2Y9WYTY2 N2V WODN2NINT
THE HEBREW UNIVERSITY OF JERUSALEM

CONSTITUTIONAL IMPLEMENTATION
OF SOCIAL CHOICE CORRESPONDENCES

by

BEZALEL PELEG, HANSPETERS
and TON STORCKEN

Discussion Paper # 323 July 2003

NIRRT IR 1o

CENTER FOR THE STUDY
OF RATIONALITY

Feldman Building, Givat-Ram, 91904 Jerusalem, | sr ael
PHONE: [972]-2-6584135 FAX: [972]-2-6513681
E-MAIL: ratio@math.huji.ac.il

URL: http://www.ratio.huji.ac.il/



Constitutional Implementation of Social
Choice Correspondences

Bezalel Peleg* Hans Peters' Ton Storcken'
March 2003

Abstract

A game form constitutionally implements a social choice correspon-
dence if it implements it in Nash equilibrium and, moreover, the as-
sociated effectivity functions coincide. This paper presents necessary
and sufficient conditions for a unanimous social choice correspondence
to be constitutionally implementable, and sufficient and almost nec-
essary conditions for an arbitrary (but surjective) social choice corre-
spondence to be constitutionally implementable. It is shown that the
results apply to interesting classes of scoring and veto rules.

JEL classification numbers: 025, 026

Keywords: Social choice correspondence, game form, effectivity function,
constitutional implementation.

*Department of Mathematics & Center for Rationality and Interactive Decision Theory,
The Hebrew University of Jerusalem, Feldman Building, Givat-Ram, 91904 Jerusalem,
Israel. E-mail: pelegba@math.huji.ac.il. Financial support from the Research School
METEOR of the University of Maastricht, and from the Dutch Science Foundation NWO
(grant no. B 46-476) is gratefully acknowledged.

tDepartment of Quantitative Economics, University of Maastricht, P.O. Box
616, 6200 MD Maastricht, The Netherlands. E-mail: h.peters@ke.unimaas.nl,
t.storcken@ke.unimaas.nl.



1 Introduction

Starting point of this paper is the traditional social choice framework with
a finite number of agents (or players) and a finite number of alternatives. A
social choice correspondence assigns to each profile of preferences a nonempty
set of alternatives. In a mechanism or game form, each player is endowed
with a set of strategies, and an outcome function assigns to each profile of
strategies an alternative. A game form implements a social choice corre-
spondence (in Nash equilibrium) if for each profile of preferences the set of
alternatives assigned by the social choice correspondence coincides with the
set of Nash equilibrium outcomes of the associated game (cf. Hurwicz, 1972;
Maskin, 1985; Danilov, 1992; Yamamoto, 1992).

The social choice correspondence can be seen as a centralized procedure
that reflects an underlying constitution. More precisely, a social choice corre-
spondence endows each group of agents with a certain ‘constitutional’ power.
Formally, this power or constitution can be represented by the effectivity
function derived from the social choice correspondence (cf. Gardenfors, 1981;
Moulin and Peleg, 1982; Peleg, 1984; Peleg, 1998; Abdou and Keiding, 1991).

A game form is a decentralized procedure and also endows each group
of agents (players) with a certain power, again represented by its associated
effectivity function (cf. Gaertner et al., 1992). If a game form implements
a given social choice correspondence, then the right alternatives—‘right’ in
terms of the constitution underlying the social choice correspondence—are
attained in a decentralized manner (so by the agents’ own choice) as long as
a Nash equilibrium is played. If we do not want to rely on the players playing
Nash equilibria, then we need additional restrictions on the game form that
guarantee the maintenance of the constitution underlying the social choice
correspondence.

Following Peleg and Winter (2002) we will formalize this by considering
so-called constitutional implementation, which requires that the game form
not only implements a social choice correspondence but also has the same
associated effectivity function. In other words, the game form endows each
group of agents with exactly the same power as the social choice correspon-
dence.

The first main result is a tight characterization of all unanimous social
choice correspondences that are constitutionally implementable. The condi-
tions involved are (Maskin) monotonicity; full power of n—1-person coalitions



(n is the number of agents); and a condition requiring that if two disjoint
coalitions are effective for two sets of alternatives, then every alternative
must be in at least one of these sets. The second main result gives sufficient
and ‘almost’ necessary conditions for constitutional implementation of social
choice correspondences that are not necessarily unanimous but only surjec-
tive. By discussing exemplary classes of scoring rules and veto rules we show
that this last result enables us to establish constitutional implementation of
many interesting but non-unanimous rules.

The organization of the paper is as follows. After preliminaries in Section
2, we discuss constitutional implementation of unanimous and surjective so-
cial choice correspondences in Sections 3 and 4, respectively. In Section 5 we
present the mentioned examples and show independence of the characterizing
conditions. Section 6 concludes.

Notations. For a set D, 2P denotes the set of all subsets of D, and P(D)
the set of all nonempty subsets. By |D| we denote the number of elements
of D.

