following type of animal conflicts: a member of a group

is at risk and needs the assistance of another member to be saved. As long

as assistance is not provided, the individual which is at risk has a positive,

time dependent rate of dying. Each of the other group members is a potential

helper. Assisting this individual accrues a cost, but losing him decreases the

inclusive fitness of each group member. A potential helper’s interval between

the moment an individual finds itself at risk and the moment it assists is a

random variable, hence its strategy is to choose the probability distribution for

this random variable. Assuming that each of the potential helpers knows the

others’ strategies, we show that the ability to observe their realizations influences

the Evolutionarily Stable Strategies (ESS) of the game. According to our results,

where the realizations can be observed ESS always exist: immediate assistance,

no assistance and delayed assistance. Where the realizations cannot be observed

ESS do not always exist, immediate assistance and no assistance are possible

ESS, while delayed assistance cannot be an ESS. We apply our model to the n

brothers’ problem and to the parental investment conflict.
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1 Introduction

Time is a crucial parameter in many animal conflicts. A common situation in which

time affects an individual’s fitness is where it should choose the length of the interval up

to making a certain decision: assisting, mating, caring, fighting, deserting. Three well

known such animal conflicts are the war of attrition, the parental investment conflict,

and the n brothers’ problem.

In the war of attrition at least two individuals compete for the same resource. Instead

of fighting, each of the individuals persists and the winner is the one who persists

longer. Persisting accrues a cost, for example, delaying the start of breeding. Applying

a game-theoretical approach to the conflict, the individuals are modelled as players,

and each strategy is to choose the probability distribution function of the interval be-

tween the beginning of the game and the time of desertion. Existing game-theoretical

models consider both a symmetric conflict (Maynard Smith and Price, 1973; Bishop

and Cannings, 1978; Bishop et al., 1978; Haigh and Cannings, 1989) and an asymmet-

ric conflict (Maynard Smith and Parker, 1976; Hammerstein, 1981; Hammerstein and

Parker, 1982; Haigh and Cannings, 1989; Yang-Gwan, 1993; Mcnamara et al., 1997;

Haccou and Glaizot, 2002).

In the parental investment conflict (Maynard Smith, 1977; Grafen and Sibly, 1978;

Taylor, 1979; Yamamura and Tsuji, 1993; Motro, 1994; Balshine-Earn and Earn, 1997,

1998; McNamara et al., 2000; Balshine et al., 2002; Barta et al., 2002; Royle et al.,

2002; Webb et al. , 2002; McNamara et al., 2003; Yaniv and Motro, 2004), each sex

should decide how much it invests in its own brood. Observations of animal behavior

(Clutton-Brock, 1991; Balshine-Earn, 1995; Balshine-Earn and Earn, 1997) have shown,

that there are cases where after mating each sex studies its mate’s behavior and only

then chooses its amount of parental investment. During this time interval of mutual

study, the offspring are at risk. Thus, the offspring death process affects each sex’s

decision process.
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In the n brothers’ problem (Eshel and Motro, 1988; Motro and Eshel, 1988), a member

of n ≥ 3 related individuals is at risk and needs the help of another member to be saved.

As long as assistance is not provided, this individual has a positive rate of dying. Each

of the other group members is a potential helper. Assisting accrues a cost, but losing

the individual which is at risk decreases the inclusive fitness of each group member.

The interval between the moment an individual finds itself at risk, and the moment a

potential helper assists is a random variable. A potential helper’s strategy is to choose

the probability distribution function of this variable.

In all these conflicts time may have direct and indirect effects on a player’s decision.

In the war of attrition, time only has a direct effect on the players’ decisions. In the

parental investment conflict and in the n brothers problem, time has both direct and

indirect effect on the players’ decisions.

In the war of attrition, a player’s strategy is to choose the time of desertion. All the

players are decision makers, and the winner is the one who persists longer. A player’s

expected payoff depends on all players’ times of desertion.

In the parental investment conflict and in the n brothers problem, a potential helper’s

strategy is to choose the distribution function of the interval between the beginning

of the game and the moment it ”enters” the game to assist. In addition, there is

an external time dependent process which influences the strategies of all the decision

makers: as long as assistance is not provided, the individual which is at risk (offspring,

brother) has a positive rate of dying. Since losing this individual decreases a potential

helper’s inclusive fitness, the death process motivates the potential helpers to make

their decisions. In both conflicts a potential helper’s expected payoff is influenced by

the strategies of the decision makers, and by the death process.

We consider the following type of animal conflicts: a member of a group sized n ≥ 3 is

at risk and needs the help of another member to be saved. As long as assistance is not

provided, this individual has a positive rate of dying. Assisting the individual accrues
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a cost, but losing it decreases the inclusive fitness of each group member. Each of the

other group members is a potential helper, and its strategy is to choose the distribution

function of the interval between the beginning of the game, and the moment it ”enters”

the game and assists.

Existing game-theoretical models for this type of animal conflicts (Motro and Eshel,

1988; Yaniv and Motro, 2004) assume, that the individual which is at risk has a positive

and constant rate of dying; its lifetime is an exponentially distributed random variable.

In addition, a potential helper is only allowed to choose an exponential distribution for

the interval between the beginning of the game and the moment it ”enters” the game

and assists. These game-theoretical models are characterized by time independent

strategy sets: both the individual’s rate of dying, and the potential helpers ”entering”

rates are constant.

We generalize these models by extending the strategy sets. Both the individual’s rate

of dying and the potential helpers ”entering” rates are assumed to be time dependent.

Thus, the lifetime of the individual which is at risk, and the interval between the

beginning of the game and the moment a potential helper ”enters” the game to assist

can a-priori have any continuous probability distribution function.

This paper considers a symmetric conflict, all the potential helpers have the same

strategy sets and they all play the same role. A general game theoretical model is

developed under two information structures: full information and partial information.

Under the full information each of the players knows the others’ strategies and is able to

observe their realizations. Under the partial information structure each of the players

knows the others’ strategies, but it cannot observe their realizations.

According to our results the information structure influences the ESS. Under the full

information structure ESS always exist. No assistance, immediate assistance and de-

layed assistance are possible ESS. Fixation depends on a potential helpers payoffs from

each of the possible outcomes of the game. Under the partial information structure
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ESS do not always exist. No assistance and immediate assistance are possible ESS,

while delayed assistance cannot be an ESS.

This paper is organized as follows. In section 2 a general symmetric model is presented.

In section 3 the ESS are characterized under the full information structure. In section

4 the ESS are characterized under the partial information structure. In section 5 the

model is applied to the n brothers’ problem and the ESS are computed under both

information structures. In section 6 the model is applied to the parental investment

conflict and the ESS are computed under the full information structure.

2 The Model

Consider a group of n ≥ 3 individuals. The game begins at time t = 0 where one of

the individuals finds itself at risk and needs the help of another individual to be saved.

As long as assistance is not provided, the individual which is at risk has a positive

and time dependent rate of dying. Each of the other group members is a potential

helper. Assisting the individual accrues a cost, but losing it decreases each group

member’s inclusive fitness. The interval between the beginning of the game and the

time a potential helper ”enters” the game to assists is a random variable. Therefore, a

potential helper’s strategy is to a-priori choose the distribution function of this random

variable.

