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Abstract

It has been shown (Hart [2]) that the backward induction (or
subgame-perfect) equilibrium of a perfect information game is the
unique stable outcome for dynamic models consisting of selection and
mutation, when the mutation rate is low and the populations are large,
under the assumption that the expected number of mutations per gen-
eration is bounded away from zero.

Here it is shown that one can dispense with this last condition.
In particular, it follows that the backward induction equilibrium is
evolutionarily stable for large populations.

Key words: evolutionary dynamics, evolutionary stability, Markov
chains, transition times, backward induction equilibrium, large popu-
lations

1 Introduction

In this paper we follow the work of Hart [2]. We study the long-run behavior

of evolutionary dynamics, we introduce a few notions of stability, and finally,

we show the stability properties of the backward induction equilibrium (BIE).

As in Hart [2], the games we consider are generic finite games in extensive

form with perfect information. In these games, there exists a unique subgame-

∗Center for the Study of Rationality, Department of Mathematics, The Hebrew Uni-
versity of Jerusalem, 91904 Jerusalem, Israel. E-mail: zivg@math.huji.ac.il
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perfect equilibrium, or backward induction equilibrium. For each such game,

there is an associated population game: at each node there is a distinct

population of individuals who play the game in the role of the corresponding

player.

The evolutionary dynamic process is a Markov chain on the space of

the mixed strategies of the game with unique invariant distribution. We

are looking for stable strategies in this model. When the populations are

fixed, a strategy profile is evolutionarily stable if its occurrence is positive

independently of the mutation rate, i.e., if its invariant probability is bounded

away from zero as the mutation rate goes to zero.1 When the populations

increase, the number of possible outcomes of the dynamics increases, and the

invariant probabilities of the different strategy profiles change. Therefore,

we define a strategy profile to be evolutionarily stable for large populations

(ESLP) if its invariant probability is bounded away from zero as both the

mutation rate goes to zero and the populations increase to infinity.

In Hart [2] it is shown that when the populations are fixed, the BIE is

evolutionarily stable. The main result there is that in the limit the BIE

becomes the only stable outcome as the mutation rate decreases to zero and

the populations increase to infinity, provided that the expected number of

mutations per generation is bounded away from zero. In this paper we show

that in the models we consider, this additional proviso (on the expected

number of mutations per generation) is not needed. Thus, the BIE is also

ESLP.

Section 2 presents the model. Section 3 defines stability and presents

1This is the “stochastic stability” of Kandori et al. [3] and Young [6].
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the Main Theorem. Section 4 explains two major assumptions in our model,

that of mutation rate and that of population size. Section 5 proves the

Main Theorem. The Appendix proves several general propositions on Markov

chains, needed for the proof of the Main Theorem.

2 The Model

The model is as in Hart [2], except for a somewhat less general class of

dynamics.2 We present a summary of the model below.

2.1 The Game

Let Γ be a finite extensive-form game with perfect information. Each non-

terminal vertex corresponds to a move, and each move of one of the players

is called a node. Let N be the set of nodes, and let N̂ be the set of nodes

and terminal vertices (i.e., the set of all vertices that are not chance moves).

For each node i ∈ N , let N(i) be the set of nodes that are successors of i in

the tree. Assume that the nodes are numbered {1, . . . , n}, where n = |N |,

such that j ∈ N(i) implies j > i.

The game is in agent-normal form: at each node i ∈ N there is a different

agent with a set of choices Ai, which is the set of outgoing branches at i. Let

A :=
∏

i∈N Ai, and let ui : A → IR be the payoff function of agent i, which

is extended multilinearly to mixed strategies; thus ui : X =
∏

i∈N X i → IR,

where X i := ∆(Ai) is the set of probability distributions over Ai.

The classic result of Kuhn [4] states that there always exists a pure BIE.

2See Remarks 3 and 4 in Section 2.2.

3



We assume here that the game Γ has a unique BIE (this is true generically),

which must therefore be pure; we denote it by b = (bi)i∈N ∈ A, and refer to

bi as the “backward induction strategy of i.”

We associate a population game3 to Γ: at each node i ∈ N there is a

nonempty finite population M(i) of individuals playing the game in the role

of agent i. We assume that the populations at different nodes are disjoint.

For each individual q ∈ M(i), let ωi
q ∈ Ai be the pure strategy of q, and

let ωi = (ωi
q)q∈M and ω = (ωi)i∈N . The proportions of the different pure

strategies in population i induce a mixed strategy of agent i. We therefore

have a map x of each ω to a vector of mixed strategies, where xi
ai(ω) — the

probability of ai — is the proportion of individuals in populations i that play

ai.

2.2 The Dynamics

We now come to the dynamic model. We formulate the dynamics as discrete-

time stationary Markov chains.

Since they are evolutionary, the dynamics are based on selection, i.e.,

changes towards better strategies, and on mutations, i.e., random changes.

Each period of the dynamics is assumed to be small enough that the probabil-

ity that more than one individual in each population will change his strategy

is negligible. Thus, we assume that at each period, at most one individual

may change his strategy, either due to selection or due to mutation.

For every mutation rate parameter µ > 0, and population size m such

3This is called the gene-normal form of Γ in Hart [2].

4



that4 |M(i)| = m for all nodes i ∈ N , the process is a stationary Markov

chain on the state space Ωm :=
∏

i∈N(Ai)M(i), where a state ω of the system

specifies the pure strategy of each individual in each population, as defined

in Section 2.1. The one-step transition probability of the process is given by

a transition matrix Q = (qω,ω̃)ω,ω̃∈Ωm
that satisfies5:

• Conditional independence over i ∈ N , i.e.,6

Q[ω̃ |ω] =
∏

i∈N

Q[ω̃i |ω]. (2.1)

• For each i ∈ N , one individual q(i) ∈ M(i) is chosen, such that there

exist constants γ1,γ2 > 0 with

γ1

m
≤ Q[q(i) = q |ω] ≤

γ2

m
for each q ∈ M(i), and (2.2)

Q[ω̃i
q = ωi

q |ω] = 1 for each q ∈ M(i)r {q(i)} . (2.3)

• There exists a constant σ > 0 such that, for each i ∈ N ,

Q[ω̃i
q(i) = ai |ω] ≥ σ for each ai ∈ Bi ∩ Si, (2.4)

where Bi ≡ Bi(q(i), ω) :=
{

ai ∈ Ai : ui(ai, ω−i) > ui(ωi
q(i), ω

−i)
}

is

the set of “better strategies” — those strategies at node i that are

4See Remark 3.
5For an example of a dynamic that satisfies these conditions, see the basic model in Hart

[2].
6For each ω ∈ Ω, take Q[· | ω] to be a probability distribution over Ω, such that

Q[Ω′ |ω] =
∑

ω∈Ω
qω,ω′ for all Ω′ ⊆ Ω; derived probabilities — like its marginals, etc. —

will also be denoted by Q[· |ω].
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strictly better in Γ, against the populations at the other nodes, than

the strategy ωi
q(i) of the chosen individual q(i), and Si ≡ Si(ω) :=

{
ai ∈ Ai : ωi

q = ai for some q ∈ M(i)
}

is the set of strategies at node i

that are present in state ω.