2 Preliminaries

Let A be the nonempty (finite or infinite) set of alternatives. Throughout
we assume |A| > 2, in order to avoid trivialities. A preference R on B C A
is a complete, transitive, and antisymmetric binary relation on B. The set
of all preferences on B is denoted by L(B). For R € L(A), R|B denotes
the restriction to B. We will also use notations like zRB (alternative x is
(weakly) preferred to all elements of B), B'RB (every alternative in B’ is
(weakly) preferred to every alternative in B), etc.

Let N ={1,...,n} be the (finite) set of players. Throughout we assume
n > 3. An n-tuple RN € L(A)Y is called a preference profile. Similarly, for
a coalition S € P(N), R® denotes a preference profile for S, i.e., an element
of L(A)".

A social choice correspondence (SCC) H assigns to every preference pro-
file RN a nonempty subset H(RY) of A. An SCC H is called surjective if for
every © € A there is an RY € L(A)Y such that {z} = H(RY). It is called
unanimous if H(RYN) = {z} for all RN € L(A)Y and z € A such that xR'A
for all i € N. Obviously, unanimity of an SCC implies surjectivity.



A game form is an (n + 1)-tuple T’ = (X!,... 3" 7) where
(i) for each player i € N, ¥ is a nonempty set of strategies;
(i) 7: B! x ... x X" — A is a surjective map called the outcome function.

By X9 (S € P(N)) we denote the product [[;cg ¥'. An element of ¥ is
called a strategy profile (for S). For RN € L(A)Y the pair (T, RY) is a game
in strategic form in the obvious way. A strategy profile ¢ € XV is a Nash
equilibrium of (T, RN) if w(o)Rin (oMM, 7%) for all 7% € ¥¥ and i € N. The
set, of all Nash equilibria of the game (I, RY) is denoted by NE(T, RY).

An effectivity function is a map E : 2V — 2P(4) such that

(1) E@) = 0;
(i) BE(N) = P(A);
(iii) A € E(S) for every S € P(N).

An effectivity function FE is monotonic if B € E(S) implies B’ € E(S’) for all
B,B" € P(A) and S,S" € P(N) with B C B" and S C S'. It is superadditive
it BNB' € E(SUS’) for all BB’ € P(A) and S,S" € P(N) with B € E(S),
B' € E(S"), and SN S = 0.

Let H be a surjective SCC. We associate with H an effectivity function
E* ] as follows. Define E”(()) = () and for B € P(A) and S € P(N) let B €
EH(S) if there is a preference profile RS € L(A)® such that H(R®, QV\%) C
B for every preference profile QN5 € L(A)M\%. Note that, in particular,
E"(N) = P(A) by surjectivity of H, so E* is well defined. It is easy to see
that £ is monotonic and superadditive.

Similarly, we can associate an effectivity function E' with a game form
I = (X4...,%" ), as follows. Define E' () = @) and for B € P(A) and
S € P(N) let B € E'(S) if there is a strategy profile 0° € X* such that
m(0%,7V\%) € B for every strategy profile 7V\% € YN¥\5. In particular,
E"(N) = P(A) by surjectivity of 7, so E' is well defined. It is again easy to
see that ' is monotonic and superadditive.

The game form T' implements the social choice correspondence H (in
Nash equilibrium) if 7#(NE(T, RY)) = H(RY) for every preference profile
RN € L(A)N. If H is surjective, then T constitutionally implements H if T
implements H and E' = E,



We conclude this section with introducing the following notation. For a
preference R € L(A) and an alternative a € A let L(a, R) := {x € A | aRz}
be the set of all alternatives to which a is (weakly) preferred. Observe that
a € L(a, R).

3 Constitutional implementation of unanim-
ous social choice correspondences

The social choice correspondence H is (Maskin) monotone if for all RN, QN €
L(A)N and a € H(R") such that L(a, R") C L(a,Q") for all i € N, we have
a € H(Q"). Monotonicity of H is a necessary condition for implementability
(cf. Maskin, 1985).

An alternative a € A is Pareto undominated in a preference profile RY €
L(A)Y is there is no alternative b € A\{a} with bR'a for alli € N. The SCC
H is Pareto optimal if, for every RN € L(A)YN, H(R") contains only Pareto
undominated alternatives.

Lemma 3.1 Let the SCC H be unanimous and monotone. Then H is Pareto
optimal.

Proof. Let RN € L(A)YN and a € H(R") and suppose, contrary to what
we wish to prove, that there is a b € A\{a} such that bR'a for all i € N.
Consider the profile RN with RY|A\{b} = R'|A\{b} and bR'A for all i € N.
By monotonicity, a € H(RY), but by unanimity, {b} = H(R"). This is a
contradiction, hence a is Pareto undominated in RY. We conclude that H is
Pareto optimal. O

Call the SCC H dictatorial if there is an ¢ € N, the dictator, such that, for
all RN € L(A)N, H(RYN) = {z} where zR'A. Obviously, a dictatorial social
choice correspondence is unanimous and constitutionally implementable, e.g.
by the game form in which every player announces a preference and the out-
come function picks the best alternative of the dictator. The purpose of this
section is to present necessary and sufficient conditions for a nondictatorial
unanimous SCC to be constitutionally implementable.

