האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

WHY IS ONE CHOICE DIFFERENT?

by

DAVID ASSAF and ESTER SAMUEL-CAHN

Discussion Paper #335

September 2003

מרכז לחקר הרציונליות

CENTER FOR THE STUDY OF RATIONALITY

Feldman Building, Givat-Ram, 91904 Jerusalem, Israel PHONE: [972]-2-6584135 FAX: [972]-2-6513681

E-MAIL: ratio@math.huji.ac.il URL: http://www.ratio.huji.ac.il/

Why is One Choice Different?

by

David Assaf and Ester Samuel-Cahn The Hebrew University of Jerusalem

Dedicated to Herman Chernoff on the Occasion of his Eightieth Birthday

AMS 2000 subject classification. Primary 60G40; secondary 60E15. Supported by the Israel Science Foundation Grant number 879/01 Key words and phrases: Optimal stopping rules, ratio prophet inequalities, multiple stopping options.

Abstract

Let X_i be nonnegative independent random variables with finite expectations and $X_n^* = \max\{X_1, \dots, X_n\}$. The value EX_n^* is what can be obtained by a "prophet". A "mortal" on the other hand, may use $k \geq 1$ stopping rules t_1, \dots, t_k yielding a return $E[\max_{i=1,\dots,k} X_{t_i}]$. For $n \geq k$ the optimal return is $V_k^n(X_1, \dots, X_n) = \sup E[\max_{i=1,\dots,k} X_{t_i}]$ where the supremum is over all stopping rules which stop by time n. The well known "prophet inequality" states that for all such X_i 's and one choice $EX_n^* < 2V_1^n(X_1, \dots, X_n)$ and the constant "2" cannot be improved on for any $n \geq 2$. In contrast we show that for k=2 the best constant d satisfying $EX_n^* < dV_2^n(X_1, \dots, X_n)$ for all such X_i 's depends on n. On the way we obtain constants c_k such that $EX_{k+1}^* < c_k V_k^{k+1}(X_1, \dots, X_{k+1})$.

1 Introduction and summary

The classical "ratio prophet inequality" states that for nonnegative independent random variables, not all identically zero, with known distributions and finite expectations, the inequality

$$EX_n^* < 2V_1^n(X_1, \dots, X_n)$$
 (1)

holds for all $n \geq 2$, where $X_n^* = \max\{X_1, \ldots, X_n\} = X_1 \vee \cdots \vee X_n$, and EX_n^* is the return to a prophet who can foresee the entire future, while $V_1^n(X_1, \ldots, X_n) = \sup_{t \in T_n} EX_t$ is the optimal return to a mortal who employs

an optimal stopping rule. Here T_n denotes the collection of all stopping rules for X_1, \ldots, X_n , which stop no later than by time n. Inequality (1) extends nonstrictly also to infinite sequences of random variables, and stopping rules which satisfy $P(t < \infty) = 1$, provided $E(\sup X_i) < \infty$. See, for example, Hill and Kertz (1981), and some earlier references mentioned there, as well as Samuel-Cahn (1984).

The constant "2" in (1) is a "best bound", i.e. cannot be replaced by any smaller constant, as the following well known example shows.

Example 1. Let n=2, $X_1=\alpha$ $X_2=1$ and 0 with probabilities α and $1-\alpha$, respectively, where $0<\alpha<1$. Then $V_1^2(X_1,X_2)=\alpha$ and $EX_2^*=2\alpha-\alpha^2$. Thus $EX_2^*/V_1^2(X_1,X_2)=2-\alpha\to 2$ as $\alpha\to 0$.

The above example shows that "2" is a best bound for any n, since clearly a "best bound" can only increase with n, as one can always take additional

X's to be identically zero, to attain a bound obtained for a smaller value of n.

