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Abstract

Let X; be nonnegative independent random variables with finite
expectations and X} = max{Xi,...,X}. The value EX is what can
be obtained by a “prophet”. A “mortal” on the other hand, may use
k > 1 stopping rules t1,. .., t; yielding a return E[max;—; ., Xy]. For
n > k the optimal return is V;*(X1,...,X,) = supE[max;—; __p X]
where the supremum is over all stopping rules which stop by time
n. The well known “prophet inequality” states that for all such X;’s
and one choice EX < 2V*(Xy,...,X,) and the constant “2” cannot
be improved on for any n > 2. In contrast we show that for &k = 2
the best constant d satisfying EX < dVJ*(Xq,...,X,) for all such
X;’s depends on n. On the way we obtain constants ¢ such that
EX} < VEH(X1, .., Xiq)

1 Introduction and summary

The classical “ratio prophet inequality” states that for nonnegative indepen-
dent random variables, not all identically zero, with known distributions and
finite expectations, the inequality

EX* < 2Vn(Xy,..., Xy (1)

holds for all n > 2, where X} = max{Xy,...,X,} = X; V---V X, and
EX; is the return to a prophet who can foresee the entire future, while

Vi (X1, ..., X,) = sup EX; is the optimal return to a mortal who employs
teT,
an optimal stopping rule. Here 7;, denotes the collection of all stopping rules

for Xi,..., X,, which stop no later than by time n. Inequality (1) extends
nonstrictly also to infinite sequences of random variables, and stopping rules
which satisfy P(t < oo) = 1, provided E(sup X;) < oo. See, for example,
Hill and Kertz (1981), and some earlier references mentioned there, as well
as Samuel-Cahn (1984).

The constant “2” in (1) is a “best bound”, i.e. cannot be replaced by any
smaller constant, as the following well known example shows.

Ezxample 1. Let n =2, X; = a X3 =1 and 0 with probabilities o and 1 — «,
respectively, where 0 < o < 1. Then V32(X1, X5) = a and EX} = 2a — o?.
Thus EX3/VEA(X1,Xp)=2—a—2as a— 0.

The above example shows that “2” is a best bound for any n, since clearly
a “best bound” can only increase with n, as one can always take additional



X’s to be identically zero, to attain a bound obtained for a smaller value of
n.

In a recent paper, Assaf, Goldstein and Samuel-Cahn (2002), (henceforth
AGS), a situation where the mortal has several choices is considered. Let k
be the number of choices, and n > k. When the mortal uses the k£ stopping
rules 1 < t; < < t; < n his expected return is E[X;, V ---V X, ], i.e.
the expected value of the mazimal of the k values chosen. Here clearly later
choices may/will depend on the values chosen earlier. Let n > &k and

‘/kn(Xl,...,Xn) = sup E[XtIV\/th]

1<ty <<t <n

denote the optimal k-choice value, £k = 1,2,.... In AGS the inequality (1)
is generalized and prophet inequalities are obtained for this situation, under
the same assumptions on the X;’s, as mentioned above. In particular they
show: There exist constants g such that for any n > k£ and any non-negative
X4,...,X, with finite expectations, not all identically zero, the inequalities

hold. The values of g; are given explicitly for £ = 1,...6. In particular
g1=2, gg=1+e1=13678... and g3 =1+¢e! ¢ =1.1793...

The purpose of the present note is to show that, unlike the situation for
k =1, the best bounds for more than one choice is n-dependent. In particular
we show, for £ = 2 that

E’)(:;k < 1.25‘/23(X1,X2,X3) (3)

and 1.25 is a best bound for £k = 2,n = 3.

We give an example with £ = 2,n = 4, to show that the bound for
this case is larger, and hence the bound depends on n. More generally, for
n = k + 1 we obtain values ¢, such that EX; , < ckV}fH(Xl, ey Xpt1)s
where ¢, < gg. (Note, however, that no claim about best bound was made in
AGS, regarding g, holding for all n, except for £k = 1. The question whether
the gx’s are best bounds holding for all n is thus still open.)

The fact that best bounds may be n-dependent in some cases is not new.
As an example, in the class of i.i.d. non-negative X;’s, and a single choice,
the n-dependence is shown in Hill and Kertz (1982). It is new, however, in
the present context of general independent non-negative X;’s for the case of
k > 1 choices. (This is in contrast to the one choice case discussed above).
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2 An inequality, and examples

The results of AGS are actually more general than inequality (2). Theo-
rem 1.3 there states that for any non-negative X;’s with finite expectations
satisfying P(X; = 0) = z, where 0 < x < 1, the ratio prophet inequalities

EX; < g(@)Vi' (X1, ..., Xn) (4)

hold, for k = 1,2,... and n > k. The functions gi(x) are defined inductively
and are monotone decreasing. The first three functions are

gi(r)=2-x (5)
gr)=e TP 41 g
g3(z) =exp{l — e} +1-2z

For k = 1 inequality (4) yields a best possible bound for all values of x.

Let R} (X4, ..., X,) = EX}/V(Xy,...,X,), and note that sup R} (X7, ...

over all X1,..., X, is the best bound for £ choices and n observations.
With gx(z) as in (5), for £k =2,3,... let

=1+ Oigglp[(gk_l(p) —1)/(gk-1(p) — 1+ p)]. (6)

Our main result is the following

Theorem. For any k = 2,3, ... and any independent non-negative X;’s with
finite expectations, not identically zero

Ry (X, X)) < e (7)
and for k = 2 the value of co = 5/4 is a best bound.

