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| ncentives and Discrimination:

Eyal Winter:

ABSTRACT: Optimal incentive mechanisms may require that agyeme rewarded
differentially even when they are completely ideatiand are induced to act the same.
We demonstrate this point by means of a simplenitinoe model where agents’ decisions
about effort exertion is mapped into a probabilitsat the project will succeed. We give
necessary and sufficient conditions for optimal emitve mechanisms to be
discriminatory. We also show that full discrimiratiacross all agents is required if and
only if the technology has increasing return tdescia the non-symmetric framework we
show that negligible differences in agents’ attrdsumay result in major differences in
rewards in the unique optimal mechanism.

1. Introduction

The tension between efficiency and equality in nise schemes is an issue which is
often debated in organizations. The notion thaebenshould be assigned to individuals
in a non-uniform manner that takes into accountificetions and performances is well
established. Yet it is sometimes claimed that figon and discrimination often lead to
differential rewards even when individuals do nibted significantly in their attributes, a
phenomenon which is regarded as counter-efficiBmt. purpose of this paper is to argue
that, from the point of view of optimal incentivesifferential rewards may be
unavoidable even when individuals are completenital and when the mechanism
aims at inducing all agents to exert effort.

The fact that optimal incentive mechanisms may irequon-symmetric rewards
even when agents are identical in their qualifaati may not be surprising in some
environments. If agents, for example, are asymugadlyi informed about each other’s
exertion of effort, it may require different leved$ incentives to induce each of them to

exert effort. In this case optimal mechanisms atpeeted to yield non-symmetric
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rewards that depend on the information that agkeat® about each other (see Winter,
2001, for a full analysis of such a model). Anotlvase in which non-symmetric
mechanisms seem trivially unavoidable is when thecjpal’s objective is to induce
some but not all agents to exert effort (for exampthen contributions by only a subset
of agents are sufficient to guarantee the projextitcess). In this case it will be wasteful
to reward all agents equally. Promising positiveagls (contingent on the success of the
project) to some and zero to others seems to beptiiraal incentive scheme.

What we find more surprising is that optimal medkars may have to be
discriminatory even when all agents are completdbntical (in terms of all their
characteristics including information) and when titgective of the mechanism is to
induce all of the agents to exert effort. We denraes our point with a simple model of
organization similar to the one used in Winter (P0id the context of optimal allocation
of responsibility in hierarchical organizations.

A project is managed hyagents each of which is responsible for a diffetask.

If an agent exerts effort in performing his taskihereases the probability that his task
will end successfully froma to 1 at a cost, which is constant across agents. The overall
project succeeds only when all tasks end succésdfidither the principal nor the agents
themselves can observe each other’s effort. Therefloe mechanism must reward agents
only as a function of whether the project ends sssfully or not. An optimal mechanism
induces agents to exert effort in any Nash equuiiby and it does so at a minimum total
reward.

Our first observation in Proposition 1 is that apgimal mechanism must treat all
agents differently. We then extend the frameworlSacttion 3 by referring to general
success technologies that map agents’ decisioagptobability of the project’'s success.
We provide a necessary and sufficient condition floe existence of symmetric
mechanisms indicating that the nonexistence of sygmmmechanisms is more general
than might appear in our benchmark model.

The intuition behind the fact that optimal meclsam may have to be non-
symmetric is quite simple. If agents’ exertion &g induces a positive externality on

the effectiveness of other agents’ effort, it igim@l to promise high rewards to some