In a recent paper, Assaf, Goldstein and Samuel-Cahn (2002), (henceforth AGS), a situation where the mortal has several choices is considered. Let k be the number of choices, and $n \geq k$. When the mortal uses the k stopping rules $1 \leq t_1 \leq d \leq t_1 \leq d \leq t_1$ his expected return is $E[X_{t_1} \vee \cdots \vee X_{t_k}]$, i.e. the expected value of the maximal of the k values chosen. Here clearly later choices may/will depend on the values chosen earlier. Let $n \geq k$ and

$$V_k^n(X_1,\ldots,X_n) = \sup_{1 \le t_1 \le \cdots \le t_k \le n} E[X_{t_1} \lor \cdots \lor X_{t_k}]$$

denote the optimal k-choice value, $k = 1, 2, \ldots$ In AGS the inequality (1) is generalized and prophet inequalities are obtained for this situation, under the same assumptions on the X_i 's, as mentioned above. In particular they show: There exist constants g_k such that for any $n \geq k$ and any non-negative X_1, \ldots, X_n with finite expectations, not all identically zero, the inequalities

$$EX_n^* < g_k V_k^n(X_1, \dots, X_n) \tag{2}$$

hold. The values of g_k are given explicitly for $k=1,\ldots 6$. In particular $g_1=2,\ g_2=1+e^{-1}=1.3678\ldots$ and $g_3=1+e^{1-e}=1.1793\ldots$

The purpose of the present note is to show that, unlike the situation for k = 1, the best bounds for more than one choice is n-dependent. In particular we show, for k = 2 that

$$EX_3^* < 1.25V_2^3(X_1, X_2, X_3) \tag{3}$$

and 1.25 is a best bound for k = 2, n = 3.

We give an example with k = 2, n = 4, to show that the bound for this case is larger, and hence the bound depends on n. More generally, for n = k + 1 we obtain values c_k such that $EX_{k+1}^* < c_kV_k^{k+1}(X_1, \ldots, X_{k+1})$, where $c_k < g_k$. (Note, however, that no claim about best bound was made in AGS, regarding g_k holding for all n, except for k = 1. The question whether the g_k 's are best bounds holding for all n is thus still open.)

The fact that best bounds may be n-dependent in some cases is not new. As an example, in the class of i.i.d. non-negative X_i 's, and a single choice, the n-dependence is shown in Hill and Kertz (1982). It is new, however, in the present context of general independent non-negative X_i 's for the case of k > 1 choices. (This is in contrast to the one choice case discussed above).

2 An inequality, and examples

The results of AGS are actually more general than inequality (2). Theorem 1.3 there states that for any non-negative X_i 's with finite expectations satisfying $P(X_n^* = 0) = x$, where $0 \le x < 1$, the ratio prophet inequalities

$$EX_n^* < g_k(x)V_k^n(X_1, \dots, X_n) \tag{4}$$

hold, for k = 1, 2, ... and $n \ge k$. The functions $g_k(x)$ are defined inductively and are monotone decreasing. The first three functions are

$$g_1(x) = 2 - x$$

$$g_2(x) = e^{-(1-x)} + 1 - x$$

$$g_3(x) = \exp\{1 - e^{1-x}\} + 1 - x$$
(5)

For k = 1 inequality (4) yields a best possible bound for all values of x.

Let $R_k^n(X_1, \ldots, X_n) = EX_n^*/V_k^n(X_1, \ldots, X_n)$, and note that $\sup R_k^n(X_1, \ldots, X_n)$ over all X_1, \ldots, X_n is the best bound for k choices and n observations.

With $g_k(x)$ as in (5), for $k=2,3,\ldots$ let

$$c_k = 1 + \sup_{0 \le p < 1} p[(g_{k-1}(p) - 1)/(g_{k-1}(p) - 1 + p)].$$
 (6)

Our main result is the following

Theorem. For any k = 2, 3, ... and any independent non-negative X_i 's with finite expectations, not identically zero

$$R_k^{k+1}(X_1, \dots, X_{k+1}) < c_k \tag{7}$$

and for k = 2 the value of $c_2 = 5/4$ is a best bound.