We consider a continuous time conflict. A pure strategy is an exact ”entering” point

in time, a degenerated random variable. A mixed strategy is defined by a continu-

ous probability distribution function. Let F be a continuous probability distribution

function for a potential helper’s ”entering” point in time. The rate function, r(t)dt, is

the probability that the potential helper will ”enter” the game during the infinitesimal

time interval (t, t + ∆t), given that it has not entered the game before t,

r(t)dt =
dF (t)

1− F (t)
.
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It is assumed that at the beginning of the game, n non-homogeneous Poisson pro-

cesses occur simultaneously, each describes the behavior of a player: the individual

which is at risk and (n − 1) potential helpers. Thus, a potential helper’s strategy is

to choose its ”entering” rate function. We denote by µ(t) the rate of dying of the

individual which is at risk during (t, t + ∆t), and by λ(t) a potential helpers rate of

”entering” the game during (t, t + ∆t). If at time t assistance has not been provided

yet and the individual which is at risk is still alive, then one of the following events

can happen during (t, t + ∆t): the individual which is at risk dies with probability

µ(t)∆t+o(∆t), one of the (n−1) potential helpers saves the individual which is at risk

with probability (n− 1)λ(t)∆t+ o(∆t). None of these events happens with probability

1− [µ(t) + (n− 1)λ(t)]∆t + o(∆t) during (t, t + ∆t).

To compute its expected payoff, a potential helper considers three outcomes:

1. The individual which is at risk was saved by him.

2. The individual which is at risk was saved by another potential helper.

3. The individual which is at risk has died.

We denote by P1, P2 and P3 the probability for each of the described outcomes and by

U1, U2 and U3 the respective payoffs, where U1, U2, U3 ≥ 0.

A potential helper’s expected payoff is:

E = U1P1 + U2P2 + U3P3. (1)

3 ESS Under the Full Information Structure

Under the full information structure each of the potential helpers knows all the strate-

gies: the rate of dying and the potential helpers’ entering rates, and is able to their

realizations.
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We assume that almost all the individuals in the population adopt the strategy I,

defined by a continuous probability distribution function F . If a mutant player adopts

the strategy J : ”assist at t”, then its expected payoff is:

E(J, I) = U1Q̄(t)F̄ (t)(n−2) + U2(n− 2)
∫ t

s=0
Q̄(s)F̄ (s)(n−3)dF (s)

+ U3

∫ t

s=0
F̄ (s)(n−2)dQ(s) (2)

where Q(t) is the probability that the individual which is at risk died before t, Q̄(t) =

1−Q(t) and F̄ (t) = 1− F (t).

To characterize the ESS of the game we study the properties of the mutant’s expected

payoff, using the result of Bishop et al. (1978) : if I is a mixed ESS, then a player’s

expected payoff is constant adopting any pure strategy which belongs to the support

of I.

Differentiating equation (2) with respect to t we get:

∂E(J, I)

∂t
= [(U2 − U1)(n− 2)]Q̄(t)F̄ (t)(n−3)dF (t)− [U1 − U3]F̄ (t)(n−2)dQ(t) (3)

The following propositions describe the ESS.

Proposition 3.1 If U1 ≥ max {U2, U3}, then the ESS is immediate assistance.

Proof If U1 ≥ max {U2, U3}, then ∂E(J,I)
∂t

< 0 ∀t ≥ 0 and a potential helper’s stable

reply is to immediately assist. In equilibrium, all the potential helpers immediately

enter the game and a random helper assists the individual which is at risk.

Proposition 3.2 If U1 ≤ min {U2, U3}, then the ESS is no assistance.

Proof If U1 ≤ min {U2, U3}, then ∂E(J,I)
∂t

> 0 ∀t ≥ 0 and a potential helper’s sta-

ble reply is to never assist. In equilibrium, none of the potential helpers assists the

individual which is at risk and the ESS is no assistance.
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Proposition 3.3 If U3 > U1 > U2, then the possible ESS are no assistance and im-

mediate assistance.

Proof If U3 > U1 > U2, then adopting the strategy ”never assist” by all the poten-

tial helpers ensures the highest expected payoff, U3. Adopting any different strategy

decreases a potential helper’s expected payoff, thus no assistance is a possible ESS.

If most of the individuals in the population adopt the strategy I: ”immediately assist”,

then a potential helper’s expected payoff is:

E(I, I) = U1

[
1

n− 1

]
+ U2

[
n− 2

n− 1

]
.

Since U1 > U2, adopting any different strategy decreases a potential helper’s expected

payoff. Therefore, immediate assistance is a possible ESS.

If most of the individuals in the population adopt the strategy I: ”assist at t, 0 < t < ∞”,

then a potential helper’s expected payoff is:

E(I, I) =
[
U1

1

n− 1
+ U2

n− 2

n− 1

]
Q̄(t) + U3Q(t). (4)

Since U1 > U2, a mutant player can increase its expected payoff by assisting at

s = t−∆t, and I cannot be an ESS.

Finally, we show that a strategy I, defined by a continuous probability distribution

function cannot be an ESS. Let I be the common strategy in the population. If I is an

ESS, then a potential helper is indifferent between adopting any different strategy. In

addition, I should satisfy E(J, J) < E(I, J) ∀J ∈ supp(F ), where F is the probability

distribution function defining I. If J is the strategy ”never assist”, then E(J, J) = U3

and E(J, I) = PU2 + (1− P )U3, where P is the probability that the individual which

is at risk will be saved by another potential helper before it will die, 0 < P ≤ 1. Since

U3 > U2, E(J, J) > E(I, J) for all 0 < P ≤ 1 and I cannot be an ESS.
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Proposition 3.4 Let U2 > U1 > U3. The probability distribution function defining a

mixed ESS has the following properties:

• It is a strictly increasing continuous function.

• It has the non-negative half line as its support.

Proof See Appendix A.

If I is a mixed ESS and if I is the common strategy in the population, then a potential

helper’s expected payoff is constant adopting any strategy. It follows from the last

proposition that the probability distribution function defining a mixed ESS has the

non-negative half line as its support. Thus, if I is a mixed ESS and J is the strategy

”assist at t”, then E(J, I) satisfies:

∂E(J, I)

∂t
= 0 ∀t ≥ 0.

We find the mixed ESS candidates by solving ∂E(J,I)
∂t

= 0. Following from equation 3,

solving ∂E(J,I)
∂t

= 0 yields,

dF (t)

F̄ (t)
=

dQ(t)
¯Q(t)

[
U1 − U3

(U2 − U1)(n− 2)

]
.

Let λ(t) = dF (t)
F̄ (t)

and note that µ(t) = dQ(t)
Q̄(t)

, the equation ∂E(J,I)
∂t

= 0 has a unique

solution which satisfies the requirements of proposition 3.4:

λ(t) = µ(t)

[
U1 − U3

(U2 − U1)(n− 2)

]
∀t ≥ 0, (5)

λ(t) is the unique mixed ESS candidate.

Proposition 3.5 If U2 > U1 > U3, then the unique ESS of the game is delayed assis-

tance defined by the following rate function:

λ∗(t) = µ(t)

[
U1 − U3

(U2 − U1)(n− 2)

]
∀t ≥ 0 (6)

Proof See Appendix A.
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4 ESS Under the Partial Information Structure

Under the partial information structure each of the potential helpers knows all the

strategies: the rate of dying and the potential helpers’ entering rates, but it cannot

observe their realizations.

