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Abstract

We address the issue of the representation as well as the evolution of (possibly)
mistaken beliefs. We develop a formal setup (a mutual belief space) in which agents
might have a mistaken view of what the model is. We then model a communication
process, by which agents communicate their beliefs to one another. We define a
revision rule that can be applied even when agents have contradictory beliefs. We
study its properties and, in particular, show that, when mistaken, agents do not
necessarily eventually agree after communicating their beliefs. We finally address
the dynamics of revision and show that when beliefs are mistaken, the order of
communication may affect the resulting belief structure.

1 Introduction

It is a fact of life that we sometimes do hold mistaken beliefs. We might be wrong about
some “objective” fact such as the height of the Mont Blanc (which was recently found
to be a few meters higher than previously believed) but we might also be wrong about
others’ beliefs (“I believed you believed I was already gone”) or others’ beliefs about
our own beliefs (“I believed you believed I believed we would meet at noon rather than
at 1 p.m.”) and so on. By and large, economic theory has generally ignored this fact,
despite the potential interest of allowing for such a possibility in economic modelling.
For instance, central bankers’ announcements will a priori have very different effects
according to whether investors’ beliefs about the state of the economy and about what
the central bank believes are correct or not. Shareholders might also react differently
about disclosure of information by firms, according to whether such information was
expected or caught them by surprise. The communication by scientific agencies of
discoveries might also be interpreted differently by agents according to how confident
they are that their initial beliefs, now contradicted, were right.
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Paris VI. Financial support from the French Ministry of Research (ACI “Cognitique”) is gratefully
acknowledged.
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§CNRS–EUREQua and CREST–LEI, and Center for Rationality, Hebrew University,
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In this paper, we address the issue of the representation as well as the evolution of
(possibly) mistaken beliefs. The formal setup we develop allows one to model situations
in which agents do not have the same view of what is the actual model of the economy.
Hence, after communication of each other’s beliefs, they might have to deal with sur-
prises or unforeseen contingencies: agent i may be proven wrong in his beliefs about
what j thinks the model is after he (i) hears j’s announcement. As a consequence, a
lot of the intuition one has formed in the standard case (i.e., with no mistake) does not
hold in this more general setting. For instance, communication does not necessarily
lead to agreement and might well lead to a situation in which agents disagree and agree
to disagree (i.e., disagreement is “common knowledge”). Thus results such as agreeing
to disagree à la Aumann (1976) and the convergence of beliefs as in Geanakoplos and
Polemarchakis (1982) have to be reconsidered in situations entailing mistakes (on the
underlying state of nature or on some higher order beliefs.)

The main contribution of the paper is to define a revision rule that applies when
agents learn of something that they did not believe possible originally. This rule
encompasses both cases in which agents do not face contradictions and can therefore
simply refine their original beliefs as well as when they have to modify their beliefs so as
to acknowledge some fact they thought impossible. The properties of the rule however
do differ in these two cases: as mentioned above, disagreement might be an outcome
of communication in the presence of contradictions. Another important feature of
the revision rule in the general case is that the final situation reached might depend
upon the order of announcements. Indeed, when extended to a dynamic setting, the
sequence of revisions may not be commutative.

To carry this analysis, we introduce the concept of a mutual belief system, in which
beliefs are expressed not in terms of probability but in terms of possibility correspon-
dence: an agent’s beliefs at a state ω are represented by the set of states of the world
he considers possible when the state is ω. This allows for a clear-cut definition of what
it means to be mistaken: an agent has mistaken beliefs in a given state of the world
if he does not consider that state as possible (i.e., when the true world is ω, the agent
does not believe ω is possible.) Mutual belief systems is an instance of what has been
introduced in the modal logic literature under the name of Kripke structure. It consists
of a complete description of the agents’ beliefs about the state of nature, the beliefs
of other agents about the state of nature, the beliefs of agents on others’ beliefs about
the state of nature and so forth. This infinite hierarchy of beliefs can be embedded in
a mutual belief system, which has a self reference structure. Mathematically, mutual
belief system is the analogue of the concept of belief subspace (with specification of the
true state of the world) of Mertens and Zamir (1985) when beliefs are expressed not in
terms of probability but in terms of possibility correspondence. We furthermore adopt
an interim viewpoint, that is we consider the mutual beliefs of the agents at the true
state of the world, which is assumed to be given and fixed. Relaxing the assumption
(usually referred to as the truth axiom) that agents have always correct beliefs brings
up interesting issues concerning the definition and characterization of common belief
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in mutual belief systems, given that different agents might have different models of the
world. In particular, such a belief structure with mistakes is not necessarily commonly
believed or known by all agents (as it is assumed for instance when a game is given).
Our model is therefore that viewed by an outside observer (the analyst).

Having set a general framework, we allow for communication of beliefs among
agents (in a non strategic way) and study the revision of beliefs after communication
has taken place. When agents’ beliefs are correct, it is easy to come up with a revision
rule that expresses the fact that agents sharpen their beliefs upon hearing the others’.
Essentially, one only need to take the intersection of one’s initial beliefs with the
announcements of the other. However, defining a sensible revision rule when some
agents have mistaken beliefs is less straightforward. Indeed, contradictions between
agents’ initial beliefs and the announcements of the others have to be dealt with. The
crucial question is then, how does an agent whose beliefs are proven wrong by the
announcements of some other agent revise her beliefs? Consider the following simple
situation: agent 1 believes that the state of nature is α or β, believes that agent 2
believes that the state of nature is α or β and actually believes that this is common
beliefs. However, agent 2 believes that the state of nature is β, that agent 1 believes
it is β and that this is common belief: how should agent 1 (resp. 2) change her
beliefs, which are proven wrong when 2 (resp. 1) announces that he believes that β

is common belief (resp. α or β is common belief)? In this simple example, if both
agents announce their beliefs, a possible revision would simply be that both agents
now believe that the state is β and that this is commonly believed.1 Alternatively,
both agents could well hold on to their first order beliefs (1 continues to believe the
state of nature is α or β and 2 still believes it is β) and change their higher order beliefs
to take into account the announced beliefs: the situation reached would then be that
1 believes α or β, 2 believes β and this situation is common belief (that is, the two
agents “agree to disagree”.) This latter rule is based on the idea that agents’ revised
beliefs are “entrenched” in their initial beliefs, an idea that was already put forth
in the axiomatic literature on (single agent) belief revision developed by Alchourrón,
Gärdenfors and Makinson (1985) (see also Makinson (1985)).

