
 האוניברסיטה העברית בירושלים
THE HEBREW UNIVERSITY OF JERUSALEM 

 
 
 
 
 
 

EFFICIENT MECHANISMS FOR 
MULTIPLE PUBLIC GOODS 

  
 

by 
 
 

SURESH MUTUSWAMI and EYAL WINTER 
 
 

Discussion Paper  # 314                  May 2003 
 
 
 
 
 
 

  
 

 מרכז לחקר הרציונליות  
 

CENTER FOR THE STUDY 
OF RATIONALITY 

 
 
 
 
 

Feldman Building, Givat-Ram, 91904 Jerusalem, Israel 
PHONE:  [972]-2-6584135      FAX:  [972]-2-6513681 

E-MAIL:              ratio@math.huji.ac.il 
     URL:    http://www.ratio.huji.ac.il/ 



Efficient Mechanisms for Multiple Public Goods∗

Suresh Mutuswami†

and
Eyal Winter‡

January 15, 2002

Abstract
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first mechanism are asymmetric, being sensitive to the order in which
agents move. The second mechanism corrects for this through a two-
stage game where the order of moves in the second stage are randomly
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1 Introduction

Designing incentive compatible mechanisms that lead to efficient produc-
tion of public goods has long been an important topic in the theoretical
literature of public economics. Within this literature, various mechanisms
have been proposed. Among others, Bagnoli and Lipman [3] proposed a
mechanism that fully implements the core in a discrete and non-excludable
public good economy and Jackson and Moulin [6] introduced a mechanism
for the single indivisible public good economy to achieve efficient and equi-
table allocations. Abreu and Sen [1], Maniquet [7] and Moore and Repullo
[9] construct mechanisms in general economic environments that under cer-
tain conditions can implement general social choice functions in the public
goods framework.

Our paper is motivated by the same objectives but we depart from the
existing literature in a number of ways. First, our framework is rather
general. In contrast to the single public good case to which most of the
literature confines itself, we are dealing with multiple public goods on which
consumers’ preferences are not necessarily separable. Our model can be
interpreted in two different ways. On the one hand, we can think of the
multiple public goods as involving intrinsically different goods like public
school education, roads, national defence and so on. We can also interpret
the model as that of a single public good with multiple attributes. For
example, suppose that a common computer laboratory is required to serve
various department of a firm or university. This means deciding on the
amounts to be spent on each attribute like software, hardware, furniture,
programmers and so on. Thus, even when the public good problem involves
a single facility, the multiple public goods model might be the appropriate
way of describing the problem.

Second, while existing literature distinguishes between the excludable
public good case (for which agents’ consumption can be restricted at zero
cost, e.g. zoos, museums, cable TV etc.) and the non-excludable case (e.g.
clean air, defence and security), our framework allows for both type of goods.
It even allows some of the goods to be excludable and others non-excludable
within the same problem.

Third, our concern is with simple mechanisms, where simplicity is meant
to be in terms of the information that participants are requested to submit
to the planner. Thus in contrast to standard mechanisms (like Groves-
Clarke or Groves-Ledyard mechanisms) where players are required to submit
a full utility function over all possible levels of the public good, in ours
players are only required to announce their desirable level of the public
good/s, and subscribe to a contribution that will be paid conditional on
their demand being met. In addition to their simplicity we believe that the
operation of our mechanism resemble the way real life collective decisions on
public good production are often made. Given their efficiency, they become
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natural candidates for application in various concrete real life environments.
Consider for instance, the problem of building a common infrastructure
for use by cellular phone companies in a country.1 The problem is one of
deciding where to locate the transmission towers and how much to charge
each company. Since each company has different preferences concerning
location because of the different geographical profiles of its customers, we
believe that this problem is best treated one involving multiple public goods.
The government can divide the country into different geographical zones
with each zone being treated as a public good. If our mechanism is used,
each company would be required to submit a list of the public goods it
requires along with a cost contribution. Another potential application, to
which we have already alluded to, is the building of a common computer
facility. In this case, each department would be required to submit a list of
the attributes it requires along with a cost contribution.

We will be interested in two properties to be satisfied by the mechanism,
efficiency and monotonicity with respect to individual preferences. The first
property concerns the public good level while the second concerns the allo-
cation of costs. By efficiency we require that the mechanism overcomes the
free riding problem. Namely, the equilibrium behavior within the mecha-
nism results in the socially optimal vector of public goods. The property of
monotonicity requires that if player i’s marginal utility for every good at all
points exceeds player j’s marginal utility for every good, then player i ends
up having a higher net utility in equilibrium. In particular, it requires that
if two players share the same preferences regarding the public goods, then
they will end up having the same net utility, and thus will also be making
the same contribution. In addition to these two properties, we argue that
in special cases, our mechanism satisfies a third property of core stability,
i.e., the resulting outcome is immune to deviations by coalitions. Indeed
this property will hold whenever the problem involves a single excludable
public good (as shown by Bag and Winter [2]). We note that no mechanism
satisfies this property on the whole domain as such outcomes may not exist
in the general case.

This paper is related to the literature on subgame perfect implemen-
tation, specifically the papers of Abreu and Sen [1], Bag and Winter [2],
Moore and Repullo [9] and Maniquet [7]. Abreu and Sen [1] and Moore and
Repullo [9] have provided necessary and sufficient conditions for a general
social choice function to be implementable in subgame perfect equilibrium.
Their mechanisms are quite complex relying on constructs such as integer
games.

Maniquet [7], in a recent contribution, characterizes the set of anonymous
1A common infrastructure is preferable to the alternative of having each company build-

ing it’s own infrastructure on two counts. Firstly, it is efficient. Secondly, the potential
health hazards are minimized by having a common infrastructure.
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and individually rational social choice functions implementable through a
“Divide and Challenge” mechanism. In the first stage of this n-stage mech-
anism, an agent (the “divider”) proposes an allocation along with the pref-
erence profile of all agents. In subsequent stages, the other n − 1 agents
(the “choosers”) can challenge the divider by stating the name of an agent
for whom the stated preference is incorrect and proposing an alternate allo-
cation. While this mechanism is applicable in our context as well, it needs
at least three agents to be present. It also requires the announcement of
the entire preference profile. In contrast, our mechanisms are valid even for
the case of two agents. Also, an agent’s announcement consists only of a
desired vector of public goods and a cost contribution which is “simpler”
than having to announce the entire preference profile.

