
 האוניברסיטה העברית בירושלים
THE HEBREW UNIVERSITY OF JERUSALEM 

 
 
 
 
 
 

OPTIMUM AND RISK-CLASS 
PRICING OF ANNUITIES    

  
 

by 
 
 

EYTAN SHESHINSKI 
  
 

Discussion Paper  # 327                 July 2003 
 
 
 
 
 

   
 
 

 מרכז לחקר הרציונליות  
 

CENTER FOR THE STUDY 
OF RATIONALITY 

 
 
 
 
 

Feldman Building, Givat-Ram, 91904 Jerusalem, Israel 
PHONE:  [972]-2-6584135      FAX:  [972]-2-6513681 

E-MAIL:              ratio@math.huji.ac.il 
     URL:    http://www.ratio.huji.ac.il/ 



OPTIMUM AND RISK-CLASS

PRICING OF ANNUITIES∗

By

Eytan Sheshinski

Department of Economics

The Hebrew University of Jerusalem

April 2001

Abstract

When information on longevity (survival functions) is unknown early in life,

individuals have an interest to insure themselves against future ’risk-class’

classification. Accordingly, the First-Best typically involves transfers across

states of nature. Competitive equilibrium cannot provide such transfers if

insurance firms are unable to precommit their customers. On the other hand,

public insurance plans that do not distinguish between ’risk-class’ realizations

are also inefficient. It is impossible, a-priori, to rank these alternatives from

a welfare point of view.
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1 Demand for Annuities

Consider an individual who wants to decide on his or her optimum consumption at

different ages and choose an age for retirement in the presence of uncertainty about the

length of life. Assume at first that this uncertainty is represented by a known survival

distribution function, F (z), which is the probability to survive to age z. Subsequently

we shall analyze the more realistic case of uncertain survival probabilities early in life.

Let T be maximum lifetime.1 Then, F (0) = 1, F (T ) = 0 and F (z) is non-increasing

in z.

Assume that f(z), the density of 1−F (z) (the probability of dying at age z), exists
for all z, 0 ≤ z ≤ T . Consumption at age z is denoted by c(z). Utility of consumption,
u(c), is independent of age, increasing in c, and displays risk aversion (u0(c) > 0 and

u00(c) < 0). When working, the individual provides one unit of labor. Disutility of work,

a(z), is independent of consumption and increasing with age (a0(z) > 0). Contingent on

survival, individuals work between age zero and R, i.e. retirement occurs at R.

The individual’s objective is to maximize expected lifetime utility, V . With no

subjective discount rate,

V =

TZ
0

F (z)u(c(z))dz−
RZ
0

F (z)a(z)dz. (1)

Let wages at age z be w(z). Savings, w(z) − c(z), whether positive or negative,
are assumed to incur a zero rate of interest.2

With no bequest motive, individuals save only in order to finance consumption,

particularly during retirement. This is achieved efficiently by continuously annuitizing

savings through the purchase of ’deferred-annuities’ that will start payments upon re-

tirement (Sheshinski (1999)).

Expected lifetime consumption is equal to expected lifetime income:

TZ
0

F (z)c(z)dz−
RZ
0

F (z)w(z)dz = 0. (2)

1Formally, it is possible to allow T =∞.
2It is well-known how to modify the results for positive rates of interest and subjective discount rates.

2



Maximization of (1) subject to (2) yields an optimum constant consumption flow,

c(z) = c∗, 0 ≤ z ≤ T which depends on the age of retirement By (2),

c∗ = c∗(R) =
W (R)

_
z

(3)

where
_
z =

TR
0

F (z)dz is life-expectancy3 and W (R) =
RR
0

F (z)w(z)dz is expected

wages until retirement.