The values c3 and ¢4 can be obtained numerically, and are c3 = 1.1189. ..
attained for p = .2852... and ¢4 = 1.0646... attained for p = .1709....
These values should be compared with the values g, of (2), in particular
go =1.3678...,93=1.1793... and g4, = 1.0979... respectively.

We restate some definitions and a lemma from AGS, needed in the proof.
We first make the “nontriviality assumption” for n > k regarding X, ..., X,
and k > 2 which assumes that the value V"' (Xa, ..., X,,) cannot be attained
with less than k& choices.



Definition. Let X,,...,X,, be given and 1 < k£ < n. The value b, =
be(Xo, ..., X,) is called the indifference value for the k choice problem if,
when X; = b, one is indifferent between (i) picking by as a first choice,
and being left with £ — 1 choices among Xj,...,X,, and (ii) not picking
br and having k choices among X, ..., X,,. Here, for £ = 1, the value of a
no-choice option is 0. Clearly for general X; an optimal policy will pick X;
if Xy > by, be indifferent between picking it or not, when X; = by, and not
pick X7 when X, < by.

It is shown in AGS that, under the nontriviality assumption, by, is uniquely
defined and positive.
We restate Lemma 2.4 of AGS with a slight change of notation.

Lemma 1. For any independent non-negative Yi,...,Y, with finite expec-
tations such that P(Y,) = 0) = z, 0 < z < 1, there exist independent
non-negative X1, ..., X, having finite expectations with by = by (Xo, ..., Xy)
such that

(i) P(X;=0) =2
(i) X;=X;I(X; >0bg) for i=2,....n
(11i) X, takes values 0 and by, only

(iv) Ri(Yi,...,Y,) < RM(X, ..., X,).

In what follows we therefore may, and shall, assume that the X;’s are as in
Lemma 1. Let X, = max{X,,...,X,}. Note that p = P(X}, , =0) >0
since if just for some 7 > 2 one would have P(X; = 0) =0, (ii) would imply
P(X; > b;) = 1 contradicting the fact that by is the indifference value.

Now

Vit (bg, Xoy -, X)) = VI ( Xy oo, X)) = b + VI (X2 — b, oo [ X — b))

(8)

where the first equality follows from the definition, and the rightmost equal-
ity follows since if by is picked as a first choice, the optimal continuation
is to maximize the residual value, i.e. the value for the sequence [X, —
bel™, ..., [Xyn — bg]t, with the remaining & — 1 choices, since by is already
guaranteed.



Lemma 2. With X;’s as in Lemma 1,1 =1,...,n andn > k > 2,

b < [(gk-1(p) — 1) / (gr—1(p) — 1 + p)|EX[5 ) (9)
where p = P(X}, , = 0).
Proof. From (8) and (4) it follows that

EX[*2,n] > V}gnil(XQ, o Xp) =b + V;cn:l1 ([X2 - bk]+’ o [ X — bk]+)

1
> b + [E([X2 — bt V-V [X, — b))
9k-1(p)
1
= b+ —— [EX}, — (1—p)b
* 9x-1(p) [ o~ ) k]
Now (9) follows by rearranging the relevant terms. O

Proof of Theorem.

Note that with X;’s asin Lemma 1 for i = 2, ..., n the ratio R} (X1,..., X,)
will be maximal for X; = b, since V*(Xy,...,X,,) remains unchanged as
long as X satisfies (iii) of Lemma 1, and E X increases when P(X; = by) =
1.

Then, by (9)

< [L+p(ge1(p) = 1)/ (gr1(p) = 1+ D) EX]o

Also, for n = k + 1 we have, by (8), that EXp, ;) = VX, . Xe),
and (7) follows.

Since g;(p) = 2 —p the square bracket in (10) is [1+p(1 —p)] < 5/4, with
equality for p = 1/2, and hence ¢; = 5/4.

To see that 5/4 is a best bound, consider the following

Ezample 2.
Let 0 < < 1/2

2c¢ with prob.

1 ith prob.
X1 = X2 = . X3 = Wi pro @
0  with prob.

0 with prob. 1 — «

N N[



It is easily verified that here
V2 (X1, X2, X3) = a(2 — a/2) and EX; = a(5 — 3a)/2.

Thus R3 (X, X5, X3) = (5 —3a)/(4 — a) = 5/4 as a — 0.
U

To show that the bound for £ = 2 is n-dependent, it suffices to show
an example of X1,..., X, for which R3(X1,...,X,) > 5/4. The following is
such an example.

Ezxample 3. Let

.002292 ith .44
X, = .00112352 X, = § 00229297 with prob. 449
0 with prob. .551
. — .00329067 with prob. .146 )1 with prob. .001
> 7 o with prob. .854 "7 o with prob. .999

The prophet value here is EX} = .002886456 while the value to the statisti-
cian is .00229297, yielding the ratio 1.2588.

Remark. For £ > 3 we do not believe that the values ¢, of the theorem are
best bounds for R’,zH(Xl, ..y Xg41). For example, for £ = 3 we believe that
the best bound for R3(X,...,Xy) is 1+ (5v/5 — 11)/2 = 1.0901 ..., while
c3 = 1.1189.
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