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BARGAINING WITH AN AGENDA

BARRY O’NEILL, DOV SAMET, ZVI WIENER AND EYAL WINTER

Abstract. Gradual bargaining is represented by an agenda: a
family of increasing sets of joint utilities, parameterized by time.
A solution for gradual bargaining specifies an agreement at each
time. We axiomatize an ordinal solution, i.e., one that is covariant
with order-preserving transformations of utility. It can be viewed
as the limit of a step-by-step bargaining in which the agreement of
the last negotiation becomes the disagreement point for the next.
The stepwise agreements may follow the Nash solution, the Kalai-
Smorodinsky solution or many others.

1. Introduction

1.1. Gradual bargaining. Nash’s pioneering paper on two-person
bargaining, (1950), has led to two streams of research. One devel-
ops axiomatizations leading to Nash’s solution or to later ones, while
the second constructs plausible non-cooperative games behind the bar-
gaining problem, then solves these games. Less attention has been paid
to expanding the definition of what constitutes a bargaining problem.

This paper looks at bargaining as extended over time. Our primitive
is a family of bargaining problems (each of which is a set of feasible
agreements), rather than a single one as in Nash’s conception. We refer
to such a family of feasible sets as an agenda. A gradual bargaining
problem is defined by its agenda and an initial point at which the
bargaining starts. For clarity and simplicity we will consider a family
of feasible sets that is ordered continuously by time.

Whereas a solution to a Nash bargaining problem specifies a single
agreement, a solution for a gradual bargaining is a path of agreements
– a gradual agreement – which specifies an agreement point for each
point in time. We propose a solution for gradual bargaining, namely,
a function that assigns to each gradual bargaining problem a certain
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BARGAINING WITH AN AGENDA 2

gradual agreement. We call this solution for a reason that should be-
come clear, the ordinal solution.

Our model is meant to capture situations in which the parties are
to reach agreements on several issues negotiated one after the other.
These issues can have a natural order as is the case in labor contracts
signed annually, or the division of profits determined at the end of each
quarter. Alternatively, the issues can be ordered by the bargainers, as
in a negotiation to end a political conflict in which territorial, economic
and other issues are negotiated sequentially. In each of these cases, the
possible agreements at each stage of the bargaining process cover all
the issues raised until this stage. Thus, for example, in a case of profit
sharing the possible agreements at a certain stage are all the possible
sharing arrangements of the profit accumulated up to this stage.

1.2. The axioms. Our framework views the agreement reached at
each stage as final for the issues on the table up to that time. This
assumption is expressed in our axiomatic characterization by the time
consistency axiom. It requires that taking the agreement reached on
the solution path at a given point in time and applying the solution
rule to the same agenda with this agreement as an initial point yields
the same path. The assumption on the bargaining process also under-
lies the description of the ordinal solution as the limit of a step-by-step
bargaining which we discuss later in the introduction.

The axiom of time consistency can be compared to the axiom of
step-by-step negotiation in Kalai (1977), which is used to characterize
the family of proportional solutions for Nash’s bargaining problem.
It considers that a bargain can be concluded in two steps. The first
involves one with a smaller feasible set and the same disagreement
point as the entire problem, and the second step uses the solution of
the first as its new disagreement point. Kalai’s axiom requires that the
same agreement be reached independently of the choice of the feasible
set in the first stage, and so is much stronger than ours. An axiom
of agenda independence is also used by Ponsati and Watson (1997)
to characterize the Nash solution. In contrast to Kalai’s and Ponsati
and Watson’s axioms, our time independence axiom involves a given
agenda.

The ordinal solution is characterized by five axioms. The time consis-
tency axiom, which has already been discussed, is special to the gradual
bargaining setup. So also is a directional continuity requirement which
depends on the solution being a path of agreements. The other three
axioms are analogous to axioms commonly used for Nash’s bargaining
problem. We require that the agreement reached at each point in time
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must be efficient in the set of feasible utilities at that time. The so-
lution of a symmetric problem must also be symmetric. Further, the
solution must be invariant under positive linear transformations of a
bargainer’s utility.

The ordinal solution is described by a differential equation that is
simple to interpret: at each point on the agreement path the ratio of
players’ marginal utility gains (with respect to time) is the rate of sub-
stitution of their utilities on the current efficient frontier. Thus, using
the marginal rate of substitution to make an interpersonal comparison
of utility, the gains of solving the next stage of the negotiation are
divided in egalitarian way.

1.3. Ordinality. The name of the proposed solution, the ordinal so-
lution, is suggested by the following two properties. First and most
important, ordinality applies to utility representation. The ordinal so-
lution is covariant with respect to order-preserving (i.e., monotonic)
transformations of each bargainer’s utility. Ordinality also refers to
time: the solution depends only on the order of the agenda and not the
precise timing of when issues are negotiated.

