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  Incentives and Discrimination1  
     

Eyal Winter2  
 
 
 
ABSTRACT: Optimal incentive mechanisms may require that agents are rewarded 
differentially even when they are completely identical and are induced to act the same. 
We demonstrate this point by means of a simple incentive model where agents’ decisions 
about effort exertion is mapped into a probability that the project will succeed. We give 
necessary and sufficient conditions for optimal incentive mechanisms to be 
discriminatory. We also show that full discrimination across all agents is required if and 
only if the technology has increasing return to scale. In the non-symmetric framework we 
show that negligible differences in agents’ attributes may result in major differences in 
rewards in the unique optimal mechanism. 
 
1.  Introduction  
 
The tension between efficiency and equality in incentive schemes is an issue which is 

often debated in organizations. The notion that benefits should be assigned to individuals 

in a non-uniform manner that takes into account qualifications and performances is well 

established. Yet it is sometimes claimed that favoritism and discrimination often lead to 

differential rewards even when individuals do not differ significantly in their attributes, a 

phenomenon which is regarded as counter-efficient. The purpose of this paper is to argue 

that, from the point of view of optimal incentives, differential rewards may be 

unavoidable even when individuals are completely identical and when the mechanism 

aims at inducing all agents to exert effort. 

The fact that optimal incentive mechanisms may require non-symmetric rewards 

even when agents are identical in their qualifications may not be surprising in some 

environments. If agents, for example, are asymmetrically informed about each other’s 

exertion of effort, it may require different levels of incentives to induce each of them to 

exert effort. In this case optimal mechanisms are expected to yield non-symmetric 
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rewards that depend on the information that agents have about each other (see Winter, 

2001, for a full analysis of such a model).  Another case in which non-symmetric 

mechanisms seem trivially unavoidable is when the principal’s objective is to induce 

some but not all agents to exert effort (for example, when contributions by only a subset 

of agents are sufficient to guarantee the project’s success). In this case it will be wasteful 

to reward all agents equally. Promising positive rewards (contingent on the success of the 

project) to some and zero to others seems to be the optimal incentive scheme. 

What we find more surprising is that optimal mechanisms may have to be 

discriminatory even when all agents are completely identical (in terms of all their 

characteristics including information) and when the objective of the mechanism is to 

induce all of the agents to exert effort. We demonstrate our point with a simple model of 

organization similar to the one used in Winter (2001) in the context of optimal allocation 

of responsibility in hierarchical organizations.  

A project is managed by n agents each of which is responsible for a different task. 

If an agent exerts effort in performing his task he increases the probability that his task 

will end successfully from α to 1 at a cost c, which is constant across agents. The overall 

project succeeds only when all tasks end successfully. Neither the principal nor the agents 

themselves can observe each other’s effort. Therefore, the mechanism must reward agents 

only as a function of whether the project ends successfully or not. An optimal mechanism 

induces agents to exert effort in any Nash equilibrium, and it does so at a minimum total 

reward. 

Our first observation in Proposition 1 is that any optimal mechanism must treat all 

agents differently. We then extend the framework in Section 3 by referring to general 

success technologies that map agents’ decisions to a probability of the project’s success. 

We provide a necessary and sufficient condition for the existence of symmetric 

mechanisms indicating that the nonexistence of symmetric mechanisms is more general 

than might appear in our benchmark model. 

 The intuition behind the fact that optimal mechanisms may have to be non-

symmetric is quite simple. If agents’ exertion of effort induces a positive externality on 

the effectiveness of other agents’ effort, it is optimal to promise high rewards to some 
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agents so as to make the others confidently believe that these highly paid agents will 

contribute, hence allowing the planner to save resources by offering other agents 

substantially less. Invoking this argument iteratively shows that when the project 

technology involves increasing returns to scale, no two agents should earn the same 

reward in spite of the fact that all agents are identical. In fact the optimal mechanisms 

give rise to an endogenous hierarchy of incentives3 at the top of which one agent is 

induced to exert effort regardless of his beliefs about other agents’ actions, and at the 

bottom of  which one agent is provided sufficient incentive to exert effort only when he 

believes that all the rest will do so as well.  Interestingly, the property of increasing 

returns to scale is not only a sufficient condition for full discrimination. We also show 

that it is also a necessary condition -- if it fails to hold, some agents must be paid 

identically at any optimal mechanism. In Section 5 we address the non-symmetric case to 

point-out that discrimination plays a role even when the optimal mechanism is unique. 