The values c_3 and c_4 can be obtained numerically, and are $c_3 = 1.1189...$ attained for p = .2852... and $c_4 = 1.0646...$ attained for p = .1709... These values should be compared with the values g_k of (2), in particular $g_2 = 1.3678...$, $g_3 = 1.1793...$ and $g_4 = 1.0979...$ respectively.

We restate some definitions and a lemma from AGS, needed in the proof. We first make the "nontriviality assumption" for n > k regarding X_2, \ldots, X_n and $k \geq 2$ which assumes that the value $V_k^{n-1}(X_2, \ldots, X_n)$ cannot be attained with less than k choices.

Definition. Let X_2, \ldots, X_n be given and $1 \leq k < n$. The value $b_k = b_k(X_2, \ldots, X_n)$ is called the *indifference value* for the k choice problem if, when $X_1 \equiv b_k$, one is indifferent between (i) picking b_k as a first choice, and being left with k-1 choices among X_2, \ldots, X_n , and (ii) not picking b_k and having k choices among X_2, \ldots, X_n . Here, for k=1, the value of a no-choice option is 0. Clearly for general X_1 an optimal policy will pick X_1 if $X_1 > b_k$, be indifferent between picking it or not, when $X_1 = b_k$, and not pick X_1 when $X_1 < b_k$.

It is shown in AGS that, under the nontriviality assumption, b_k is uniquely defined and positive.

We restate Lemma 2.4 of AGS with a slight change of notation.

Lemma 1. For any independent non-negative Y_1, \ldots, Y_n with finite expectations such that $P(Y_n^* = 0) = x$, $0 \le x < 1$, there exist independent non-negative X_1, \ldots, X_n having finite expectations with $b_k = b_k(X_2, \ldots, X_n)$ such that

(i)
$$P(X_n^* = 0) = x$$

(ii)
$$X_i = X_i I(X_i > b_k)$$
 for $i = 2, ..., n$

(iii) X_1 takes values 0 and b_k only

(iv)
$$R_k^n(Y_1, ..., Y_n) \le R_k^n(X_1, ..., X_n)$$
.

In what follows we therefore may, and shall, assume that the X_i 's are as in Lemma 1. Let $X_{[2,n]}^* = \max\{X_2,\ldots,X_n\}$. Note that $p = P(X_{[2,n]}^* = 0) > 0$ since if just for some $i \geq 2$ one would have $P(X_i = 0) = 0$, (ii) would imply $P(X_i > b_k) = 1$ contradicting the fact that b_k is the indifference value. Now

$$V_k^n(b_k, X_2, \dots, X_n) = V_k^{n-1}(X_2, \dots, X_n) = b_k + V_{k-1}^{n-1}([X_2 - b_k]^+, \dots, [X_n - b_k]^+)$$
(8)

where the first equality follows from the definition, and the rightmost equality follows since if b_k is picked as a first choice, the optimal continuation is to maximize the residual value, i.e. the value for the sequence $[X_2 - b_k]^+, \ldots, [X_n - b_k]^+$, with the remaining k-1 choices, since b_k is already guaranteed.

Lemma 2. With X_i 's as in Lemma 1, i = 1, ..., n and $n > k \ge 2$,

$$b_k < \left[\left(g_{k-1}(p) - 1 \right) / \left(g_{k-1}(p) - 1 + p \right) \right] E X_{[2,n]}^* \tag{9}$$

where $p = P(X_{[2,n]}^* = 0)$.

Proof. From (8) and (4) it follows that

$$EX_{[2,n]}^* \ge V_k^{n-1}(X_2, \dots, X_n) = b_k + V_{k-1}^{n-1} \left([X_2 - b_k]^+, \dots, [X_n - b_k]^+ \right)$$

$$> b_k + \frac{1}{g_{k-1}(p)} \left[E([X_2 - b_k]^+ \vee \dots \vee [X_n - b_k])^+ \right) \right]$$

$$= b_k + \frac{1}{g_{k-1}(p)} \left[EX_{[2,n]}^* - (1-p)b_k \right]$$

Now (9) follows by rearranging the relevant terms.