Covariance with respect to order-preserving transformations is de-
sirable for a solution, since it means that the solution is based on the
most elementary aspect of utility—the order of outcomes—and nothing
else. Shapley (1969) demonstrated that the two-person Nash problem
has no single-valued solution satisfying symmetry, efficiency, and co-
variance with respect to order-preserving transformations of the utility
functions. He showed that three-person problem, however, has such
a solution. Recently, Safra and Samet (2000) extended this ordinal
solution to more than three players. The solution proposed here for
gradual bargaining is ordinal for any number of players, even for two
players.

The derivation of the ordinality of utility from the axioms is some-
what surprising. The covariance axiom requires that the solution is
covariant with respect to linear transformations only. Thus even if one
insists on solving gradual bargaining problems using Von Neumann
Morgenstern utilities, one is lead to the conclusion that using any other
utility function would result in the same path of gradual agreements,
provided one accepts the proposed axioms. It is easy to see why or-
dinality is implied by these axioms. From the directional continuity
and time consistency axioms, the agreement reached at a certain time
depends only on the local behavior of the agenda. Thus, the solution
is covariant with respect to monotonic transformations of the utilities
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that are locally linear. But every smooth monotonic transformation is,
in an appropriate sense, locally linear.

Obviously, it is possible to strengthen the covariance axiom by requir-
ing covariance with respect to monotonic transformations. Potentially,
this could lead to a characterization of the ordinal solution in which
one or more of the other axioms would be weakened. Unfortunately we
could not find appealing weakened axioms.

1.4. Step-by-step bargaining. The ordinal solution has an interest-
ing relation to various solutions of Nash’s bargaining problem. Suppose
an agreement is reached at a certain time, and using this agreement
as a status quo point we solve the Nash bargaining problem with the
set of utilities that are feasible after some time increment. Assume we
solve this problem using the Nash solution. It turns out that when the
time increment approaches zero, the utility gains of the players per unit
time converge to those predicted by the ordinal solution. Thus, the or-
dinal solution is the limit of a discrete process in which each agreement
serve as a status quo point for a Nash bargaining problem of the next
stage, and the next agreement is the Nash solution for this problem.
Somewhat surprisingly, if in the process described above we use the
Kalai and Smorodinsky (1975) solution instead of the Nash solution,
we also end up with the ordinal solution. Indeed, any solution may be
used as long as it coincides with the Nash solution on linear problems1

and satisfies a certain continuity condition that allows linearization of
small feasible sets.

1.5. Related works. Continuous time processes in the context of the
Nash bargaining model were used among others by the following au-
thors. Maschler, Owen and Peleg (1988) characterized the Nash solu-
tion by means of a system of differential equations and interpreted the
solution as a continuous process of moving within the feasible set of
utilities. Livne (1989) and Peters and van Damme (1993) used a simi-
lar approach to characterize the continuous version of Raiffa’s solution
(Raiffa 1953). Zhou (1997) used a differential equation to extend the
Nash solution to non-convex problems. In all these works bargaining
is described by Nash bargaining problem, that is a single set of feasible
utilities, and not as a family of Nash bargaining problems as here. Re-
lated papers studied discrete bargaining with multiple pies: Fershtman
(1990) and John and Raith (1997) in a bilateral context, and Win-
ter (1997) and Seidmann and Winter (1997) in a multilateral context.

1This is the case when the solution is efficient, symmetric and covariant with
respect to linear transformations of utilities.



BARGAINING WITH AN AGENDA 5

Nicolò and Perea (2000) offered a different model of two-person bar-
gaining that also leads to an ordinal solution. An ordinal solution, due
to Shapley, to Nash’s bargaining problem, in terms of a differential
equation, can be found in Calvo and Peters (2001). In the theory of
cost sharing, continuous time solutions are common since the introduc-
tion of the Aumann-Shapley pricing by Mirman and Tauman (1982).
Recently, Sprumont (1998) introduced such a solution for ordinal cost
sharing.

Bergman (1992) studied two-person non-cooperative bargaining over
a shrinking pie, described by a family of Pareto surfaces (see also Bin-
more (1987)). He developed a differential equation that corresponds to
our solution in the special case of two players, by taking the continu-
ous time limit of the alternating offer bargaining game. In contrast, we
motivate the ordinal solution axiomatically and by considering step-
by-step cooperative bargaining.