agents so as to make the others confidently belieat these highly paid agents will
contribute, hence allowing the planner to save uess by offering other agents
substantially less. Invoking this argument iteraltyy shows that when the project
technology involves increasing returns to scale,two agents should earn the same
reward in spite of the fact that all agents arentidal. In fact the optimal mechanisms
give rise to an endogenous hierarchy of incentiasthe top of which one agent is
induced to exert effort regardless of his belidiew other agents’ actions, and at the
bottom of which one agent is provided sufficiamtantive to exert effort only when he
believes that all the rest will do so as well. ehestingly, the property of increasing
returns to scale is not only a sufficient condition full discrimination. We also show
that it is also a necessary condition -- if it $atb hold, some agents must be paid
identically at any optimal mechanism. In Sectiowéaddress the non-symmetric case to
point-out that discrimination plays a role even whke optimal mechanism is unique.
We show that under increasing returns to scaleigibtd differences in agents
characteristics may result in major payment difiees in the now unique optimal
mechanism. We provide the analysis for the casbffefrential effort costs as well as the
case of differential probabilities of success unaeinvestment. However, in contrast to
the symmetric case in which the allocation of agerid tasks to the different levels of
the incentive hierarchy mentioned above was aryitnaow this allocation is uniquely
determined. Specifically, agents with low efforstoare assigned to higher levels of the
incentive hierarchy and tasks which are more sigadop the effort decision are assigned
to higher levels as well.

Finally, in Section 6 we consider environments imchk agents can make credible
commitments about effort exertion. We model it gy changing the solution concept
for implementation - from Nash equilibrium to StgpiNash equilibrium (see Maskin,
1979). This latter concept takes into account ndy anilateral deviations but also
deviations by groups. We show that in such envirems the optimal mechanism is

symmetric for any monotonically increasing techigglo

% Hence our model can offer a explanation for treafganks in organizations, which differs fromerth
well known models in Labor Theory including modefdong term incentives (e.g. Lazear 1979) or
Tournament models (Lazear and Rosen 1981).



In our model the effort decisions by some agerfecabther agents’ incentives to
exert effort. To this extent this paper is relatedhe literature on network externalities
e.g., Farrell and Saloner (1985) Katz and Shapli@86). The intuition behind the
advantage of discrimination in our incentive mecdsiaus is related to the idea of price
discrimination by monopolies producing goods withsitive consumption externalities,
for example in the form of introductory pricing éséor example Bensaid and Lesne
(1996) and Cabral, Salant and Woroch (1999)). éise related to Segal's (2001) general
model of trade contracts where he observed thatnwiiade generates positive
externalities on other agents, the principal ghysliscriminating whenever he wants to
sustain his preferred trade as a unique equilibridimwever the incentive model here
differs from those used in the literature aboveemeral features. The most important of
them is the fact that agents’ effort decision am@hservable. Hence contracts in our
model are allowed to make contingencies only onfitred outcome of the project (and
not on the actual “trade” chosen by the agent)tHemmore, our framework allows the
establishment of increasing returns to scale aseeessary condition for full

discrimination and addresses other organizati@saias in the non-symmetric case.

2. TheModd

The organizational project involves tasks each performed by a different individual
(agent). Each agent has to decide whether to effert towards the performance of his
task or not. The cost of effort sand is constant across all players. We hencef¢h
the term investment for the action of exerting gffo

If an agent invests, his task ends successfulli wibbability 1. If he doesn’t
invest, the probability of his task ending sucoalbsfis only &, which is again constant
across all agents. Agents are not informed abazh ether’s investment decisions. Thus

these decisions will be modeled as if made simatiasly.

For our benchmark model we will assume that thgeptoas a whole ends

successfully if and only if all the tasks are prafed successfully. We will later consider



a general class of technologies that do not neglsisave this “O-Ring” property.

Since the effort decision of an agent is unobsdevtabthe rest of the players and
the principal agents’ rewards in the mechanism demaly on whether the project ends
successfully or not. Specifically, if the projeatl$ all agents receive a zero reward, but if
it succeeds they are paid the rewards(vi,...,\). We identify here the vecterwith the
incentive mechanism. We note that each such mesiagives rise to a normal form
gameG(v) in which each playerhas two strategies; = 1 for investment and; = O for
non-investment. The payoff function of the gameagiigen as follows For a strategy
combinationd = (dy,...,d) € {0,1}" the payoff function for playss is given as follows:
fi(d) = vie®@- cif d = 1 andfid) = va®@ if & = 0, wheres(d) = |{j| d; = 0}| is the
number of individuals who choose to shirk.