Proof of Theorem.

Note that with X_i 's as in Lemma 1 for $i=2,\ldots,n$ the ratio $R_k^n(X_1,\ldots,X_n)$ will be maximal for $X_1\equiv b_k$, since $V_k^n(X_1,\ldots,X_n)$ remains unchanged as long as X_1 satisfies (iii) of Lemma 1, and EX_n^* increases when $P(X_1=b_k)=1$.

Then, by (9)

$$EX_n^* = pb_k + EX_{[2,n]}^*$$

$$< [1 + p(g_{k-1}(p) - 1) / (g_{k-1}(p) - 1 + p)] EX_{[2,n]}^*$$
(10)

Also, for n = k + 1 we have, by (8), that $EX_{[2,k+1]}^* = V_k^{k+1}(X_1, \dots, X_{k+1})$, and (7) follows.

Since $g_1(p) = 2 - p$ the square bracket in (10) is $[1 + p(1 - p)] \le 5/4$, with equality for p = 1/2, and hence $c_2 = 5/4$.

To see that 5/4 is a best bound, consider the following

Example 2.

Let $0 < \alpha < 1/2$

$$X_1 \equiv \alpha$$
 $X_2 = \begin{cases} 2\alpha & \text{with prob. } \frac{1}{2} \\ 0 & \text{with prob. } \frac{1}{2} \end{cases}$ $X_3 = \begin{cases} 1 & \text{with prob. } \alpha \\ 0 & \text{with prob. } 1 - \alpha \end{cases}$

It is easily verified that here

$$V_2^3(X_1, X_2, X_3) = \alpha(2 - \alpha/2)$$
 and $EX_3^* = \alpha(5 - 3\alpha)/2$.

Thus
$$R_2^3(X_1, X_2, X_3) = (5 - 3\alpha)/(4 - \alpha) \to 5/4$$
 as $\alpha \to 0$.

To show that the bound for k=2 is *n*-dependent, it suffices to show an example of X_1, \ldots, X_4 for which $R_2^4(X_1, \ldots, X_4) > 5/4$. The following is such an example.

Example 3. Let

$$X_1 = .00112352$$
 $X_2 = \begin{cases} .00229297 & \text{with prob. } .449 \\ 0 & \text{with prob. } .551 \end{cases}$

$$X_3 = \begin{cases} .00329067 & \text{with prob. .146} \\ 0 & \text{with prob. .854} \end{cases}$$
 $X_4 = \begin{cases} 1 & \text{with prob. .001} \\ 0 & \text{with prob. .999} \end{cases}$

The prophet value here is $EX_4^* = .002886456$ while the value to the statistician is .00229297, yielding the ratio 1.2588.

Remark. For $k \geq 3$ we do not believe that the values c_k of the theorem are best bounds for $R_k^{k+1}(X_1, \ldots, X_{k+1})$. For example, for k=3 we believe that the best bound for $R_3^4(X_1, \ldots, X_4)$ is $1 + (5\sqrt{5} - 11)/2 = 1.0901 \ldots$, while $c_3 = 1.1189$.

References

- [1] Assaf, D., Goldstein, L. and Samuel-Cahn, E. (2002). Ratio prophet inequalities when the mortal has several choices. *Ann. Applied Probability*, **12**, 972–984.
- [2] Hill, T.P. and Kertz, R.P. (1981). Ratio comparisons of supremum and stop rule expectations. Z. Wahrsch. Verw. Gebiete, **56**, 283–285.
- [3] Hill, T.P. and Kertz, R.P. (1982). Comparisons of stop rule and supremum expectations of i.i.d. random variables. *Ann. Probability*, **10**, 336–345.
- [4] Samuel-Cahn, E. (1984). Comparison of threshold stop rules and maximum for independent nonnegative random variables. *Ann. Probability*, **12**, 1213–1216.