In this paper the bargaining agenda is given exogenously. However
a few authors studied the choice of agenda itself as a non-cooperative
bargaining problem. An agenda in these studies is typically a finite set
of issues. Negotiations are modeled as non-cooperative extensive form
games and the results mainly concern the comparison of agendas (the
ordering of issues) in terms of their prospects of yielding efficient out-
comes. Examples are Fershtman (1990) and John and Raith (1997) in
bilateral negotiations, and Winter (1997) in a multilateral framework.
Thomson (1994) gives a concise survey of bargaining models derived
from Nash’s axioimatic approach, including Shapley’s ordinal solution.

1.6. The paper plan. Section 2 formalizes the gradual bargaining
problem, defines gradual agreements and describes solutions to grad-
ual bargaining problems. The ordinal solution is introduced in Section
3 and axiomatized in Section 4. Section 5 shows the two ordinal prop-
erties of the solution. The relation of the gradual solution to other
concepts in the Nash bargaining framework is in Section 6. Finally,
the proofs appear in Section 7.

2. Gradual bargaining

2.1. Gradual bargaining problems. Consider a finite set N of n
players. A gradual bargaining problem is one in which they negotiate
the issues one after another. In term of utilities, it is described by
feasible sets that expand over time. For each time t the set in t is the
subset of utilities in RN that correspond to possible agreements on the
issued negotiated until t.
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In our continuous time model the expanding feasible sets are de-
scribed by an increasing function f on RN , the value of which is time.
The set {x ∈ RN | f(x) ≤ t} is the set of utility vectors of possible
agreements on issues negotiable up to time t.

Definition 1. An agenda is a real-valued function f on RN . The
agenda f defines for each time t the feasible set Sf

t = {x ∈ RN |
f(x) ≤ t}. We assume that f satisfies the following conditions.

1. f is continuously differentiable.
2. ∇f > 0.
3. ∇f is locally Lipschitz, i.e, for each bounded subset of RN there

is a constant K, such that for each x and y in the subset,
||∇f(x)−∇f(y)|| < K||x− y||.

We denote by F the set of all agendas. By the strict monotonicity
of f (condition 2), for t < t′, Sf

t ⊂ Sf
t′ . The set {x ∈ RN | f(x) = t} is

the Pareto frontier of Sf
t .

Definition 2. A gradual bargaining problem (or problem, for
short) is a pair (f, a), in F × RN , of an agenda f and an initial
(status quo) point a.

2.2. Solutions. A gradual bargaining problem results in interim agree-
ments, one for each point in time t, which are given as n-tuples of utili-
ties. A specification of these agreements is called a gradual agreement.

Definition 3. A gradual agreement φ is a continuously differen-
tiable path in RN , φ : R→ RN .

For each time t, φ(t) is the vector of utilities determined by the
interim agreement at time t. The set of all gradual agreements is
denoted by P.

Definition 4. A solution for gradual bargaining problems is a func-
tion

Φ : F × RN → P,

such that for each problem (f, a), the gradual agreement φ = Φ(f, a) is
feasible at each time, that is, f(φ(t)) ≤ t, for all t.

The initial point of a bargaining problem (f, a) is the status quo
agreement at the beginning of the bargaining process at time f(a).
However, the solution of a bargaining problem (f, a) specifies agreement
points even for times prior to f(a). This has been done for reasons
of simplicity only. The results of this paper can be formulated for
solutions that are defined only for times later than that of the initial
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point. Yet, the agreements prior to f(a) are meaningful. In light of
the axiom of time consistency below each point along the solution of a
bargaining problem, when considered as an initial point, results in the
same path. Thus, agreements on this path at times prior to f(a) are
status quo points that would have led to the point a.

3. The ordinal solution

The ordinal solution is determined by a differential equation. In
Section 4 we characterize this equation axiomatically, but here we out-
line a derivation of it by reducing the solution of a gradual bargaining
problem to the solution of a sequence of Nash bargaining problems.

Equipped with a solution for Nash bargaining problems, one may
approach a gradual bargaining as follows. At each stage solve the
Nash bargaining problem that consists of the feasible set at this stage
with the agreement of the previous stage as a status quo point. In our
continuous setup, where there is no “previous” stage, we require an
appropriate limit process, which we describe next.

Suppose that at time t an efficient agreement x is reached for the
agenda f . Thus, f(x) = t. Consider the Nash bargaining problem that
consists of the status quo point x, and the feasible set at time t + ∆t,
that is, the set {y | f(y) ≤ t + ∆t}. An efficient solution for this Nash
bargaining problem is a point y = x + ∆x on the Pareto frontier of
the feasible set, that is f(x + ∆x) = t + ∆t. For the left hand side
we take the first order approximation f(x) +

∑
i fi∆xi, where the fi’s

are the partial derivatives of f at x. Using this approximation, the
requirement that x + ∆x is on the frontier is given by

∑
i fi∆xi = ∆t.