We develop a general revision rule when agents announce truthfully their exact
beliefs, that always yields well defined mutual belief systems. Thus, the presence of
mistakes is not synonymous of “anything can happen” and in particular the consistency
properties embedded in the definition of a mutual belief system (akin to positive and
negative introspection) continue to hold. The revision rule is based on the intuition
underlying the second revision rule described in the example above that agents will
change their beliefs in a “minimal way” when they face a contradiction. This amounts
to assume some form of entrenchment of the revised beliefs in the original ones. In
particular, in our model, an agent will never believe that a state of nature he initially
believed impossible is now possible simply because some other agent announced that

1 This example will be treated formally as Example 2 in the text.
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she believed it possible.
We then proceed to the analysis of the properties of this rule in a static setting.

For instance, we give sufficient conditions that ensure that the mutual belief system
reached after communication does not entail any disagreement. These conditions are
stronger than simply the absence of mistakes in the true state of the world. Essentially,
it is necessary that the absence of mistakes be common belief to yield agreement among
agents. We next turn to the dynamics of belief revision, when announcements are made
sequentially, and uncover a few interesting issues: first, we establish that the mutual
belief system eventually reached is one in which first order beliefs are common beliefs.
Second, we show through examples that the order of announcements might matter as
to where the system converges to. This is an instance in which the intuition one might
have when beliefs are not mistaken (in which case the order of communication does
not matter) does not generalize.

We believe that the setting developed in this paper will be useful for dealing with
issues such as trade based on differences in beliefs, since our setting allows for dif-
ferences in beliefs that are of a different kind than for instance the ones studied in
Morris (1994). In Morris (1994), although agents do not have a common prior, they
can update their beliefs according to Bayes’ rule and do not have to deal explicitly
with contradictions. In our setting, there is not a single way to revise beliefs when
faced with a contradiction. We are not the first ones to introduce Kripke structures
in economics (see for instance Bacharach (1985), Samet (1990)) nor to relax the truth
axiom in such a setting (see Bonanno and Nehring (1998)). However, to the best of our
knowledge, the analysis of revision of beliefs in such a setting has not been pursued.

The paper is organized as follows. Section 2 contains the definition and some
properties of mutual beliefs systems. Section 3 develops the notion of common beliefs
in mutual belief systems. In Section 4, the heart of the paper, we define a belief revision
rule and study its properties. Appendix A and B contain some technical material that
can be skipped in a first reading. All proofs are gathered in Appendix C.

2 Mutual Belief Systems: definition and preliminaries

Let I = {1, ..., i, ..., n} be a finite set of agents and S a set of states of nature. A
mutual belief system is a representation of agents’ beliefs about the state of nature s

and about the beliefs of the other agents. Because of this latter aspect, the structure
introduced has to be self-referential, as one can see in the following definition.

Definition 1 A Mutual Belief System (MBS) is a collection (Ω, ω0, s, (ti)i∈I) , where
Ω is a set, and the following conditions are satisfied:

(i) s is a mapping from Ω to S,

(ii) ∀i ∈ I, ti is a mapping from Ω to 2Ω,

(iii) ∀i ∈ I, ∀ω ∈ Ω, ω′ ∈ ti(ω) ⇒ ti(ω′) = ti(ω),
(iv) ω0 ∈ Ω,
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(v) There does not exist Ω′  Ω such that (Ω′, ω0, s|Ω′ , (ti|Ω′)i∈I) satisfies conditions
(i) to (iv).2

An element (ω; s(ω); t1(ω), ..., tn(ω)) is called a state of the world. Its interpretation
is as follows: ω is the name of the state, s(ω) is the state of nature in the world ω, ti(ω)
is the set of states of the world that i considers possible in state ω (and can also be
thought of as “the type” of agent i in state ω). Finally, ω0 is the true state of the world.
Abusing notation slightly we will denote a state of the world ω = (s(ω), t1(ω), ..., tn(ω))
since ω uniquely determines the state of the world.

It is important to note that the definition does not require that agents consider ω0

possible, i.e., ω0 need not be in ti(ω0). A consequence of allowing mistaken beliefs is
that the MBS is not necessarily known by the agents. Embedded in the definition are
several assumptions about the nature of the situations we model. First, we assume
a form of consistency of the beliefs: (iii) of the definition implies that beliefs are
partitional (i.e., {ti(ω)}ω∈Ω is a partition of Ωi =: ∪ω∈Ωti(ω)). Note however that
Ωi is not necessarily equal to Ω. Second, the true state ω0 is given. Thus, we place
ourselves in a situation often referred to as the “interim stage”, at which the state of
nature and the beliefs of the agents are realized. Third, we assume that the mutual
belief system is minimal in the sense that it does not contain a smaller MBS (condition
(v)). This last condition is equivalent to assuming that the mutual belief system does
not contain states that are not deemed possible via a finite sequence of steps of the
form “I think that you think that she thinks...” (condition (v′) in Proposition 1 below,
which will be used repeatedly in the proofs of this paper.) These are states that are
“not in the mind” of any player. This does not imply that Ω is finite. In particular,
we could represent in our setup Rubinstein’s electronic mail game (Rubinstein (1989))
which necessitates an infinite state space. The restriction imposed is, rather, that
among any two given worlds ω and ω′, the “distance” is finite, i.e., there is finite path
that links the two worlds via chains of the form in state ω, i1 believes that i2 believes
that ... ik believes ω′.