The condition for optimum retirement is written:

φ(R)− a(R) = 0 (4)

where φ(R) = u0(c∗(R))w(R) is the additional utility from a small postponement of

retirement. Condition (4) determines optimum retirement so as to balance these benefits

against instantaneous labor disutility, a(R). We assume that w0(R) ≤ 0. This ensures

that (4) has a unique solution, denoted R∗, which satisfies second-order conditions.4

Optimum expected utility, V ∗, is

V ∗ = u(c∗(R∗))
_
z −

R∗Z
0

F (z)a(z)dz. (5)

Fully insuring against lifetime uncertainty, c∗, R∗ and V ∗ are the First-Best allo-

cation.

3Integrating by parts:
TR
0

F (z)dz =
TR
0

zf(z)dz.

4The sufficient condition is that at any solution, R∗, to (4), φ strictly decreases:

φ0(R∗)
φ(R∗)

=
w0(R∗)
w(R∗)

− σ(R∗) w(R
∗)

W (R∗)
F (R∗) < 0,

where σ = −u
00(c)c
u0(c)

> 0. This condition clearly holds when w0(R) ≤ 0.
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2 ’Risk-Classes’: Ranking of Survival Functions

Individuals who share a common survival function are called a ’risk-class’. We

want to consider a population that consists of a number of risk-classes and analyze the

implications of alternative annuity pricing schemes in the presence of such heterogeneity.

It will be useful first to formalize the notion that one survival function has a shorter

life-span or is more ’risky’ than another. Our approach is a direct application of the

theory of Stochastic-Dominance.

2.1 Ranking of Survival Function

Consider two survival functions, F1(z) and F2(z), 0 ≤ z ≤ T , both satisfying

Fi(0) = 1, Fi(T ) = 0 and Fi(z) non-increasing in z, i = 1, 2. The conditional probability

of dying at age z,
fi(z)

Fi(z)
, is termed the ’Hazard-Rate’ of Fi(z).

Definition 1. (’Single Crossing’ or ’Stochastic-Dominance’): The function F1(z)

is said to (strictly) stochastically dominate F2(z) if the ’Hazard-Rates’ satisfy

f2(z)

F2(z)
>
f1(z)

F1(z)
, 0 ≤ z ≤ T. (6)

In words, the rate of decrease of survival probabilities,
d lnF (z)

dz
= − f(z)

F (z)
, is

smaller at all ages with distribution 1 than with 2.

Two implications of this definition are important. First, consider the functions
Fi(z)

TR
0

Fi(z)dz

, 0 ≤ z ≤ T , i = 1, 2. Being positive and their integral over (0, T ) equal

to one, they must intersect (cross) at least once over this range. At any such cross-

ing, when
F1(z)

TR
0

F1(z)dz

=
F2(z)

TR
0

F2(z)dz

, condition (6) implies that
d

dz

 F1(z)
TR
0

F1(z)dz

 >

d

dz

 F2(z)
TR
0

F2(z)dz

. Hence, there can be only a single crossing. That is, there exists

an age zc, 0 < zc < T , such that (Figure 1),
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F1(z)
TR
0

F1(z)dz

S F2(z)
TR
0

F2(z)dz

as z S zc. (7)

Intuitively, (7) means that the dominant (dominated) distribution has higher (lower)

survival rates, relative to life expectancy, at older (younger) ages.

Second, since Fi(0) = 1, i = 1, 2, it follows from (7) that

_
z1=

TZ
0

F1(z)dz >

TZ
0

F2(z)dz =
_
z2, (8)

i.e., stochastic dominance implies higher life expectancy.

2.2 Risk-Class Pricing of Annuities

Suppose that the population consist of two risk classes represented by survival

functions Fi(z), i = 1, 2. Otherwise individuals are identical (i.e., same preferences and

incomes). Assume that group 1’s survival function stochastically dominates, according

to (6), that of group 2. In particular, group 1 has a higher life expectancy. In a perfectly

competitive market, when firms can identify annuity purchasers according to the risk-

class to which they belong, the analysis in section 2 applies to each group separately.