We assume that almost all the individuals in the population adopt the strategy I,

defined by a continuous probability distribution function G. Both ”entering” the game

and assisting accrue a cost. We denote the total cost by c = γc + (1− γ)c, 0 < γ < 1,

where γc is the cost accrued from entering the game and (1 − γ)c is the cost accrued

from assisting the individual which is at risk.

If a mutant player adopts the strategy J : ”enter at t”, then its expected payoff is:

E(J, I) = [U1 − (n− 2)γc] ¯Q(t)Ḡ(t)(n−2) + [U2 − (n− 2)γc](n− 2)
∫ t

s=0

¯Q(s)Ḡ(s)(n−3)dG(s)

+ [U3 − (n− 1)γc]
∫ t

s=0
Ḡ(s)(n−2)dQ(s)

= (U1 + γc) ¯Q(t)Ḡ(t)(n−2) + (U2 + γc)(n− 2)
∫ t

s=0

¯Q(s)Ḡ(s)(n−3)dG(s)

+ U3

∫ t

s=0
Ḡ(s)(n−2)dQ(s)− (n− 1)γc.

Let Ũ1 = U1 + γc and let Ũ2 = U2 + γc, the mutant’s expected payoff can be written

as follows:

E(J, I) = Ũ1
¯Q(t)Ḡ(t)(n−2) + Ũ2(n− 2)

∫ t

s=0

¯Q(s)Ḡ(s)(n−3)dG(s)

+ U3

∫ t

s=0
Ḡ(s)(n−2)dQ(s)− (n− 1)γc. (7)

If a mutant player adopts the strategy J̃ : ”never enter”, then its expected payoff is:

E(J̃ , I) = [U2 − (n− 3)γc]
∫ ∞

s=0
Q̄(s)Ḡ(t)(n−3)dG(s) + [U3 − (n− 2)γc]

∫ ∞
s=0

Ḡ(t)(n−2)dQ(s)

= Ũ2

∫ ∞
s=0

Q̄(s)Ḡ(s)(n−3)dG(t) + U3

∫ ∞
s=0

Ḡ(t)(n−2)dQ(s)− (n− 2)γc. (8)

Proposition 4.1 Under the partial information structure, the pure strategy ”enter at

t, 0 < t < ∞” cannot be an ESS.
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Proof Assume that most of the individuals in the population adopt the strategy I,

”enter at t, 0 < t < ∞”. A potential helper’s expected payoff is:

E(I, I) =
[
Ũ1

1

n− 1
+ Ũ2

n− 2

n− 1

]
Q̄(t) + U3Q(t)− (n− 1)γc. (9)

We show that a mutant player can increase its expected payoff by adopting a different

strategy, considering each of the following cases:

• Ũ1 > max {Ũ2, U3}. If a mutant player adopts the pure strategy J : ”immediately

enter”, then its expected payoff is:

E(J, I) = Ũ1 − (n− 1)γc

hence, E(J, I) > E(I, I) and I cannot be an ESS.

• Ũ1 < min {Ũ2, U3}. If a mutant player adopts the pure strategy J : ”never enter”,

than its expected payoff is:

E(J, I) = Ũ2Q̄(t) + U3Q(t)− (n− 1)γc

hence, E(J, I) > E(I, I) and I cannot be an ESS.

• Ũ2 > Ũ1 > U3. If a mutant player adopts the pure strategy J : ”never enter”,

then its expected payoff is:

E(J, I) = Ũ2Q̄(t) + U3Q(t)− (n− 1)γc

hence, E(J, I) > E(I, I) and I cannot be an ESS.

• U3 > Ũ1 > Ũ2. If a mutant player enters the game at s = t−∆t, then it increases

its expected payoff and I cannot be an ESS.

Therefore, the only ESS candidates are ”immediately enter” and ”never enter”.

We now find the ESS in each of the possible cases.
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Proposition 4.2 If Ũ1 > max {Ũ2, U3}, then:

• Where Ũ2+(n−1)γc < Ũ1 < U3+γc, both immediate assistance and no assistance

are possible ESS .

• Where Ũ1 > max {Ũ2 + (n− 1)γc, U3 + γc}, immediate assistance is the unique

ESS.

• Where Ũ1 < min {Ũ2 + (n− 1)γc, U3 + γc}, no assistance is the unique ESS.

• Where U3 + γc < Ũ1 < Ũ2 + (n− 1)γc, there exist no ESS in the game.

Proof We prove that Ũ1 > Ũ2 + (n − 1)γc is a necessary condition for the strategy

”immediately enter” to be an ESS, and that Ũ1 < U3 + γc is a necessary condition

for the strategy ”never enter” to be an ESS. The proof of the proposition follows

immediately.

If most of the individuals in the population adopt the strategy I: ”immediately enter”,

then a potential helper’s expected payoff is:

E(I, I) = Ũ1

[
1

n− 1

]
+ Ũ2

[
n− 2

n− 1

]
− (n− 1)γc. (10)

If a mutant player adopts a different strategy, J , then its expected payoff is:

E(J, I) = Ũ2 − (n− 2)γc. (11)

Following from equations 10 and 11, E(I, I) > E(J, I) ∀J 6= I if and only if Ũ1 > Ũ2 + (n− 1)γc.

If most of the individuals in the population adopt the strategy I: ”never enter”, then

a potential helper’s expected payoff is:

E(I, I) = U3. (12)

If I is an ESS, then adopting any different strategy decreases the expected payoff. Since

Ũ1 > max {Ũ2, U3}, the strategy that should yield the highest payoff is the pure strategy

11



J : ”immediately enter”. If a mutant player adopts strategy J , then its expected payoff

is:

E(J, I) = Ũ1 − γc. (13)

Following from equations 12 and 13, E(I, I) > E(J, I) if and only if Ũ1 < U3 + γc.

Proposition 4.3 If Ũ1 < min {Ũ2, U3}, then the unique ESS is no assistance.

Proof If most of the individuals in the population adopt the strategy ”never enter”,

then a potential helper’s expected payoff equals U3, and adopting any different strategy

decreases a potential helper’s expected payoff. In addition, the strategy ”immediately

enter” cannot be an ESS. Thus, no assistance is the unique ESS of the game.

Proposition 4.4 If Ũ2 > Ũ1 > U3, then if in addition Ũ1 < U3 +γc then no assistance

is an ESS, otherwise there exists no ESS in the game.

Proof We first prove that ”immediately enter” cannot be an ESS, and then prove

that Ũ1 < U3 +γc is a necessary condition for the strategy ”never enter” to be an ESS.

If most of the individuals in the population adopt the strategy I: ”immediately enter”,

then a potential helper’s expected payoff is:

E(I, I) = Ũ1

[
1

n− 1

]
+ Ũ2

[
n− 2

n− 1

]
− (n− 1)γc.

If a mutant player adopts a different strategy J , then its expected payoff is:

E(J, I) = Ũ2 − (n− 2)γc,

and Ũ1 > Ũ2 +(n−1)γc is a necessary condition for the strategy I to be an ESS. Since

Ũ1 < Ũ2, this necessary condition cannot be satisfied, hence I cannot be an ESS.

If most of the individuals in the population adopt the strategy J : ”never enter”, then

a potential helper’s expected payoff is

E(J, J) = U3.
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If a mutant player adopts the strategy I:”immediately enter”, then its expected payoff

is:

E(I, J) = Ũ1 − γc.

Hence, a necessary condition for J to be an ESS is Ũ1 < U3 + γc.