Proposition 1 Let (Ω, ω0, s, (ti)i∈I) be a collection which satisfies conditions (i) to
(iv) of Definition 1. Then condition (v) is equivalent to

(v’) ∀ω ∈ Ω\{ω0} , there exists a finite sequence, {ik}k=r
k=1 with ik ∈ I for all k such

that ω ∈ ti1(ti2(...(tir(ω0)))) where for any A ⊂ Ω, ti(A) = ∪ω∈Ati(ω).

We now illustrate the concept of an MBS on the well-known example of the three
hats.

Example 1 Three girls wear hats that can be either red (R) or black (B). Each girl
sees the other two girls’ hats but does not see the color of her own hat. Assume
that the three hats are actually red. Denoting the states of nature by C1C2C3 where

2ti|Ω′ is the restriction of ti to Ω′, i.e., ti|Ω′ : Ω′ → 2Ω and ti|Ω′(ω) = ti(ω) for all ω ∈ Ω′.
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Ci ∈ {R, B} is the color of agent i’s hat, we represent this situation by an MBS given
by Ω = {ω0, ..., ω7} where,

ω0 = (RRR, {ω0, ω4} , {ω0, ω2} , {ω0, ω1})
ω1 = (RRB, {ω1, ω5} , {ω1, ω3} , {ω0, ω1})
ω2 = (RBR, {ω2, ω6} , {ω0, ω2} , {ω2, ω3})
ω3 = (RBB, {ω3, ω7} , {ω1, ω3} , {ω2, ω3})
ω4 = (BRR, {ω0, ω4} , {ω4, ω6} , {ω4, ω5})
ω5 = (BRB, {ω1, ω5} , {ω5, ω7} , {ω4, ω5})
ω6 = (BBR, {ω2, ω6} , {ω4, ω6} , {ω6, ω7})
ω7 = (BBB, {ω3, ω7} , {ω5, ω7} , {ω6, ω7})
The same example, in which it is common knowledge that there is at least one red

hat among the three girls is described by Ω = {ω0, ..., ω6} where,
ω0 = (RRR, {ω0, ω4} , {ω0, ω2} , {ω0, ω1})
ω1 = (RRB, {ω1, ω5} , {ω1, ω3} , {ω0, ω1})
ω2 = (RBR, {ω2, ω6} , {ω0, ω2} , {ω2, ω3})
ω3 = (RBB, {ω3} , {ω1, ω3} , {ω2, ω3})
ω4 = (BRR, {ω0, ω4} , {ω4, ω6} , {ω4, ω5})
ω5 = (BRB, {ω1, ω5} , {ω5} , {ω4, ω5})
ω6 = (BBR, {ω2, ω6} , {ω4, ω6} , {ω6})

Although for the sake of simplicity, the examples we give in the paper are abstract
examples (i.e., we do not provide an economic interpretation), economic example can be
constructed in a similar fashion. Take for instance the situation in which the central
bank (agent 1) is correct about the true state of the economy (say, Boom) while
investors (agent 2) consider both states (Boom or Recession) possible but believe that
the central bank knows the true state of the economy and believes this is common belief
(a notion we will define precisely in Section 2). Such a situation would be represented
(assuming the true state of nature is indeed “Boom”) by the following MBS (the central
bank is the first agent, investors the second): Ω = {ω0, ω1} where

ω0 = (Boom, {ω0}, {ω0, ω1})
ω1 = (Recession, {ω1}, {ω0, ω1})
Expanding a bit on this example, one could also consider a situation in which

investors wrongly believe that the central bank is informed of the true state of the
economy and the central bank believes that investors believe it is informed of the true
state of the economy. Such a situation would be captured by Ω = {ω0, ω1, ω2, ω3}
where,

ω0 = (Boom, {ω0, ω1}, {ω2, ω3})
ω1 = (Recession, {ω0, ω1}, {ω2, ω3})
ω2 = (Boom, {ω2}, {ω2, ω3})
ω3 = (Recession, {ω3}, {ω2, ω3})
This is an instance of an MBS entailing mistaken beliefs. The next example il-

lustrates a similar instance of mistaken beliefs, which was verbally presented in the
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introduction.

Example 2 Let S = {α, β} , I = {1, 2} and Ω = {ω0, ω1, ω2, ω3} such that:
ω0 = (α, {ω1, ω2} , {ω3})
ω1 = (α, {ω1, ω2} , {ω1, ω2})
ω2 = (β, {ω1, ω2} , {ω1, ω2})
ω3 = (β, {ω3} , {ω3})

This represents a situation in which the true state of nature is α, agent 1 believes
that it is α or β and agent 2 believes that it is β. Furthermore, 1 believes that 2
believes that the state of nature is α or β while 2 believes that 1 believes that the
state of nature is β. In a nutshell, 1 believes that it is common belief that the state of
nature is α or β, while 2 believes that it is common belief that the state is β.

The restriction imposed by (v) in Definition 1 can be illustrated in Example 2 above:
if one were to add a state like ω4 = (α, ω0, ω4) to the MBS in Example 2 (leaving ω0,
ω1, ω2, and ω3 unchanged), then, formally, the system thus obtained is not an MBS
since it contains a subset (namely {ω0, ω1, ω2, ω3}) which satisfies conditions (i) to (iv)
of Definition 1. Alternatively, one can observe that ω4 cannot be reached by a finite
chain of beliefs as required by condition (v′) of Proposition 1. Finally, the definition
of an MBS should make it clear that the same epistemic state of the agents could be
represented in various ways.

Example 3 Let S = {α, β} , I = {1, 2} and Ω = {ω0, ω1, ω2, ω3, ω4} such that:
ω0 = (α, {ω1, ω2} , {ω3, ω4})
ω1 = (α, {ω1, ω2} , {ω1, ω2})
ω2 = (β, {ω1, ω2} , {ω1, ω2})
ω3 = (β, {ω3} , {ω3, ω4})
ω4 = (β, {ω4} , {ω3, ω4})
An examination of the beliefs represented here reveals that the epistemic situation

is the same as the one in Example 2. Hence, we could say that the MBS in Example
2 is a representation of the MBS defined above and that the two MBS, capturing the
same epistemic situations are equivalent.