Suppose we apply the Nash solution to this problem. Then, ∆x is the
maximizer of the function h(∆x) =

∏
i ∆xi subject to

∑
i fi∆xi = ∆t.

This constrained optimization problem is solved by the vector ∆x that
satisfies for some λ (the Lagrangian multiplier of the constraint) hi =
λfi, for each i. As hi = h/∆xi, we conclude that ∆xi = (h/λ)(1/fi).
Substituting the right hand side in the constraint, we find that h/λ =
∆t/n. Thus, for each i, ∆xi = ∆t/(nfi). This leads to the differential
equation described next.

As we see in Section 6 the same differential equation results if we use
the Kalai-Smorodinsky solution rather than the Nash solution. More-
over any solution that coincides with these solutions on linear bargain-
ing problems and satisfies a simple continuity property gives rise to the
same equation.

Definition 5. The ordinal solution for gradual bargaining problems
associates with each problem (f, a) the unique gradual agreement φ that
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solves the simultaneous differential equations

φ′i(t) =

[
n

∂f

∂xi

(
φ(t)

)]−1

, i ∈ N(1)

with the initial condition φ(f(a)) = a.

By condition 2 in Definition 1, the right hand side of (1) is well de-
fined. Let I : RN\0 → RN be the function I(x1 . . . , xn) = (x−1

1 , . . . x−1
n ).

Then, the set of equations (1) can be written:

φ′(t) = I
(
n∇f(φ(t))

)
.

Since I is Lipschitz on any domain that is bounded away from 0, it
follows by condition 2 that the right hand side of (1) is locally Lipschitz.
It then follows from conditions 1 and 3, that (1) has a unique solution
(see for example Hartman (1982)).

We show later that for each t, f(φ(t)) = t. That is, the agreement at

time t belongs to the Pareto frontier of Sf
t , the feasible set at t. In light

of this, the interpretation of the ordinal solution is straightforward.
The ratio of players i’s and j’s marginal increments of utility at time
t, φ′i(t)/φ

′
j(t), is, according to (1), the marginal rate of substitution of

i’s and j’s utilities at φ(t) along the Pareto frontier of Sf
t . Thus the

ordinal solution equates players’ gains according to the appropriate
substitution rate of their utilities.

4. Axiomatic characterization

We now consider a set of axioms that characterize the ordinal solu-
tion. The first three are analogous to axioms in many characterizations
of solutions of Nash bargaining problems.

We require first that no feasible outcome at time t dominate the
agreement point at t.

Axiom 1. (Efficiency) For each t, if x > Φ(f, a)(t), then f(x) > t.

Since the Pareto surface of the Sf
t is {x | f(x) = t}, and since solu-

tions are required to be feasible, this axiom is equivalent to requiring
that for each t, f(Φ(f, a)(t)) = t.

The next axiom corresponds to the standard symmetry condition
used for several solutions of Nash’s problem. For a permutation of
N , π : N → N and x = (xi)i∈N in RN , we denote πx = (xπ(i))i∈N .
A problem (f, a) is symmetric if for any permutation π and x ∈ RN ,
f(x) = f(πx) and a = π(a) (i.e., all coordinates of a are the same.)
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Axiom 2. (Symmetry) If (f, a) is symmetric, then for each t, Φ(f, a)(t)
is symmetric, i.e., all its coordinates are the same.

The following axiom requires that the solution be covariant with
respect to positive linear transformations of utility. Let s = (si)i∈N

be a vector of linear transformations of R. For x in RN , we denote
s(x) = (si(xi))i∈N . For each function f on RN , the function fs is
defined by (fs)(x) = f(s(x)).

Consider two bargaining problems (g, b) and (f, a), the first formu-
lated in terms of the utilities before the transformation s and the second
in utilities after the transformation. That is, fs = g, and a = s(b).
The covariance axiom requires that the solution of (f, a) be the one
obtained by applying the transformation s to the solution of (g, b).

Axiom 3. (Covariance) Let s = (si)i∈N be a vector of linear trans-
formations. If for the pair of problems (f, a) and (g, b), g = fs, and
a = s(b), then Φ(f, a) = s(Φ(g, b)).

The next two axioms are special to the gradual bargaining con-
text. The first expresses the essence of gradual bargaining: bargaining
restarts at each point in time with the “last” agreement serving as a
status quo point. The axiom requires that taking any of the interim
agreements as the initial status quo results in the same path of agree-
ments.