Proposition 4.5 If U3 > Ũ1 > Ũ2, then no assistance is a possible ESS. If in addition,

Ũ1 > Ũ2 + (n − 1)γc, then both no assistance and immediate assistance are possible

ESS.

Proof If most of the individuals in the population adopt strategy I: ”never enter”,

a potential helper’s expected payoff equals U3, and adopting any different strategy

decreases a players expected payoff. Thus, no assistance is a possible ESS in the game.

If most of the individuals in the population adopt the strategy I: ”immediately enter”,

then a potential helper’s expected payoff is as given by equation 10. If a mutant player

adopts a different strategy J , then its expected payoff is:

E(J, I) = Ũ2 − (n− 2)γc.

Therefore, where Ũ1 > Ũ2 + (n − 1)γc, E(I, I) > E(J, I) for all J 6= I and I is a

possible ESS.

4.1 Influence of Information Structure on the ESS

The cost accrued from a certain decision is different under each of the information

structures, therefore a potential helper may behave differently under each of the infor-

mation structures. We have assumed that both ”entering” the game and assisting the

individual which is at risk accrue a cost. Under the full information structure, each of

the potential helpers can observe all the realizations, thus it enters the game only if

the individual has not been saved yet and is still alive. Under the partial information

structure, a potential helper cannot observe either of the realizations. Therefore, it
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may enter the game and pay a cost, while the individual has already been saved or

died.

We have shown, that under the full information structure no assistance, immediate as-

sistance and delayed assistance are possible ESS. Under the partial information struc-

ture, delayed assistance cannot be an ESS. There are cases where immediate assistance

is an ESS, but in most cases either there exist no ESS, or the ESS is no assistance. Ac-

cording to propositions 4.4 and 4.5, a necessary condition for ”immediate assistance”

to be an ESS is:

Ũ1 > Ũ2 + (n− 1)γc. (14)

Since Ũ1 = U1 + γc and Ũ2 = U2 + γc, this condition can be written as:

U1 > U2 + (n− 1)γc,

hence it is satisfied for n < U1−U2

γc
−1. The following proposition summarizes this result.

Proposition 4.6 Under the partial information structure, if the number of group

members, n, satisfies n > U1−U2

γc
− 1, then immediate assistance cannot be an ESS

of the game.

Under the partial information structure, for a sufficiently large group either no assis-

tance is the ESS, or there exists no ESS in the game.

In situations where ESS do not exist, one can think of a different type of strategy as

an ESS candidate, a strategy which chooses with probability 0 < p < 1 ”immediately

enter” and with the complement probability, 1−p, ”never enter”. Such a strategy is an

ESS in the known Hawk-Dove game (Maynard Smith, 1982), it chooses ”Hawk” with

a certain probability and ”Dove” with the complement probability. In the Hawk-Dove

game, the evolutionary stability of such a strategy implies the stability of a genetic

polymorphism with the suitable frequencies of pure ”Hawk” and pure ”Doves”.

We show that in our game-theoretical model this type of strategy cannot be an ESS,

thus there are situations where an ESS do not exist.
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Proposition 4.7 Under the partial information structure, a strategy which chooses

with probability 0 < p < 1 ”immediately enter” and with probability 1−p ”never enter”

cannot be an ESS.

Proof See Appendix B.

Under the full information structure, where delayed assistance is the ESS, a potential

helper’s stable entering rate is a decreasing function of the group size, and so is the

total rate of entering. We show that where the group size tends to infinity, a potential

helper’s stable entering rate tends to zero, but the total entering rate tends to a positive

and finite time dependent rate.

limn→∞ λ∗(t) = limn→∞ µ(t)
[

U1−U3

(n−2)(U2−U1)

]
= 0 ∀t ≥ 0

limn→∞ (n− 1)λ∗(t) = limn→∞ µ(t)
[

(n−1)(U1−U3)
(n−2)(U2−U1)

]
= limn→∞ µ(t)

[
1− 1

n−2

] [
U1−U3

U2−U3

]
= µ(t)

[
U1−U3

U2−U3

]
∀t ≥ 0,

where 0 < µ(t) < ∞ ∀t ≥ 0.

5 The n Brothers’ Problem

In the n brothers’ problem a member of n related individuals is at risk and needs the

help of another member to be saved (Eshel and Motro, 1988; Motro and Eshel, 1988).

It is assumed that all the group members have the same degree of relatedness. Let be

0 < r < 1 the degree of relatedness between any two members. As long as assistance is

not provided, the individual which is at risk has positive rate of dying, 0 < µ(t) < ∞

for all t ≥ 0. A potential helper has a positive probability, 0 < c < 1, for losing its life

while ”entering” the game and assisting this individual.

5.1 Equilibrium Under the Full Information Structure

Assume that almost all the individuals in the population adopt the strategy I, defined

by a continuous probability distribution function F .
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If a mutant player adopts the pure strategy J : ”assist at t”, then its immediate payoffs

are: 1 − c if the individual which is at risk has been saved by him in t, 1 − rc if the

individual which is at risk has been saved by another member before t, and 1 − r if

the individual which is at risk has died before t. Therefore, substituting U1 = 1 − c,

U2 = 1− rc and U3 = 1− r in equation 2, the mutant’s expected payoff is:

E(J, I) = (1− c) ¯Q(t) ¯F (t)
(n−2)

+ (1− rc)(n− 2)
∫ t

s=0

¯Q(s) ¯F (s)
(n−3)

dF (s)

+ (1− r)
∫ t

s=0

¯F (s)
(n−2)

dQ(s) (15)

The following proposition describes the ESS.

Proposition 5.1 Under the full information structure there exist two possible ESS:

• If the degree of relatedness is lower than the probability for losing one’s life while

entering the game and assisting, r < c, then the ESS is no assistance.

• If the degree of relatedness is greater than the probability for losing one’s life while

entering the game and assisting, r > c, then the ESS is delayed assistance and

the stable entering rate is:

λ∗(t) = µ(t)

[
r − c

c(1− r)(n− 2)

]
∀t ≥ 0.

Proof If c > r, then U1 = (1− c) < min {U2 = (1− rc), U3 = (1− r)} and it follows

from proposition 3.2 that the unique ESS is no assistance.

If c < r, then U2 = (1 − rc) > U1 = (1 − c) > U3 = (1 − r) and it follows from

propositions 3.4 and 3.5, that the ESS is delayed assistance. Substituting U1 = (1− c),

U2 = (1− rc) and U3 = (1− r) in equation 6, the stable entering rate is:

λ∗(t) = µ(t)

[
r − c

c(1− r)(n− 2)

]
∀t ≥ 0. (16)

16



5.2 Equilibrium Under the Partial Information Structure

Under the partial information structure a potential helper may enter the game and pay

the accrued cost, while its assistance is not required, the individual which is at risk has

been saved or died.

We denote by 0 < r < 1 the degree of relatedness between two group members, by

γc the cost accrued from ”entering” the game and by (1 − γ)c the cost accrued from

assisting. The total cost is c = γc + (1− γ)c, 0 < γ < 1 and 0 < c < 1.

Assume that most of the individuals in the population adopt the strategy I defined by a

continuous probability distribution function G, and that a mutant player adopts a pure

strategy J : ”enter at t”. In this case each of the potential helpers will eventually enter

the game and pay the accrued cost. The mutant’s payoff from each of the possible

outcomes are: [1− c− (n− 2)rγc] if the individual which is at risk has been saved

by him, [1− rc− γc− (n− 3)rγc] if the individual which is at risk has been saved by

another helper, and [1− r − γc− (n− 2)rγc] if the individual which is at risk has died.