This leads us to the following:

Proposition 1. When F1(z) stochastically dominates F2(z), then c∗1(R
∗
1) < c

∗
2(R

∗
2)

and R∗1 > R
∗
2.

Proof. Applying (3) to each group, c∗i = c
∗
i (R) =

RR
0

Fi(z)w(z)dz

TR
0

Fi(z)dz

, i = 1, 2.

By (7),

c∗i (R) =

RR
0

F1(z)w(z)dz

TR
0

F1(z)dz

<

RR
0

F2(z)w(z)dz

TR
0

F2(z)dz

= c∗2(R), (9)
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for all R, 0 < R < T . It follows from (4) that φ1(R) > φ2(R) and hence, since

a0(R) > 0, that R∗1 > R
∗
2 and, further more, since w

0(R) ≤ 0 and a0(R) > 0, c∗1(R
∗
1) <

c∗2(R
∗
2) q.

When wages are the same for all individuals, those with higher life expectancy par-

tially compensate for higher longevity by retiring later, but their optimum consumption

remains lower throughout.

3 Uncertain Future Survival Functions

The assumption that uncertainly in lifetime duration is represented by a known

survival function is not realistic. Survival probabilities are difficult to predict, partic-

ularly early in life, since they depend on health and other circumstances which only

unfold overtime. Accordingly, we shall now assume that early in life individuals do not

know to what risk class they will belong later on. Consequently, they have an interest

in insurance against alternative risk classifications later in life. Such insurance typically

involves transfers across different risk classes (’states of nature’) and is actuarially fair

on average.

Risk classes with higher than average life expectancy face unfavorably priced an-

nuities while the others face favorably priced annuities. It is desirable to have ex-ante

insurance that allows consumption levels and retirement ages to deviate from those that

would be chosen when annuity prices are actuarially fair for each risk class separately.5

We model the uncertainty about future risk classification as follows. All individ-

uals have the same known survival function, F (z), between ages zero to M, well before

retirement. At that age, there is a probability p, 0 < p < 1, that the survival function

becomes F1(z) and 1− p that it becomes F2(z).
Assuming that preferences do not vary with the realized risk class, expected lifetime

utility is

5More generally, this applies not only to retirement but to other labor supply attributes (e.g., hours
of work and effort) not modelled here.
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V =
MR
0

F (z)u(c(z))dz + p
TR
M

F1(z)u(c1(z))dz + (1− p)
TR
M

F2(z)u(c2(z))dz−

−
MR
0

F (z)a(z)dz − p
R1R
0

F1(z)a(z)dz − (1− p)
R2R
M

F2(z)a(z)dz

(10)

where ci(z), M ≤ z ≤ T, and Ri are consumption and retirement age under

realization of survival function i, i = 1, 2. Choices obey a zero expected profits constraint:

MR
0

F (z)c(z)dz + p
TR
M

F1(z)c1(z)dz + (1− p)
TR
M

F2(z)c2(z)dz−

−
MR
0

F (z)w(z)dz − p
R1R
0

F1(z)w(z)dz − (1− p)
R2R
M

F2(z)w(z)dz = 0

(11)

Maximization of (10) subject to (11) yields optimum consumption, which is con-

stant at all ages and across states: c(z) = c1(z) = c2(z) = c∗. Similarly, optimum

retirement ages are equal for both risk classes: R1 = R2 = R. By (11), c∗ is given, in

analogy to (3), by

c∗ = c∗(R) = β
W1(R)
_
z1

+ (1− β)W2(R)
_
z2

, (12)

where
_
z i=

MR
0

F (z)dz+
TR
M

Fi(z)dz is life expectancy and Wi(R) =
MR
0

F (z)w(z)dz+

RR
M

Fi(z)w(z)dz is expected wages until retirement in state i, and β =
pz1

pz1 + (1− p)z2 ,

0 < β < 1. Optimum retirement age, R∗, is determined, as before, by condition (4).