Finally, our paper is related to that of Bag and Winter [2] who propose
two related mechanisms for the single excludable public good case. While
simpler, the proposed mechanism there relies on the presence of a single
good which is excludable. Indeed, their mechanisms do not work if the
public good is pure or if there are even multiple excludable public goods.
Our mechanisms, in contrast, work even if the public good is pure, or if
there are multiple public goods.

We organize the remainder of the paper as follows. In Section 2 we set
up the model of general multiple public goods problem. In Section 3 we
define two sequential mechanisms in which players move in turns by making
bids regarding the requested level from each of public goods and conditional
contribution. The first auxiliary mechanism (called Γm) yields an efficient
outcome in equilibrium but the equilibrium outcome may not be equitable
as players moving earlier have an advantage. The second mechanism (called
Γ1

m) corrects for this asymmetry by allowing the mechanism to be played
twice with the last period order being chosen randomly. Section 4 con-
tains the formal analysis of the two mechanisms defined in Section 3. We
demonstrate the operation of these mechanisms in Section 5 on a prominent
3-agent, 3-good problem proposed by Moulin [10]. In Section 6 we discuss
conditions under which the equilibrium outcome of the mechanism is core
stable. In particular, we demonstrate that this property holds whenever the
cost function is submodular and the utility functions are supermodular. We
conclude in Section 7.

2 The Model

Let N = {1, 2, . . . , n} denote the set of agents. There are p public goods
in the economy. The set of feasible vectors of public goods for the economy
are located in Y ⊂ Rp

+. We shall assume that Y is non-empty, unbounded
and contains 0 = (0, . . . , 0). A generic element of Y shall be denoted as y.
Our formulation allows for the fact that some of the public goods may be
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“lumpy” in that they can be consumed in discrete units only. It also permits
a given public good to be pure or excludable: the analysis is not affected.
In addition to the public goods, there is also a private, perfectly divisible
good in the economy which can be interpreted as “money.”

The preferences of the individuals are quasi-linear taking the form Ui(y, xi) =
vi(y) − xi where vi(y) is i’s valuation (in units of the private good) for the
vector y of public goods; then xi has a natural interpretation as his contri-
bution towards the cost of production. The technology in the economy is
given by a production function f with an associated cost function c. The
following restrictions are imposed on the preferences and the technology.

Assumption 1 1. The function vi is continuous, non-decreasing, bounded
and normalized such that vi(0) = 0 for all i ∈ N .

2. The cost function c is continuous, non-decreasing and satisfies c(0) =
0. Also, c(y) →∞ as y →∞.

Remark 1 The assumption that the function vi is bounded may appear to
be strong. However, it is reasonable if we assume that each agent in the
economy has a finite endowment of the private good. One can weaken this
requirement: basically, what we need are conditions which ensure that the
optimal vector of public goods for any subset of agents is not unbounded.
Since the analysis does not depend on this assumption, we do not pursue
this matter further in this paper. Note also that the restrictions on the
technology are minimal.

We end our discussion of the model by introducing some notation which
will be used in this paper. The subset of players {k, k +1, . . . , n} is denoted
Sk and Sn+1 indicates the empty set. The announcement of agent i in a
mechanism is indicated by the use of a subscript as in wi, zi and so on while
the n-tuple of all agents’ announcements is denoted as w, z and so on. The
term “announcement” is used interchangeably to indicate the announcement
of a particular player and also to the vector of announcements of all players.
This should not cause any confusion as the context will make it clear as to
which usage is relevant.

3 The mechanisms Γm and Γ1
m

Implementation Theory distinguishes between two distinct scenarios, com-
plete information environments and incomplete information environments.
In both scenarios, the planner who wishes to implement a social choice
function meeting her objectives is ignorant about the environment. In the
complete information setting, all agents know the environment while in the
incomplete information setting, agents may have private information so that
an agent may not know the true environment either. In our setting, all agents
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including the planner know the technology while the preferences of an agent
is known to all other agents excluding the planner: thus, the setting is one
of complete information. The fact that agents know each other’s preferences
is used in a crucial way in our mechanisms.

We now define the mechanisms that we analyze subsequently. In the
mechanism Γm, agents move sequentially and agent k, when it is her turn
to move, chooses a tuple wk = (yk, xk) where yk is the vector of public
goods she wishes to consume and xk is her contribution towards the cost
of production conditional on her demands being met. We assume that the
agents move in the “natural order,” viz. first, agent 1 moves, then agent 2,
and so on. As will become clear, the analysis can easily be reinterpreted to
cover the case where the agents move in a different order.
Notation: Given a collection {yk}k∈S , we denote by ŷS the vector (ŷ1, . . . , ŷp)
where ŷi = maxk∈S yk

i for i = 1, . . . , p.

Definition 1 The coalition S is compatible with the announcement w =
{(yk, xk)}k∈N if

∑
k∈S xk ≥ c(ŷS).

Thus, a coalition S is compatible if the total contributions of the members
of S is sufficient to produce a vector of public goods such that the demands
of all members of S can be satisfied.

Once all players have announced, the planner selects the largest com-
patible coalition in the set {S1, . . . , Sn+1} which is called the maximal com-
patible coalition and denoted S∗(w).2 He then announces that the vector
y∗(w) = ŷS∗(w) is to be produced (obviously, y∗(w) = 0 if S∗(w) = ∅) and
charges the agents as follows:

x∗k(w) =
{

xk if k ∈ S∗(w),
0 otherwise.

The mechanism Γ1
m, which we define now, is a two-stage game. In the

first stage, agents play the game Γm according to a randomly selected order
of the agents. At the end of the first stage, each agent is asked whether she
would like to replay the game. If all agents answer “NO,” then the game
ends. If at least one agent answers “YES,” then an order of the agents
is chosen at random from the n! possibilities, and the agents replay the
game Γm according to this randomly chosen order. The game ends after the
optional second stage.

4 The Results

In this section we show that every subgame perfect equilibrium (hereafter,
SPE) of the mechanisms Γm and Γ1

m results in an efficient production of the
2Since Sk ⊂ Sk+1 for all k = 1, . . . , n+1 and Sn+1 = ∅ is compatible by definition, the

maximal compatible coalition always exists.
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public goods. For the mechanism Γ1
m we also show that the equilibrium pay-

offs correspond to the Shapley value of a cooperative game that summarizes
the production opportunities of coalitions in the economy.