Substituting these payoffs in equation 7, the mutant’s expected payoff is,

E(J, I) = Ũ1Q̄(t)Ḡ(t)(n−2) + Ũ2(n− 2)
∫ t

s=0
Q̄(s)Ḡ(s)(n−3)dG(s)

+ U3

∫ t

s=0
Ḡ(s)(n−2)dQ(s)− γc[1 + (n− 2)r], (17)

where Ũ1 = 1− (1− γ)c, Ũ2 = 1− (1− γ)rc and U3 = 1− r.

If a mutant adopts the pure strategy J̃ : ”never enter”, then its expected payoff is:

E(J̃ , I) = Ũ2(n−2)
∫ ∞

s0

Q̄(s)Ḡ(s)(n−3)dG(s)+U3

∫ ∞
s=0

Ḡ(s)(n−2)dQ(s)−(n−2)rγc. (18)

The following proposition describes the ESS of the game.

Proposition 5.2 Under the partial information structure, the ESS are characterized

under each of the following situations:

• If the degree of relatedness is lower than the probability for losing one’s life while

entering the game and assisting, r < c, then the ESS is no assistance.
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• If the degree of relatedness is greater than the probability for losing one’s life while

entering the game and assisting, r > c, then there exists no ESS in the game.

Proof If r < (1−γ)c, then Ũ1 < min {Ũ2, U3} and it follows from proposition 4.3 that

the unique ESS is no assistance.

If r > (1 − γ)c, then Ũ2 > Ũ1 > U3. If in addition Ũ1 < U3 + γc, then according to

proposition 4.4 the ESS is no assistance, otherwise there exist no ESS.

In our case, Ũ1 = 1− (1− γ)c and U3 = 1− r, therefore if (1− γ)c < r < c, then the

ESS is no assistance, and if r > c then there exists no ESS in the game.

6 The Parental Investment Conflict

The parental investment conflict considers the question of how much each sex should

invest in its own brood. We consider a symmetric two-stage game, based on the

behavior observed in St. Peter’s fish (Balshine-Earn, 1995; Balshine-Earn and Earn,

1997; Yaniv and Motro, 2004). During the game, each of the parents makes three

decisions, two decisions in the first stage:

• Choosing the rate of entering the game, λ(t).

• Choosing the amount of parental investment, α ∈ (0, 1],

and one decision in the second stage:

• Choosing the probability for cooperating, 0 ≤ q ≤ 1.

Therefore, a parent’s strategy is a three component vector, (λ(t), α, q).

It is assumed, that as long as none of the parents cares for the offspring the offspring

have a positive rate of dying, 0 < µ(t) < ∞ for all t ≥ 0, and that caring for the

offspring accrues a constant cost. In addition, it assumed that each of the parents
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is able to observed its mate’s behavior, thus the ESS are computed under the full

information structure.

To compute the ESS, we find a parent’s stable decisions in each of the stages. The

parent’s stable entering rate is computed using the results from section 3. The ESS

are the decisions that satisfy all the equilibrium conditions.

6.1 Stable Entering Rates

Let the second and the third decisions be known and given, and let W1 be the expected

payoff for a player that plays in the first stage, and let W2 be the expected payoff for

a player that plays in the second stage. It is assumed, that if the offspring have not

survived then a parent’s revenue equals zero.

Assume that most individuals of a population adopt the strategy I, defined by a con-

tinuous probability distribution function F , and that a mutant player adopts the pure

strategy J : ”assist at t”. Substituting U1 = W1, U2 = W2 and U3 = 0 in equation 2,

the mutant’s expected payoff is:

E(J, I) = W1Q̄(t)F̄ (t) + W2

∫ t

s=0
Q̄(s)dF (s), (19)

where Q(t) is the probability that the offspring died before t.

Proposition 6.1 A parent’s stable entering rate depends on the expected payoff from

playing in the first stage, W1, and on the expected payoff from playing in the second

stage, W2.

• If W1 ≥ W2, then the stable strategy is to immediately assist.

• If W1 < W2, then the stable strategy is delayed assistance defined by the following

rate function:

λ∗(t) = µ(t)
[

W1

W2 −W1

]
∀t ≥ 0.
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Proof W1 ≥ W2 implies U1 ≥ U2 in the general model, and it follows from proposition

3.1 that immediate assistance is the stable strategy.

If W1 < W2, then according to proposition 3.5 delayed care is the stable strategy.

Substituting U1 = W1, U2 = W2, U3 = 0 and n = 3 in equation 6, the stable rate is:

λ∗(t) = µ(t)
[

W1

W2 −W1

]
∀t ≥ 0. (20)

6.2 Stable Amounts of Parental Investment

It is assumed that cooperation between the parents, biparental care, increases the

number of surviving offspring (Fetherston et al., 1994; Balshine-Earn, 1995; Markman

et al., 1996; Itzkowitz et al., 2001). It has been proven (Yaniv and Motro, 2004) that

if biparental care increases the number of surviving offspring, then the possible stable

strategy is either to choose α = 0.5, or to choose α = 1 in the first stage, and is either

to fully cooperate, q = 1, or to desert, q = 0, in the second stage. Hence, a parent’s

strategy is: (λ(t), p, q). λ(t) is the rate of entering the game, p is the probability for

choosing α = 0.5 in the first stage, and q is the probability for cooperating.

Let 0 < δ < 0.5 be the advantage from cooperation. We assume that given biparental

care the expected number of surviving offspring is 1. Given a full uniparental care,

one of the parents chooses α = 1, the expected number of surviving offspring is 1− δ.

Given a partial uniparental care, one of the parents chooses α = 0.5 and the other

deserts, the expected number of surviving offspring is 0.5

Denote by 0 < c < 1 the cost accrued from parental caring, a parent’s expected payoff

in each of the stages is:

W1 = (1− p)(1− δ − c) + p[q(1− c) + (1− q)(0.5− c)]

= (1− δ − c) + p[δ − 0.5(1− q)], (21)

W2 = (1− p)(1− δ) + p[q(1− c) + (1− q)0.5]

= (1− δ) + p[δ − 0.5− q(c− 0.5)]. (22)
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The total expected payoff is:

E = W1P1 + W2P2, (23)

where P1 is the probability to play in the first stage, and P2 is the probability to play

in the second stage.

Stable Probability for Investing α = 0.5

Let p be the common probability for choosing α = 0.5 in the first stage, and denote by

p̃ 6= p a mutant’s probability. A mutant’s expected payoff is:

E(p̃, p) = P1{(1− c− δ) + p̃[δ − 0.5(1− q)]}+ P2W2. (24)

The mutant’s expected payoff, E(p̃, p), is linear in p̃. Considering P1 > 0, the stable

probabilities are:

• If δ > 0.5(1− q), then p = 1 (choose α = 0.5).

• If δ < 0.5(1− q), then p = 0 (choose α = 1).

If P1 = 0, then a player is indifferent between choosing α = 0.5, or α = 1.

Stable Probability for Cooperating

Let q be the common probability for cooperating, and denote by q̃ 6= q a mutant’s

probability. A mutant’s expected payoff is:

E(q̃, q) = P1W1 + P2{(1− δ) + p[δ − 0.5− q̃(c− 0.5)]}. (25)

The mutant’s expected payoff, E(q̃, q), is linear in q̃. Considering P2 > 0 and p > 0,

the stable probabilities are:

• If c < 0.5, then q = 1 (cooperate).