Proposition 3.2 Let H be an SCC. If H is implementable, then H is mono-
tone. If H is unanimous, nondictatorial, and constitutionally implementable
then, moreover, the following two conditions hold.
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(U1) For all B,B' € P(A) and S, S' € P(N) with B € Ef(S), B' € EH(9"),
and SNS" =0, we have BU B' = A.

(U2) For alli € N, we have E¥(N\{i}) = P(A).

Proof. For the first statement, see Maskin (1985). Condition (U2) follows
from Theorem 6.2 in Peleg and Winter (2002). Condition (U1) follows from
Lemma 3.1 above and Lemma 6.3 in Peleg and Winter (2002). O

The interpretation of (U2) is obvious. Note that for anonymous SCCs (where
the names of the players do not matter) condition (Ul) is equivalent to the
condition that E(S) # {A} implies |S| > n/2, for all S € P(N).

We will show that the conditions in Proposition 3.2 are also sufficient
for constitutional implementation of a unanimous SCC. We start with an
auxiliary result on monotone SCCs.

Lemma 3.3 Let H be a monotone SCC, S € P(N), and B € E"(S). Then
there is a preference profile RS € L(A\B)® such that, if RN € L(A)" and
for alli € S: (i) R1|A\B = R'; and (ii) BR'A\B, then H(R") C B.

Proof. Since B € E#(S), there is a preference profile R® € L(A)° such that
H(RS, RN\S) C B for all RN\S € L(A)N\S. For every i € S define R € L(A)
by R'|B = R'|B, R)|A\B = R|A\B, and BR'A\B. Let RY € L(A)" be
as in the statement of the lemma. Suppose x € H(R") for some z € A\B.
Then by monotonicity, z € H(R®, RN\%), hence x € B, a contradiction.
Hence, H(RY) C B. O

We now present the main result of this section.

Proposition 3.4 Let H be a unanimous and monotone social choice cor-
respondence satisfying (Ul) and (U2). Then H is constitutionally imple-
mentable.

Proof. We construct a game form I' = (X!, ... 3" 7), as follows. For each
i € N, the strategy set ¥* consists of all five-tuples of the form (RY,z,t, S, B)
where RY € L(A)N, z € H(RY), t € {0,1,2,...}, S C N with 7 € S, and
B € FH(S). Let (o) € =¥, For the definition of the outcome 7(c?) we
distinguish three cases:



() Thereare RY € L(A)Y and z € H(RY) such that o = (R, x,0, N, {x})
for all i € N. Then 7 (o) := .

(8) There are RN € L(A)N, » € H(RY), and k € N such that o =
(RN, x,0,N,{z}) and 0% = (-,z*,,-,) # o' for all i € N\{k}. Then
(o) = 2* if s RF2* and 7(o") := x otherwise.

(7) Neither («) nor () hold. For the strategy profile o, call a pair (T, B)
with1 < |T| <n—1,1< |B| < |A|,T € P(N),and B € F*(T) decided
if ot = (-,-,0,T,B) for all t € T. Let D = {(T', B),...,(T* B} be
the set of all decided pairs for ¢¥. Let D = N_, B! if D # (), and
D = Aif D = . (Observe that, for U_, T" # 0, D € E"(U_, T
by superadditivity of E¥. Otherwise, D = A.) Let k be the player
who announces the highest ¢ in ¢V; in case of a draw, take from those
players the one with the highest number. If 0% = (RY,- - - ), then
7(o™) := 2 where x € D such that zR*D.

We now show that I' constitutionally implements H.
(i) T' implements H.
Let RN € L(A)N.

Take a € H(R"). Consider the strategy o' = (R", a,0, N, {a}). By case (a),
7(o™) = a. We show that o is a Nash equilibrium of (', RV). Suppose a
player k deviates to 7 = (-, 2%, -,-,+). By case (3), m(cV\¥} 1) is equal to a
or equal to z* if aR*z*. Hence, 7(oV)R*r (VM 7). So o € NE(I, RN),
and H(RN) C 7(NE(T', RM)).

For the converse, take oV € NE(T, RY) and let a = (o). We distinguish
three cases, according to the definition of m(o™V).

(a) There are RN € L(A)N and x € H(RY) such that o' = (R",z,0, N, {z})
for every i € N.

Then m(o") = 2 = a and in particular a € H(RY). Take k € N and
y € L(a, R¥) arbitrary, and let RNV € L(A)" be a preference profile with
yR/A for all j € N. By unanimity, H(R") = {y}, so 7 = (R",y,1, N, {y})
is a well defined strategy in X*. By case (3), we have w(c™\{¥} 1) = ¢, and
since o is a Nash equilibrium in (I, RY), we have m(o™)REm(aNM\F} 7).
Hence, aRR*y, and since y was an arbitrary element of L(a, R¥), it follows



that L(a, R¥) C L(a, R¥). Since also k was arbitrary and a € H(RY), we
have by monotonicity of H that a € H(RY).

(b) There are RN € L(A)YN, » € H(RN), and k € N, such that o' =
(RN, 2,0, N,{z}) and o* # o for every i € N\{k}.