• There exist constants α1,α2 > 0 such that, for each i ∈ N ,

Q[ω̃i
q(i) = ai |ω] ≥ α1µ for each ai ∈ Ai, and (2.5)

Q[ω̃i
q(i) = ai |ω] ≤ α2µ for each ai /∈ Bi,ai 6= ωi

q(i). (2.6)

Remarks:

1. The game Γ and the constants γ1, γ2, σ, α1, and α2 do not change

while m and µ vary.

2. As in Hart [2, Section 3.2, Remark 2], we assume ((2.5) and (2.6)) that

the probabilities of mutation in different populations are comparable.

See Section 4.1.

3. We assume for simplicity that the sizes of the populations are the

same, but it suffices that the sizes be comparable (i.e., the ratios

|M(i)| / |M(j)| be bounded away from zero and ∞). This assump-

tion is not needed in Hart [2], but as will be seen in Section 4, it is a

natural assumption.

4. We assume that the probability of switching to a better strategy by

selection depends only on whether that strategy is currently present in

the population and not on the proportion of individuals playing that
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strategy (see (2.4)). Therefore, our class of dynamics is less general

than that of Hart [2] (see Hart [2, (2.7)]).

5. A general model with a one-step transition matrix Q satisfying (2.1) –

(2.6) yields a Markov chain that is irreducible and aperiodic. Hence

there exists a unique invariant distribution on Ωm that describes the

long-run behavior of the process (see, e.g., Feller [1, Chapter 15, The-

orem 2 and Corollary I]).

3 Stability

In this section we define stability and present the main result of this work.

3.1 Definitions

We are interested in the behavior of the process when the mutation rate is

low, i.e., the limit of the invariant distribution π as µ → 0. We will look first

at the case where the population size m is fixed, and then at the case where

m → ∞.

Let the game Γ and the constants α1, α2, γ1, γ2, and σ be fixed. For

every mutation rate µ > 0 and population sizes m, let Ξ(m,µ) be the set of

all one-step transition matrices Q = (qω,ω̃)ω,ω̃∈Ωm
satisfying (2.1) – (2.6) with

µ and m. For every Q ∈ Ξ(m,µ), let πQ be the unique invariant distribution

of Q, and let πm,µ[ω] = infQ∈Ξ(m,µ) πQ[ω] for all ω ∈ Ωm.
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Definition 3.1. A state ω ∈ Ωm is m-evolutionarily stable if

lim inf
µ→0

πm,µ[ω] > 0.

Recall that each state ω ∈ Ωm may be viewed as an N -tuple of mixed

strategies x(ω) = (xi(ω))i∈N ∈ X. We can therefore view the dynamic

as a dynamic on the space of mixed strategies. Since the population is

finite, and each agent plays a pure strategy, the number of mixed strategies

that can arise in this dynamic is finite. The invariant distribution πQ on

Ωm therefore induces a probability distribution π̂Q := πQ ◦ (x)−1 over X;

i.e., π̂Q[Y ] := πQ[{ω ∈ Ωm : x(ω) ∈ Y }] for every (measurable) Y ⊆ X. Let

π̂m,µ[Y ] = infQ∈Ξ(m,µ) π̂Q[Y ].

Definition 3.2. An N -tuple of mixed strategies x ∈ X is m-evolutionarily

stable if

lim inf
µ→0

π̂m,µ[x] > 0.

We now consider the case where the populations increase, i.e., m → ∞,

(while the game and constants remain fixed). When the population size

increases, the size of the state space increases as well, and the invariant

distribution of each fixed mixed strategy may converge to zero.7 To prop-

erly define evolutionary stability in this context, we consider probabilities of

neighborhoods rather that the probability of a single point.

For every ε > 0 and N -tuple of mixed strategies x ∈ X, let xε be the

ε-neighborhood of x, i.e., xε := {y ∈ X : ‖x − y‖ < ε} (we will also use BIε

instead of bε for consistency with the notations in Hart [2]).

7For an example of where the lim inf µ→0
m→∞

π̂m,µ[b] is zero, see Hart [2, Footnote 49].
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Definition 3.3. An N -tuple of mixed strategies x ∈ X is evolutionarily

stable for large populations (ESLP) if for every ε > 0

lim inf
µ→0

m→∞

π̂m,µ[xε] > 0.

We will also use ESLP to denote the set of all N -tuples that are ESLP.

Thus, x is ESLP if, for any neighborhood of x, the relative frequency of

visits at that neighborhood is bounded away from zero, for all large popula-

tion sizes and all small mutation rates.

Remarks:

1. Conditions (2.1) – (2.6) are closed. Therefore, Ξ(m,µ) is a closed sub-

set, and hence compact. Therefore, for every ω ∈ Ωm, there exists

a matrix Qω ∈ Ξ(m,µ) such that πm,µ[ω] = πQω
[ω]. Moreover, as

πQ[ω] > 0 for all Q ∈ Ξ(m,µ) and ω ∈ Ωm, we have πm,µ[ω] > 0; how-

ever, πm,µ need not be a probability distribution over Ωm. The same

arguments hold for π̂m,µ, and it need not be a probability distribution

over X.

2. For each m, let ESm be the set of all m-evolutionarily stable N -tuples of

mixed strategies. By Hart [2, Theorem 3.1], the BIE is m-evolutionarily

stable for all m; therefore, {b} ⊂ ESm. As seen in Hart [2, Section 3.1,

Remark 2], equilibria other than the BIE may be m-evolutionarily sta-

ble, and hence we have {b}  ESm. Together with our Main Theorem

below, we have ESLP = {b}  ESm.
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3.2 The Main Result

In Hart [2] it is shown that the BIE is m-evolutionarily stable for all m.