• If c > 0.5, then q = 0 (desert).

If P2 = 0, or if p = 0, then a player is indifferent between cooperating, or deserting.
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6.3 Equilibrium Under the Full Information Structure

The two following propositions describe the ESS.

Proposition 6.2 If the cost accrued from parental care is low, 0 < c < 0.5, then the

ESS is immediate biparental care.

Proof It follows from the last subsection that if 0 < c < 0.5, then q = 1, which

implies p = 1. In this case W1 = W2 = 1 − c and according to proposition 3.1, the

unique stable strategy is to immediately assist. The ESS in the game is immediate full

cooperation and a parent’s strategy vector is:

(λ∗(0) = ∞, p = 1, q = 1).

Both parents immediately ”enter” the game and the amount of parental investment is

equally divided between them.

Proposition 6.3 If the cost accrued from parental care is high, 0.5 < c < 1, and

the advantage from cooperation is low, 0 < δ < 1 − c, then the ESS is delayed full

uniparental care.

Proof It follows from the last subsection that if 0.5 < c < 1, then q = 0, which implies

p = 0. In this case, W1 = 1 − δ − c < W2 = 1 − δ and following from proposition 6.1

delayed care is the stable strategy. The stable rate function is:

λ∗(t) = µ(t)
[

W1

W2 −W1

]
= µ(t)

[
1− δ − c

c

]
∀t ≥ 0. (26)

A parent’s stable strategy vector is:

(λ∗(t), p = 0, q = 0) ∀t ∈ (0,∞).
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7 Discussion

This paper considers the following type of animal conflicts: a member of a group sized

n ≥ 3 is at risk and needs the help of another individual to be saved. Assisting this

individual accrues a cost, but losing it decreases the inclusive fitness of each group

member. As long as assistance is not provided, the individual which is at risk has

a positive and time dependent rate of dying. Each of the other group members is a

potential helper. A potential helper’s interval between the moment a group member

finds itself at risk, and the moment it assists is a continuous random variable. Therefore,

a potential helper’s strategy is to a-priori choose the probability distribution function

of this random variable.

We have developed a symmetric game-theoretical model, all the potential helpers have

identical strategy sets and they all play the same role. We have assumed that each of

the potential helpers knows all the strategies, and distinguished between two informa-

tion structures, full information and partial information. Under the full information

structure, each of the potential helpers can observe all the realizations. Under the par-

tial information structure, a potential helper cannot observe the others’ realizations.

Our results show, that the information structure influences the ESS. If each of the

players is able to observe all the realizations, then there always exists an ESS: immedi-

ate assistance, no assistance and delayed assistance. Fixation depends on a potential

helper’s payoff from each of the possible outcomes of the game. One of our results

shows, that the ”entering” rate function defining the mixed ESS is a linear function

of the rate of dying. This result justifies limiting the potential helpers’ strategy sets

to time independent strategy sets, under the assumption of a constant rate of death

(Motro and Eshel, 1988; Yaniv and Motro, 2004).

If the realizations cannot be observed, then there may not exist an ESS. Moreover,

in most cases the only possible ESS is no assistance, immediate assistance is never an

ESS in large groups.
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The reason for these differences is the cost accrued from ”entering” the game. If the

realizations can be observed, then a potential helper ”enters” the game and pays the

accrued cost only if its assistance is required. If the realizations cannot be observed,

then a potential helper may ”enter” the game and pay the accrued cost, while its

assistance is not required: the individual has already been saved or died. An important

result is that the inability to observe the realizations decreases the chances of survival

for the individual which is at risk.

The inability to observe the realizations significantly influences the ESS in the n broth-

ers’ problem. If the degree of relatedness is greater than the accrued cost and the

realizations are observed, then the ESS is delayed assistance. If the realizations cannot

be observed, then there exist no ESS. If the degree of relatedness is smaller than the

accrued cost, then the ESS is no assistance regardless of the information structure.

In many situations the realizations are observed by each of the group members. In

these situations each of the potential helpers can study the behavior of the others

before making its own decision (Balshine-Earn and Earn, 1997; Silk, 2002a,b, 2003).

In such cases, we expect the common behavior to be delayed assistance, however this is

rarely observed. The observed behavior is usually immediate assistance (Silk, 2003). A

possible explanation for such behavior is that the benefits arising from assisting exceed

the payoffs arising from any other possible situation. For example, the benefits of a

protector male arise not only from saving its own kin, but also from becoming more

popular thereby increasing its mating opportunities.

In the parental investment conflict we have computed the ESS under the full infor-

mation structure. Our results show that the possible ESS are immediate biparental

care and delayed uniparental care. The ESS are influenced by the cost accrued from

parental care and by the revenue arising from cooperation. St. Peter’s fish exhibit

an unusual example of delayed parental care (Balshine-Earn, 1995; Balshine-Earn and

Earn, 1997). After mating both parents circle over the fertilized eggs before one of

them starts picking up eggs for mouth incubation. In particular, neither parent is will-
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ing to pick up eggs until the other has committed itself, although both parents know

that as long as the fertilized eggs are on the ground they can be destroyed.

The models that have been presented in this paper, have been applied to conflicts

between related individuals. In the n brothers’ problem, the degree of relatedness

between two individual has been defined and affected each group member’s inclusive

fitness. In the parental investment conflict the parents are assumed to be non-related,

but their offspring carry their genes. Thus losing the offspring decreases each parent’s

inclusive fitness. In both conflicts, the motivation for assisting arises from a genetic

relatedness between the individual which is at risk and its potential helpers. One can

think of similar situations, in which a genetic relatedness cannot be defined. If the

group consists of non-related individuals, then assisting an individual which is at risk

may ensure the helper a future assistance if it will find itself in the same situation.

The death process may motivate the others to assist despite risking their own lives.

Such a payoff function is presented in the repeated prisoner’s dilemma, where strategies

like Tit For Tat (TFT) are considered (Axelrod and Hamilton, 1981; Maynard Smith,

1984; Selten and Stoecker, 1986; Boyd and Lorberbaum, 1987; May, 1987; Farrell and

Ware, 1989; Boyd, 1989; Lorberbaum, 1994). A similar situation is presented in Eshel

and Shaked (2001), where partnership sometimes motivates mutual assistance between

non-related individuals.
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Appendix A

Proof of proposition 3.4

We first prove that the probability distribution function defining a mixed ESS is a

strictly increasing function, and then we prove that its support contains no atoms of

probability.

Assume that most of the individuals in the population adopt the mixed strategy I,

defined by the probability distribution function F1. Denote by A1 the support of F1,

A1 = {s : s ∈ {(0, T1) ∪ (T2,∞]}, T1 < T2}, where F1(T1 < s < T2) = 0.

We show that a mutant player that adopts the strategy Ĩ, defined by probability distri-

bution function, F2, can improve its expected payoff if F2 has the following properties:

• The support of F2 is A2 = {s : s ∈ {(0, T1) ∪ (T2 + δ,∞)}, δ > 0}, where

F2(T1 < s < T2 + δ) = 0.

• The Radon-Nikodym derivative of F2 with respect to F1 is:

dF2

dF1

=

 1 s ∈ (0, T1)

C s ∈ (T2 + δ,∞],

where C > 1.