Let 0% = (-,-,t*, -, ). Take an arbitrary y € A and a profile RY with y R/ A for
all j € N. By unanimity, H(RY) = {y}. For an arbitrary player i € N\{k},
consider the strategy 7 = (RY,y,t* +1,{i}, A), so that, with 7%, player i
announces the largest number. Then (o \{"} 7%) is determined by case (7).
Since there are no decided pairs in this strategy profile, we have D = A
and 7 (oMM, 77) = y. Since oV is a Nash equilibrium of (I', R"), we have
(oMY Riw (oMM 79), so w(0V)R'y. Since y € A and i € N\{k} were arbi-
trary, we have

(1) m(eNYRIA for all j € N\{k}.

By condition (U2), {a} € F"(N\{k}). Hence, by Lemma 3.3, there is
a profile RN\ ¢ L(A\{a})M*} such that H(QV\*}, R*) = {a}, where
aQ'A and Q|A\{a} = R for all i € N\{k}. By (1) and monotonicity,
a=mr(oN) e HRN).

(¢) Neither («) nor ().

Let D = {(T',B'),...,(T% BY}, D, and k be as in the definition of case
(7). Let 78 = (RN, y,t* + 1, {i}, A) for an arbitrary i € N be defined exactly
as in case (b) above.

If D=0 then D = A. Since n(cV)Rin(ce" M, 7%) and n(c" M, 79) =y,
we have 7(¢™)R'y. Since both i € N and y € A were arbitrary, we have
7(eV)R'A for all i € N. By unanimity, a = (o) € H(RN).

If D # () then let, for each h € {1,..., ¢}, D" .={B' |l € {1,...,0}\{h}},
with D' := A if £ = 1. Consider h € {1,...,¢} and i € T". Take y (as in
1) in D". Then n(c™ M, 79) =y by case (7). As w(oV)Rim(e¥ M, 71), and
y € D" h, and i € T" were arbitrary, we have:

(2) 7(eVYR'D" for every h € {1,...,¢} and i € T".
In exactly the same way we prove:

(3) m(eMYR'D for all i € N\ Uf_, T*.



By Lemma 3.3, for every h € {1,...,¢} there is an RT" € L(A\B")T" such
that, for all QM\T" e L(A)M\T" | we have

H(RTha QN\Th) - Bh:

where (B"\D")Rim(o™ )R} (D\{n(c™)})RI(D"\B") and R|A\B" = R, for
every h € {1,...,4} and i € T". By superadditivity it follows, in particular,
that

HET,... R, RM\Ui T C D.

Since, by construction, 7(oV)R'D for all i € U,_, T" and, by (3), 7(¢V)R'D
for all i € N\ U,_, T", we have by Pareto optimality (Lemma 3.1) that

(4) HE" ... B, RNV ™) = [2(0™)} = {a}.

Let h € {1,...,¢} and i € T". By (Ul), B U D" = A, hence L(a, R’) =
A\(B"\D") = D". Since, by (2), D" C L(a, R), we have L(a, R") C
L(a, R). Since h and i € T" were arbitrary, (4) and monotonicity imply
a € H(RM).

By cases (a), (b), and (c), we have n(NE(I', RY)) C H(R"). This completes
the proof that I' implements H.

(i) ET = EH.

First, let £ € N and consider N\{k}. By (U2) it is sufficient to prove
E'(N\{k}) = P(A). Let z € A arbitrary. By monotonicity of E" it is
sufficient to prove that E' (N\{k}) contains {x}. By (U2) we can take a
preference profile RY € L(A)" such that H(RY) = {z} and AR*z. For
every i € N\{k} let o' = (RN, 2,0, N,{z}). By cases (a) and (8) we have
m(oN\MFY 78) = 2 for all 7% € ¥*. Hence, EV(N\{k}) = {2}, as was to be
proved.

Second, since we have just proved E'(N\{k}) = E"(N\{k}) = P(A)
for all k € N, it follows by superadditivity of E' and E” that E' ({k}) =
EH({k}) = {A} for every player k.

It remains to consider coalitions S with 1 < |S| < n — 1. Let B €
FH(S), without loss of generality B # A. Consider an z € A and a strategy
profile RN with zR'A for all i € N, so H(RY) = {x} by unanimity. Let
o' = (RN,z,0,S,B) for every i € S. Since 1 < |S| < n —1, (0%, V) is
determined by case (7) for every 7\ € ¥\ Obviously, (S, B) is a decided
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pair in every such strategy profile (0%, 7V\%), so that 7(c%, 7V\%) € B. This
proves B € ET(9).

Finally, let B € E'(S), without loss of generality B # A. Take a strategy
profile ¢ € ¥¥ with 7(a%, 7V\%) € B for all 7¥\5 € ¥\, With RN and 7 as
in the preceding paragraph, consider a strategy ¢ = (R, x, ¢!, {i}, A) € &
for every i € N\S. Since |S| < n—1, n(c®, 7¥\) is determined by case (7).
Let (T, BY), ..., (T, BY), D, and k be as in the definition of w(c%, 7V\%) in
(7). By the choice of 7% for i € N\S, we have U/_, T' C S. By varying z in
the definition of 7 over D and choosing #* high enough, we obtain that the
range of (c%,-) is D. Hence, D C B. By superadditivity, D = N, B! €
EH (UL, TY. Thus, by monotonicity of E¥, B € E¥(S).