We show that under increasing returns to scale negligible differences in agents 

characteristics may result in major payment differences in the now unique optimal 

mechanism. We provide the analysis for the case of differential effort costs as well as the 

case of differential probabilities of success under no investment. However, in contrast to 

the symmetric case in which the allocation of agents and tasks to the different levels of 

the incentive hierarchy mentioned above was arbitrary, now this allocation is uniquely 

determined. Specifically, agents with low effort costs are assigned to higher levels of the 

incentive  hierarchy and tasks which are more sensitive to the effort decision are assigned 

to higher levels as well. 

Finally, in Section 6 we consider environments in which agents can make credible 

commitments about effort exertion. We model it by simply changing the solution concept 

for implementation - from Nash equilibrium to Strong Nash equilibrium (see Maskin, 

1979). This latter concept takes into account not only unilateral deviations but also 

deviations by groups. We show that in such environments the optimal mechanism is 

symmetric for any monotonically increasing technology. 

                                                           
3 Hence our model can offer a explanation for the use of ranks in organizations, which differs from other 
well known models in Labor Theory including models of long term incentives (e.g. Lazear 1979) or 
Tournament models  (Lazear and Rosen 1981). 
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In our model the effort decisions by some agents affect other agents’ incentives to 

exert effort. To this extent this paper is related to the literature on network externalities 

e.g., Farrell and Saloner (1985) Katz and Shapiro (1986). The intuition behind the 

advantage of discrimination in our incentive mechanisms is related to the idea of price 

discrimination by monopolies producing goods with positive consumption externalities, 

for example in the form of introductory pricing (see for example Bensaid and Lesne 

(1996) and Cabral, Salant and Woroch (1999)). It is also related to Segal's (2001) general 

model of trade contracts where he observed that when trade generates positive 

externalities on other agents, the principal gains by discriminating whenever he wants to 

sustain his preferred trade as a unique equilibrium. However the incentive model here 

differs from those used in the literature above in several  features. The most important of 

them is the fact that agents’ effort decision are unobservable. Hence contracts in our 

model are allowed to make contingencies only on the final outcome of the project (and 

not on the actual “trade” chosen by the agent). Furthermore, our framework allows the 

establishment of increasing returns to scale  as a necessary condition for full 

discrimination and addresses other organizational issues in the non-symmetric case. 

 
2. The Model 
 
The organizational project involves n tasks each  performed by a different individual 

(agent). Each agent has to decide whether to exert effort towards the performance of his 

task or not. The cost of effort is c and is constant across all players. We henceforth use 

the term investment for the action of exerting effort. 

If an agent invests, his task ends successfully with probability 1. If he doesn’t 

invest, the probability of his task ending successfully is only α, which is again constant 

across all agents. Agents are not informed about each other’s investment decisions. Thus 

these decisions will be modeled as if made simultaneously. 

For our benchmark model we will assume that the project as a whole ends 

successfully if and only if all the tasks are preformed successfully. We will later consider 
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a general class of technologies that do not necessarily have this “O-Ring”4 property.  

Since the effort decision of an agent is unobservable to the rest of the players and  

the principal agents’ rewards in the mechanism depend only on whether the project ends 

successfully or not. Specifically, if the project fails all agents receive a zero reward, but if 

it succeeds they are paid the rewards v = (v1,...,vn). We identify here the vector v with the 

incentive mechanism. We note that each such mechanism gives rise to a normal form 

game G(v) in which each player i has two strategies: di = 1 for investment and di = 0 for 

non-investment. The payoff function of the game is given as follows: For a strategy 

combination d = (d1,…,dn) ∈ {0,1}n the payoff function for player i, is given as follows: 

fi(d) = viα
s(d)- c if di = 1 and fi(d) = viα

s(d) if di =  0, where s(d) = |{j| dj = 0}| is the 

number of individuals who choose to shirk.  