It is also shown that when the populations increase the probability of any

neighborhood of the BIE goes to 1, as long as the populations increase fast

enough.

Theorem 3.4 (Hart [2]). For every ε > 0 and δ > 0,

lim
µ→0

m→∞
mµ≥δ

π̂m,µ[BIε] = 1.

This theorem implies that only the BIE may be ESLP. In order to show

that it is ESLP, we show that the double limit (without the restriction mµ ≥

δ > 0) is positive — in fact, it equals one.

Theorem 3.5 (Main Theorem). For every ε > 0,

lim
µ→0

m→∞

π̂m,µ[BIε] = 1, (3.1)

and, therefore, ESLP = {b}. Moreover, there exists a constant C, depending

on the game, on the constants defining the dynamics γ1, γ2, σ, α1, and α2,

and on ε, such that

π̂m,µ[BIε] ≥ 1 − C(µ +
1

m
) (3.2)

for all µ > 0 and m.

Our proof of the Main Theorem is based on estimating transition times.

Thus, besides the results on the long-run behavior of the populations (i.e.,

that most individuals play the backward induction strategy), we also learn

the number of periods it takes to get there. Dealing with the case that mµ ≤

D < ∞ (which yields the Main Theorem by combining it with Theorem 3.4

10



for δ = D), it takes on average of the order of at most m + 1/µ periods until

most individuals play the backward induction strategy.

Proposition 3.6. For every ε > 0, there exists a constant C ′ such that

the expected number of periods to reach BIε, from any state, is at most8

C ′(m + 1/µ)exp(C ′mµ).

Notice that the BIE is m-evolutionarily stable for all m, and therefore

any neighborhood of it is also m-evolutionarily stable. Moreover, from the

double limit (3.1) it follows that the iterative limit limm limµ is 1, and thus

positive, which implies that BIε is m-evolutionarily stable uniformly in9 m.

4 Comparability between Populations

In this section we discuss the assumptions on the mutation rates (µi)i∈N and

on the sizes of the different populations (mi)i∈N , where mi := |M(i)|.

Mutation is a “mechanical” process and, therefore, it is natural to assume

that all genes have the same probability of mutation. Therefore, it is reason-

able to assume that the probability of mutation of each individual is the same

(or comparable if, for example, the number of genes in different populations

is different). It follows that µi/mi — the probability of mutation of each

individual in population i — is the same for all i, or at least comparable.

8We use exp(x) for the exponent function.
9The other iterative limit, limµ limm, is also 1, as already seen in Hart [2, Remark 1 in

Section 3.2].

11



1

2

c1

�

(0,0)

c2

�

(0,1)

b2

�

(1,0)

b1

Figure 1: The Game Γ

4.1 Mutation Rates

In the models we consider, the probabilities of mutation in the different

populations are assumed to be of the same order of magnitude — see (2.5)

and (2.6). In the next example we will show that this assumption is in-

deed needed, and without it there is no convergence to the BIE, even if the

probability of mutation of each individual is the same.

Example. Let us consider the game Γ in Figure 1. The BIE in this game

is b = (b1, b2). Consider the following dynamics on Γ: each period there

is a probability of 1/mi for each individual 1 ≤ q ≤ mi to be chosen, and

probabilities of 2µi and 1−2µi for the chosen individual to change his action

by mutation (with equal probabilities to mutate to each of the two strategies)

or selection respectively.

Let Y i, for i = 1, 2, be the proportion of individuals in population i that

play ci, and let R2 be an indicator random variable, defined as 1 if node 2 is

reached (see also Section 5.1).

Notice first that there is always selection in node 1 towards b1 regardless

of population 2, and the transition probabilities of population 1 depend only
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on Y 1. Notice also that node 2 is reached iff Y 1 is positive. If node 2 is

reached, then, on average, after Cm1 periods (for some constant C) we have

Y 1 = 0 (because of selection in node 1), and node 2 is no longer reached.

Therefore, we have Cm1 changes toward b2 because of selection. On the other

hand, once Y 1 = 0, node 2 will stay “not reached” until there is a mutation

in node 1, which takes, on average, 1/µ1 periods. In the 1/µ1 periods node

2 is not reached, there are µ2(1/µ1) mutations, in which population 2 gets

closer to 1/2 (moves from b2 to c2 if we are close to the BIE) by
√

µ2/µ1.

By choosing µi and mi such that
√

µ2/µ1 ≥ Cm1 (while the probability of

mutation of each individual is the same, i.e., µ1/m1 = µ2/m2), we will show

that Y 2 does not converge to 0.

Let m ∈ IN and let m1 = m, m2 = m3, µ1 = 1/m3, and µ2 = 1/m; then

we have µ1/m1 = µ2/m2 = 1/m4. Let π be the invariant distribution of the

dynamic described above.

We start by finding the probability of node 2 to be reached, i.e.,10 π[R2 =

1] = π[Y 1 > 0]. Let Hk = {ω : Y 1(ω) = k/m1} for k = 0, . . . ,m1. As there is

selection in node 1 towards b1, we have P [ωt+1 ∈ Hk+1 |ωt] = µ1(m1 −k)/m1

for all ωt ∈ Hk, and P [ωt+1 ∈ Hk | ωt] = (1 − µ1)k/m1 for all ωt ∈ Hk+1.

Therefore (see Hart [2, Footnote 70]), we have

π[Hk]
µ1(m1 − k)

m1

= π[Hk+1]
(1 − µ1)k

m1

, or

π[Hk+1] = π[Hk]
µ1

1 − µ1

m1 − k

k
,

10As the chosen individual in population 1 has probabilities of µ1 and 1− µ1 to play c1

and b1 respectively, we are able to show that Y 1 is distributed according to the binomial
distribution with m1 and µ1.
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and for all k we get

π[Hk] = π[H0]

(
m1

k

)
(

µ1

1 − µ1

)k, and

π[R2 = 0] = π[H0] = (1 +
µ1

1 − µ1

)−m1 = (1 −
1

m3
)m. (4.1)

To show that Y 2 does not converge to 0, let ω ∈ Ω be distributed accord-

ing to π, and let ω̃ ∈ Ω be the next state, given by the transition probabilities;

then ω̃ is also distributed according to π. Let dY := Y 2(ω̃) − Y 2(ω); then

we have E[dY ] = 0.