Note that A2 ⊂ A1, and that F2 stochastically dominates F1. Let λ(s) be the rate

function defining F1. For a sufficiently small δ (0 < δ < 1
λ(T2+∆t)

), C is explicitly

computed by solving the following equation:∫
s∈A2

dF2(s) =
∫ T1

s=0
dF1(s) + C

∫ ∞
s=T2+δ

dF1(s) = 1. (27)

That is,

C =
¯F1(T1)
¯F2(T2 + δ)

∼=
¯F1(T1)

¯F1(T2)(1− δλ(T2 + ∆t))
=

1

1− δλ(T2 + ∆t)
, (28)

where 0 < ∆t << δ. If most of the individuals in the population adopt the strategy I,

then a potential helper’s expected payoff is:

E(I, I) = [U1 + U2(n− 2)]
∫

s∈A1

Q̄(s)F̄1(s)
n−2dF1(s) + U3

∫ ∞
s=0

F̄1(s)
n−1dQ(s). (29)
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The mutant’s expected payoff is:

E(Ĩ , I) = U1

∫
s∈A2

¯Q(s)F̄1(s)
n−2dF2(s) (30)

+ U2(n− 2)
∫

s∈A1

¯Q(s)F̄1(s)
n−3F̄2(s)dF1(s) + U3

∫ ∞
s=0

F̄1(s)
n−2F̄2(s)dQ(s).

Therefore,

E(Ĩ , I)− E(I, I) = U1{C
∫ ∞

s=T2+δ
Q̄(s)F̄1(s)

(n−2)dF1(s)−
∫ ∞

s=T2

Q̄(s)F̄1(s)
(n−2)dF1(s)}

+ U2(n− 2)
∫ ∞

s=T2

Q̄(s)F̄1(s)
(n−3)[F̄2(s)− F̄1(s)]dF1(s)

+ U3

∫ ∞
s=T2

F̄1(s)
(n−2)[F̄2(s)− F̄1(s)]dQ(s).

Since F2 stochastically dominates F1 and since U1, U2 > 0, a sufficient condition for

E(Ĩ , I)− E(I, I) > 0 is:

U2(n−2)
∫ ∞

s=T2

Q̄(s)F̄1(s)
(n−3)[F̄2(s)−F̄1(s)]dF1(s)−U1

∫ ∞
s=T2

Q̄(s)F̄1(s)
(n−2)dF1(s) = 0.

(31)

For all s ≥ T2

F̄2(s)− F̄1(s)
.
=

λ(T2 + ∆t)δ

1− λ(T2 + ∆t)δ
F̄1(s),

and the sufficient condition can be written as follows:

U2(n− 2)
λ(T2 + ∆t)δ

1− λ(T2 + ∆t)δ
= U1

or,

0 < δ =
U1

λ(T2 + ∆t)[U1 + U2(n− 2)]
<

1

λ(T2 + ∆t)
.

If I is a mixed ESS, then the suitable probability distribution function is a strictly

increasing function (its support contains no ”gaps”).

Let I be the common mixed strategy, defined by the probability distribution function

F . Assume that there is a non-zero probability, P , for choosing a point t, t ∈ supp(F ).

Let E(J, I) be the expected payoff of a player that adopts the strategy J : ”assist at t”,

and let E(J̃ , I) be the expected payoff of a player that adopts the strategy J̃ ”assist

at t + δ”.
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If I is an ESS then, E(J, I) = E(J̃ , I) = const for all {δ : t + δ ∈ supp(F )}, and

E(J, I) > E(J̃ , I) for all {δ : t + δ /∈ supp(F )}. Considering the first case,

E(J, I) = U1Q̄(t)F̄ (t)(n−2) + U2(n− 2){
∫ t

s=0
Q̄(s)F̄ (s)(n−3)dF (s)− Q̄(t)P [F̄ (t) + P ](n−3)}

+ U3{
∫ t

s=0
F̄ (s)(n−2)dQ(s)− Q̄(t)[F̄ (t) + P ](n−2)µ(t)}, (32)

and

E(J̃ , I) = U2(n− 2)
∫ t+δ

s=0
Q̄(s)F̄ (s)(n−3)dF (s) + U1Q̄(t + δ)F̄ (t + δ)(n−2)

+ U3

∫ t+δ

s=0
F̄ (s)(n−2)dQ(s).

Hence,

E(J̃ , I) > U1Q̄(t + δ)F̄ (t + δ)(n−2) + U2(n− 2)
∫ t

s=0
Q̄(s)F̄ (s)(n−3)dF (s)

+ U3

∫ t

s=0
F̄ (s)(n−2)dQ(s). (33)

For a sufficiently small δ,

Q̄(t + δ) = Q̄(t)(1− δµ(t)).

F̄ (t + δ)n−2 = (F̄ (t)− δP )n−2 =
n−2∑
i=0

(
n− 2

i

)
(−δP )iF̄ (t)n−2−i

= F̄ (t)n−2 − (n− 2)δP F̄ (t)n−3 + o(δ),

where o(δ) satisfies limδ→o
o(δ)

δ
= 0. Thus,

Q̄(t + δ)F̄ (t + δ)n−2 = Q̄(t)F̄ (t)n−2 (34)

− δQ̄(t)F̄ (t)n−3[P (n− 2) + µ(t)F̄ (t)] + o(δ).

It follows from equations 32, 33 and 34 that a sufficient condition for E(J̃ , I)− E(J, I) > 0

is

Q̄(t)F̄ (t)n−2 − δQ̄(t)F̄ (t)n−3[P (n− 2) + µ(t)F̄ (t)] ≥ 0

or,

0 < δ ≤ F̄ (t)

[P (n− 2) + µ(t)F̄ (t)]
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There exist pure strategies that ensure a greater payoff, thus I cannot be an ESS.

We now prove that if I is a mixed ESS it cannot have an atom of probability in the

right boundary of its support. Assuming that t ∈ supp(F ) and that for all δ > 0,

t + δ /∈ supp(F ). Let J be the strategy ”assist at t” and let J̃ be the strategy ”assist

at t + δ, the expected payoffs are:

E(J, I) = U2(n− 2){
∫ t

s=0
Q̄(s)F̄ (s)(n−3)dF (s)− Q̄(t)P (n−2)}+ U1Q̄(t)P (n−2)

+ U3{
∫ t

s=0
F̄ (s)(n−2)dQ(s)− ¯Q(t)µ(t)P (n−2)}.

E(J̃ , I) = U2(n− 2)
∫ t

s=0
Q̄(s)F̄ (s)(n−3)dF (s) + U3

∫ t

s=0
F̄ (s)(n−2)dQ(s).

Therefore,

E(J̃ , I)− E(J, I) = Q̄(t)P (n−2)[U2(n− 2)− U1 + U3µ(t)]. (35)

Since U2 > U1, E(J̃ , I)− E(J, I) > 0 for all δ > 0 and I is not an ESS.

Proof of proposition 3.5 We first prove that if U2 > U1 > U3, then no pure strategy

can be an ESS.

If most of the individuals in the population adopt the pure strategy I: ”immediately

assist”, then a potential helper’s expected payoff is:

E(I, I) = U1

[
1

n− 1

]
+ U2

[
n− 2

n− 1

]
.

Since U2 > U1, a mutant player can increase its expected payoff by adopting any

different strategy, thus I cannot be an ESS.