We say that a mechanism v is incentive-inducing (INI) if v induces all players to 

invest in every equilibrium, i.e., d = (1,1,...,1) is the only Nash equilibrium of the game 

G(v). 

We will say that a mechanism v is an optimal INI if it minimizes the total reward 

among all INI mechanisms5.  

Proposition 1 claims that in any optimal INI mechanism no two players are 

rewarded equally. 

For a permutation θ on the set of agents, and a vector x, we denote by θ(x) the 

vector with θi(x) = xθ(i).  

 

Proposition 1:  Let v* = (c/(1-α), c/α(1-α), ..., c/αn-1(1-α)). A mechanism v is an optimal 

INI mechanism if and only if v = θ(v*) for some permutation θ. 

 

                                                           
4 See Kremer (1993) 
5 We will also allow the reward-minimizing mechanism not to be INI in itself. The formal definition should 
be the following: v is an optimal INI mechanism if (1)  there exists no INI mechanism with less total reward 
and (2) for any ε {v i+ε} i∈N is an INI mechanism. This technical caveat is innocent and is needed because 
rewards take continuous values. 
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Proof: We first note that θ(v*) is an INI mechanism. Since all agents are symmetric we 

will denote by v(k) the reward that would make an agent indifferent between investing 

and shirking given that he believes that exactly k other agents are investing, where  0 ≤ k 

< n. Note that if i chooses to invest his expected payoff is v(k)αn-k-1 - c, whereas if he 

chooses not to invest the expected payoff is v(k)αn-k. Hence, v(k) satisfies v(k)αn-k-1 - c = 

v(k)αn-k, or v(k) = c/αn-k-1(1-α). We can therefore set  v* = (v(n-1),v(n-2),...,v(0)). Note 

also that v(k) > v(k+1) and in particular  θi(v*) ≥ v(n-1), which means that d = (1, ... , 1) is 

a Nash equilibrium of G(θ(v*)). Hence, to show that θ(v*) is an INI mechanism, it is 

sufficient to show that no equilibrium exists in which some group of agents shirks if we 

increase rewards by an arbitrarily small amount. Consider a strategy combination in 

which exactly k agents choose to invest where  0 ≤ k < n. Consider the players who are 

assigned the rewards v(0), ... ,v(k). Any arbitrarily small increase in these rewards will 

make each of these players better off investing if one believes that k other players are 

investing as well. Hence, by an arbitrarily small increase of rewards beyond θ(v*) we get 

d = (1, ..., 1) as the unique equilibrium. We now have to show that θ(v*) is optimal. We 

assume without loss of generality that θ is the identity permutation. Consider a 

mechanism u such that ui < vi*  for some players and uj = vj*  for the rest. Let r be the 

largest index for which ur < vr* ; then there is an equilibrium of G(u) in which players 1,2, 

..., r shirk and  r+1,...,n invest and this equilibrium survives for a sufficiently small 

increase of the  rewards beyond u. This equilibrium will cease to exist only if we increase 

the reward of one of the players in 1,2, ... , r to become at least vr* . Hence, no INI 

mechanism can have a total reward which is less than ∑i vi* .  

 

3. General Success Technologies 

 

In our benchmark model, agents’ investments were mapped into a probability of the 

project’s success in a particular way.  In this section we will argue that the lack of 

symmetric optimal incentive mechanisms is also obtained in a more general framework. 

To this end we will view the project’s technology as a function p from the set investment 
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strategy profiles {0,1}N to [0,1]  specifying the probability of success for any given profile. 

Since our interest lies with the case in which all agents are identical, we will define a 

symmetric technology as a function p: {0,1,2,...,n}→  [0,1] which gives the probability of 

the project’s success as a function of the number of agents who choose to invest. We 

assume that extra investment always raises the probability of success, i.e., p is strictly 

increasing. Finally, as before, we assume that the principal is interested in inducing all 

agents to invest. The definition of an optimal INI mechanism remains the same.  

A mechanism v is said to be symmetric if it assigns the same reward to all agents. 