The previous example reveals that a given epistemic situation could be captured
by MBS that are formally different. This fact is not bothersome if agents do not make
any mistake. However, as we want to study revision in beliefs when agents potentially
have initial mistaken beliefs, we have to make sure that “irrelevant” mistakes can be
dropped at the outset so as to focus on beliefs that are mistaken in a meaningful
way. A simple intuition of why some mistakes are not meaningful is the following:
imagine that ω0 /∈ ti(ω0). This can reflect two very different situations: either the
agent is correct in the sense that in ω0 he believes possible a state ω′ which represents
the same beliefs as ω; or the agent is making a mistake in the sense that he is not
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considering as possible the true state of the world ω0 (or any state of the world that
represents the same epistemic state.)

A way of getting around this difficulty is to define notions of representation and
equivalence of MBS as well as a notion of minimality for MBS. This is done in appendix
A to which we refer the interested reader. Minimality consists in essentially getting rid
of potential redundancies in an MBS. Our definition, whose details can be skipped in a
first reading, thus identifies redundancies in Example 3 and suggest to “merge” states
ω1 and ω3. A minimal MBS is one in which all the redundancies have been removed.
In the rest of the paper, we exclusively deal with minimal MBS.

3 Common Belief in Mutual Beliefs Systems

In this section, we explore ways of expressing belief properties in MBS. We first define
the notion of belief horizon for an agent. It is the set of states of the world that
are believed possible by the agent (possibly via links of the form “I believe that you
believe this state is possible”, or “I believe that you believe that she believes this state
is possible”,...). We then define common belief and provide a characterization in terms
of the agents’ belief horizons. We conclude this section by consideration on the notion
of correct beliefs.

3.1 Belief Horizon and Common Belief

When agents hold mistaken beliefs, they do not necessarily all have the same view of
what the model actually is. We introduce here the notion of belief horizon of an agent
which is the model the agent has in mind.

Definition 2 Let (Ω, ω0, s, (ti)i∈I) be an MBS. The belief horizon of agent i ∈ I,
denoted by BHi(ω0, t), is the minimal subset Y of Ω satisfying:

(i) ti(ω0) ⊂ Y ,

(ii) ∀ω ∈ Y , ∀j ∈ I, tj(ω) ⊂ Y .

Thus, BHi(ω0, t) is the smallest “public event” for i, i.e., the smallest set such that
i believes it and believes that all other agents believe it, believe that others believe
that others believe it and so forth. In Example 2, one has BH1(ω0, t) = {ω1, ω2} and
BH2(ω0, t) = {ω3}.

Proposition 2 Let (Ω, ω0, s, (ti)i∈I) be an MBS. For all i ∈ I, ∀ω ∈ Ω,

ω ∈ BHi(ω0, t) ⇔ ∃r ∈ N, ∃{ik}k=r
k=1, ik ∈ I, ir = i s.th. ω ∈ ti1(ti2(. . . (tir(ω0)))

This Proposition enables us to state a useful property of MBS, namely that an
MBS is the union of agents’ belief horizons and of the true state (which might not be
in any agent’s belief horizon).
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Corollary 1 Let (Ω, ω0, s, (ti)i∈I) be an MBS. Then, Ω = {ω0} ∪ (∪i∈IBHi(ω0, t)).

The definition of common belief of an event is the usual definition of common
knowledge, adapted to our setting: an event is common belief if all agents believe it,
all agents believe that all agents believe it and so forth.

Definition 3 Let (Ω, ω0, s, (ti)i∈I) be an MBS. An event E ⊂ Ω is common belief
(CB) if for any r ∈ N and any sequence {ik}k=r

k=1, ik ∈ I, ti1(ti2(. . . (tir(ω0))) ⊂ E

Note that as an MBS describes a mutual belief structure at a specific, ‘true’, state
of the world, common belief is also defined at that state ω0. The following proposition
can be deduced immediately from Proposition 2.

Proposition 3 Let (Ω, ω0, s, (ti)i∈I) be an MBS. An event E ⊂ Ω is common belief if
and only if BHi(ω0, t) ⊂ E for all i ∈ I

This notion of common belief is meaningful for the analyst since, according to i’s
beliefs, any event containing BHi(ω0, t) is CB. As we shall see later, only at the absence
of mistakes, CB events have stronger meaning. Recall that in the common knowledge
literature (e.g., Geanakoplos (1994)), an event is common knowledge at some state if
there exists a public event (or a truism) at that state that is included in the event.
The characterization of common belief we provided is similar, although the “public
event” might be agent dependent since agents do not necessarily have the same belief
horizon.

Corollary 2 Let (Ω, ω0, s, (ti)i∈I) be an MBS. An event E ⊂ Ω is common belief if
and only if

∪i∈IBHi(ω0, t) ⊂ E ⊂ Ω = {ω0} ∪ (∪i∈IBHi(ω0, t))

This corollary establishes that in an MBS, at most two events can be common
belief. Ω is always commonly believed (by construction of an MBS), while Ω \ {ω0} is
common belief only if the true state ω0 does not belong to the belief horizon of any
agent. In other words, Ω is the only common belief event at ω0 if and only if ω0 is in
the belief horizon of at least one agent.

3.2 Correct Mutual Belief Systems

A mutual belief system is correct if agents make no mistake, in the sense they all
believe that the true state ω0 is possible. Correctness, in our framework, is in some
sense the analogue of the truth axiom in knowledge systems, which asserts that if
an agent knows something then it must be true. However, it is possible to construct
examples in which all agents are correct but this is not commonly believed. This
stronger notion is captured by the notion of totally correct MBS.
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Definition 4 Let (Ω, ω0, s, (ti)i∈I) be a minimal MBS. An agent i ∈ I has correct
beliefs if ω0 ∈ ti(ω0). The MBS is correct if all agents have correct beliefs. The MBS
is totally correct if ω ∈ ti(ω) for all ω ∈ Ω and all i ∈ I.3

In Example 1, the MBS are totally correct, while the MBS of Example 2 is not
correct. As mentioned, an MBS can be correct but not totally correct, as illustrated
in the following example.