When R2 = 1 there is selection in node 2 towards b2, and when R2 = 0

there are only mutations. Therefore, we have

E[dY |R2 = 1] =
µ2

m2

−
1

m2

E[Y 2(ω) |R2 = 1], and

E[dY |R2 = 0] =
µ2

m2

−
2µ2

m2

E[Y 2(ω) |R2 = 0].

Therefore, we get

0 = E[dY ] = E[dY |R2 =1]π[R2 =1] + E[dY |R2 =0]π[R2 =0]

=
µ2

m2

−
2µ2

m2

E[Y 2(ω)] −
1 − 2µ2

m2

E[Y 2(ω) |R2 = 1]π[R2 = 1].

After rearranging and using (4.1), we get

E[Y 2(ω)] =
1

2
−

1 − 2µ2

2µ2

E[Y 2(ω) |R2 = 1]π[R2 = 1]

≥
1

2
−

1 − 2µ2

2µ2

π[R2 = 1] =
1

2
−

m − 2

2
(1 − (1 −

1

m3
)m)

≥
1

2
−

m − 2

2

1

m2
−−−→
m→∞

1

2
.
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4.2 Population Sizes

For simplicity we have assumed that all the populations are of equal size m.

In general, we have a population profile m = (M(i))i∈N , with corresponding

dynamic processes on the state space Ωm.

Letting now m := mini∈N mi, and m := maxi∈N mi, and replacing (2.2)

with

γ1

mi

≤ Q[q(i) = q |ω] ≤
γ2

mi

for each q ∈ M(i), (4.2)

our Main Theorem becomes:

Theorem 4.1. For any ε > 0, there exists a constant C such that for any

mutation rate µ, population profile m, and dynamic system Q satisfying con-

ditions (2.1), (4.2), (2.3) - (2.6), with invariant distribution πQ, we have

π̂Q[BIε] ≥ 1 − C

(
(

1

m
+ µ

m

m
) exp(Cµm) exp(C

m

m
)

)
. (4.3)

Equation (4.3), together with Hart [2, (3.6)], imply (3.2) (and hence the

Main Theorem) for models with comparable population sizes (i.e., m/m ≤ D,

for some constant D).

Remarks:

1. As seen in Section 4.1, we must assume that the mutation rates are

comparable. Together with the assumption that the probabilities of

the mutations of different individuals are comparable, the assumption

on the sizes of the population is not a further restriction on the model.

2. We did not manage to obtain a better bound than (4.3) on the prob-
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ability of BIε, and hence we need the populations to be comparable.

We do not know whether this assumption is indeed needed.

5 The Proof

In this section we use a few general propositions on Markov chains to describe

the long-run behavior of our dynamics, and to prove the Main Theorem.

5.1 Notations

We present some notations about transition times, and about the game and

the dynamic system.

Given a finite state space Ω with a transition matrix Q = (qω,ω′)ω,ω′∈Ω,

we use the following notations.

• For each Ω′ ⊂ Ω, define T (Ω′) = min {t ≥ 0 : Xt ∈ Ω′}, the first en-

trance time to Ω′.

• For every ω ∈ Ω, define U(ω, Ω′) = E[T (Ω′) |X0 = ω]; i.e., U(ω, Ω′) is

the expected number of periods it takes to get to Ω′ starting from ω.

For each Ω1, Ω2 ⊂ Ω let U(Ω1, Ω2) = maxω∈Ω1
U(ω, Ω2).

• For all ω ∈ Ω and Ω′ ⊂ Ω, let Q(ω, Ω′) =
∑

ω′∈Ω′ qω,ω′ — the probability

of going from ω to Ω′ in one step.

• For an event A and ω ∈ Ω, we use Pω[A] for P [A |X0 = ω].

• For every ω ∈ Ω let ω̃ be the next state, i.e., for all ω′ ∈ Ω, we have

Pω[ω̃ = ω′] = P [Xt+1 = ω′ |Xt = ω] = qω,ω′ .

16



• For any partition {Hk}
K
k=0 of Ω, and for every 0 ≤ k ≤ K, let Ak =

⋃k−1
l=0 Hl and Bk =

⋃K

l=k+1 Hl.

Given a game Γ, and population profile m, we use the following notations

about Γ and Ωm.

• For all i ∈ N , let Y i(ω) = 1 − xi
bi(ω). This is the proportion of

population i that does not play the backward induction strategy.

• Given two vertices i, j ∈ N̂ such that i is a descendant of j, let Rj,i(ω)

be an indicator random variable, defined as 1 if i is reached from j in

state ω, and 0 otherwise. For every node k ∈ N on the path from j to

i, let ak,i ∈ Ak be the strategy that leads toward i. When j is the root

we will use Ri(ω) instead of Rj,i(ω).11

• Let λ = λ(Γ) > 0 be such that for each node i ∈ N , if for every

j ∈ N(i) we have Y j(ω) < λ, then bi is the unique local best reply of i.

• For all i ∈ N , let Li(ω) be an indicator random variable, defined as 1

if Y j(ω) < λ for all j ∈ N(i), and 0 otherwise.

• For all i ∈ N , let s(i) ∈ N̂ be the immediate successor of i such that

ai,s(i) = bi.

• Let ε > 0. For all j ∈ N define Gj(ε) =
{
ω : Y l(ω) ≤ ε,∀l ≥ j

}
,

and define Gn+1(ε) = Ωm. Notice that G1(ε) = x−1(BIε). For all

j = 1, . . . , n+1 and i ∈ N , define Gj,i(ε) =
{
ω ∈ Gj(ε) : Rs(i)(ω) = 1

}
.

11The root may be a chance move, and hence not in N̂ , but this does not change the
definition of Ri.
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I.e., in Gj,i(ε), node i is reached, s(i) is reached from i, and for all the

nodes l ≥ j, we have Y l ≤ ε.

We will now restate the conditions satisfied by our class of dynamics.

These conditions hold for every µ, m, Q ∈ Ξ(m, µ), and i ∈ N .