This completes the proof of (ii), and of the proposition. O

By combining Propositions 3.2 and 3.4 the following corollary results.

Corollary 3.5 Let H be a unanimous and nondictatorial social choice cor-
respondence. Then H is constitutionally implementable if and only if it is
monotone and satisfies (U1) and (U2).

4 Constitutional implementation of surject-
ive social choice correspondences

In this section we consider the larger class of surjective social choice corre-
spondences. As observed, surjectivity is implied by unanimity. In the context
of implementability and, thus, of (Maskin) monotonicity, surjectivity implies
the following weakening of unanimity. Call the SCC H weakly unanimous if
r € H(RV) for all RN € L(A)Y and z € A such that xR'A for all 1 € N.

Lemma 4.1 Let the SCC H be monotone and surjective. Then H is weakly
UNANIMOoUS.

Proof. Let # € A and RY € L(A)N with zR'A for alli € N. By surjectivity
there is a profile RN € L(A)YN with {z} = H(RY). By monotonicity, z €
H(RY). O

In this section we give a set of necessary and a set of sufficient conditions for
constitutional implementation of a surjective social choice correspondence.
We start with a necessary condition.
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Lemma 4.2 Let the SCC H be surjective and constitutionally implementable.
Then

(S1) for alli € N, RN € L(AYN, and a € H(RY), we have L(a, R%) €
ET(N\{i}).

Proof. See Peleg and Winter (2002, Lemma 3.4). O

We will show (Proposition 4.3 below) that by adding the following condition
we obtain a set of sufficient conditions for constitutional implementation of
a surjective SCC H.

(S2) Let T',...,T* be pairwise disjoint coalitions (¢ > 1), B! € F(T')
for each [ = 1,....0, x € D := i_, B!, and RY € L(A)". For each
h € {]_,,f} define Dh = nle{l,...,(}\{h} Bl, and D! := Aif ¢ = 1.
Suppose that xR'D" for all i € T" and h € {1,...,¢}, and zR'D for
alli € N\U/_, T". Then z € H(R").

Proposition 4.3 Let H be a monotone and surjective SCC satisfying (S1)
and (S2). Then H is constitutionally implementable.

Proof. We use a game form I" that is almost identical to the one in the proof
of Proposition 3.4. There are two differences.

First, in case (), let o* = (-, 2%, -, S, B) be the strategy of the ‘deviating’
player. If S # {k}, then 7(c") is as before, i.e., m(oV) := 2* if 2% € L(z, R¥)
and 7(oV) := z otherwise. If S = {k} (and, thus, B € E({k})), then by
(S1) and superadditivity of E¥, L(x, R*) N B # (); let z € L(x, R*) N B with
2R*(L(z, R*)N B). Now define 7(o") := 2% if 2 € L(z, R*)NB, n(oV) ==z
if ¥ ¢ L(x, R*)N B and x € B, and n(o") := z if 2¥ ¢ L(z, R*) N B and
z ¢ B.

Second, in case (v) we allow |T| = 1 or |T| = n — 1 for a decided pair
(T, B).

We first show:

I' implements H.

Let RY € L(A)N. The proof that H(RY) C n(NE(T, RY)) is almost identical
to the corresponding part in the proof of Proposition 3.4. For the converse,
take 0¥ € NE(T, RY) and let a = n(c"). We distinguish three cases, ac-
cording to the definition of 7(a¥).
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(a) There are RN € L(A)N and x € H(RY) such that o' = (RN, 2,0, N, {z})
for every i € N.

Then m(o") = = a and in particular a« € H(R"Y). Take k € N and
y € L(a, R*) arbitrary, and let RN € L(A)N be a preference profile with
yR/A for all j € N. By weak unanimity (Lemma 4.1), y € H(R"), so
7= (RY,y,1,N,{y}) is a well defined strategy in X*. By case (3), we have
7(eM\#} 1) = ¢, and since o is a Nash equilibrium in (I, RY), we have
W(UN)RkW(ON\{k}, 7). Hence, aR*y, and since y was an arbitrary element of
L(a, R*), it follows that L(a, R*) C L(a, R¥). Since also k was arbitrary and
a € H(RV), we have by monotonicity of H that a € H(RY).

(b) There are RN € L(AYN, x € H(RN), and k € N, such that o' =
(RN, 2,0, N,{z}) and o* # o' for every i € N\{k}.
First consider player k. Just as in part (a), we derive that aR*L(x, R¥).

Next, consider an arbitrary player i € N\{k}. Let player k& announce t*
in o and consider a strategy 7' € X7 of the form 7/ = (RN, - t* + 1, {i}, A).
Then 7(o¥\# 77) is determined by case (7). In particular, 7(e ¥\ 7)) R' B,
where the set B is equal to A if there is no decided pair, or given by B €
FH({k}) if oF is of the form ¢* = (-,-,0,{k}, B) (in which case ({k}, B) is
the only decided pair). Then a € B and, since o is a Nash equilibrium,
aR'B.