Axiom 4. (Time consistency) If Φ(f, a)(t) = x, then Φ(f, x) =
Φ(f, a)

Next we require that the solution be continuous in the following
sense. If the agendas in the two problems (f ,a) and (g,a) are close in
a neighborhood of a, then the rates of utility gains at a for these two
problems are also close.

Distance of agendas in the neighborhood of a cannot be measured
by the difference |f(a)− g(a)|, since it reflects only differences in time
measuring. Thus, for example, the rates of utility gains at a for the
two agendas f and g = f + T , for any scalar T , should be exactly the
same (see also the property of time ordinality below). What matters is
the way f and g change in the neighborhood of a, which leads to the
following definition.

For a bounded neighborhood B of a we defined a pseudo-metric
dB on the set of agendas F , such that for each f and g, dB(f, g) =
supx∈B ||∇f(x)−∇g(x)||.
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Axiom 5. (Directional continuity) For any problem (f, a) and a
neighborhood B of a, the functional

f → Φ′(f, a)(f(a))

is continuous with respect to the metric dB on F .

Theorem 1. The ordinal solution is the unique solution that satisfies
axioms 1– 5. Furthermore, these axioms are independent.

5. Ordinality

We justify the name of the solution by showing that it is ordinal with
respect to both utilities and time.

The first property considerably strengthens the covariance axiom by
requiring that the solution be covariant not only with linear transfor-
mations of utility, but with monotonic transformations of utility. The
notation is the same as used above for the covariance axiom.

Property 1. (Utility ordinality) Let s = (si)i∈N be a vector of
strictly increasing transformations of R. If for the pair of problems
(f, a) and (g, b), g = fs, and a = s(b), then Φ(f, a) = s(Φ(g, b)).

Feasible sets of utility, Sf
t , as well as agreements along the solution

path have been parameterized here by time. The next property says
that only the order of the feasible sets and agreements matters, not
their precise timing. To formulate this exactly, consider a time trans-
formation, which is simply an increasing function λ : R → R. When
time is transformed by λ, agendas and gradual agreements change cor-
respondingly. The agenda f is represented, after the transformation,
by λf , which is defined by (λf)(x) = λ(f(x)). Similarly, a gradual
solution φ is represented by φλ which is defined by (φλ)(t) = φ(λ(t)).

Property 2. (Time ordinality) Let f be an agenda, and λ a time
transformation. If λf is an agenda and φ = Φ(λf, a) then Φ(f, a) =
φλ.

Theorem 2. The ordinal solution satisfies the properties of utility or-
dinality and time ordinality.

6. Gradual and one-shot bargaining

A one-shot bargaining problem is a pair (S, d), where S, the feasible
set, is a subset of RN , and d, the status quo (or disagreement point),
is a point in S. Let D be a set of one-shot bargaining problems. A
solution for D is a function σ : D → RN , such that for each problem
(S, d) ∈ D , σ(S, d) ∈ S.
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An agenda defines a continuum of feasible sets. We are interested in
agendas for which any of these sets, in combination with a disagreement
point, belongs to the domain D over which σ is defined.

Definition 6. An agenda f , is compatible with D if for each t and
d ∈ Sf

t , (Sf
t , d) ∈ D .

A gradual agreement can be thought of as the limit of agreements
achieved in discrete time when the time intervals between agreements
tend to zero. Let φ be a gradual agreement, and φ(t) be the interim
agreement at time t. Suppose the next agreement is reached at time
t′ > t. The feasible set at time t′ is Sf

t′ , and the status quo point is the
most recent agreement φ(t). Applying the solution σ to this one-shot

bargaining problems results in the agreement σ(Sf
t′ , φ(t)). Dividing

the utility gains of this agreement, σ(Sf
t′ , φ(t)) − φ(t), by the elapsed

time t′ − t yields the rate of change in utility gains. If the limit of
this rate, when t′ converges to t, is φ′(t), for each t, then we say the
gradual agreement φ is compatible with the solution σ. The following
definition formalizes the idea that a gradual solution Φ is compatible
with a solution σ for one-shot bargaining problems in the way just
described.

Definition 7. Let σ be a solution on D , and Φ be a solution for grad-
ual bargaining problems. We say that Φ is compatible with σ if for
each agenda f that is compatible with D , and for each a, the gradual
agreement φ = Φ(f, a) satisfies for each t,

φ′(t) = lim
t′↓t

σ(Sf
t′ , φ(t))− φ(t)

t′ − t
.(2)

Thus the rate of utility gains at a point φ(t) on the ordinal solution
path is the limit of the rate of gains, according to the solution σ, for
small problems with φ(t) being the status quo point.

We now consider two properties of a solution σ of one-shot bargaining
problems that guarantee that the ordinal solution be compatible with
σ.