Example 4 Let S = {α, β} and I = {1, 2}. Consider Ω = {ω0, ω1} where
ω0 = (α, {ω0} , {ω0, ω1})
ω1 = (β, {ω0} , {ω0, ω1})
In this Example, the two agents satisfy the truth axiom in the true world ω0 but

agent 2 does not believe that agent 1 satisfies it: 2 believes that in the possible world
ω1, agent 1 is mistaken. Thus there is a difference between situations where all agents
satisfy the truth axiom but this fact is not commonly believed (i.e the MBS is correct
but not totally correct) and situations which are captured through totally correct MBS
where all agents satisfy the truth axiom and this fact is common belief.

If an agent is correct, it is easy to see that his belief horizon contains the belief
horizons of all other agents, and his belief horizon is the entire space Ω. A direct
corollary of this fact together with Corollary 2 is that if at least one agent is correct,
the only common belief event is Ω itself. Further, since MBS that are correct have
the feature that different agents’ belief horizons coincide, this common belief horizon
is common belief and therefore correctness embeds a kind of agreement among agents
about what the model is. Note finally that correctness is sufficient but not necessary
for the coincidence of belief horizons of the different agents. Take for instance the
following MBS: ω0 = (α, {ω0}, {ω1}) and ω1 = (β, {ω0}, {ω1}). There, BH1(ω0; t) =
BH2(ω0; t) = {ω0, ω1} while agent 2 is not correct.

4 Communication and Revision in Mutual Belief Systems

We are interested in studying the evolution of beliefs when agents can communicate
their beliefs to each other and update accordingly. In this Section we provide rules
according to which agents revise their beliefs in a communication process. At this
stage of our work, we do not allow agents to announce false (or partly false) or even
imprecise beliefs. Thus, the analysis will concentrate on the case in which agents
announce truthfully and precisely their beliefs.

Definition 5 Let (Ω, ω0, s, (ti)i∈I) be an MBS. A communication is a collection
(ti(ω0))i∈Ic where Ic ⊂ I.4

3If the MBS considered were not minimal, the definition should be slightly more general: an MBS is
correct if ∀i ∈ I, there exists ω ∈ ti(ω0), such that ω and ω0 are identical. When the MBS is minimal,
this definition and definition 4 coincide.

4Thus, we restrict attention to communication that are full truthful in the sense that agents who
communicate tell the truth, the whole truth and nothing but the truth.
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A communication can therefore be identified by Ic ⊂ I, the group of agents who
announce their true beliefs (the carrier of the communication). We’ll refer to it as
full communication when Ic = I. The restriction that agents announce precisely their
true beliefs can be understood as an assumption that the information revealed can be
somehow certified. Lying is hence prohibited. The strategic aspects of communication,
including the possibility of non truthful announcements are not addressed at this stage
of the work. Finally, we will assume in the sequel that it is “common knowledge”
that agents announce precisely their true beliefs. This is analogue to the models of
Geanakoplos and Polemarchakis (1982) and Bacharach (1985).

We now move on to some attempts to define a revision rule. We show through
examples that the most intuitive rules are not adapted to our setting where agents
might be mistaken. We then discuss how agents “should” cope with announcements
contradicting their initial beliefs, and introduce the notion of an order on the states of
the world, reflecting an agent’s view of which worlds are “closest” to the true world,
after hearing the announcements of the other agents. This enables us to propose
a revision procedure and to study its properties. We then generalize it to dynamic
communication processes.

4.1 Defining a revision procedure: a first attempt

To develop and motivate our definition of a general revision rule, we first look at two
simple and intuitive rules. We examine their deficiencies and the domain in which
they are adequate. We then generalize them so as to cope with these deficiencies while
maintaining their adequate performance.

A first intuition that one might have is simply to assume that each agent takes
the announcement of the other agents at face value and hence revises his beliefs by
taking the intersection of his initial beliefs with the announcement of the other. A
second intuition is that an agent is not directly interested by the content of the an-
nouncements but rather by the worlds which are compatible with the announcements,
i.e., he considers the states of the world in which these announcements could have been
made; any other state of the world is eliminated by the revision. To illustrate these
two logics, consider the following example:

Example 5 Let S = {α, β} and I = {1, 2} . Consider Ω = {ω0, ω1, ω2} where
ω0 = (α, {ω0, ω1} , {ω0, ω2})
ω1 = (α, {ω0, ω1} , {ω1})
ω2 = (β, {ω2} , {ω0, ω2})

When Ic = I, the two revision rules suggested above both yield ω0 = (α, {ω0} , {ω0})
that is, both agents learn from the other’s announcement that the true state is ω0.
However, the process through which one arrives at this MBS is different in the two
rules: according to the first intuition, agent 1 drops state ω1 because agent 2 announced
that he does not believe in this state while according to the second intuition, agent 1
drops state ω1 because in that state, agent 2 would have announced {ω1}.

11



This example is actually representative of the class of totally correct MBS in which
the two revision rules suggested yield the same, well-defined MBS. Before pointing
differences between these two rules, we first introduce them formally.

Definition 6 Let (Ω, ω0, s, (ti)i∈I) be a totally correct MBS. Given a communication
Ic, the revision of beliefs is the MBS, (Ωc, ω0, s, (tci )i∈I) defined by:5

• First revision rule.