We start with the following preliminaries. Consider the optimization
problem for any S ⊂ N :

max
y∈Y

∑
k∈S

vk(y)− c(y) (1)

Assumption 1 ensures that a solution exists for this problem. Since vk is
non-negative and bounded for all k ∈ N , there exists M > 0 such that
vk(y) ≤ M for all k ∈ N and all y ∈ Y . Let Y ∗ = {y ∈ Y |c(y) ∈ [0, nM ]}.
Since c is continuous and c(y) → ∞ as y → ∞, it follows that Y ∗ is both
closed and bounded and therefore, compact.3 The optimization problem
(1) thus reduces to one where the maximum is taken over all y ∈ Y ∗. The
compactness of Y ∗ and the continuity of vk, k = 1, . . . , n and c ensures that
the maximum exists. We shall use the notation y∗S to signify an efficient
vector of public goods for S, that is, y∗S solves (1). Of course, y∗S need not
be unique.

Definition 2 The stand alone payoff to a coalition S is defined as

sa(S) =
{ ∑

k∈S vk(y∗S)− c(y∗S) if S 6= ∅,
0 otherwise.

The stand-alone payoff summarizes the aggregate payoff possibilities for
each coalition within the economy. We therefore have a natural associated
cooperative game for our economy, given by (N, sa).

Definition 3 The “marginal contribution” of agent k, k = 1, . . . , n is u∗k =
sa(Sk)− sa(Sk+1).

Remark 2 Assumption 1 implies that 0 ≤ sa(S) ≤ sa(T ) if S ⊂ T . The
coalition T can always produce y∗S , and thus by Assumption 1, sa(T ) ≥∑

i∈T vi(y∗S) − c(y∗S) ≥ sa(S). The first inequality follows because 0 is a
feasible production plan for any coalition and therefore, using Assumption
1 once more, sa(S) ≥

∑
i∈S vi(0)− c(0) ≥ 0.

The main results concerning the mechanisms Γm and Γ1
m can be sum-

marized in the following theorems.

Theorem 1 In all SPE of Γm, an efficient vector of public goods is pro-
duced. Also, if y∗ is an efficient vector of public goods, then there exists
a SPE which supports y∗ as an equilibrium outcome. Furthermore, the net
payoffs of the agents in all SPE are uniquely given by (u∗1, . . . , u

∗
n).

3Note also that since c(0) = 0, 0 ∈ Y ∗.
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Theorem 2 In all SPE of Γ1
m, an efficient vector of public goods is pro-

duced. Also, if y∗ is an efficient vector of public goods, then there exists
a SPE which supports y∗ as an equilibrium outcome. Furthermore, the net
payoffs to the agents in all SPE are given uniquely by the Shapley value of
(N, sa).

Let us first consider the mechanism Γm. Suppose that agents in {1, . . . , j}
have already announced {wk = (yk, xk)}

j
k=1. Let i ∈ {1, . . . , j} be such that

n∑
k=j+1

vk(ỹj)− c(ỹj) +
j∑

k=i

xk > sa(Sj+1) (2)

for some ỹj such that ỹj ≥ yk for all k = i, . . . , j.
To understand what’s being said here, note that agents in Sj+1 can

expect a collective net payoff of at most sa(Sj+1) without the cooperation
of other agents. If an i ≤ j + 1 satisfying (2) exists, then it means that the
agents in Sj+1 can obtain a collective payoff strictly greater than sa(Sj+1)
by cooperating with agents in {i, i + 1, . . . , j}.

Let ij be the largest integer in {1, . . . , j} satisfying (2). Note that ij
need not exist at all. However, if ij exists, then Sij is the minimal set of
agents who have to be included in the maximal compatible coalition if the
agents following j are to obtain a collective payoff greater than sa(Sj+1).4 In
other words, if it turns out that the resulting maximal compatible coalition
in some SPE of the subgame following j’s announcement is not a superset
of Sij ), then the agents in Sj+1 must be receiving a net payoff less than or
equal to sa(Sj+1).

The following lemma says that if ij exists, then all SPE of the sub-
game following j’s announcement will be such that the resulting maximal
compatible coalition is a superset of Sij .

Lemma 1 Suppose that agents in {1, . . . , j} have announced {(yk, xk)}
j
k=1

in the mechanism Γm and that ij exists. Then, all SPE of the subgame fol-
lowing j’s announcement will be such that the resulting maximal compatible
coalition is a superset of Sij .

Proof : We proceed by induction on j. We will show that if Sij is not a
compatible coalition, then there exists a profitable deviation for some agent
in Sj+1 in the subgame following j’s announcement.

If j = n, then there is no subgame following n’s announcement.5 It is
easy to verify that (2) implies that Sin is a compatible coalition in this case.

4Compatibility requires that if any of the agents preceding j+1 are part of the maximal
compatible coalition, then they necessarily must form a “connected” set of agents.

5Remember that agents are announcing in the order 1, 2, . . . , n so that n is the last to
announce.
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It follows that that the resulting maximal compatible coalition is a superset
of Sin .

Assume that the lemma is true for all j > J and suppose that iJ exists
but that the maximal compatible coalition is not a superset of SiJ in some
SPE of the subgame following J ’s announcement. Let (uJ+1, . . . , un) be the
corresponding net payoffs to the agents following agent J . Since the maximal
compatible coalition is not a superset of SiJ , we must have

∑n
k=J+1 uk ≤

sa(SJ+1). We can distinguish between two cases.
Case 1: There exists k > J such that uk < u∗k.

Let agent k deviate by announcing (y∗Sk
, x′k) where6

sa(Sk+1)−
n∑

i=k+1

vi(y∗Sk
) + c(y∗Sk

) < x′k < vk(y∗Sk
)− uk. (3)

The upper bound on x′k is strictly greater than the lower bound if and only
if

vk(y∗Sk
)− uk > sa(Sk+1)−

n∑
i=k+1

vi(y∗Sk
) + c(y∗Sk

). (4)

Since
∑n

i=k vi(y∗Sk
)− c(y∗Sk

) = sa(Sk), it follows that (4) is true if and only
if uk < sa(Sk)− sa(Sk+1) = u∗k which is true by assumption. Thus, a value
of x′k satisfying (3) exists.