A problem (S, d) is linear if S is of the form {x | c(x − d) ≤ γ},
for some c > 0 in RN and positive real number γ. We assume that
the domain of σ, D , contains all linear problems. The first property
concerns solutions for linear bargaining problems.

Property 1. (Solutions for linear problems) If S = {x | c(x−d) ≤
γ}, then σ(S, d)− d = γI(nc).
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This property is possessed by any solution that is efficient, symmetric
and covariant with respect to linear transformation of utility, such as
the Nash and the Kalai-Smorodinsky solutions.

The next property concerns the approximation of bargaining prob-
lems by linear problems. Consider an agenda f that is compatible
with D , and a problem (Sf

t′ , d). Let f(d) = t, and note that Sf
t′ = {x |

f(x) − f(d) ≤ t′ − t}. We approximate (Sf
t′ , d) by the linear problem

(Ŝf
t′ , d) where Ŝf

t′ = {x | (∇f)(d)(x− d) ≤ t′ − t}.
Property 2. (Linear approximation) Let f be an agenda that is
compatible with D . Then

lim
t′↓t

σ(Sf
t′ , d)− d

t′ − t
= lim

t′↓t
σ(Ŝf

t′ , d)− d

t′ − t
.

Theorem 3. The ordinal solution is compatible with any solution σ
satisfying Properties 1 and 2.

The proof of this theorem is straightforward. If a solution σ satisfies
Property 1 then σ(Ŝf

t′ , d)−d = (t′−t)I((n∇f)(d)). Therefore, Property
2 is equivalent, in this case, to requiring that the ordinal solution is
compatible with σ.

We prove that the Nash and the Kalai-Smorodinsky satisfy Proper-
ties 1 and 2 and hence the following theorem follows.

Theorem 4. The ordinal solution is compatible with the Nash and the
Kalai-Smorodinsky solutions.

7. Proofs

Proof of Theorem 1. Let Φ be the ordinal solution. To see that
it is efficient, let φ = Φ(f, a), and denote λ(t) = f(φ(t)). Then, by
(1) λ′(t) =

∑
i∈N ∂f/∂xi(φ(t))φ′i(t) = 1. Also, λ(f(a)) = f(φ(f(a))) =

f(a). Therefore λ(t) = t.
Next we show that Φ satisfies the ordinal utility axiom, which is

stronger than the covariance axiom. Assume that (f, a) and (g, b) are
as described in the ordinal utility axiom. Since g = fs, it follows that
si is continuously differentiable for each i. Let ψ = Φ(g, b). We need
to show that φ = sψ solves (1) for (f, a). The gradual agreement ψ
solves
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ψ′i(t) =

[
n

∂g

∂xi

(ψ(t))

]−1

=

[
n

∂f

∂xi

(s(ψ(t)))
dsi

dxi

(ψi(t))

]−1

with the initial condition ψ(g(b)) = b. Multiplying both sides of the
differential equation by (dsi/dxi)(ψi(t)) shows that φ = sψ solves (1)
for (f, a) with the initial condition φ(f(a)) = sψ(f(s(b)) = sψ(g(b)) =
s(b) = a.

To see why the consistency axiom is satisfied, note that the differ-
ential equations for (f, a) and (f, x) differ only in the initial condition.
Suppose that for φ = Φ(f, a), φ(t) = x. Since the ordinal solution
is efficient, f(x) = t. It is enough to show that φ satisfies the initial
condition of (1) for (f, x). Indeed, φ(f(x)) = φ(t) = x.

It is easy to see that the ordinal solution satisfies the axioms of
symmetry and directional continuity.

Conversely, let Φ be a solution that satisfies axioms 1-5. We show
that it is the ordinal solution.
(a) If α ∈ RN is symmetric and has positive coordinates, and Φ is a
solution that satisfies the symmetry and efficiency axioms, then for the
linear function h(x) = αx + c, where αx is the scalar product and c a
real number, Φ′(h, 0)(h(0)) = I(nα)

Indeed, h is a symmetric agenda, and thus Φ(h, 0) is symmetric. Fix
t, and let Φ(h, 0)(t) = (x, . . . , x). By efficiency, h(x, . . . , x) = t. Thus,
x = t(nα1)

−1. Hence, Φ′(h, 0)(t) = I(nα) for all t, and in particular
this holds for t = h(0).
(b) Let g be an agenda for which ∇g(0) is symmetric. If Φ is a solu-
tion that satisfies the axioms of efficiency, symmetry, and directional

continuity, then Φ′(g, 0)(g(0)) = I
(
n∇g(0)

)
.