We state this result in the following:

Proposition 2. When preferences are independent of survival function realiza-

tions, optimum consumption is uniform and retirement ages are identical for all risk

classes.

The optimum described above entails transfers across risk classes.
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Let T ∗i be the optimum transfer to risk-class i, defined as the excess of expected

consumption over expected wages from ageM to T less expected total savings, S∗, during

ages zero to M , S∗ =
MR
0

F (z)(w(z)− c∗)dz:

T ∗i = c
∗
TZ
M

Fi(z)dz−
R∗Z
M

Fi(z)w(z)dz − S∗ = c∗zi −Wi(R
∗). (13)

By (12),

T ∗1 = z1(1− β)
·
W2(R

∗)
z2

− W1(R
∗)

z1

¸

T ∗2 = z2β
·
W1(R

∗)
z1

− W2(R
∗)

z2

¸ (14)

By (7), transfers to the stochastically dominant (dominated) group are positive

(negative), T ∗1 > 0(T
∗
2 < 0). The break-even constraint (11) entails that total expected

transfers are zero: pT ∗1 + (1− p)T ∗2 = 0.

4 Competitive Markets: Risk-Class Pricing without
Transfers

We have seen that the First-Best allocation entails transfers across risk-classes.

Competitive insurance markets can implement such a scheme provided that insurance

firms can precommit their customers, prior to ’risk-class’ realization, to stay-on until

retirement. This is not plausible. Firms will successfully lure individuals with a short

life expectancy, offering them actuarially fair annuities with no transfers to other groups.

Consequently, in the absence of transfers between risk-classes, individuals at early ages

find themselves not being insured against alternative risk classifications at later ages.

We want to study the implications of this market failure.

At age M, expected utility of an individual who belongs to risk class i, denoted Vi,

is

Vi =

TZ
M

Fi(z)u(ci(z))dz−
RiZ
M

Fi(z)a(z)dz, i = 1, 2. (15)
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When annuity prices are actuarially fair for each risk class, the zero expected profits

constraint is

TZ
M

Fi(z)ci(z)dz−
RiZ
M

Fi(z)w(z)dz − S = 0, i = 1, 2, (16)

where S, savings during ages zero to M , are the same for both risk classes. As be-

fore, maximization of (15) subject to (16) yields optimum consumption, which is constant

at all ages: ci(z) = bci, M ≤ z ≤ T . By (16),

bci = bci(Ri, S) =
RiR
M

Fi(z)w(z)dz + S

TR
M

Fi(z)dz

, i = 1, 2. (17)

Optimal retirement age, denoted bRi(S), is determined by the condition:
φi(Ri, S)− a(Ri) = 0, i = 1, 2, (18)

where φi(Ri, S) = u0(bci(Ri, S))w(Ri). At the optimum, with bci( bRi(S), S) andbRi(S), expected utility, (15), is written bVi(S). By the envelope theorem, dbVi
dS

= u0(bci).
Expected utility at age zero, V , is

V =

MZ
0

F (z)u(c(z))dz + pbV1(S) + (1− p)bV2(S). (19)

Maximization of (19) subject to the constraint:

S−
MZ
0

F (z)w(z)dz+

MZ
0

F (z)c(z)dz = 0 (20)

yields constant optimum consumption c(z) = bc, 0 ≤ z ≤M,where, by (20)
9



bc = bc(S) =
MR
0

F (z)w(z)dz − S
MR
0

F (z)dz

. (21)

Optimum savings has to satisfy the condition:

u0(bc) = pu0(bc1) + (1− p)u0(bc2) (22)

At the optimum, marginal utility of consumption between age zero and M is a

weighted average of optimum marginal utility of consumption of the two risk classes.

Since F1(z) stochastically dominates F2(z), it is seen from (17) that for any R and

S, bc1(R, S) < bc2(R,S). This implies, in turn, that φ1(R, S) > φ2(R, S). It now follows
from condition (18) that bR1 > bR2 and (since w0(R) ≤ 0) that bc1( bR1, S) < bc2( bR, S).