Since
∑n

i=k+1 vi(y∗Sk
) − c(y∗Sk

) + x′k > sa(Sk+1), it follows that ik = k
after k’s deviation. Since k > J , the induction hypothesis implies that the
resulting maximal compatible coalition in any SPE of the subgame following
k’s deviation will be a superset of Sik = Sk. Compatibility implies that the
resulting vector of public goods, say y, will be such that y ≥ y∗Sk

. By
Assumption 1, we have vk(y) − x′k ≥ vk(y∗Sk

) − x′k > uk. Thus, k has a
profitable deviation.
Case 2: uk = u∗k for all k = J + 1, . . . , n.
Let agent J + 1 deviate by announcing (ỹJ , x′J+1) where x′J+1 satisfies the
following conditions.7

1. sa(SJ+2)−
∑n

i=J+2 vi(ỹJ) + c(ỹJ)−
∑J

i=iJ
xi < x′J+1,

2. x′J+1 < vJ+1(ỹJ)− sa(SJ+1) + sa(SJ+2).

The upper bound on x′J+1 is strictly greater than the lower bound if and
only if

n∑
i=J+1

vi(ỹJ)− c(ỹJ) +
J∑

i=iJ

xi > sa(SJ+1) (5)

6Recall that for any S ⊂ N , y∗S denotes an efficient vector of public goods for S.
7Recall that ỹJ is a vector of public goods satisfying (2) and such that ỹJ ≥ yk for

k = ij , . . . , j.
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which is true because ỹJ satisfies (2).
Since

∑n
i=J+2 vi(ỹJ) − c(ỹJ) +

∑J
i=iJ

xi + x′J+1 > sa(SJ+2), it follows
that iJ+1 exists after J + 1’s deviation. The induction hypothesis implies
that the resulting maximal compatible coalition in any SPE of the subgame
following J +1’s deviation will be a superset of SiJ+1 . Since iJ+1 ≤ J +1, it
follows that J +1 is a member of the resulting maximal compatible coalition.
If y is the resulting vector of public goods, then compatibility implies that
y ≥ ỹJ . By Assumption 1, we have vJ+1(y) − x′J+1 ≥ vJ+1(ỹJ) − x′J+1 >
sa(SJ+1) − sa(SJ+2) = u∗J+1. Thus, J + 1 has a profitable deviation. This
completes the proof of the lemma.

Corollary 1 Let (u1, . . . , un) be the net payoffs to the agents in some SPE
of Γm. Then, uk ≥ u∗k for all k ∈ N .

Proof : Suppose that uk < u∗k for some k. Let agent k deviate by announcing
(y∗Sk

, xk) where

sa(Sk+1)−
n∑

j=k+1

vj(y∗Sk
) + c(y∗Sk

) < xk < vk(y∗Sk
)− uk (6)

The upper bound on xk is strictly greater than the lower bound if and only if
uk < sa(Sk)−sa(Sk+1) which is true by assumption. Since

∑n
j=k+1 vj(y∗Sk

)−
c(y∗Sk

) + xk > sa(Sk+1), it follows that (2) is satisfied for ik = k. Lemma 1
implies that the maximal compatible coalition in any SPE resulting after k’s
deviation must include Sk. If y is the resulting vector of public goods, then
by compatibility, y ≥ y∗Sk

. Thus, by Assumption 1, we have vk(y) − xk ≥
vk(y∗Sk

)− xk > uk. This shows that k has a profitable deviation, which is a
contradiction.

We are now in a position to prove Theorems 1 and 2.
Proof of Theorem 1: Let (u1, . . . , un) be the net payoffs to the agents in
some SPE of the game Γm. Let y∗ be the corresponding vector of public
goods produced. Corollary 1 implies that ui ≥ u∗i for all i ∈ N in any SPE
of Γm. If ui > u∗i for some i then we must have

∑n
j=1 uj =

∑n
j=1 vj(y∗) −

c(y∗) > sa(N). However, Remark 2 which follows from Assumption 1 shows
that the maximum possible stand-alone payoff is sa(N). The contradiction
shows that ui = u∗i for all i ∈ N . The fact that the efficient vector of public
goods is produced follows trivially from the observation that

∑n
i=1 u∗i =

sa(N).
Suppose now that y∗ is an efficient vector of public goods. Consider the

strategy profile w where wi = (y∗, x∗i ), x∗i = vi(y∗)− u∗i for all i = 1, . . . , n.
We claim that w is a SPE of Γm. Suppose not. Then, there exists j such that
all agents prior to j announce wi, (i = 1, . . . , j−1), and j announces w′

j 6= wj .
Following j’s announcement, we then have a subgame. Let (v1, . . . , vn) be
the net payoffs of the agents in the equilibrium resulting from this subgame.
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Note that we can replicate the arguments in Lemma 1 to conclude that
vk ≥ u∗k for all k > j. If vj ≤ u∗j , then clearly, j has not benefited from the
deviation. So suppose that vj > u∗j . Then, we have

∑n
l=j vl > sa(Sj). Now,

if the maximal compatible coalition is also Sj , then we have a contradiction.
So, suppose that the maximal compatible coalition is St for some t < j.
Note that vl ≥ u∗l for all t ≤ l < j.8 Thus, we have

∑n
l=t vl > sa(St) which

is once again, a contradiction. This completes the proof of the theorem.
Proof of Theorem 2: Let (φ1(sa), . . . , φn(sa)) denote the Shapley value
payoffs to the agents in (N, sa). Suppose the game enters Stage 2 of Γ1

m.
We know from Theorem 1 that for any order selected by the planner, the
SPE payoffs will be given by the “marginal contribution” vector. Since each
order is equally likely, it follows that the expected payoff to any agent at
the beginning of the second stage is exactly his Shapley value in the game
(N, sa).

Consider now the agents’ decisions at the beginning of Stage 1. If any
agent gets less than her Shapley value payoff at the end of Stage 1, then she
will force the game into the second stage. It thus follows that the strategy
profile ({w∗

i = (y∗N , x∗i )}, “NO”)n
i=1 where x∗i = vi(y∗N ) − φi(sa) constitutes

a SPE of the game Γ1
m. However, this may not be a unique SPE as it is

possible that some agent is indifferent between the game ending in the first
stage and getting his Shapley value payoff and getting the same payoff in
expected terms in Stage 2. (Note that the efficient vector of public goods is
produced in either case.) If we assume that all agents have a lexicographic
preference for the game ending in the first stage, then all SPE of the game
Γ1

m will end in the first stage with the production of the efficient vector of
public goods, and the agents getting their Shapley value payoffs.