To see this, let h(x) = ∇g(0)x + g(0). Then by (a), Φ′(h, 0)(h(0)) =

I
(
n∇g(0)

)
and therefore it is enough to show that

Φ′(g, 0)(g(0)) = Φ′(h, 0)(h(0)).

To show this we need to use the directional continuity axiom. Fix a
neighborhood B of 0 and ε > 0. By the directional continuity of Φ at
(h, 0), there exists δ > 0 such that if for each i ∈ N , and x ∈ B,

|(∂f/∂xi)(x)− (∂h/∂xi)(x)| ≤ δ(3)

then |Φ′(f, 0)(f(0))− Φ′(h, 0)(h(0))| ≤ ε.
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We construct an agenda f that satisfies (3) and coincides with g in
some neighborhood of 0. By the directional continuity axiom Φ′(f, 0)(f(0)) =
Φ′(g, 0)(g(0)). Therefore |Φ′(g, 0)(g(0))−Φ′(h, 0)(h(0))| ≤ ε. Since this
is true for arbitrary ε, the required equality is established.

To complete the proof of (b) we construct the agenda f . Let q be a
continuously differentiable function on R such that 0 ≤ q ≤ 1, q(r) = 0
for each r ≤ 0, and q(r) = 1 for each r ≥ 1. Let M be a uniform bound
on |q′| such that M ≥ 1.

Choose c > 0 such that for each ||x|| ≤ 2c, |(∂g/∂xi)(x)−(∂g/∂xi)(0)| ≤
δ/(4nM), for each i ∈ N . Consider the function

f(x) =
(
1− q(||x||/c− 1)

)
g(x) + q(||x||/c− 1)h(x).

Then, f(x)−h(x) =
(
1−q(||x||/c−1)

)(
g(x)−h(x)

)
. By the definition

of q, f coincides with g for ||x|| ≤ c and with h for ||x|| ≥ 2c.
We evaluate the size of the terms on the left hand side of this equality,

as well as the derivatives of these terms. It is enough to consider only
||x|| ≤ 2c, since for ||x|| ≥ 2c the difference vanishes. By the definition
of q, and since |∂||x||/∂xi| ≤ 1,

∣∣∣∣∣
∂
(
1− q(||x||/c− 1)

)

∂xi

∣∣∣∣∣ ≤
M

c
.

For the derivative of the other term,∣∣∣∣∣
∂(g − h)

∂xi

(x)

∣∣∣∣∣ =

∣∣∣∣∣
∂g

∂xi

(x)− ∂g

∂xi

(0)

∣∣∣∣∣ ≤
δ

4nM
.

Also, |1 − q(||x||/c − 1)| ≤ 1. Finally, since g(0) − h(0) = 0, |g(x) −
h(x)| = ||∇g(x′)−∇h(x′)|| ||x|| for some x′ with ||x′|| ≤ 2c, and there-

fore this term is bounded by
(
nδ/(4nM)

)
(2c). Thus,

∣∣∣∂(f − h)

∂xi

(x)
∣∣∣ ≤ M

c

nδ

4nM
2c + 1

δ

4nM
≤ δ.

This completes the proof of (b).
(c) If Φ satisfies the axioms of symmetry, efficiency, directional con-
tinuity, and covariance, then for each problem (f, a), Φ′(f, a)(f(a)) =

I
(
n∇f(a)

)
.

For each i ∈ N , define a linear transformation

si(xi) = ai +

(
∂f

∂xi

(a)

)−1

xi.(4)
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Let g = fs. Since s(0) = a, it follows by the covariance axiom that

Φ(f, a) = s
(
Φ(g, 0)

)
.(5)

It is easy to check that

∇g(0) = (1, . . . , 1),(6)

and therefore by (b),

Φ′(g, 0)(g(0)) = I
(
n∇g(0)

)
(7)

Applying, in this order, (5), (4), (7), and (6), we conclude

Φ′
i(f, a)(f(a)) =

dsi

dxi

(
Φ(g, 0)

)
(f(a))Φ′

i(g, 0)(g(0))

=

(
∂f

∂xi

(a)

)−1(
n

∂g

∂xi

(0)

)−1

=

(
∂f

∂xi

(a)

)−1

n−1

(d) If Φ satisfies axioms 1-5, and φ = Φ(f, a), then φ satisfies (1).
Let φ(t) = x. By efficiency, f(x) = t. By (c), Φ′(f, x)(f(x)) =

I
(
n∇f(x)

)
. By the consistency axiom Φ(f, x) = Φ(f, a), and therefore

φ′(f(x)) = I
(
n∇f(x)