Now consider the pairs (N\{k}, L(x, R*)) and ({k},B). Then B €
ET({k}), and, as derived, aR'B for all i € N\{k}. By (S1), L(z, R*) €
FEH(N\{k}). Since a = n(c") is equal to z or an element of L(x, R¥), we
have a € L(z, R¥). Moreover, as derived, aR*L(x, R*). By (S2), it follows
that a € H(RN).

(¢) Neither («) nor ().

Let D = {(T',B'),...,(T% BY}, D, and k be as in the definition of case
(7). Let 7 € ¥ be of the form 78 = (-, -, t* + 1,{i}, A) for an arbitrary
i € N. By considering deviations 7¢ from the Nash equilibrium o for a
player i € T' for some [ € {1,...,¢}, we obtain 7(¢¥)R'D'. By considering
deviations 7 for a player i € N\ U/, T!, we obtain 7(c¥)R'D. By (S2),
a=m7(oN) e HRN).

(i) EY = B,

For S = N, E"(N) = E"(N) = P(A) by definition.

Let |S| =1, say S = {k}.

12



Let B € EX({k}) and consider a strategy o” of the form
of = (-,-,0,{k}, B) € ¥%. Then, by case () or case (v), m(c*, 7V\*}) € B
for all 7¥\k} € SN\EY Hence, B € E' ({k}).

Next, assume B € E'({k}). Then there is a strategy o € X* such
that (o*, 7V\kH) € B for all 7V\M* ¢ SNMEY . Suppose of = (-, -, 5, -, ).
By considering, for all i € N\{k}, a strategy ¢ € X! of the form 7¢ =
(RN, z,t* + 1, N\{k}, A) it follows by case () that there must be a set
B' C B with B" € Ef({k}) such that o* has the form o* = (-,-,0,{k}, B").
By monotonicity, B € E*({k}).

Let 1 < |S] <n-—1.

For B € E"(S), consider a strategy profile 0° for S with each o of the
form o' = (-,-,0, .5, B). By case (v), we obtain B € E'(S).

Next, assume B € E'(S). If |S| < n — 1, then there must be T", ..., T,
B',...,B' and D as in case (), with D C B and U{_, T* C S. By super-
additivity and monotonicity, B € F*(S). Finally, suppose |S| =n — 1, say
S = N\{k}. Then there is a strategy profile o° such that 7(c°,7%) € B for
all 7% € YF. Consider a strategy 7 € X¥ of the form 7% = (-, -, -, {k}, A).
If (0%, 7%) is determined by case (7), then, as before and with notations
as in (), D C B (by varying 7%) and Uj_, T" C S, so by superadditivity
and monotonicity, B € E¥(S). If w(c°,7%) is determined by case (3), then
each o' is of the form o' = (R, 2,0, N, {z}), and by varying 7% we obtain
L(z, R*) C B. Hence, B € E(S) by monotonicity and (S1).

This completes the proof of this case and of the proposition. O

We know that the conditions in Proposition 4.3, apart from (S2), are also
necessary for constitutional implementation of a social choice correspondence.
Concerning (S2), we can show that its conclusion is necessary if the point x
in the set D can be ‘reached’, e.g., if the set D is ‘minimal’. For an effectivity
function E, a coalition S and a set B € F(S), call B minimal if no proper
subset of B is in E(S).

Lemma 4.4 Let H be a surjective SCC, let I be a constitutional imple-
mentation of H, and let the premise of (S2) be fulfilled with D minimal in
ET(Uf_, TY. Then x € H(RY).

Proof. Since I' constitutionally implements H, there are o™ e X7 for every
I =1,...,0such that 7(¢7,7"\T") € B! for all ¥M\T' € ©N\T' Write T :=
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Ui_, T', then 7(o”, 7M\T) € D for all ™™\ € ©M\T. Since D € E¥(T) =
E"(T) is minimal, there is o™\ € YN\ with (o) = 2. It is sufficient
to show that 0¥ € NE(T', RY). First, for every | € {1,...,(}, i € T!, and
7" € ¥, we have (oMM}, 7%) € D!, hence (o) Riw (o™ M}, 7%) since zR' D',
Second, for every i € T and 7° € ¥, we have w(o™\{},7%) € D, hence
(oMY Rim (VM 79) since #R'D. So o is a Nash equilibrium of (I, RV).O

5 Examples and independence

In this section, we present examples of social choice correspondences to which
the results of Sections 3 and 4 apply. Furthermore, we show that the condi-
tions in these results are independent.

5.1 Scoring rules

Let W(A) denote the set of all weak orders of A, i.e., the set of all complete
and transitive binary relations. All preceding results extend to preference
profiles from W (A)" instead of L(A)" if we interpret all conditions as apply-
ing to the asymmetric parts of preferences in W (A). Allowing indifferences—
as in elements of W (A)—is convenient for the now following definition of
scoring rules.