All strategies have a positive probability of being chosen by mutation:

Pω[ω̃i
q(i) = ai] ≥ α1µ for every ai ∈ Ai. (5.1)

If node i is not reached, i.e., Ri(ω) = 0, then all strategies of i yield the

same payoff and only mutation affects ωi. Therefore:

If Ri = 0 then Pω[ω̃i
q(i) 6= ωi

q(i)] ≤ α2µ. (5.2)

If Ri(ω) = 1 and Li(ω) = 1 then bi is the global best reply of i and thus

certainly a “better strategy” for a “non-bi individual” (i.e., bi ∈ Bi(q(i), ω)

when ωi
q(i) 6= bi), and there isn’t any “better strategy” for a “bi individual”

(i.e., B(q(i), ω) = φ when ωi
q(i) = bi). Therefore:

If LiRi = 1, ωi
q(i) 6= bi and bi ∈ Si then Pω[ω̃i

q(i) = bi] ≥ σ. (5.3)

If LiRi = 1 and ωi
q(i) = bi then Pω[ω̃i

q(i) 6= bi] ≤ α2µ. (5.4)

If LiRi = 1 then Pω[Y i(ω̃) > Y i(ω)] ≤ α2µ. (5.5)

Using (5.2) and (5.5) we get:

If Li = 1 then Pω[Y i(ω̃) > Y i(ω)] ≤ α2µ. (5.6)

Only one individual may change his strategy (by (2.3)); therefore:
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Pω[Y i(ω̃) ≤ Y i(ω) +
1

mi

] = 1. (5.7)

If Rj,i(ω) = 1, then for all the nodes l ∈ N on the path from j to i, there

must exist q ∈ M(l) such that wl
q = al,i. To get Rj,i(ω̃) = 0, there must be

some node l on the path where no one plays al,i, which means that the only

individual who played al,i must have been chosen. Therefore (by (4.2)):

If Rj,i = 1 then Pω[Rj,i(ω̃) = 0] ≤ nγ2
1

m
. (5.8)

If ε < λ, then for all 1 ≤ j ≤ n + 1, ω ∈ Gj(ε) and every j ≤ l ≤ n, we

have Y l(ω) ≤ ε < λ. By the assumption on the numbering of the nodes, for

all i ≥ j − 1, we have N(i) ⊂ {j, . . . , n}, and therefore:

If ω ∈ Gj(ε) then Li(ω) = 1 for all i ≥ j − 1. (5.9)

If j ≤ n and ω̃ /∈ Gj(ε) then there is some node i ≥ j such that Y i(ω̃) ≥

ε > Y i(ω). As Gn+1(ε) = Ωm, we have for all 1 ≤ j ≤ n + 1 (using (5.9)

and (5.6) for j ≤ n):

If ω ∈ Gj(ε) then Pω[ω̃ /∈ Gj(ε)] ≤ nα2µ. (5.10)

If ε < λ and ω ∈ Gj,i(ε), then to get ω̃ /∈ Gj,i(ε), we need either ω̃ /∈ Gj(ε)

or Rs(i) = 0. Therefore (using (5.8) and (5.10)):

If ω ∈ Gj,i(ε) then Pω[ω̃ /∈ Gj,i(ε)] ≤ nγ2
1

m
+ nα2µ. (5.11)

As ai,s(i) = bi, we have:

If Ri,s(i) = 1 then bi ∈ Si. (5.12)
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Figure 2: The Markov Chain over Time

5.2 The Proof of the Main Theorem

To prove the Main Theorem, we estimate transition times (using Proposi-

tion A.3) and thereby obtain the invariant distribution of the system (Propo-

sition A.5).

Specifically (assume for simplicity that |M(i)| = m for all i ∈ N), the

proof is based on the following two properties of our dynamic system, which

hold for any µ, m, and Q ∈ Ξ(m,µ) we choose:

P1 The expected time to reach BIε is at most C1(m + 1/µ) exp(C1mµ),

for some constant C1.

P2 The expected time to leave BIε is at least C2m/µ, for some constant

C2.

If we assume that mµ ≤ D for some D < ∞ (the case mµ ≥ D is

treated in Hart [2]), then the Markov chain looks like Figure 2. Therefore,

on average, every C1(m + 1/µ) + C2m/µ periods, the system is in BIε at

least C2m/µ periods, and that ratio is the invariant probability of BIε, and

we obtain (3.2).

Let the Game Γ, constants γ1, γ2, σ, α1, and α2 be fixed. The following

results are true for all µ<1/(2nα2), m such that m > 2nγ2, and Q ∈ Ξ(m, µ).

We start by showing that P1 holds. The proof of P1 is by backward

induction, and for each node i ∈ N , we first estimate the time required until

the node is reached (Proposition 5.1), and once the node is reached, there
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is selection there towards the backward induction strategy, and we estimate

the time needed until most individuals play that strategy (Proposition 5.2).

In order for node i to be reached, we need that in all nodes on the path

from the root to i, at least one individual will play the strategy that leads

toward i. This can always occur due to mutation, and as there is no selection

in nodes that are not reached, we need sequential rather than simultaneous

mutations, and the expected time until the node is reached is of the order of

1/µ.

By the induction assumption, we have Li = 1, and therefore, once the

node is reached, the backward induction strategy is the unique best reply.

Therefore, there is selection towards that strategy, and after mi ≤ m periods,

most individuals in i play the backward induction strategy.

Proposition 5.1. For any ε < λ there exists a constant C1,1 = C1,1(Γ, ε)

such that U(Ωm, Gj,i(ε)) ≤ C1,1(U(Ωm, Gj(ε)) + 1/µ) for all i ∈ N and i <

j ≤ n + 1.

Proof. Without loss of generality assume that s(i) is a node (if s(i) is a

terminal vertex, the only difference is that s(i) is not numbered), s(i) = i+1,

and that the nodes along the path from the root to i are 1, 2, . . . , i.

Let12 Hk =
{
ω ∈ Gj(ε) : Rk,k+1 = 0, Rk+1,s(i) = 1

}
for k = 1, . . . , i; i.e.,

Hk is the set of all states in Gj(ε) such that s(i) is reached from k + 1, but

in node k no one plays the strategy towards k + 1. Let H0 = Gj,i(ε) and let

Hi+1 = ΩmrGj(ε). If s(i) is not reached, then there is a node where no one

plays the strategy towards s(i), and there is a unique maximum node of this

12Where Ri,i(ω) = 1 for all ω.
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kind. Therefore {Hk}
i+1
k=0 is a partition of Ωm.

Let 1 ≤ k ≤ i and ω ∈ Hk. Then ω ∈ Gj(ε), Rk,k+1 = 0 and Rk+1,s(i) = 1.