Proposition 2 asserts that a necessary and sufficient condition for symmetry is that the 

“last” agent’s marginal contribution to the project’s success cannot exceed that of any 

other player. This condition implies a certain degree of substitution between the agents. 

 

Proposition 2: A symmetric INI mechanism exists if and only if  p(n) – p(n-1) ≤ p(k+1) – 

p(k) for all 0 ≤ k < n-1. 

 

Proof: Consider again the reward v(k) for which an agent is indifferent between investing 

and shirking if he believes that exactly k other agents are investing. With a general 

technology p a player’s expected reward if he invests is v(k)p(k+1) –c, and with no 

investment it is v(k)p(k). Thus v(k) solves p(k)v(k) = p(k+1)v(k) - c or v(k) = c/[p(k+1)-

p(k)]. The condition in Proposition 2 implies that v(n-1) ≥ v(k) for all k < n-1. Consider 

now the mechanism v = (v(n-1), ... , v(n-1)). For this mechanism d = (1, ... ,1) is a Nash 

equilibrium and for any arbitrary small increase of rewards, it is also the unique Nash 

equilibrium. Furthermore, if we decrease the reward for any agent d = (1, .... , 1) is no 

longer not an equilibrium. Hence, v is a symmetric optimal INI mechanism. We now 

show that the condition of the proposition is necessary: suppose by way of contradiction 

that p(n-1) -  p(n)  > p(k+1) - p(k) for some k < n-1 and that a symmetric optimal INI 

exists in which vj ≡ u. Clearly u must be one of the values (v(0),v(1),v(2), ... ,v(n-1)). By 

the definition of v(k) we have v(n-1) < v(k) for some k < n-1.  Let k* = argmaxkv(k). We 

first assume that u < v(k*).  Note that in order to sustain investment by all players we 

must have u ≥ v(n-1). Since v(n-1) ≤ u < v(k*), there must exist some k ≤ n-2 such that 
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v(k-1) ≤ u < v(k).  We now claim that under the mechanism u there exists a Nash 

equilibrium in which k agents invest and n-k agents shirk. Indeed, no shirking player can 

profit by deviating to investment as investment requires a greater incentive given by the 

reward v(k). Furthermore, no investing player will deviate by shirking because v(k-1) ≤ u 

and so any arbitrarily small increase of rewards results in agents preferring investment 

when k-1 other invest. Hence, u is not an INI mechanism as it yields equilibria in which 

some agents shirk. We now consider the case in which u = v(k*). Indeed, such a u is an 

INI mechanism. This is because v(k*) implies that d = (1, ... ,1) is an equilibrium and 

v(k*) ≥ v(k) for all k implies that no other equilibrium exists. However, the mechanism u* 

= (v(n-1),v(k*), ... ,v(k*)) is an INI mechanism as well. Since v(k*) > v(n-1) this 

mechanism involves a smaller reward for the first agent and the same for the rest. Hence, 

u is not an optimal INI and we obtain the desired contradiction. 

 

4. Increasing Returns to Scale 

 

In this section we characterize the technologies under which the optimal mechanism 

rewards all agents differently. We show that this property is equivalent to the technology 

having increasing returns to scale. More specifically, we say that an INI mechanism v is 

fully discriminating if vi ≠ vj for every pair of  agents i,j . We say that the technology p has 

increasing returns to scale if  D(k) = p(k+1) - p(k) (k=0, ... ,n-1) is increasing in k. 

 
Proposition 3: The technology p has increasing returns to scale if and only if  all optimal 

INI mechanisms are fully discriminating. 

 

Proof: If p has increasing returns to scale then v(k) = c/[p(k+1) - p(k)] and v(k) is 

decreasing in k. Hence, using the same argument as in the proof of Proposition 1, we 

obtain that the optimal mechanisms are given by θ(v(0), ... ,v(n-1)) where θ is some 

permutation of the set of agents. Hence, all mechanisms are fully discriminatory. We now 

show that if all optimal INI mechanisms are fully discriminating, then p must have 

increasing returns to scale. As argued earlier, the payoffs in an INI mechanism must 
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involve only the values v(0), ... ,v(n-1), so by assumption all these values are distinct. 