– ∀i ∈ I, ∀ω ∈ Ω, tci (ω) = ti(ω) ∩ (∩j∈Ictj(ω0)),

– Ωc = {ω0} ∪ (∪i∈IBHi(ω0, t
c))

• Second revision rule

– ∀i ∈ I, ∀ω ∈ Ω, tci (ω) = ti(ω) ∩ {ω′ ∈ Ω|tj (ω′) = tj(ω0); ∀j ∈ Ic}
– Ωc = {ω0} ∪ (∪i∈IBHi(ω0, t

c))

Remark 1 There is a slight abuse of notation in the previous definition, as Ωc is
defined via belief horizons that are, strictly speaking, only defined once Ωc is given.
Furthermore, one can define tci only after having defined Ωc. Rigourously, one needs
to define (Ωc, ω0, s, (tci )i∈I) as follows:

• ∀i ∈ I, ∀ω ∈ Ω, t
′
i(ω) = ti(ω) ∩ (∩j∈Ictj(ω0)),

• Ωc = {ω0} ∪ {ω ∈ Ω|∃r ∈ N and {ik}k=r
k=1, ik ∈ I, s.th. ω ∈ t

′
i1

(t
′
i2

(. . . (t
′
ir

(ω0)))}

• ∀i ∈ I, tci = t
′
i|Ωc.

It is readily verified that the total correctness of the MBS guarantees that the
revised beliefs are well defined and hence we have:

Proposition 4 The revision of beliefs according to the first and to the second revision
rule yield, in a totally correct MBS, the same totally correct MBS.

When we consider non totally correct MBS, we encounter two kinds of problems.
First, the two rules might lead to different MBS.6 Second, they may not be applicable.
Let us examine the first problem on Example 4 where the MBS is correct.

Example 6 (Example 4 continued)
Let Ic = {1}. Then the first rule leads to ω0 = (α, {ω0} , {ω0}), while the second

rule leaves the initial MBS unchanged.
5For convenience (or abuse...) of notation, the names of the states of the world in Ωc are the same

as in Ω (but with different beliefs of course.)
6Although we defined the two rules only for totally correct MBS, it is clear that they are applicable

to a wider set of MBS.
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We feel that the first rule is not very satisfactory in this example. Indeed, it is as
if the first agent managed to convince agent 2 to drop state ω1: 1 says “I believe the
state of nature is α” and agent 2 is convinced that he should not consider any more
that the state of nature could be β. Yet, before any communication took place, agent
2 thought that agent 1 could well be mistaken on the state of nature and agent 1’s
announcement was completely foreseeable by agent 2. Thus, following the first rule
leads to admit that agent 2 is influenced by others’ announcement even though it was
expected and hence is not confident in his own beliefs. The second revision rule leaves
the MBS unchanged which looks more reasonable.

In view of this example, we chose to generalize the second intuition rather than
the first. This amounts to implicitly assume that one will never abandon one’s initial
beliefs when they are not proven false. Even if an agent’s beliefs are contradicted by
the beliefs of another agent, the first agent will not adopt the second agent’s beliefs
but simply incorporate in his own beliefs the fact that they disagree. There is a sense
in which revised beliefs are entrenched in the initial beliefs. This represents situations
in which each agent believes that his own expertise is at least as good as the others’.

The second problem, which is faced by the two rules, is that they might be ill-
defined for non correct MBS, as shown in the following example.

Example 7 Let S = {α, β, γ} and I = {1, 2} . Consider Ω = {ω0, ω1}
ω0 = (α, {ω1} , {ω0})
ω1 = (β, {ω1} , {ω1})

Assume full communication. Then, following the first rule the revision yields tc1(ω0) =
tc2(ω0) = ∅ and following the second rule, the revision yields tc2(ω0) = {ω0} while
tc1(ω0) = ∅, which is not possible in an MBS.

The problem with the second rule exhibited in Example 7 reflects the contradiction
between agent 1’s initial beliefs and his interpretation of the other agent’s announce-
ment. Observe that the first revision rule has the same problem and cannot be applied
here either. We reached now the difficult part in the construction of a general revision
rule namely, the need to specify how agents deal with contradictions between their
initial beliefs and the reported beliefs of the other agents.

4.2 Coping with contradictions

The two revision rules introduced above are formally not applicable when contradic-
tions occur, that is, if there is no world among the ones initially believed by an agent
that is compatible with the announcements of the other agents. However, the logic
behind these two rules could be extended to deal with contradictions. Along the in-
tuition of the first revision rule, the agent could adopt the beliefs announced by the
other. In Example 7, agent 1’s beliefs would now be given by tc1(ω0) = {ω0}. This
corresponds to take at face value 2’s announcements and, in particular, to admit that
state α is true, something 1 did not believe in to begin with. Observe however that
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agent 1 is not proven wrong in his belief that the state of nature is β. Indeed, the
only mistake that is revealed is that 1 believed 2 believed the state of nature was
α. We do not pursue this logic in the rest of the paper and concentrate on the logic
behind the second revision rule: in presence of contradictions, the agent holds on to
the beliefs that are not contradicted and changes in a “minimal way” the ones that
are contradicted. Consider Example 7 again: what does agent 2 do when he hears 1’s
announcement that the state is α, which is contradicting his initial beliefs? A plausible
revised MBS, after full communication is:

ω0 = (α, {ω1} , {ω0})
ω1 = (β, {ω1} , {ω0})
This revision is minimal in the sense that the initial disagreement on the state

of nature persists. Agent 2 has only revised his beliefs by taking into account 1’s
beliefs, which explains why tc2(ω1) = {ω0}. The system is then closed by imposing
that this minimal change becomes common belief. The general revision rule we’ll
introduce shortly is hence built on the idea that an agent keeps the beliefs that are
not contradicted. This is illustrated in the next example.

Example 8 Let S = {α, β, γ} and I = {1, 2, 3} . Consider Ω = {ω0, ω1, ω2}
ω0 = (α, {ω1} , {ω2} , {ω0})
ω1 = (β, {ω1} , {ω1} , {ω1})
ω2 = (γ, {ω1} , {ω2} , {ω2})

Assume communication Ic = {2}. Agent 1 realizes that he was mistaken about 2’s
beliefs: 2 actually disagrees with 1 on both the state of nature and 3’s beliefs. A
plausible revision would be:

ω0 = (α, {ω1} , {ω2} , {ω0})
ω1 = (β, {ω1} , {ω2} , {ω1})
ω2 = (γ, {ω1} , {ω2} , {ω2})

where 1 only modified his beliefs about 2’s beliefs (and the latter are common belief).