We say that a mechanisws incentive-inducindINI) if v induces all players to

invest in every equilibrium, i.ed = (1,1,...,1)is the only Nash equilibrium of the game
G(v).

We will say that a mechanismis an optimalNI if it minimizes the total reward

among alllNI mechanisnts

Proposition 1 claims that in any optimlll mechanism no two players are

rewarded equally.

For a permutatiord on the set of agents, and a vectpwe denote byx) the

vector with8(x) = Xgi).

Proposition 1: Letv* = (c/(1-a), cle(1-q), ..., ck"(1-2)). A mechanisnv is an optimal

INI mechanism if and only if = &v*) for some permutatiof.

* See Kremer (1993)

® We will also allow the reward-minimizing mechanisot to be INI in itself. The formal definition stiol
be the following: v is an optimal INI mechanisn{if there exists no INI mechanism with less totalard
and (2) for any {vi+&}icn is an INI mechanism. This technical caveat is ¢amt and is needed because
rewards take continuous values.



Proof: We first note tha®v*) is anINI mechanism. Since all agents are symmetric we
will denote byv(k) the reward that would make an agent indiffererttvben investing
and shirking given that he believes that exakthther agents are investing, whebe< k

< n. Note that ifi chooses to invest his expected payofé(s)"“* - ¢, whereas if he
chooses not to invest the expected payoff(ide"™* Hencev(k) satisfiesv(k)d™ * - ¢ =
V()™ or v(k) = ck™*Y(1-0). We can therefore set* = (v(n-1),v(n-2),...,v(0))Note
also that/(k) > v(k+1)and in particular@(v*) >v(n-1),which means that = (1, ..., 1)is

a Nash equilibrium of5(AVv*)). Hence, to show tha#(v*) is anINI mechanism, it is
sufficient to show that no equilibrium exists inialin some group of agents shirks if we
increase rewards by an arbitrarily small amountnsiiter a strategy combination in
which exactlyk agents choose to invest whe@e<k < n. Consider the players who are
assigned the rewardg0), ... ,v(k) Any arbitrarily small increase in these reward w
make each of these players better off investingnié believes that other players are
investing as well. Hence, by an arbitrarily smatirease of rewards beyoél/*) we get

d = (1, ..., 1)as the unique equilibrium. We now have to show &) is optimal. We
assume without loss of generality thatis the identity permutation. Consider a
mechanisnu such thaty; < vi* for some players and = v;* for the rest. Let be the
largest index for whiclo, < v,*; then there is an equilibrium Gf(u) in which playerd,2,

..., I shirk and r+1,...,n invest and this equilibrium survives for a su#icily small
increase of the rewards beyamdThis equilibrium will cease to exist only if wedrease
the reward of one of the players 12, ... , rto become at least*. Hence, nalNI

mechanism can have a total reward which is less Xhg*.

3. General Success Technologies

In our benchmark model, agents’ investments werpp®a into a probability of the
project’'s success in a particular way. In thistisecwe will argue that the lack of
symmetric optimal incentive mechanisms is also iokthin a more general framework.

To this end we will view the project’s technology @ functiorp from the set investment



strategy profile0,1}" to [0,1] specifying the probability of success for any giyeofile.
Since our interest lies with the case in whichagénts are identical, we will define a
symmetric technology as a functipn{0,1,2,...,n}» [0,1] which gives the probability of
the project’s success as a function of the numibexgents who choose to invest. We
assume that extra investment always raises theapildlp of success, i.ep is strictly
increasing. Finally, as before, we assume thatptheipal is interested in inducing all
agents to invest. The definition of an optirdl mechanism remains the same.

A mechanisnv is said to be symmetric if it assigns the sameardvo all agents.
Proposition 2 asserts that a necessary and suifficendition for symmetry is that the
“last” agent’s marginal contribution to the projecsuccess cannot exceed that of any

other player. This condition implies a certain @egof substitution between the agents.