Consider an optimal INI mechanism and assume the following order of the values v(k):  

v(k0) > v(k1) > ... > v(kn-1) (where k0, k1, ... kn-1 is some permutation of  1,2,3 ... ,n). We 

first note that v(kn-1) = v(n-1). Otherwise, there is some kj with v(kj) < v(n-1) and d = (1, 

..., 1) cannot be a Nash equilibrium of the game because the player receiving v(kj) is better 

off deviating by shirking. We now establish by induction that v(j) ≥ v(kj) for j = 0,1, ... ,n-

2. First, v(k0) ≥ v(0) by the definition of v(k0) as the largest among the values. 

Now assume by induction that v(j) ≤ v(kj) for all j ≤ r-1 < n-2 and consider j = r .  Suppose 

by way of contradiction that v(r) > v(kr). We argue that the mechanism admits a Nash 

equilibrium in which r agents invest and n-r shirk. Indeed, consider the set of agents 

whose payoffs are v(k0), ... ,v(kr-1). Call this set R= {0,1,...,r-1}. Using iterative 

elimination of dominated strategies with the inductive hypothesis, we obtain that none of 

the agents in R shirk in any Nash equilibrium. This is done as follows: for player 0 who 

receives v(k0) investing is a dominant strategy. Given that player 0 invests, it is a 

dominant strategy for player 1 who receives v(k1) to invest as well. Continuing in this 

manner the result is  that all players in R invest. It is therefore sufficient to argue that 

when the agents in R invest, no other agent can increase his payoff by shifting from 

shirking to investing. But this follows from the fact that for every player j in N\R the 

reward  vj  satisfies vj ≤ v(kr) < v(r). We thus obtained that v(j) ≤ v(kj) for 0 ≤ j ≤ n-1. But 

since the sets {v(kj); 0≤j≤n-1} and {v(j); 0≤j≤n-1} are identical – these inequalities must 

imply equality. Hence, we have v(0) > v(1) > v(2) >, ... , > v(n-1). But as we argued at the 

beginning of the proof, the v(j)’s are the inverse of the D(j) = p(j+1) - p(j), which is 

therefore increasing. Hence, p has increasing returns to scale.  

 

5. The Non-symmetric Case 

 

We now turn to the issue of discrimination in the non-symmetric case by pointing out that 

slight differences in agents’ characteristics may result with major differences in rewards 

even when the optimal mechanism is unique. This is done by allowing either the effort 

costs or agents’ probabilities of  success to vary across agents.  For the case of differential 
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effort costs we show that  under increasing returns the optimal mechanism is unique. 

Furthermore, if agents’ effort costs are sufficiently close to each other it prescribes higher 

payments to agents of lower effort cost. However, the more interesting implication of this 

observation is the fact that agents who differ only slightly in their cost of effort may end 

up with major differences in rewards. This is a direct consequence of the fact that an 

agent’s payoff in the optimal mechanism does not only depend on his own cost of effort 

(or skills) but also on the way he ranks relative to others. A similar finding applies when 

we consider differential probabilities of success in the benchmark model discussed in 

Section 2.  In this case we show that agents with lower αi are paid more in the unique 

optimal mechanism. In the sequel we will argue that these results can be interpreted as 

explaining the role of hierarchies as a coordination device6.  

 

Proposition 4: Let p be an increasing returns to scale technology and let c1 < c2 <, … ,< 

cn denote agents’ effort costs, then the (unique) optimal mechanism pays player j 

vj* = c j/[p(j) - p(j-1)], i.e., vj*/cj is decreasing with j.  

 

Note that the denominator of vj*  depends only on how the agents' effort costs are ordered 

and not on their actual values. Hence, a slight difference in these values may result with 

major differences in the optimal rewards. 