Remark 3 If agents discount the future instead of having a lexicographic
preference for the game ending in stage 1, then the game Γ1

m always ends in
the first stage and the payoffs approach the Shapley value as the discount
factor approaches one.

Let 0 < β < 1 be the discount factor. If the game Γ1
m reaches the second

stage, then the expected payoffs to the agents at the beginning of Stage 2 are
obviously β(φ1(sa), . . . , φn(sa)). Thus, if i’s payoff at the end of stage 1 is
strictly less than βφi(sa), then she will move the game to the second stage.
Therefore, the optimal strategy for player i in stage 1 is to announce so
as to leave exactly the second stage payoffs (

∑n
j=i+1 βφj(sa)) to the agents

following her. Using the argument recursively, it follows that agent 1 will
expropriate the entire surplus that accrues on account of time discounting.
Note that the game cannot go to the second stage because agent 1 would
prefer to concede a little to the agents following her rather than having the

8The vector of public goods produced must be y ≥ y∗ since all members in {t, . . . , j−1}
announce y∗ as the desired vector of public goods. Since the utility functions are non-
decreasing, vl(y)− xl ≥ vl(y

∗)− xl = u∗
l for all l = t, . . . , j − 1.
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game go to the second stage.9 Therefore, with discounting, the game Γ1
m

always ends in the first stage with production of an efficient vector of public
goods and net payoffs (sa(N)−β

∑n
j=2 φj(sa), βφ2(sa), . . . , βφn(sa)). Thus,

as β → 1, the payoffs converge to the Shapley value.

Remark 4 The symmetry property of the Shapley value implies that if two
agents have the same preferences, then they receive the same net utility from
the mechanism Γ1

m. More generally, the mechanism Γ1
m has the following

“monotonicity property”: if agents i and j are such that i’s marginal utility
at all points is at least as high as j’s marginal utility, then i’s net payoff
must be at least as high as j’s net payoff. It is easy to check that if i’s
marginal utility is higher than j’s marginal utility at all points, then this
implies that z(S ∪ {i}) − z(S) ≥ z(S ∪ {j}) − z(S) for all S ⊂ N\{i, j}.
A simple computation using the formula for the Shapley value then implies
that i’s payoff is at least as large as j’s payoff.

5 An Example

We now consider an example due to Moulin [10] which illustrates the oper-
ation of the two mechanisms considered above. Let N = {1, 2, 3} and let
the set of public goods be given by {a, b, c}. Following Moulin [10], we can
interpret the public goods as being “street-lights.” Let a be the street-light
on the road between 1 and 2, b be the street-light on the road between 1
and 3, and c the street-light on the road between 2 and 3. We shall say that
the street-light x is adjacent to agent i if x is located on a road connecting
i and some other agent j. The utility function of agent i is given as follows:

Ui =


30 if there is one street-light adjacent to i,
45 if there are two street-lights adjacent to i,
0 otherwise.

The cost of production is a uniform $40 per street-light. It is easily seen that
in this example sa({i}) = 0, sa({i, j}) = 20 and sa(N) = 25. This follows
because the optimal action for an individual agent is not to construct any
street-light; for any two agents to construct the street-light on the road
connecting them; and for the grand coalition to construct any two street-
lights. Observe that the optimal vector of public goods is not uniquely
defined for the grand coalition.

Consider the mechanism Γm where the agents move in the order 1, 2,
3. Using Theorem 1, it follows that the equilibrium net payoffs to the

9If the game does go to a second stage, then agent 1 can deviate by conceding a fraction
0 < α < 1 of the surplus (S = sa(N)−β

∑n
j=2 φj(sa)) to agents following her, agent 2 can

follow by conceding some of (1 − α)S to the subsequent agents and so on. This ensures
that the game ends in the first stage and agent 1 is strictly better off from the deviation.
This argument has been used before in Bag and Winter [2].
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agents are (u∗1, u
∗
2, u

∗
3) = (5, 20, 0). Similarly, using Theorem 2, it follows

that the equilibrium net payoffs in the game Γ1
m are given by (v∗1, v

∗
2, v

∗
3) =

(81
3 , 81

3 , 81
3).

Note that the equilibrium strategies cannot be uniquely specified in the
two mechanisms. For instance, in the mechanism Γm, the strategy profiles
{{(a, b), 40}, {(a, b), 10}, {(a, b), 30}} and {{(a, c), 25}, {(a, c), 25}, {(a, c), 30}}
are both equilibrium strategy profiles.10 Similarly, in the mechanism Γ1

m,
the strategy profiles {{(a, b), 362

3}, {(a, b), 212
3}, {(a, b), 212

3}} and
{{(a, c), 212

3}, {(a, c), 362
3}, {(a, c), 212

3}} are both equilibrium strategy pro-
files. It is a feature of both the Γm and Γ1

m mechanisms that even though the
equilibrium strategies cannot be specified uniquely, the equilibrium payoffs
are nonetheless unique. Furthermore, the vector of public goods produced
in equilibrium is always optimal.

Note also that the core of the game (N, sa) is empty. This brings forward
an important point: the mechanisms that we have proposed may not be
immune to coalitional deviations. To see this more clearly, imagine that the
public goods in this example are excludable and that the technology is freely
available to all coalitions. Observe that the coalition {1, 3} collectively gets
a payoff of 5 in any SPE of Γm (assuming that agents move in the order 1,
2, 3). However, the coalition {1, 3} can do better by opting to produce the
good b by themselves and sharing the cost equally. This leaves both 1 and
3 with a surplus of 10 which is more than what they get in any SPE of Γm.
Similarly, in the mechanism Γ1

m, any pair of agents can deviate because the
total payoff to S = {i, j} in any SPE of Γ1

m is 162
3 < sa(S) = 20.

In the following section we discuss conditions under which the mecha-
nisms Γm and Γ1

m are also coalition stable.