We summarize:

Proposition 3: Risk class pricing without transfers implies that at the optimum,bc1 < bc < bc2 and bR1 > bR2.
Comparing (12) with (17) - (18), it can be inferred that First-Best consumption

and retirement, (c∗, R∗), relate to optimum consumption and retirement under risk class

pricing without transfers, (bci, bRi), i = 1, 2, as follows: bc1 < c∗ < bc2 and bR1 > R∗ >bR2 (Figure 3). In the First-Best allocation, individuals fully insure themselves against
risk classification via transfers across risk classes. In the absence of such transfers,

individuals with high life expectancy choose to postpone retirement, thereby partially

compensating for their lower lifetime consumption. The opposite holds for those with

low life expectancy.

Propositions 2 and 3 imply that when preferences are independent of survival

function realizations, optimum risk class pricing without transfers is inferior to optimum

uniform annuity prices. Importantly, this suggests that social security systems which

provide uniform benefits to retirees with the same earnings history and the same retire-

ment age are preferred to private annuity markets which do not provide transfers across

risk-classes. We now want to explore whether this conclusion changes when preferences

depend on survival function realizations.
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5 Welfare Ranking of Uniform vs. Risk-Class An-
nuity Systems

The inefficiency of risk-class pricing without transfers depends crucially on indi-

viduals’ desirability to maintain, after the arrival of information about their ’risk-class’

classification an optimum level of consumption and retirement age independent of risk-

class. Such invariance entails positive and negative transfers across risk-classes. This

result does not carry-over to the case when utility functions are state dependent.

Consider, for example, the case when disutility from work depends on the state of

nature. Thus, let ai(z) be this disutility in state i, i = 1, 2. When F1(z) stochastically

dominates F2(z), it is natural to assume that a1(z) < a2(z), for all z ≥M.6
Assuming that utility from consumption is independent of the state of nature, it

can be shown that the First-Best entails constant consumption, c∗, given by

c∗ = c∗(R1, R2) = β
W1(R

∗
1)

z1
+ (1− β)W2(R

∗
2)

z2
, (23)

while optimum retirement ages are determined by the conditions7

u0(c∗(R∗1, R
∗
2))w(R

∗
i )− ai(R∗i ) = 0, i = 1, 2. (24)

It is easy to see from (23) - (24) that R∗1 > R
∗
2.

Whether the optimum entails transfers can be seen (from (14)) to depend on the

difference between
W1(R

∗
1)

z1
and

W2(R
∗
2)

z2
, that is, on the difference in expected total

wages until retirement relative to expected lifetime. This difference can have any sign.

For example, let Fi(z) = e−αi , and w(z) = w. Then the First-Best has no transfers iff

α1R
∗
1 = α2R

∗
2, i.e. if the elasticity of optimum retirement relative to expected lifetime is

unity. More generally, transfers to any group can be positive or negative depending on

the level of this elasticity.

6The relation between ai(z), for M ≤ z, and a(z), for 0 ≤ z ≤M is immaterial for our discussion.

7Second-order conditions can be shown to be satisfied.
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In principle, therefore, when First-Best transfers are zero or negligible, a private

market for annuities without transfers will be efficient. On the other hand, if a public

social security system does not allow the flexibility in retirement ages implied by the

optimum, then the private market will be superior.

When utility of consumption is also state dependent then, in the First-Best, both

optimum consumption levels and optimum retirement ages depend on risk-class real-

ization. Hence, a social security system which provides uniform consumption (and/or)

imposes equal retirement ages is, in general, not efficient.

We are led to the following conclusion:

Proposition 4. It is impossible to rank, from a welfare point of view, an annuiti-

zation system that provides a uniform plan (of consumption and retirement) to all risk

classes and a competitive system based on risk-class pricing but without precommitment

and hence no transfers.
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