 

Proof of Proposition 4: Take any order θ: N → N and consider the mechanism vθ with  

vj
θ = cj/[p(θ(j)) - p(θ(j-1))], i.e., the payoff for each agent is his effort cost divided by his 

marginal contribution with respect to some coalition size. Denote by dj
θ = p(θ(j)) - p(θ(j-

1)) the payment per unit of cost for agent j. Setting up the incentive compatible equations 

as in the proof of Proposition 2 we find that any such mechanism is incentive-inducing 

(sustaining effort by iterative elimination of dominated strategies). Consider some agent 

for which dj
θ = p(k+1) – p(k),  k = 0,1, … ,n-1. Suppose that we drop j’s payoff by ε 

without changing the payoffs of the rest, then there will exist an equilibrium in which all 

                                                           
6 This of course in addition to other roles of hierarchies like authority (see Aghion and Tirole (1997)) or 
leadership (see Hermalin (1998)) 
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agents i with di
θ ≥ dj

θ shirk and the rest exert effort. To eliminate this equilibrium we now 

consider transferring this ε to a different agent i for which di
θ > dj

θ. For sufficiently small 

ε such a transfer will not change the incentive of i, and the same equilibrium will prevail. 

The change in incentive will occur when ci/di
θ + ε ≥ ci/dj

θ in which case i contributes if he 

believes that he is in a group of j contributors. But for such ε, we have: 

ε ≥ ci/dj
θ - ci/di

θ, and agent j’s remaining payoff will be not more than cj/dj
θ - ci/dj

θ + ci/di
θ. 

Since cj < ci and di
θ > dj

θ this remaining payoff is strictly less than cj/di
θ. So j is not 

provided enough incentive to contribute when he believes that he is in a group of i 

contributors (replacing the role of agent i). This shows that the only candidates for INI in 

the non-symmetric case are the n! reward vectors described at the beginning of the proof. 

To notice that v* is the least expensive among them, note that if ci > cj and di
θ > dj

θ, then 

changing the order by flipping the roles of i and j (i.e., paying j the reward ci/dj
θ  and 

paying i the reward cj/di
θ) without affecting the payoff of others, gets us an INI 

mechanism of a lower cost. 

 

We now turn to the case of differential probabilities of success providing our analysis for 

the benchmark model discussed in Section 2.  

 

Proposition 5:  Consider the benchmark model in Section 2 and assume that α1 < α2 <, 

… , < αn and that c is the constant effort cost. Then the optimal mechanism is unique and 

is given by 

∏
+=

−

= n

ij
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c
v
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 for i < n and 
n

n

c
v
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=

1
. Furthermore, negligible 

differences in the values of αj’s result in major differences in rewards. 

 

We have seen that the optimal INI mechanisms generate hierarchy of incentives in 

the sense that different players have different stakes in the success of the project: agent 1 

is induced to exert effort regardless of other agents’ decisions whereas agent n will do so 

only if he believe that all the rest will exert effort as well. We submit that this observation 

can explain how hierarchies may emerge in organizations even when agents of different 
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levels deal with similar tasks and when authority plays little role. Such hierarchies serve 

as a coordination tool by which each agent is guaranteed that those placed above him in 

the hierarchy will indeed exert effort -– providing sufficient incentive for him to do so as 

well.  We point out that when using this interpretation of hierarchies, Propositions 4 and 5 

tell us how hierarchies are endogenously determined when individuals or tasks differ in 

their attributes. Specifically, Proposition 4 implies that if agents differ in their cost of 

effort, then agents with low costs should be assigned to higher levels of the hierarchy. 

Furthermore, Proposition 5 asserts that if tasks differ in the probability of success under 

no investment (i.e., the probability αi) then tasks with low αi (those which are more 

sensitive to the effort decision) should be assigned to higher hierarchy levels as well. 

 

Proof of Proposition 5: Take any order θ = i1,i2, … ,in  and consider the mechanism vθ 

given by  
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= . We first claim that any such 

mechanism (and there are n! of them) is incentive inducing. For that we will show that 

with these rewards exerting effort emerges as a unique Nash equilibrium with iterative 

elimination of dominated strategies. Consider first player i1 if this player chooses 1 and 

the rest shirk, then the probability of success is ∏
=

n

k
ik

2

α  while it is ∏
=
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1

α if he chooses 0. 