6 Coalition Stability

We confine our discussion of coalition stability of our mechanisms to the
case where all public goods are excludable. The primary reason for this is
that it is only in this case that coalition stability is well-defined through
the notion of stand alone core. This is defined as follows. First, note that
an allocation for an economy with (multiple) excludable public goods is
(y, x1, . . . , xn) where y is a vector of public goods and xi the contribution of
agent i, satisfying c(y) ≤

∑n
i=1 xi.

Definition 4 An allocation (y, x1, . . . , xn) is in the stand alone core of
the excludable public goods economy if there does not exist ∅ 6= S ⊂ N ,
(y′, (x′i)i∈S) satisfying

1. c(y′) ≤
∑

i∈S x′i,

10These two strategy profiles do not exhaust the set of equilibrium strategies in this
example.
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2. vi(y′)−x′i ≥ vi(y)−xi for all i ∈ S with a strict inequality for at least
one i ∈ S.

Remark 5 It is easily confirmed that an allocation (y, x1, . . . , xn) is in the
stand alone core of the excludable good economy if and only if it is in the
core of the TU-game (N, sa).

The stand-alone core is equivalent to the well-known notion of the α-
core. Note that in defining the stand-alone core, we have assumed that a
deviating coalition S does not have access to the public goods produced
by N\S. Another way of looking at this is that the coalition N\S acts
so as to minimize the (joint) payoff of the coalition S. We argue that this
assumption is reasonable because there is no reason why a coalition should
make available the set of (excludable) public goods produced by it to free-
riding outsiders. Our definition would make less sense if there are pure public
goods in the economy because a deviating coalition cannot be excluded from
the set of pure public goods produced by others. In the pure public good
case, Definition 4 implies that in the event of a deviation by the coalition
S, the coalition N\S will not produce any public goods whatsoever. This
is obviously very strong and Carraro and Siniscalco [4] and Chander and
Tulkens [5] have proposed weaker behavioral assumptions. Our impression,
though, is that this is still an unsettled issue and we therefore, confine
ourselves to the excludable public goods case.

In the case of a single excludable public good economy, Bag and Winter
[2] and Moulin [10] show that the stand alone core is non-empty under
weak assumptions. Indeed, it turns out that the TU-game (N, sa) is convex
in this case. The mechanisms proposed by Bag and Winter [2] for the
single excludable public good economy are coalition stable because they
implement payoff vectors which are in the stand alone core. In the multiple
excludable public goods case, the stand alone core may be empty as the
example in the previous section demonstrates. (Note that preferences are
convex and marginal cost constant in that example!) Moulin [10] gives
sufficient conditions for the convexity of the TU-game (N, sa) which ensures
that the stand alone core is non-empty. We turn to these conditions now.

Let y, y′ ∈ Rp
+. Then, we let y ∨ y′ = max{y, y′} and y ∧ y′ = min{y, y′}

where the maximum and minimum are taken coordinate-wise.

Definition 5 A function f : RP → R is supermodular [submodular] if for
all y, y′, f(y ∨ y′) + f(y ∧ y′) ≥ [≤]f(y) + f(y′).

The proof of the following lemma is straightforward and is omitted.

Lemma 2 Suppose that vi satisfies the conditions in Assumption 1 and is
also supermodular for all i = 1, . . . , n. Also, let the cost function c satisfy
the conditions in Assumption 1 as well as submodularity. Then, the game
(N, sa) is convex.
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This now leads to the following result.

Theorem 3 Suppose that vi is supermodular for i = 1, . . . , n and c is sub-
modular. Then, the mechanisms Γm and Γ1

m are coalition stable.

Proof : By Remark 5 it suffices to show that the allocations achieved by
Γm and Γ1

m are in the core of (N, sa). By Lemma 2, (N, sa) is convex.
The coalition stability of Γm thus follows from the observation following the
proof of Lemma 2. Since the Shapley value is simply a convex combination
of the “marginal contribution” vectors, the coalition stability of Γ1

m follows
also.

Remark 6 Observe that supermodularity and submodularity impose no
restrictions when there is only one public good. Lemma 2 thus confirms the
result of Moulin [10] that in the case of a single excludable public good, the
game (N, sa) is convex under weak assumptions.

Remark 7 Topkis [11] has shown that if a function is smooth, then su-
permodularity [submodularity] is equivalent to the condition that all cross-
partials are non-negative [non-positive]. Thus, on the preference side, super-
modularity implies complementarity between the public goods in the sense
that the marginal utility from a public good does not decrease when the
amount of some other public good increases. A number of well-known util-
ity functions are supermodular; for instance, the Cobb-Douglas, separable,
and Leontief functions are all supermodular.

Submodularity of the cost function suggests a similar complementarity:
the marginal cost of a public good does not increase when the quantity pro-
duced of some other public good increases. Such complementarities may not
be unrealistic: an example of such a scenario is when one (excludable) pub-
lic good is public education and the other is a direct intervention to reduce
poverty. Examples of submodular cost functions include c(y) =

∑p
i=1 piyi

(where pi is the unit cost of good i) and c(y) = ln(1 +
∑p

i=1 yi).11

7 The non-quasilinear case

One important restriction of our analysis has been the assumption that the
preferences are quasi-linear. We now show that we do get efficiency and
equity when the preferences are not quasi-linear but the equitable outcome
cannot be characterized in terms of the Shapley value of a cooperative game.

As in the quasi-linear case, we assume that the preferences of agent i is
given by a utility function ui(x, y) where x is the quantity of the private good
and y a vector of public goods. We assume that agent i has a strictly postive

11Note that c(y) =
∑p

i=1 piyi is only weakly submodular while c(y) = ln(1 +
∑p

i=1 yi)
is strictly submodular. Also, observe that the former cost function is a “natural” specifi-
cation in many contexts.
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endowment of the private good, denoted by wi. The following restrictions
are imposed on an agent’s utility function and the cost function.

Assumption 2 The function ui(x, y) is continuous and strictly monotone
in all arguments and is normalized such that ui(0,0) = 0. Furthermore,
the private good is indispensable: if x > 0, then for all y, y′, ui(x, y) >
ui(x, y′).12 The cost function c is continuous, non-decreasing, satisfies c(y) ≥
c(0) = 0 for all y and c(y) →∞ as y →∞.