Therefore, for all k < l ≤ i we have Rl = 0 and Rl,l+1 = 1.

To get13 ω̃ ∈ Bk we need either ω̃ ∈ Hi+1, and by (5.10), we have Pω[ω̃ ∈

Hi+1] = Pω[ω̃ /∈ Gj(ε)] = O(µ), or ω̃ ∈ Hl for some k < l ≤ i, and, therefore,

there must be Rl,l+1(ω̃) = 0, which can happen only by mutation (by (5.2)).

Therefore there is a constant gk (which depends on the game and not on m

or µ) such that

Pω[ω̃ ∈ Bk] ≤ gkµ. (5.13)

To get ω̃ ∈ Ak, we need ω̃ ∈ Gj(ε), Rk,k+1(ω̃) = 1, and Rl,l+1(ω̃) = 1 for

all k < l ≤ i. As each one of those events depends on different nodes (the

first on nodes l ≥ j ≥ i + 1, the second on node l = k, and the third on

nodes k < l ≤ i), we can use the conditional independence (2.1) to calculate

the probabilities of those events.

By (5.10), we have Pω[ω̃ ∈ Gj(ε)] ≥ (1 − nα2µ). To get Rk,k+1(ω̃) = 1,

we need q(k) to choose by mutation the strategy ak,k+1, and by (5.1) we get

Pω[Rk,k+1(ω̃) = 1] ≥ α1µ. Finally, by (5.2), we have Pω[Rl,l+1(ω̃) = 1] ≥

(1 − α2µ) for all k<l≤ i. Therefore, there is a constant fk >0 such that

Pω[ω̃ ∈ Ak] ≥ (1 − nα2µ)α1µ(1 − α2µ)i−k ≥ fkµ. (5.14)

13Recall that for a partition {Hk}
K
k=0, we use Ak =

⋃k−1

l=0
Hl and Bk =

⋃K

l=k+1
Hl.
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Using Corollary A.4 on {Hk}
i+1
k=0 with (5.13) and (5.14) we get

U(Ωm, Gj,i(ε)) = U(Ωm, H0) ≤
(
U(Ωm, ΩmrHi+1) +

i∑

k=1

1

fkµ

) i∏

k=1

(1+
gkµ

fkµ
)

≤ C1,1(U(Ωm, Gj(ε)) +
1

µ
),

for C1,1 = (1 +
∑i

k=1 1/fk)
∏i

k=1(1 + gk/fk).

Proposition 5.2. For any ε < λ there exists a constant C1,2 = C1,2(Γ, ε)

such that U(Ωm, Gi(ε)) ≤ C1,2(U(Ωm, Gi+1,i(ε)) + m) exp(C1,2(mµ + m/m))

for all i ∈ N .

Proof. Without loss of generality assume that εmi is an integer. Put G =

Gi+1,i(ε) and K = mi − εmi. Let HK = Ωm rG, let Hk = {ω ∈ G : Y i(ω) =

(k+εmi)/mi} for k = 1, . . . , K−1, and let H0 ={ω ∈ G : Y i(ω) ≤ ε}⊂Gi(ε).

Then {Hk}
K−1
k=0 is a partition of G according to the value of Y i, and {Hk}

K

k=0

is a partition of Ωm.

Let 1 ≤ k < K and ω ∈ Hk. Then, by (5.9) and (5.12), we have Li = 1,

Ri = 1, and bi ∈ Si.

To get ω̃ ∈ Bk we need either ω̃ ∈ Hl for k < l < K, and therefore we

have Y i(ω̃) > Y i(ω), or ω̃ ∈ HK , and therefore ω̃ /∈ G. By (5.5) and (5.11),

there is a constant g (which does not depend on k) such that

Pω[ω̃ ∈ Bk] ≤ g(µ +
1

m
). (5.15)

To get ω̃ ∈ Hk−1 ⊂ Ak, we need ω̃ ∈ G and Y i(ω̃) = Y i(ω) − 1/mi.

Notice that if Y i(ω̃) = Y i(ω) − 1/mi < 1, then at least one individual plays
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bi = ai,s(i), and therefore Ri,s(i)(ω̃) = 1. Therefore, to get ω̃ ∈ Hk−1 we need

ω̃ ∈ Gi+1(ε), Ri(ω̃) = 1, and Y i(ω̃) = Y i(ω) − 1/mi. Again, those events

depend on different nodes, and we use the conditional independence (2.1).

By (5.10), we have Pω[ω̃ ∈ Gi+1(ε)] ≥ (1 − nα2µ). By (5.8), we have

Pω[Ri(ω̃) = 1] ≥ (1−nγ2/m). To get Y i(ω̃) = Y i(ω)−1/mi, we need q(i) to

be chosen from the set E =
{
q ∈ M(i) : wi

q 6= bi
}

and change his strategy to

bi. As |E| /mi = Y i(ω) = (k + εmi)/mi ≥ ε, we have (using (4.2) and (5.3))

Pω[Y i(ω̃) = Y i(ω)− 1/mi] ≥ γ1εσ. Therefore, there is a constant f > 0 such

that

Pω[ω̃ ∈ Ak] ≥ Pω[ω̃ ∈ Hk−1] ≥ (1 − nα2µ)(1 −
nγ2

m
)γ1εσ ≥ fε. (5.16)

Using Corollary A.4 on {Hk}
K
k=0 with (5.15) and (5.16) we get

U(Ωm, Gi(ε)) ≤ U(Ωm, H0)≤
(
U(Ωm, ΩmrHK)+

K−1∑

k=1

1

fε

) K−1∏

k=1

(1+
g(µ+ 1

m
)

fε
)

≤ (U(Ωm, Gi+1,i(ε)) +
mi

fε
)(1 +

g

fε
(µ +

1

m
))mi

≤ (1 +
1

fε
) · (U(Ωm, Gi+1,i(ε)) + m) · exp(

g

fε
(mµ +

m

m
))

≤ C1,2 · (U(Ωm, Gi+1,i(ε)) + m) exp(C1,2(mµ + m/m)),

for C1,2 = 1 + (g + 1)/(fε).

We now use Propositions 5.1 and 5.2 to estimate the expected time to

reach BIε,
14 and hence show that P1 holds.