Proposition 2: A symmetriclNI mechanism exists if and only g(n) — p(n-1)<'p(k+1) —
p(k)for all 0<k < n-1

Proof: Consider again the rewawgk) for which an agent is indifferent between invegtin
and shirking if he believes that exacltyother agents are investing. With a general
technologyp a player's expected reward if he investsv{k)p(k+1) —¢ and with no
investment it isv(k)p(k) Thusv(k) solvesp(k)v(k) = p(k+1)v(k) - cor v(k) = c/[p(k+1)-
p(k)]. The condition in Proposition 2 implies thgh-1) > v(k) for all k < n-1 Consider
now the mechanism = (v(n-1), ... , v(n-1))For this mechanisrd = (1, ... ,1)is a Nash
equilibrium and for any arbitrary small increasereivards, it is also the unique Nash
equilibrium. Furthermore, if we decrease the rewlardany agentd = (1, .... , 1)is no
longer not an equilibrium. Hence, v is a symmetptimal INI mechanism. We now
show that the condition of the proposition is neeeg suppose by way of contradiction
thatp(n-1) - p(n) > p(k+1) - p(kfor somek < n-1 and that a symmetric optimaill
exists in whichv; = u. Clearly u must be one of the valugf),v(1),v(2), ... ,v(n-1)By
the definition ofv(k) we havev(n-1) < v(k)for somek < n-1L Letk* = argmaxv(k). We
first assume thatt < v(k*). Note that in order to sustain investment byp#dlyers we

must haveu > v(n-1) Sincev(n-1) <u < v(k*), there must exist sonte< n-2 suchthat



v(k-1) <u < v(k) We now claim that under the mechanisnthere exists a Nash
equilibrium in which k agents invest anek agents shirk. Indeed, no shirking player can
profit by deviating to investment as investmentuisgs a greater incentive given by the
rewardv(k). Furthermore, no investing player will deviatedtyrking becauseg(k-1) <u
and so any arbitrarily small increase of rewardsilts in agents preferring investment
whenk-1 other invest. Hencey is not anINI mechanism as it yields equilibria in which
some agents shirk. We now consider the case inlwhie v(k*). Indeed, such a is an

INI mechanism. This is becausgg*) implies thatd = (1, ... ,1)is an equilibrium and
v(k*) > v(k) for all k implies that no other equilibrium exists. Howewe mechanism*

= (v(n-1),v(k*), ... ,v(k*))is anINI mechanism as well. Sinc&k*) > v(n-1) this
mechanism involves a smaller reward for the figgrd and the same for the rest. Hence,

u is not an optimalNI and we obtain the desired contradiction.

4. Increasing Returnsto Scale

In this section we characterize the technologiedeurwhich the optimal mechanism
rewards all agents differently. We show that thigperty is equivalent to the technology
having increasing returns to scale. More speclficale say that atNI mechanisnv is
fully discriminating ifv; =v; for every pair of agenig. We say that the technologyhas

increasing returns to scale (k) = p(k+1) - p(k) (k=0, ... ,n-1is increasing irk.

Proposition 3: The technology has increasing returns to scale if and only [foptimal

INI mechanisms are fully discriminating.

Proof: If p has increasing returns to scale th&€k) = c/[p(k+1) - p(k)] and v(k) is
decreasing irk. Hence, using the same argument as in the pro&fragposition 1, we
obtain that the optimal mechanisms are given&w(0), ... ,v(n-1))where 8 is some
permutation of the set of agents. Hence, all mashanare fully discriminatory. We now
show that if all optimallNI mechanisms are fully discriminating, thenmust have

increasing returns to scale. As argued earlier,pidgoffs in anINI mechanism must



involve only the values(0), ... ,v(n-1) so by assumption all these values are distinct.
Consider an optimdNIl mechanism and assume the following order of theega(k):

V(ko) > v(ki) > ... > V(ky.1) (whereko, ki, ... k.1 IS some permutation 01,2,3 ... ;). We
first note thatv(k,.1) = v(n-1). Otherwise, there is sonkewith v(k) < v(n-1) andd = (1,