Assume as before that the agents announce in the order 1, . . . , n. We
now define the vector of “marginal utilities” as follows. Let

u∗n = maxun(x, y)
subject to (i) x ≥ 0,

(ii) c(y) ≤ wn − x.

be the stand alone payoff of agent n. Suppose now that u∗k has been defined
for all k > K. Then, define u∗K as follows.

u∗K = maxuK(x, y)
subject to (i) x ≥ 0, xj ≥ 0 for all j > K,

(ii) c(y) ≤ wK − x +
∑n

j=K+1(wj − xj),
(iii) u∗j ≤ uj(xj , y) for all j = K + 1, . . . , n.

Remark 8 Observe that indispensability implies that the solution to the
optimization problem defining u∗k – say (xk, y) – must involve xk > 0.

An allocation for the coalition S is a vector ({xi}i∈S , y) where y is a
vector of public goods and xi the quantity of the private good consumed by i.
An allocation for S is feasible if xi ≥ 0 for all i ∈ S and

∑
i∈S(wi−xi) ≥ c(y).

Definition 6 A utility vector (ui)i∈S is feasible for S if there exists a fea-
sible allocation ({xi}i∈S , y) such that ui = ui(xi, y) for all i ∈ S.

Definition 7 A utility vector (ui)i∈S is efficient for S if it is feasible for
S and if there does not exist another feasible utility vector (vi)i∈S such that
vi > ui for all i ∈ S.

Definition 8 A vector of public goods y is efficient for S if there exists a
feasible allocation for S ({xi}i∈S , y) giving rise to an efficient utility vector
(ui)i∈S.

Theorem 4 Suppose that Assumption 2 is satisfied. Then, an efficient vec-
tor of public goods for N is produced in all SPE of the mechanism Γm. If
(u1, . . . , un) are the net payoffs to the agents in a SPE of Γm then it must be
an efficient utility vector for N and furthermore, ui = u∗i for i = 1, . . . , n.

12The assumption of indispensability is taken from Mas-Colell [8].
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The proof of Theorem 4 follows the same methodology as that involved
in proving Theorem 1. Suppose that agents in {1, . . . , k} have announced
(yj , x̄j)k

j=1. Let ik be the largest integer in {1, . . . , k} such that there exists
a vector (xk+1, . . . , xn, y) satisfying

y ≥ yj for all j = ik, . . . , k, and xj ≥ 0 for all j = k + 1, . . . , n, (7)

c(y) ≤
k∑

j=ik

x̄j +
n∑

j=k+1

(wj − xj), (8)

uk+1(xk+1, y) > u∗k+1and uj(xj , y) ≥ u∗j for all j = k + 2, . . . , n. (9)

Observe that if agent k + 1 is to obtain a payoff greater than u∗k+1, then he
must have the cooperation of some of the agents preceding him and all the
agents following him. Note also that the definition of a maximal compatible
coalition requires that the set of agents preceding k + 1 must necessarily
be a “connected” one. The fact that ik is the largest integer in {1, . . . , k}
satisfying (7)-(9) means that if k+1’s net payoff is strictly greater than u∗k+1

and each j following k +1 receives at least u∗j , then the maximal compatible
coalition must be a superset of Sik . Therefore, if the maximal compatible
coalition is not a superset of Sik , then we must have either (i) the net payoff
to k + 1 does not exceed u∗k+1, or (ii) the net payoff to some j > k + 1 is
strictly less than u∗j .

The following lemma is crucial to proving Theorem 4.

Lemma 3 Let Assumption 2 be satisfied. Suppose that agents in {1, . . . , k}
have announced (yj , x̄j)k

j=1. Suppose that ik exists. Then all SPE of the
subgame following k’s announcement must be such that the resulting maximal
compatible coalition is a superset of Sik .

Proof: We show by induction that if the lemma is not true then there exists
a credible deviation for some agent in {k + 1, . . . , n}. The lemma is clearly
true for k = n. So suppose that it is true for all k > K and consider the
case k = K. Suppose that the maximal compatible coalition in some SPE
of the subgame following K’s announcement is not a superset of SiK . Let
(vK+1, . . . , vn) be the payoffs to the agents following K in this SPE. We can
distinguish between two cases.
Case 1: There exists j > K such that vj < u∗j .

By the definition of u∗j , there exists a feasible allocation for Sj , (xj , . . . , xn, y)
such that uj(xj , y) = u∗j and ui(xi, y) ≥ u∗i for all i > j. Let j deviate by
announcing (y, wj − x̃j) where xj > x̃j > 0 and uj(x̃j , y) > vj .13 Now
consider the allocation (x̃j , x̃j+1, . . . , x̃n, y) where x̃j is as defined above and
for i > j, x̃i = xi + (xj − x̃j)/(n − j). It follows that this allocation is
also feasible for Sj and that ui(x̃i, y) > u∗i (by strict monotonicity of the

13The existence of x̃j follows from the continuity of the utility function. Note also that
indispensability implies that xj > 0.
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utility function in the private good) for all i > j. Note now that ij = j
after j’s deviation. It follows by the induction hypothesis that the maximal
compatible coalition in any SPE of the subgame following j’s deviation will
be a superset of Sij = Sj . Thus, j will always be a member of the maximal
compatible coalition in any SPE of the subgame resulting after his deviation.
This, though, shows that j has a credible deviation.
Case 2: vK+1 = u∗K+1 and for all j > K + 1, vj ≥ u∗j .

Since iK exists, there is a vector (xK+1, . . . xn, y) satisfying (7)-(9). Choose
0 < x̃K+1 < xK+1 such that uK+1(x̃K+1, y) > u∗K+1. Such a choice is
possible since uK+1(xK+1, y) > u∗K+1, uK+1(., .) is continuous and the pri-
vate good is indispensable. Consider the vector (x̃K+2, . . . , x̃n, y) where
x̃j = xj + (xK+1 − x̃K+1)/(n−K − 1). Note that by strict monotonicity of
the utility function, we have uj(x̃j , y) > u∗j for all j > K + 1.

Let agent K + 1 deviate by announcing (y, wK+1 − x̃K+1). From the
discussion in the preceding paragraph, it follows that iK+1 exists after K+1’s
deviation: indeed, we must have iK+1 ≥ iK .14 By the induction hypothesis,
the resulting maximal compatible coalition must be a superset of SiK+1 .
Since iK+1 ≤ K + 1, K + 1 is always a member of this coalition. It follows
that K + 1 has a credible deviation since uK+1(x̃K+1, y) > u∗K+1 = vK+1.
This concludes the proof of the lemma.