Let |[A| = m (> 2). A score vector is a vector s = (s1,...,8y,) of non-
negative real numbers such that s; < ... < s, and s; < s,,,. For a pref-
erence R € W(A) and an alternative x € A, let {(z, R) := |L(z, R)| and
O(zx,R):=|{y € L(x,R) | © ¢ L(y, R)}|. Then the score of = at preference

R is defined by
L(z,R
Ek(:lo()m,R)Jrl Sk

lz,R) — °(z,R)
So scores are assigned according to the vector s with the understanding that

equally preferred alternatives obtain the average of the associated scores. For
RY € W(A)N and z € A we define

score(z, R) :=

score(z, RN) = " score(z, R").

1€EN
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For k =1,...,m define 5" := %(31 + .-+ + s;). The social choice correspon-
dence H*® is defined by

H*(RN) := {2 € A|score(z, RY) > ns™},

hence it assigns to every preference profile RN € W(A)V all alternatives
of average score or higher. Obviously, H® is well-defined: for every RY €

W (AN, H5(RN) #£ 0.

Lemma 5.1 The SCC H® is monotone and surjective. It is unanimous if
and only if s,y < ™. If n > m, then E%°(N\{i}) = P(A) for everyi € N.

Proof. Monotonicity of H® is obvious. For surjectivity, let z € A and
consider the profile RY where every player puts z strictly on top and is
indifferent between all other alternatives. Then H*(RY) = {x}.

For unanimity, it is necessary and sufficient that in a profile with z € A
on top and y € A strictly ranked second for every player, only x is chosen.
This is the case if, and only if, ns,,_; < ns™, hence s,,_1 < 5.

Before proving the last statement, first observe that for all B € P(A) and
T € P(N), we have

(5) B e E(T) & (n— |T|)sm + |T|5™ Bl < n5™.

(This can be seen by considering a profile where the players in T' put B on
top and are indifferent between the alternatives not in B, and the players not
in 7" all put the same alternative from A\B on top: this alternative should
not be chosen.) To prove the last statement in the lemma, assume n > m.
We have to show that N\{i} is effective for every singleton, hence by (5)
that

Sm + (n—1)3™"" < ns™.

By a few elementary computations (in which n > m is used) it follows that
this inequality is equivalent to the inequality 3™ ! < s,,, which is true by
definition of s. O

Note that Lemma 5.1 implies that H* satisfies (S1) if n > m.

The next lemma provides a condition under which the SCC H? satisfies
condition (S2). This condition is satisfied, for instance, if the assignment of
scores in s is determined by a nondecreasing convex function on the interval
[1,m].
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Lemma 5.2 Let the score vector s satisfy

(6) 5" < Smgsl.

Then H*® satisfies (S2).

Proof. Let B € P(A)\{A} and T € P(N). Then B € E**(T) implies by
(5) that
(n — |T|) s + |T)5™ 1Bl < nz™

hence
(7) 7| > 2m
Sm

—smIBl = 5 — s

m

—ns NSy — ns™

n
255

where the last inequality follows from (6).

Let b€ B € E°(T) and RN € W(A)" such that b is strictly preferred
to A\{b} for all i € T  and b is strictly preferred to B\{b} for alli € N\T. In
order to prove (S2) it is, in view of (7), sufficient to show that b € H*(R")
or, equivalently, |T'|sp, + (n — [T'|)s;p > ns™. Suppose this were not true,
then |T|s,, + (n — |T|)5!8l < ns™. Hence, by (5), A\B € Ef*(N\T). Since
B € E™(T), this contradicts supperadditivity of E7". O

By Proposition 4.3 and Lemmas 5.1 and 5.2 we obtain:

Corollary 5.3 Let n > m and let the score vector s satisfy (6). Then H* is
constitutionally implementable.

Thus, Corollary 5.3 presents a class of surjective but not necessarily unani-
mous SCCs to which the results of Section 4 apply.

If, in addition to the conditions in Corollary 5.3, we have s, 1 < §™,
then H*® is unanimous by Lemma 5.1. This lemma also implies that (U2)
is satisfied. Moreover, (7) implies that (U1) holds. So also Proposition 3.4
applies in this case, and we have a class of SCCs to which the results of
Section 3 apply.

Alternatively, we can consider the Pareto optimal subcorrespondence H},
defined by

Hio(RY) = {z € Alscore(x, RY) > ns™

and x is Pareto undominated in RN},

16



for every RN € W(A)N. Then Hj, is well-defined, unanimous and mono-
tone. For n > m it satisfies (U2), and under (6), (U1) holds as well, in view
of (7). These claims can be verified by the same arguments as above. So
Proposition 3.4 applies:

Corollary 5.4 Let n > m and let the score vector s satisfy (6). Then Hp,,
15 constitutionally implementable.

Thus, Corollary 5.4 presents a class of unanimous SCCs to which the results
of Section 3 apply.

5.2 Veto rules

In this section attention will be restricted again to linear orderings. We will
exhibit another class of surjective SCCs to which the results of Section 4
apply.