..., J) cannot be a Nash equilibrium of the game becthesplayer receiving(k) is better

off deviating by shirking. We now establish by itlon thatv(j) >v(k) forj=0,1, ... ,n-

2. First,v(ky) >v(0) by the definition of/(ky) as the largest among the values.

Now assume by induction thafj) <'v(k) for allj <r-1 < n-2and considey=r. Suppose
by way of contradiction that(r) > v(k). We argue that the mechanism admits a Nash
equilibrium in whichr agents invest and-r shirk. Indeed, consider the set of agents
whose payoffs arev(k)), ... ,v(ki). Call this setR= {0,1,...,r-1}. Using iterative
elimination of dominated strategies with the indeethypothesis, we obtain that none of
the agents iR shirk in any Nash equilibrium. This is done addwafs: for playerO who
receivesv(ky) investing is a dominant strategy. Given that pla@einvests, it is a
dominant strategy for player who receives/(ky) to invest as well. Continuing in this
manner the result is that all playersRnnvest. It is therefore sufficient to argue that
when the agents iR invest, no other agent can increase his payofsHifting from
shirking to investing. But this follows from thectathat for every playey in N\R the
reward v; satisfiesy; <'v(k) < v(r). We thus obtained thatj) <'v(k) for 0 <j <n-1 But
since the setfv(kj); 0sj<n-1} and{v(j); 0<j<h-1} are identical — these inequalities must
imply equality. Hence, we haw&0) > v(1) > v(2) >, ..., > v(n-1)But as we argued at the
beginning of the proof, the(j)’'s are the inverse of thB(j) = p(j+1) - p(j), which is

therefore increasing. Hengehas increasing returns to scale.

5. The Non-symmetric Case

We now turn to the issue of discrimination in tlemfsymmetric case by pointing out that
slight differences in agents’ characteristics meguit with major differences in rewards
even when the optimal mechanism is unique. Thidoise by allowing either the effort

costs or agents’ probabilities of success to aargss agents. For the case of differential



effort costs we show that under increasing retuhesoptimal mechanism is unique.
Furthermore, if agents’ effort costs are sufficigietose to each other it prescribes higher
payments to agents of lower effort cost. Howeuss,rhore interesting implication of this
observation is the fact that agents who differ alightly in their cost of effort may end
up with major differences in rewards. This is aedirconsequence of the fact that an
agent’s payoff in the optimal mechanism does ndy depend on his own cost of effort
(or skills) but also on the way he ranks relatwethers. A similar finding applies when
we consider differential probabilities of successthe benchmark model discussed in
Section 2. In this case we show that agents wivet ; are paid more in the unique
optimal mechanism. In the sequel we will argue thate results can be interpreted as

explaining the role of hierarchies as a coordimatevicé.

Proposition 4: Let p be an increasing returns to scale technology e k ¢, <, ... ,<
cn denote agents’ effort costs, then the (uniqguepwdtmechanism pays player

vi* = ¢i/[p()) - p(-1)], i.e.,v*/c; is decreasing with

Note that the denominator gf depends only on how the agents' effort costs atered
and not on their actual values. Hence, a sligtieihce in these values may result with

major differences in the optimal rewards.

Proof of Proposition 4Take any orde@. N — N and consider the mechanisfiwith
\/,-9 = ¢/[p(A))) - p(A4j-1))], i.e., the payoff for each agent is his effort atistded by his

marginal contribution with respect to some coatitiize. Denote bglje = p(A))) - p(Aj-

1)) the payment per unit of cost for aggn$etting up the incentive compatible equations
as in the proof of Proposition 2 we find that aogls mechanism is incentive-inducing
(sustaining effort by iterative elimination of damted strategies). Consider some agent
for which d,-"7 = p(k+1) — p(k), k =0,1, ... ,n:1Suppose that we drgjs payoff by e

without changing the payoffs of the rest, thenéhaill exist an equilibrium in which all

® This of course in addition to other roles of hietdes like authority (see Aghion and Tirole (19931
leadership (see Hermalin (1998))