If most of the individuals in the population adopt the pure strategy, I, ”never assist”,

then a potential helper’s expected payoff is

E(I, I) = U3,

and a mutant player can increase its expected payoff by adopting any different strategy,

thus I cannot be an ESS .
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If most of the individuals in the population adopt the pure strategy I: ”assist at t,

0 < t < ∞, then a potential helper’s expected payoff is

E(I, I) =

[
U1

1

(n− 1)
+ U2

(n− 2)

(n− 1)

]
Q̄(t) + U3Q(t),

and a mutant player can increase its expected payoff by adopting the pure strategy

”never assist”, thus I cannot be an ESS.

Finally, we prove that delayed assistance defined by λ∗(t) is an ESS of the game. Let

I be the mixed strategy defined by λ∗(t). We have already shown that I satisfies

E(J, I) = const, where J is ”enter at t”. Therefore, if I is an ESS it should satisfy:

E(I, J) > E(J, J).

We have already shown that if the common strategy J is ”immediately assist” then

adopting any different strategy, including I, increases the expected payoff. The same

happens where the common strategy is ”never assist”. Therefore, we only have to

prove that E(I, J) > E(J, J), if J is the strategy ”assist at t, 0 < t < ∞”.

We assume that the common strategy in the population is J , ”assist at t, 0 < t < ∞.

Denoting by F the probability distribution function defined by λ∗(t), the expected

payoffs are:

E(I, J) = U1

∫ t

s=0
Q̄(s)dF (s) + U2F̄ (s)Q̄(s) + U3

∫ t

s=0
F̄ (s)dQ(s),

E(J, J) =

[
U1

1

(n− 1)
+ U2

(n− 2)

(n− 1)

]
Q̄(t) + U3Q(t).

Differentiating each of the payoffs with respect to t yields,

∂tE(I, J)

∂t
= −(U2 − U1)Q̄(t)dF (t)− (U2 − U3)F̄ (t)dQ(t),

∂tE(J, J)

∂t
= −

[
(U1 − U3)

1

n− 1
+ (U2 − U3)

n− 2

n− 1

]
dQ(t).

Since U2 > U1 > U3, both payoffs decrease in t. In addition, E(I, J) > E(J, J) if J is

”immediately assist”, or if J is ”never assist”.
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We now assume that the required inequality is not satisfied, that is, there exists a

non-zero measure set of times {T} = {t : t1 ≤ t ≤ t2, t1 < t2} such that for all t ∈ {T},

E(J, J) ≥ E(I, J) where J is ”assist at t”. Since both payoff functions are continuous

in t, E(J, J) = E(I, J) where J is ”assist at t1” or ”assist at t2”. Therefore, the

differentiations with respect to t of both payoffs are equal in t1 and in t2.

We show that these terms are equal only at one point in time, thus the required

inequality is satisfied. Solving ∂tE(I,J)
∂t

= ∂tE(J,J)
∂t

yields,

(U2−U1)Q̄(t)dF (t)+(U2−U3)F̄ (t)dQ(t) =
[
(U1 − U3)

1

n− 1
+ (U2 − U3)

n− 2

n− 1

]
dQ(t).

Since λ∗(t) = µ(t) U1−U3

(U2−U1)(n−2)
, we get dF (t) = µ(t) U1−U3

(U2−U1)(n−2)
F̄ (t). Dividing both

sides of the last equation by Q̄(t), and substituting dF (t), if both payoffs are equal in

time t, then t necessarily satisfies,

F̄ (t) =
n− 2

n− 1
. (36)

Since F̄ (t) is continuous and a decreasing function of t, there exists exactly one point

in time that solves equation 36. Therefore, there exists no non-zero measure set of

times, {T}, such that E(J, J) > E(I, J) ∀t ∈ {T}. Strategy I satisfies the required

inequality, and it is the unique ESS of the game.

Appendix B

Proof of proposition 4.7

We first find the ESS candidates and then show that these candidates cannot be an

ESS.

Assume that most of the individuals in the population adopt the strategy I, which

chooses with probability 0 < p < 1 ”immediately enter” and with probability 1 − p

”never enter”. If a mutant player adopts a different strategy J , which chooses with

probability p̃ 6= p ”immediately enter” and with 1− p̃ ”never enter”, then its expected

payoff is:

E(J, I) = p̃p
[
Ũ1

1

n− 1
+ Ũ2

n− 2

n− 1
− (n− 1)γc

]
+ p̃(1− p)[Ũ1 − γc]
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+ (1− p̃)p[Ũ2 − (n− 2)γc] + (1− p̃)(1− p)U3,

where Ũ1 = U1 + γc and Ũ2 = U2 + γc. Differentiating the mutant’s expected payoff

with respect to p̃ yields,

∂E(J, I)

∂p̃
= p

[
Ũ1 − Ũ2

n− 1
− γc

]
+ (1− p)[Ũ1 − γc− U3] (37)

Therefore, there exists an ESS candidate only if Ũ2 + (n − 1)γc < Ũ1 < U3 + γc or if

U3 + γc < Ũ1 < Ũ2 + (n− 1)γc. The ESS candidate chooses ”immediately enter” with

probability

p∗ =
U3 − Ũ1 + γc

Ũ1−Ũ2

n−1
+ U3 − Ũ1

. (38)

Let Ũ2 +(n−1)γc < Ũ1 < U3 +γc, and denote by I the ESS candidate defined by p∗. If

I is an ESS and if I is the common strategy in the population, then a potential helper

is indifferent between choosing ”immediately enter” and ”never enter”. In addition, I

should satisfy the stability condition E(I, J) > E(J, J), where J is either ”immediately

enter”, or ”never enter”.

If J is ”never enter”, then

E(J, J) = U3

and,

E(I, J) = p∗(Ũ1 − γc) + (1− p∗)U3.

Since Ũ1 < U3 + γc, E(J, J) > E(I, J) the stability condition is not satisfied, and I

cannot be an ESS.

Let U3 + γc < Ũ1 < Ũ2 + (n− 1)γc. If I is an ESS and if I is the common strategy in

the population, then a potential helper’s expected payoff is:

E(I, I) = E(J, I) = p∗[Ũ2 − (n− 2)γc] + (1− p∗)U3,

where J is ”never enter”. If a mutant player adopts the strategy J̃ , ”enter at t,

0 < t < ∞”, then its expected payoff is:

E(J̃ , I) = p∗[Ũ2 − (n− 2)γc] + (1− p∗)[Q̄(t)Ũ1 + Q(t)U3]− γc,
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= p∗[Ũ2 − (n− 2)γc] + (1− p∗)Q̄(t)(Ũ1 − U3) + (1− p∗)U3 − γc.

We show that E(J̃ , I) > E(I, I) for all t > 0 that satisfies:

Q̄(t) >
γc

(1− p∗)(Ũ1 − U3)
.

Since

1− p∗ =
Ũ1−Ũ2

n−1
− γc

Ũ1−Ũ2

n−1
+ U3 − Ũ1

,

and since Ũ1 > U3 + γc we get,

0 <
γc

(1− p∗)(Ũ1 − U3)
< 1.

Let t∗ satisfy

Q̄(t∗) =
γc

(1− p∗)(Ũ1 − U3)

Adopting the strategy ”enter at t∗” ensures the same payoff as adopting the strategy

strategy I. Since Q̄(t) decreases in t, adopting the strategy ”enter at t” , 0 < t < t∗

ensures a greater payoff than adopting strategy I. Therefore, I cannot be an ESS.
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