14When mi = m for all i ∈ N , this becomes Proposition 3.6.
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Proposition 5.3. For any ε > 0 there exists a constant C1 = C1(Γ, ε) such

that U(Ωm, G1(ε)) ≤ C1(1/µ + m) exp(C1(mµ + m/m)).

Proof. If ε1 ≥ ε2 > 0 then G1(ε2) ⊂ G1(ε1) and therefore U(Ωm, G1(ε1)) ≤

U(Ωm, G1(ε2)). Thus, assume that ε < λ. Using Propositions 5.1 and 5.2 we

get, for all15 i ∈ N ,

U(Ωm, Gi(ε)) ≤ C1,2 · (U(Ωm, Gi+1,i(ε)) + m) exp(C1,2(mµ + m/m))

≤ C1,2 · (C1,1 · (U(Ωm, Gi+1(ε)) +
1

µ
) + m) exp(C1,2(mµ + m/m))

≤ C1,1C1,2(U(Ωm, Gi+1(ε)) +
1

µ
+ m) exp(C1,2(mµ + m/m)).

Using induction and the equality U(Ωm, Gn+1(ε)) = 0, we get,

U(Ωm, G1(ε)) ≤ C1(
1

µ
+ m) exp(C1(mµ + m/m)),

for C1 = n(C1,1C1,2)
n.

We now estimate the expected time to leave BIε, and show that P2 holds.

Notice that if ε < λ, then in any state in BIε, and for any node i, either

node i is not reached, or node i is reached and bi is the unique best reply of

i. Therefore, the proportion of bi will decrease only by mutation.

Proposition 5.4. Let 0 < ε1 < ε2 < λ. Then there exists a constant

C2 = C2(Γ, ε2 − ε1) > 0 such that U(ω, Ωm r G1(ε2)) ≥ C2(m/µ) for every

ω ∈ G1(ε1).

15We may assume without loss of generality that C1,1 ≥ 1 and C1,2 ≥ 1.
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Proof. For every ω ∈ G1(ε2), and every i ∈ N , we have Pω[Y i(ω̃) > Y i(ω) +

1/m] ≤ Pω[Y i(ω̃) > Y i(ω) + 1/mi] = 0, and Pω[Y i(ω̃) > Y i(ω)] ≤ α2µ

(by (5.7), (5.9), and (5.6)). Let Z(ω) = maxi∈N Y i(ω); then Pω[Z(ω̃) >

Z(ω) + 1/m] = 0 and Pω[Z(ω̃) > Z(ω)] ≤ nα2µ. Therefore, for every z ≤ λ,

a move from Z(ω) = z to z < Z(ω) ≤ z + 1/m takes, on average, at least

1/(nα2µ) periods.

As Z(ω) ≤ ε1 for every ω ∈ G1(ε1) and Z(ω) > ε2 for every ω /∈ G1(ε2), a

move from G1(ε1) to ΩmrG1(ε2) takes on average at least (ε2−ε1)m/(nα2µ)

periods, or U(ω, Ωm rG1(ε2)) ≥ C2(m/µ) for every ω ∈ G1(ε1).

Now we can prove Theorem 4.1:

Proof of Theorem 4.1. Without loss of generality assume that ε < λ. Us-

ing Proposition 5.3, there is a constant C1 such that U(Ωm, G1(ε/2)) ≤

C1(1/µ + m) exp(C1(mµ + m/m)). Using Proposition 5.4, there is a con-

stant C2 > 0 such that U(ω, Ωm rG1(ε)) ≥ C2(m/µ) for every ω ∈ G1(ε/2).

By Proposition A.5 we have

π̂Q[X rBIε] = πQ[Ωm rG1(ε)]

≤ πQ[G1(ε)]
C1(1/µ + m) exp(C1(mµ + m/m))

C2(m/µ)

≤
C1

C2

(
1

m
+ µ

m

m
) exp(C1(mµ +

m

m
))

≤ C

(
(

1

m
+ µ

m

m
) exp(Cµm) exp(C

m

m
)

)
,

for C = C1(1 + 1/C2).
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A Appendix: Some General Results on Markov

Chains

In this appendix, we prove a few general propositions on Markov chains.

Lemma A.1. For every Ω1, Ω2 ⊂ Ω, and ω ∈ Ω, we have U(ω, Ω2) ≤

U(ω, Ω1) + U(Ω1, Ω2).

Proof. Let T1 = T (Ω1) and define T2 = min {t ≥ T1 : Xt ∈ Ω2}; then T2 ≥

T (Ω2). By the strong Markov property (see Revuz [5, Chapter 1, Theorem

3.5]), we have for any t, P [T2 = T1 + t | X0 = ω] =
∑

ω′∈Ω1
P [XT1

= ω′ |

X0 = ω] · P [T (Ω2) = t | X0 = ω′]. Therefore, U(ω, Ω2) ≤ E[T2 | X0 =

ω] = E[T1 |X0 = ω] +
∑

ω′∈Ω1
P [XT1

= ω′ |X0 = ω] · E[T (Ω2) |X0 = ω] ≤

U(ω, Ω1) + U(Ω1, Ω2).

Let Ω be a finite state space, and let {Hk}
K
k=0 be a partition of Ω. Using

the notations introduced in Section 5.1, we can now prove the propositions

we need about transition times.

Lemma A.2. For all 1 ≤ k ≤ l ≤ K we have U(Hl, Ak) ≤
∑l

i=k U(Hi, Ai).

Proof. Let 1 ≤ l ≤ K; we will use induction on k. For k = l, we have

U(Hl, Ak) = U(Hl, Al). Let k < l. Since U(Ak, Ak) = 0 and U(Hk, Ak) ≥ 0,

we get U(Ak ∪ Hk, Ak) = max {U(Ak, Ak), U(Hk, Ak)} = U(Hk, Ak). There-

fore, using Lemma A.1 and induction, we get

U(Hl, Ak) ≤ U(Hl, Ak ∪ Hk) + U(Ak ∪ Hk, Ak)

= U(Hl, Ak+1) + U(Hk, Ak) ≤
l∑

i=k

U(Hi, Ai).
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Proposition A.3. Assume that for all 1 ≤ k ≤ K there are constants fk > 0

and gk, such that Q(ω,Ak) ≥ fk and Q(ω,Bk) ≤ gk for all ω ∈ Hk. Then

U(Ω, H0) ≤
K∑

k=1

[ 1

fk

k−1∏

l=1

(1 +
gl

fl

)
]
≤

( K∑

k=1

1

fk

)[ K−1∏

l=1

(1 +
gl

fl

)
]
.