10



agentd with digzd,-”7 shirk and the rest exert effort. To eliminate #giilibrium we now
consider transferring thisto a different ageritfor whichd;’ > dj". For sufficiently small
& such a transfer will not change the incentive, @ind the same equilibrium will prevail.
The change in incentive will occur wheid:? + ¢ >c/d,” in which casé contributes if he
believes that he is in a groupjafontributors. But for such we have:

g2>ald? - a/di’ and agenits remaining payoff will be not more thayid,” - c/d;’ + ci/di’.
Sinceg < ¢ andd’ > d,? this remaining payoff is strictly less thajid¢. Soj is not
provided enough incentive to contribute when haelek that he is in a group of
contributors (replacing the role of agentThis shows that the only candidatesIfél in
the non-symmetric case are thlereward vectors described at the beginning of tohefp
To notice thaw* is the least expensive among them, note thatifc; andd;’ > d;, then
changing the order by flipping the rolesiochndj (i.e., payingj the rewardci/d,-9 and
paying i the reward Cj/dig) without affecting the payoff of others, gets us Il

mechanism of a lower cost.

We now turn to the case of differential probalmbtiof success providing our analysis for

the benchmark model discussed in Section 2.

Proposition 5: Consider the benchmark model in Section 2 andnasghate; < o <,

.., <an and that is the constant effort cost. Then the optimal naectm is unique and

o c :
is given by v =——— for i < n and v,=

Haj d-a) 1-a,

j=i+1

. Furthermore, negligible

differences in the values of's result in major differences in rewards.

We have seen that the optintldl mechanisms generate hierarchy of incentives in
the sense that different players have differerkestan the success of the project: agent
is induced to exert effort regardless of other #&gjedecisions whereas agenwill do so
only if he believe that all the rest will exert@ff as well. We submit that this observation

can explain how hierarchies may emerge in orgaoizsteven when agents of different

11



levels deal with similar tasks and when authorigysp little role. Such hierarchies serve
as a coordination tool by which each agent is quesl that those placed above him in
the hierarchy will indeed exert effort -— providiagfficient incentive for him to do so as
well. We point out that when using this interptieta of hierarchies, Propositions 4 and 5
tell us how hierarchies are endogenously determimeeh individuals or tasks differ in

their attributes. Specifically, Proposition 4 ingdithat if agents differ in their cost of
effort, then agents with low costs should be asgigio higher levels of the hierarchy.
Furthermore, Proposition 5 asserts that if taskerdin the probability of success under
no investment (i.e., the probabiliy) then tasks with lowx (those which are more

sensitive to the effort decision) should be assigonehigher hierarchy levels as well.

Proof of Proposition 5Take any ordep = iy,i,, ... ,i, and consider the mechanisth v

given by
c

ﬂ—%)

for j < n and vg = . We first claim that any such

g oo
IIama_%)
k=j+1

mechanism (and there amé of them) is incentive inducing. For that we willosv that

with these rewards exerting effort emerges as gquanNash equilibrium with iterative

elimination of dominated strategies. Consider fpistyeri, if this player choose$ and

the rest shirk, then the probability of succesf[szy:ik while it is H“ik if he choose$.
k=2 k=1

Hence if all other agents shirk{j renders i; indifferent between shirking and exerting

effort. This means that choosing effort is a dominstrategy fori, undervi‘f. Assume

now that iterative elimination implies that i, ..., j.1 all exert effort then ifj choosed
n n

and i1, ijs2, ... , h all chooseD, the success probability if [, , and itis] [« if ij
k=j+1 k=]

chooses 0 under the same conditions. Sincevfi solves the equation
vl_[ozik —c:vHaik,pIayeri,- is indifferent between exerting effort and shikinnder
k=j+1 k=]

the specified condition which allows us to elimmalj = 0. We now argue that the

12



optimal INI mechanism must bé for some ordep of the players. Consider such order

6. If we pay some playay vi"j — ¢ for a positives without changing the rewards of other

players, then the game will have an equilibriumvhichiyjs, ...,  shirk and the rest exert
effort. This equilibrium will survive when transfeng the ¢ to another playeii as long
ase¢ is small enough. Consider the mininzgdior which this equilibrium fails to survive,