)
. Substituting t for f(x) in the left hand side,

and φ(t) for x in the right hand side yields (1).
To prove the independence of the axioms, we provide for each a

solution that violates it but satisfies the rest. Details are omitted.
Efficiency. Let Φ be the ordinal solution. Fix a real number c >
0, and define a solution Ψ by Ψ(f, a)(t) = Φ(f, a)(t − c). Since the
derivative of φ is positive, it is strictly increasing. Thus, f(Ψ(f, a)(t)) <
f(Φ(f, a)(t)) = t, and Ψ does not satisfy efficiency.
Covariance. Let g(x) = f(x, . . . , x). Define a solution Ψ by Ψ(f, a)(t) =
(g−1(t), . . . , g−1(t)). Obviously Ψ is a solution, and it is easy to see that
it satisfies all axioms but covariance.
Symmetry. Let w = {wi}i∈N be a set of non-negative numbers
(weights) such that

∑
i∈N wi = 1. For each problem (f, a) let Φw(f, a)

be the solution of φ′i(t) = wi(
∂f
∂xi

(φ(t))−1 with initial conditions φ(f(a)) =

a. Then, by applying Φw to the problem (f, 0), where f(x) =
∑

i∈N xi,
it is easy to see that it satisfies the symmetry axiom if and only if
wi = 1 for each i. All other axioms are satisfied by Φw for each w.
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Directional Continuity. Fix a non-symmetric weight vector w. Con-
sider a solution that coincides with the ordinal solution for each prob-
lem (f, a) if there exists a monotonic transformation s, as in the ax-
iom of ordinal utility, such that fs is a symmetric function. For all
other problems (and there are indeed such problems) the solution is
represented by Φw. This solution satisfies all axioms but directional
continuity.
Consistency. Define a solution Ψ such that for each problem (f, a)
and time t, Ψ(f, a)(t) is the Nash solution for the one-shot problem

(Sf
t , a).

Proof of Theorem 2. In the proof of Theorem 1 we showed that the
ordinal solution satisfies the ordinal utility axiom.

Let f be an agenda, and λ an increasing real valued function such
that λf is also an agenda. Then, λ must be differentiable. Denote
g = λf , and let φ = Φ(g, a).

We show that ψ(t) = φ(λ(t)) solves (1) for f . Note that for each t,
g(φ(t)) = t, which implies that f(ψ(t)) = t. Now,

ψ′(t) = φ′(λ(t))λ′(t)

= λ′(t)I
(
n∇(g(ψ(t))

)

= λ′(t)I
(
nλ′(f(ψ(t))∇(f(ψ(t))

)

= I
(
n∇(f(ψ(t))

)
.

Also, ψ(f(a)) = φ(λ(f(a))) = φ(λ(λ−1(g(a)))) = a.

Proof of Theorem 4. Consider an agenda f and a point d such that
f(d) = t.

We first examine the case that σ is the Nash solution. For t′ > t,
σ(Sf

t′ , d) is the point x at which the function g(y) = Πn
i=1(yi−di) attains

a maximum on Sf
t′ . At the point x, f(x) = t′, and the direction of the

gradients of g and f coincide. As the gradient of g at x is g(x)I(x−d),
it follows that x−d is in the same direction as I(∇f(x)). Hence, there is
an α = α(t′) such that x = d+αI(∇f(x)). Therefore f(d+αI(∇f(x)))−
f(d) = t′ − t. We conclude that α∇f(d)I(∇f(x)) + o(t′ − t) = t′ − t.
As ∇f(x) →t′↓t ∇f(d), it follows that α/(t′ − t) →t′↓t= 1/n. Finally,

[σ(Sf
t′ , d)− d]/(t′ − t) = αI(∇f(x))/(t′ − t) →t′↓t I(n∇f(d))),

which establishes (2) for the the Nash solution.
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Assume now that σ is the Kalai-Smorodinsky solution. For each i,
let bi be the number that satisfies

f(d + biei) = t′,(8)

where ei is a unit vector along the i axis. Let b =
∑

i∈N biei. Then

σ(Sf
t′ , d) is the point on the efficient frontier of Sf

t in the direction b

from d. Therefore, σ(Sf
t′ , d)− d = αb for some number α, such that

f(d + αb) = t′.(9)

By (8), f(d + biei) − f(d) = t′ − t, and therefore bi(∂f/∂xi)(d) +
o(t′ − t) = t′ − t. Hence, b →t′↓t I(∇f(d)).

By (9), f(d+αb)−f(d) = t′− t, and therefore, α∇f(d)b+o(t′− t) =

t′ − t. Hence, α/(t′ − t) →t′↓t 1/n. Finally, [σ(Sf
t′ , d) − d]/(t′ − t) =

αb/(t′ − t) →t′↓t I(n∇f(d))), as was to be to shown.
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