Hence if all other agents shirk, θ
1i

v  renders  i1 indifferent between shirking and exerting 

effort. This means that choosing effort is a dominant strategy for i1 under θ

1i
v . Assume 

now that iterative elimination implies that i1, i2, …, ij-1  all exert effort then if i j chooses 1 

and  i j+1, ij+2, … , in all choose 0, the success probability is ∏
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vcv αα player i j is indifferent between exerting effort and shirking under 

the specified condition which allows us to eliminate dij = 0.  We now argue that the 
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optimal INI mechanism must be vθ for some order θ of the players. Consider such order  

θ. If we pay some player i j εθ
−

jiv for a positive ε without changing the rewards of other 

players, then the game will have an equilibrium in which i1,i2, …, ij shirk and the rest exert 

effort.  This equilibrium will survive when transferring the ε to another player ik as long 

as ε is small enough. Consider the minimal ε for which this equilibrium fails to survive, 

then '),,...,,...,(
1

θθθθθ εε vvvvv
njk iiii =+− , where θ’  is the order in which ik and i j exchange 

positions. A similar argument is given in more detail in the proof of Proposition 4. 

Finally, we argue that among the mechanisms vθ, the optimal one corresponds to θ being 

the identity order and thus vθ corresponds to the rewards specified in the statement of the 

proposition. For that we have to show that ∑
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The result now follows from the fact that αi > αi+1. Finally, note that when the 

probabilities of success are arbitrarily close to each other agents’ rewards in the unique 

optimal mechanism are significantly different. Furthermore, under these conditions agents 

with lower αi are paid more. 

 

5. Commitment  

 

If agents can make enforceable commitments to each other concerning investment and 

coordinate actions, then the principal can implement investment at less expense. In this 

case he can even achieve it with a symmetric mechanism. This is due to the fact that the 

possibility of agents to coordinate joint deviations filters out the “bad” equilibria in which 
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only a subgroup of agents exerts effort. We analyze this framework by adopting the very 

same model but assuming that investment is implemented via strong equilibria (see  also 

Maskin (1979) for strong equilibria implementation of social choice correspondences).  

A strategy profile σ is a strong equilibrium if there exists no coalition of players S 

and a strategy profile σS’  = {σi’} i∈N  for that coalition such that all players in S are made 

better off by deviating to σS’ assuming that players in N\S are still playing σ.  

A mechanism v is an incentive-inducing mechanism via strong equilibria (INIS) if  

d = (1, ... ,1) is the unique strong equilibrium of the investment game. Optimality is now 

defined in the same way as before. 

We point out that the choice of solution concept for implementation should reflect 

the principal’s assessment regarding the nature of interaction that takes place within the 

organizational environment. If the principal believes that the environment is sufficiently 

open and conducive to cooperation then the concept of strong equilibrium may be the 

appropriate one for implementation. Otherwise, only the standard Nash implementation is 

viable, requiring the extra burden of higher rewards and the necessity of discrimination. 

 

Proposition 6: If the technology p is increasing,7 then the unique optimal INIS 

mechanism is given by vj = c/[p(n) - p(n-1)] for all j. 

Proof: We show the following: (1) with vj ≡ v = c/[p(n) - p(n-1)] the strategy profile d = 

(1, ... ,1) is a strong equilibrium. In this stipulated equilibrium a player earns vp(n) -c. If a 

group of agents S of size s chooses to shirk, each of its members will earn  vp(n-s), which 

is less than vp(n) -c since p(n) - p(n-s) > p(n) - p(n-1). Using the same inequalities we 

have: (2) d = (1, ... ,1) is the unique strong equilibrium. This is because any strategy 

combination in which s agents shirk has a profitable joint deviation for these players 

which is to invest8. Finally, (3) v as specified above is optimal. For this note that if some  

player’s reward is less than v = c/[p(n) - p(n-1)], then d = (1, ... ,1) is not a Nash 

                                                           
7 Not necessarily increasing returns to scale. 
8  If s = 1, then we have indifference, but if rewards increase by an arbitrarily small increment, this 
indifference is broken also for s =1 (see footnote 2). 
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equilibrium (and therefore not a strong equilibrium) since this player will choose to shirk 

when the rest invest getting vp(n-1) instead of vp(n) - c.   
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