then (V/,...,v/ —g,...,vﬁ +&,V)=V", whered is the order in whiclix andi; exchange

positions. A similar argument is given in more deita the proof of Proposition 4.
Finally, we argue that among the mechanisfhshe optimal one corresponds ddeing

the identity order and thué corresponds to the rewards specified in the senewf the

proposition. For that we have to show tlﬁt\/fj is minimal whend is the identity. Let
j=1

be the identity and) be the order in whichandi+1 exchange positions, i.é% = (1,2,

..., i-1,i+1, i, i+2, ... ,n)ltis enough to show thaf* + v/, <v’ +v’ .
Indeed, V" = n : MYy = n : and v +VY = (11_ ai)O(Tl )’
o — Q. — .
Haj (1-a) Haj (- ,) i+l : i+l
j=i+1 j=i+2
whereas v =— ¢ NV =— ¢ and v’ +v% = (11_ O;igm 3
al-a)l-e
HO(J- (1— Oli) Haj (1— ai+l)ai i [ i+1
j=i+2 j=i+2

The result now follows from the fact that > a+1. Finally, note that when the
probabilities of success are arbitrarily close asheother agents’ rewards in the unique
optimal mechanism are significantly different. Fiettmore, under these conditions agents

with lower ¢; are paid more.

5. Commitment

If agents can make enforceable commitments to e#oér concerning investment and
coordinate actions, then the principal can implenievestment at less expense. In this
case he can even achieve it with a symmetric meésimari his is due to the fact that the

possibility of agents to coordinate joint deviasdiiters out the “bad” equilibria in which

13



only a subgroup of agents exerts effort. We analljizeframework by adopting the very
same model but assuming that investment is implésdeviastrong equilibria (see also
Maskin (1979) for strong equilibria implementatiohsocial choice correspondences).

A strategy profilec is a strong equilibrium if there exists no coalitiof playersS
and a strategy profiles ={o'}ien for that coalition such that all players$are made
better off by deviating tas assuming that players M\Sare still playinge.

A mechanism v is an incentive-inducing mechanisastiong equilibrialNIS) if
d = (1, ... ,1)is the unigue strong equilibrium of the investmgaie. Optimality is now
defined in the same way as before.

We point out that the choice of solution conceptifioplementation should reflect
the principal’s assessment regarding the natuiatefaction that takes place within the
organizational environment. If the principal bekswvthat the environment is sufficiently
open and conducive to cooperation then the conaeptrong equilibrium may be the
appropriate one for implementation. Otherwise, dhé/standard Nash implementation is

viable, requiring the extra burden of higher revgaadd the necessity of discrimination.

Proposition 6: If the technologyp is increasing, then the unique optimalNIS

mechanism is given by = c/[p(n) - p(n-1)] for allj.

Proof: We show the following: (1) with; =v = c¢/[p(n) - p(n-1)]the strategy profile =
(1, ... ,1)is a strong equilibrium. In this stipulated eduilum a player earngo(n) -c If a
group of agent$ of sizes chooses to shirk, each of its members will eaptn-s) which

is less tharvp(n) -csincep(n) - p(n-s) > p(n) - p(n-1)Using the same inequalities we
have: (2)d = (1, ... ,1)is the unique strong equilibrium. This is becaasg strategy
combination in whichs agents shirk has a profitable joint deviation floese players
which is to invest Finally, (3)v as specified above is optimal. For this note thabme

player's reward is less than = c/[p(n) - p(n-1)], thend = (1, ... ,1)is not a Nash

" Not necessarily increasing returns to scale.
8 |If s = 1, then we have indifference, but if redsincrease by an arbitrarily small increment, this
indifference is broken also for s =1 (see footr&)te
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equilibrium (and therefore not a strong equilibrjusmce this player will choose to shirk

when the rest invest getting(n-1)instead ofvp(n) - ¢
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