Let v be an integer with v > 1. We assume that (m — 1)v < n —1 <
n < mv. Say that a coalition S wvetoes an alternative x € A at a profile
RN € L(A)Y if there is a T C S with AR'x for all i € T and |T| > v. Define
the correspondence H" by

HY(R™) := {x € A|there is no S € P(N) that vetoes z},

for every RN € W(A)N. Then H" is a well-defined social choice correspon-
dence: in particular, H°(R"™) # () for every RY € W(A)" since n < muv.
Further, H” is monotone, and surjective since (m — 1)v < n. If every player
puts an alternative a on top and b next, then both a and b are chosen provided
that m > 3: so in that case, H" is not unanimous.

Observe that for all B € P(A) and S € P(N)

(8) B e E"(S) ¢ [S] = (m —|B|)v.

In particular, as n—1 > (m—1)w, this implies EZ"(N\{i}) = P(A) for every
i € N, so H" satisfies (S1).

Lemma 5.5 H" satisfies (S2).
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Proof. With notations as in the definition of (S2) we have to prove = €
H?(RY). We assume without loss of generality that B! # A for every [ =
1,...,0 We write T := Uf_, T".
If |D| > 2, then not AR’z for all i € N. So z is never a bottom element,
hence x € H’(RY).
Suppose D = {z}. Then |B*|+ -+ |Bf| <1+ ({—1)m, so
¢ ¢
SRS wEREE
—1 —1

= v(lm — Z: |B!|)

v(fm—1—(L—1)m)
(m o 1)“:

v

where the first inequality follows from (8). Hence, n—|T| < n—(m—1)v < v,
which implies that N\T cannot veto z.

Suppose that |D!| = 1 for some | € {1,...,¢}. Then by (8), |T\T!| >
(m — 1)v. Hence, [T = |T| — |T\T"| < n— (m — 1)v < v, but also |T*| >
(m — |B'|)v by (8). Hence (m — |B!|)v < v, a contradiction since |B!| < m.
We conclude that |D!| > 2 for every [ = 1,...,{ and so z is not a bottom
element of R for every i € T.

Hence, 7 is not vetoed by any coalition, so z € H(R"). O

So, by Proposition 4.3, we obtain another class of constitutionally imple-
mentable surjective SCCs.

Corollary 5.6 Let v be an integer withv > 1 and (m —1)v <n—-1<n<
muv. Then H is constitutionally implementable.

With appropriate restrictions on v this result can be extended to veto rules

where other than bottom alternatives can be vetoed.

5.3 Independence

We first show that the conditions in Proposition 3.4 are independent.
For each RN € L(A)YN define the relative majority rule Hgy, by

Hry(RY) ={z € A||{i € N|aR'A}| > |{i € N | yR'A}| for all y € A}.
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Then Hpgy, is unanimous and satisfies (U1) and (U2), but it is not monotone.
For n =5, m =3, and s = (1,2, 3), the scoring rule H* is monotone and
satisfies (U1) and (U2), but it is not unanimous.
The SCC Hi, defined by

H(RY):={sc A||{i e N|2R'A}| > 1}

for every RY € L(A)Y, is unanimous, monotone, and satisfies (U1), but not
(U2). (Note that EM1(S) = {A} for all S € P(N) with S % N.)

Forn =8 m =3 (A = {a,b,c}), and s = (0,2,3) consider the rule H
defined by

H(RY) :={z € A| z is Pareto undominated and score(z, RV) > 14}

for every RN € (A)N. Then, obviously, H(R") # () and H is monotone and
unanimous. Consider a profile RY with aR'bR'c for four different players i

and with aR‘cR' for three different players i. Then {a} = H(R"); since a
was arbitrary, this proves (U2). Finally, consider a profile RV with a R‘bRc
for all i = 1,...,4. Then score(c, RN) < 12, so ¢ ¢ H(R") and {a,b} €
FH({1,2,3,4}). Similarly, {a,b} € E¥({5,6,7,8}), so we have a violation of
(U1).

In order to prove logical independence of the conditions (S1), (S2), and mono-
tonicity in Proposition 4.3 (we cannot drop surjectivity otherwise the associ-
ated effectivity function is not well-defined) we may use the same examples
as above.

The relative majority rule Hgys is not monotone and satisfies (S1) and
(S2) (observe that (S1) is always implied by (U2)). The SCC H; is monotone
and satisfies (S2) but not (S1). Finally, the SCC H is monotone and satisfies
(S1) but not (S2): to see this, recall that {a,b} € E7({1,2,3,4}) and {a,b} €
E"({5,6,7,8}). Take T* = {1,2,3,4} and T? = {5,6,7,8}, and B! = B2 =
{a,b} in the definition of (S2), and let a be the point x. Consider the profile
RN where each player ranks ¢ above a and a above b. Then H(RN) = {c},
which is a violation of (S2).

6 Concluding remarks

In this paper we have obtained a tight characterization of all unanimous
social choice correspondences that are constitutionally implementable. Fur-

19



ther, we have established a tight set of sufficient conditions for constitutional
implementability of social choice correspondences that are not necessarily
unanimous but only surjective. Necessity of in particular condition (S2) is
still an open problem.
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