We are not yet done: the principles discussed so far are still not enough to yield a
satisfactory revision rule, as can be seen on the following example.

Example 9 Let S = {α, β, γ} and I = {1, 2, 3} . Consider Ω = {ω0, ω1}
ω0 = (α, {ω1, ω2} , {ω0} , {ω1})
ω1 = (β, {ω1, ω2} , {ω1, ω2} , {ω1})
ω2 = (γ, {ω1, ω2} , {ω1, ω2} , {ω2})

Assume communication Ic = {2, 3}. Agent 1 realizes he was mistaken about 2’s beliefs
but not necessarily about 3’s beliefs. Thus, he will not necessarily keep all his initial
beliefs {ω1, ω2}, and for instance, he might abandon ω2, yielding the following revised
MBS:

ω0 = (α, {ω1} , {ω0} , {ω1})
ω1 = (β, {ω1} , {ω0} , {ω1})

14



To capture the phenomenon at work in Example 9, we need to add a sort of personal
attitude of the agents as part of the data of the model. To capture this personal attitude
of the agent, we assume that given an MBS,

(
Ω, ω0, s, (ti)i∈I

)
and a communication

Ic, there is an order, ºc
i for each i, which is a complete and transitive binary relation

defined on Ωi, the set of states that i could believe (recall that Ωi = ∪ω∈Ωti(ω)). For
ω, ω′ ∈ Ωi, ω ºc

i ω′ is interpreted as saying that, given the communication Ic, agent
i believes that ω is “closer” to the true (unknown) world than ω′ is. In addition to
completeness and transitivity we shall assume that the order ºc

i is consistent :

Definition 7 Given an MBS,
(
Ω, ω0, s, (ti)i∈I

)
and a communication Ic, an order ºc

i

is said to be consistent if whenever Ωi ∩ ({ω ∈ Ω|tj(ω) = tj(ω0), ∀j ∈ Ic}) 6= ∅,
[
ω ∈ Ωi ∩ {ω′′ ∈ Ω|tj(ω′′) = tj(ω0),∀j ∈ Ic}] ⇔ ω ºc

i ω′; ∀ω′ ∈ Ωi

Thus, an order ºc
i is consistent if it ranks highest every state of the world that

is initially deemed to be possibly believed by i (i.e., states that are in Ωi) and that
explains (is compatible with) the others’ announcements. This requirement is really
rather weak: in Example 9, it does not impose anything on ºc

1 and the three different
orders ω1 Âc

1 ω2, ω2 Âc
1 ω1, or ω1 ∼c

1 ω2 are all consistent.
These orders could be used to model various assumptions about the expertise of

the different agents. Consider for instance the case in which all agents are equally
competent. An order representing this is to say that the different states are ordered
according to the number of inconsistencies: if, for instance, two agents announce beliefs
that are in contradiction with the one they should have in state ω′, then this state
is ranked lower than state ω′′ in which only one agent announces beliefs that are
in contradiction. Another possible ranking, representing the idea that, say, agent 1
is known to be an expert, would be to rank states according to whether agent 1’s
announcement are in contradiction or not with the state.

The revision rule we are about to introduce is based on these orders and on the
assumption that, loosely speaking, they are commonly believed by all agents so as to
enable interactive reasoning about mutual beliefs. It should be noted that i’s order
is defined on Ωi, which does not, in general, coincide with i’s belief horizon. This
is important since j might (mistakenly) believe that there are states that i considers
possible (i.e., states in BHj(ω0, t) ∩ Ωi). Hence, j needs to know how to revise i’s
beliefs in these worlds. Implicit in the fact that the order introduced for agent i is
defined on all of Ωi is the idea that all agents agree on how to revise i’s beliefs. If
states ω and ω′ belong to both j and j′’s belief horizon, then these two agents agree on
which is ranked highest according to i’s ordering. Furthermore, this fact is commonly
believed by all agents. Hence, we’ll make the maintained assumption that given an
MBS,

(
Ω, ω0, s, (ti)i∈I

)
and a communication, all orders ºc

i for i ∈ I are consistent and
commonly known by all agents (in the sense we just discussed).
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4.3 A general revision rule: definition and examples

We now propose a general revision rule that copes with announcements contradicting
initial beliefs. We first define the rule and then illustrate it via a few examples. Given
an MBS and a communication, the revision rule we propose consists of two elements.

• Step 1 Each agent i retains all states of the world in the set Ωi that have the
highest rank in his order ºc

i .

• Step 2 In the states retained, the beliefs attributed to other agents are con-
structed by taking into account the modifications they have made in step 1. This
corresponds to the idea that the way agents modify their beliefs is common belief.

Note that step 2 is possible since by assumption the announcements ti(ω0), i ∈ Ic,
and the orders ºc

i are “ commonly known”, hence the modification made can be
“performed” by player i for each player j.

Definition 8 Let
(
Ω, ω0, s, (ti)i∈I

)
be a minimal MBS and consider the communica-

tion Ic.7 The revision of
(
Ω, ω0, s, (ti)i∈I

)
is

(
Ωc, ω0, s, (tci )i∈I

)
, defined in two steps:

First define t̃i(.) by ∀ω ∈ Ω, t̃i(ω) = {ω′ ∈ ti(ω)|ω′ ºc
i ω

′′
, ∀ω′′ ∈ ti(ω)} and let

Ω̃ = {ω0} ∪
(∪i∈IBHi(ω0, t̃)

)

Then, define tci (.) as follows:

• ∀ω ∈ Ω, ∀i ∈ I \ Ic, tci (ω) = t̃i(ω)

• ∀ω ∈ Ω, ∀i ∈ Ic, tci (ω) = t̃i(ω0)

and set Ωc = {ω0} ∪ (∪i∈IBHi(ω0, t
c))

Remark 2 As in the two previous rules, there is a slight abuse of notation in the
previous definition, as Ω̃ is defined via belief horizons that are only defined once Ω̃ is
given. The same problem arises for Ωc and can be dealt with in the same manner as
in Remark 1.