Corollary 2 Let Assumption 2 be satisfied. If (u1, . . . , un) are the net pay-
offs to the agents in a SPE of Γm, then we must have ui ≥ u∗i for all
i = 1, . . . , n.

Proof: Suppose not: then there exists j such that uj < u∗j . Then, agent j
can credibly deviate using the same strategy discussed in Case 1 of Lemma
3.
Proof of the theorem: Let (u1, . . . , un) be the net payoffs to the agents
in some SPE of Γm. By Corollary 2, ui ≥ u∗i for i = 1, . . . , n. Suppose
that (u1, . . . , un) is not efficient: then there exists a feasible utility vector
(v1, . . . , vn) such that vi > ui for all i. However, since vi > ui ≥ u∗i for
i = 2, . . . , n, and v1 > u1 = u∗1, we find ourselves contradicting the definition
of u∗1. Therefore, (u1, . . . , un) must be an efficient utility vector. The fact
that an efficient vector of public goods is produced follows trivially from the
the observation that (u1, . . . , un) is an efficient utility vector.

To complete the proof, we need to show that ui = u∗i for i = 1, . . . , n.
The argument in the previous paragraph shows that u1 = u∗1. So, suppose
that uj > u∗j for some j > 1. Let ȳ be the vector of public goods produced
and (w1 − x̄1, . . . , wn − x̄n) the contributions of the agents in the SPE. We
thus have ui = ui(x̄i, ȳ) for i = 1, . . . , n and c(ȳ) ≤

∑n
i=1(wi− x̄i). Consider

a deviation by agent j−1 announcing (ȳ, wj−1−x̄j−1−ε) where ε > 0 is such
that uj > uj(x̄j − ε, ȳ) > u∗j . Such an ε exists by the continuity of uj(., .).

14Obviously, a value of i = iK satisfies (7)-(9). Therefore, we must have iK+1 ≥ iK .
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Note also that uj−1(x̄j−1 + ε, ȳ) > uj−1 by the strict monotonicity of the
utility function in the private good. Finally, observe that after j’s deviation
ij exists: the vector (wj − x̄j + ε, x̄j+1, . . . , x̄n, ȳ) satisfies (7)-(9). We can
now invoke Lemma 3 to show that j − 1’s deviation is strictly profitable.
This is a contradiction since we assumed that (u1, . . . , un) are the payoffs in
a SPE of Γm.

With regard to the two-stage mechanism Γ1
m, we note that the expected

net payoff to player i at the beginning of stage 2 is simply the average of
his net payoff under all possible orderings of the agents. Let (φ1, . . . , φn)
be the vector of expected net payoffs. In contrast to the quasi-linear case,
this vector is not necessarily efficient. The following example illustrates this
point.

Example 1 Let N = {1, 2} and there be one public good only. Let u1(x, y) =
xy, u2(x, y) = x + y, w1 = w2 = 1 and c(y) = y. The stand-alone utilities
are given as us

1 = 1/4, us
2 = 1. When the agents announce in the order

1, 2, the optimal strategy involves 1 announcing (1, 0) and 2 announcing
(1, 1). Therefore, 1 unit of the public good is produced. The corresponding
payoffs are (u1, u2) = (1, 1). When the agents announce in the order 2, 1,
the optimal strategies involve 1 announcing ((2 +

√
3)/2, 1), 1 announcing

((2+
√

3)/2,
√

3/2). In this case, (2+
√

3)/2 units of the public good is pro-
duced and the utility vector is (u1, u2) = (1/4, (2+

√
3)/2). The average pay-

off is thus (ū1, ū2) = (5/8, (4 +
√

3)/4). This vector is however not efficient.
To see this, consider the allocation (x1, x2, y) = ((4−

√
3)/4, 0, (4 +

√
3)/4).

It is trivial to check that this is a feasible allocation and gives rise to the
utility vector (u1, u2) = (13/16, (4+

√
3)/4). This utility vector weakly dom-

inates the vector (ū1, ū2) but one can easily modify the allocation to make
both agents strictly better off.

If the two agents do play the mechanism Γ1
m, then the order in which

the agents announce in Stage 1 is still important. Consider what happens
when agents announce in the order 2, 1. If agent 2 wants the game to end in
Stage 1 itself, then she has to ensure agent 1 a payoff of 5/8. The optimal
strategy involves agent 2 announcing ((4 +

√
6)/4, 1), agent 1 announcing

((4+
√

6)/4, (4−
√

6)/4) which gives rise to the payoffs (u1, u2) = (5/8, (4+√
6)/4). On the other hand, when the agents announce in the order 1, 2, the

optimal strategies involve agent 1 announcing ((4 +
√

3)/4,
√

3/4), agent 2
announcing ((4 +

√
3)/4, 1) which give corresponding payoffs of (u1, u2) =

(13/16, (4 +
√

3)/4).

Example 1 suggests that the randomization technique used by us in the
quasi-linear case to achieve order independence is not of much use here.
The problem, clearly, is that while the Pareto frontier is a straight line
in the quasi-linear case, it can be convex on the more general domain of
preferences. In such a situation, one option is to use more complicated
mechanisms like those in the papers of Abreu and Sen [1], Moore and Repullo
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[9] and Maniquet [7]. Another option, suitable in our context, is to perform
the randomization beforehand. In other words, we choose an order randomly
and then allow the agents to play the mechanism Γm according to the chosen
order. This, though, will give equity only in expected terms.15

8 Conclusion

We have examined a model of cost sharing of multiple public goods in this
paper under weak restrictions on the preferences and the technology. Two
mechanisms have been proposed here, in both, agents announce sequentially.
An agent’s announcement is restricted to a vector of public goods that she
wishes to consume and a contribution to the cost of production, conditional
on her demands being met. Both mechanisms ensure efficiency; however in
the first mechanism, the payoffs are asymmetrical and depend crucially on
the order in which players move. The second mechanism corrects for this by
having players play two rounds with the order of play in the second round
being randomly determined. This mechanism ensures that the payoffs of
the agents are equitable in that they correspond to the Shapley value of
a well-defined TU-game. Furthermore, it is monotonic with respect to the
players preferences: if player i’s marginal utility is greater than player j’s
at all points, then player i gets a higher net utility from the mechanism.
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