Proof. For every 1 ≤ k ≤ K, let uk = U(Hk, Ak) and vk = uk + · · · + uK ,

and let vK+1 = 0. By Lemma A.2, for all 1 ≤ k ≤ K we have U(Bk−1, Ak) =

maxl=k,...,K U(Hl, Ak) ≤ vk.

Let ωk ∈ Hk such that U(Hk, Ak) = uk is attained at ωk, i.e., uk =

U(ωk, Ak). As ωk /∈ Ak, we have, first for k = K,

uK = 1 +
∑

ω∈Ω

qωK ,ωU(ω,Ak)

= 1 +
∑

ω∈HK

qωK ,ωU(ω,AK) +
∑

ω∈AK

qωK ,ωU(ω,AK)

≤ 1 + U(HK , AK)Q(ωK , HK) + 0

≤ 1 + uK(1 − fK) = 1 + vK+1gK + uK(1 − fK),

and for 1 ≤ k < K, we have

uk = 1 +
∑

ω∈Bk

qωk,ωU(ω,Ak) +
∑

ω∈Hk

qωk,ωU(ω,Ak) +
∑

ω∈Ak

qωk,ωU(ω,Ak)

≤ 1 + U(Bk, Ak)Q(ωk, Bk) + U(Hk, Ak)Q(ωk, Hk) + 0

≤ 1 + U(Bk, Ak)Q(ωk, Bk) + U(Hk, Ak)(1 − Q(ωk, Ak))

≤ 1 + vk+1gk + uk(1 − fk).

After rearrangement we have uk ≤ 1/fk + (gk/fk)vk+1, or vk = uk +
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vk+1 ≤ 1/fk + (1 + gk/fk)vk+1. Applying backward induction on k, starting

with vK+1 = 0, we get v1 ≤
∑K

k=1

[
1/fk

∏k−1
l=1 (1 + gl/fl)

]
. As U(Ω, H0) =

U(B0, A1) ≤ v1, and
∏k−1

l=1 (1 + gl/fl) ≤
∏K−1

l=1 (1 + gl/fl) for all 1 ≤ k ≤ K,

we complete the proof.

Remark A.1. In the proof of Proposition A.3 we use the inequality vK ≤

1/fK , and of all the assumptions on the one-step transition probabilities on

HK we only need the assumption that vK is finite.

Corollary A.4. Using the notations in Proposition A.3, with the assump-

tions on the one-step transition probabilities only on Hk for 1 ≤ k < K, we

have

U(Ω, H0) ≤
(
U(Ω, ΩrHK) +

K−1∑

k=1

1

fk

)[ K−1∏

l=1

(1 +
gl

fl

)
]
.

Proof. If vK = U(Ω, ΩrHK) = ∞, the claim is trivial. Otherwise, let fK =

1/vK . Using Proposition A.3 and Remark A.1 we complete the proof.

Remark A.2. For HK = φ, we have U(Ω, Ω r HK) = U(Ω, Ω) = 0, and,

therefore, using the partition {Hk}
K−1
k=0 , we get

U(Ω, H0) ≤ (
K−1∑

k=1

1

fk

)
K−2∏

l=1

(1 +
gl

fl

) ≤
(
U(Ω, ΩrHK) +

K−1∑

k=1

1

fk

)[ K−1∏

l=1

(1 +
gl

fl

)
]
.

Proposition A.5. Assume that the Markov chain is irreducible and aperi-

odic with an invariant distribution π. Let Ω1 ⊆ Ω2 ⊆ Ω and let C1 and

C2 > 0 be constants such that U(Ω, Ω1) ≤ C1, and U(ω, Ω r Ω2) ≥ C2 for

every ω ∈ Ω1. Then π[Ωr Ω2] ≤ π[Ω2] · C1/C2.

Proof. Let X = (Xt)
∞
t=0 ∈ ΩN. Let T0 = T0(X) = 0 and define suc-

cessively for n ≥ 1: T2n−1 = T2n−1(X) = min {t > T2n−2 : Xt ∈ Ω1} and
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T2n = T2n(X) = min {t > T2n−1 : Xt ∈ Ωr Ω2}.

For every t ≥ 1 define: Ht = Ht(X) = max {n : T2n < t}, Qt = Qt(X) =

(1/t)
∑t−1

n=0 1{Xn∈Ω2} and Pt = Pt(X) = (1/t)
∑t−1

n=0 1{Xn∈ΩrΩ2}.

Then for every t

Pt =
1

t

t−1∑

n=0

1{Xn∈ΩrΩ2} =
1

t

[ T1−1∑

n=0

1{Xn∈ΩrΩ2} + · · · +
t−1∑

n=T2Ht

1{Xn∈ΩrΩ2}

]

≤
1

t
[T1+· · ·+(T2Ht−1−T2Ht−2)+(T2Ht+1−T2Ht

)] =

∑Ht+1
n=1 (T2n−1−T2n−2)

t
,

Qt =
1

t

t−1∑

n=0

1{Xn∈Ω2} =
1

t

[ T1−1∑

n=0

1{Xn∈Ω2} + · · · +
t−1∑

n=T2Ht

1{Xn∈Ω2}

]

≥
1

t
[(T2 − T1) + · · · + (T2Ht

− T2Ht−1)] =

∑Ht

n=1(T2n − T2n−1)

t
.

If {Xt}
∞
t=0 is distributed according to Q, then for every X0 we have

limt→∞ E[Pt | X0] = π[ΩrΩ2] and limt→∞ E[Qt | X0] = π[Ω2]. By the

strong Markov property, we have E[T2n−1 − T2n−2] ≤ U(Ω, Ω1) ≤ C1 and

E[T2n − T2n−1] ≥ C2. Therefore,

π[ΩrΩ2] = lim
t→∞

E[Pt] ≤ lim
t→∞

E
[∑Ht+1

n=1 (T2n−1 − T2n−2)

t

]

≤ lim
t→∞

E[Ht] + 1

t
· C1 = C1 lim

t→∞

E[Ht]

t
=

C1

C2

lim
t→∞

E[Ht]C2

t

≤
C1

C2

lim
t→∞

E
[∑Ht

n=1(T2n−T2n−1)

t

]
≤

C1

C2

lim
t→∞

E[Qt]=
C1

C2

π[Ω2].
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