The logic of the revision rule we propose can be understood as follows. The first
step is to eliminate in one’s beliefs the worlds that are considered the farthest away
(after hearing the others’ announcements) from the true world, according to the order
ºc

i . In this operation, the agent considers his initial beliefs as valid and simply gets
rid of the states that are not ranked highest with respect to his ordering. Hence, as
discussed in section 4.2, agents are assumed to anchor their revised beliefs in their
initial beliefs. This step of the revision procedure coincides with the second revision
rule when it is well defined and the agents’ orders are consistent.

7We define the revision rule only for minimal MBS, since otherwise the outcome of the revision
process depends on the representation used, as can be seen in Example 13 in appendix B.
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The second step of the revision procedure consists in dealing with the remaining
“contradictions”. One could interpret it as follows. After the first step of the revision
procedure, agents announce their (corrected) beliefs: if, after the first step, the MBS
obtained contains states that specify different beliefs for say agent i than the ones he
announces, then simply replace these beliefs by his announcement. This second step
might be irrelevant if the announcements of the agents were all compatible with what
they expected (this is the case under our maintained assumption for instance if the
MBS is correct), in which case after the first step, all the states that were not ranked
highest have been eliminated. We now illustrate this rule on Example 2.

Example 10 (Example 2 continued) Consider full communication and the following
consistent orders for 1 and 2:

ω3 Âc
1 ω1 Âc

1 ω2 and ω1 ∼c
2 ω2 Âc

2 ω3

The first step of the definition yields the following MBS:
ω0 = (α, {ω1}, {ω3})
ω1 = (α, {ω1}, {ω1, ω2})
ω2 = (β, {ω1}, {ω1, ω2})
ω3 = (β, {ω3}, {ω3})

At the next step, the contradictions are treated by replacing with the announcement.
ω0 = (α, {ω1}, {ω3})
ω1 = (α, {ω1}, {ω3})
ω2 = (β, {ω1}, {ω3})
ω3 = (β, {ω1}, {ω3})

It is easy to check that in the above MBS, states ω0 and ω1 actually express the same
hierarchy of beliefs, and that the same is true for states ω2 and ω3. Hence, it can be
reduced (according to the formal process defined in Appendix A) to the following MBS:

ω0 = (α, {ω0}, {ω1})
ω1 = (β, {ω0}, {ω1})

The outcome of the revision procedure is therefore a situation in which disagreement
about the state of nature is common belief but becomes common belief.

When the initial MBS is incorrect, the revision can lead to a modification of the
beliefs so that they become correct. However, if agents disagree about the state of
nature, that is if initially they believed in disjoint sets of states of nature, then the
revision will never lead them to agree on the true state of nature and disagreement
will persist.

4.4 General revision rule: consistency properties

We now proceed to show a certain number of properties of the revision rule. The first
proposition states that the revision rule yields an MBS at each of the two steps of
Definition 8. Hence, contrary to the rules discussed in Section 4.1, revision is always
possible and does not lead to ill-defined belief systems.
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Proposition 5 Let
(
Ω, ω0, s, (ti)i∈I

)
be a minimal MBS. Then,

(
Ω̃, ω0, s,

(
t̃i

)
i∈I

)
and(

Ωc, ω0, s, (tci )i∈I

)
are MBS.

The next Proposition establishes a link between the second revision rule and the
general one. This formally shows that the logic behind the general revision rule is
indeed, as argued above, the one present in the second revision rule.

Proposition 6 Assume that agents’ orders are consistent. Then, when the second
revision rule is applicable, it coincides with the first step of the general revision rule,
while the second step is void.

A direct corollary to this Proposition is that when the MBS is totally correct then
the second step of the revision process is void (i.e., Ω̃ = Ωc) if the agents’ orderings
over the state space are consistent. This proposition also establishes that when the
MBS is totally correct (a sufficient condition for the first two rules introduced above
to be well defined), then all the revision rules we have defined coincide.

4.5 General revision rule: agreement and consensus

In this section, we seek to characterize conditions under which the revision leads to
different forms of agreements among agents. This requires making a detour via the
definition and characterization of common S-beliefs systems, in which agents’ beliefs
about the state of nature are common belief.

For a given MBS, (Ω, ω0, s, (ti)i∈I) define the S-belief to be the event

SB(ω0, t) = {ω ∈ Ω|s(ti(ω)) = s(ti(ω0)) ∀i ∈ I}

The S-belief is the event “for all i ∈ I, agent i believes that the state of nature is in
s(ti(ω0))”. In other words, SB(ω0, t) is the subset of Ω in which the first level beliefs
about S are as those in ω0, i.e., the beliefs in the true state. We define now a special
case of belief system, where the first level beliefs about S are common beliefs.

Definition 9 An MBS, (Ω, ω0, s, (ti)i∈I) is a common S-belief system (henceforth
CSBS) if SB(ω0, t) is common belief.

In a CSBS, the agents’ beliefs about the state of nature are common beliefs. Agents
need not agree in a CSBS. It is thus possible to represent situations in which agents’
disagreement is common belief. Example 4 is an instance of such a situation: 1 believes
α, 2 believes α or β and this is common belief, i.e., agents disagree and this disagree-
ment is common belief. We now establish properties about the degree to which agents
agree after communication and revision have occurred. When all agents communicate,
the revision leads to a situation in which beliefs about the state of nature are common
belief. When agents still disagree about the state of nature, this models situation in
which this disagreement is common belief. Such a case is illustrated in Example 10
above.
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Proposition 7 Let
(
Ω, ω0, s, (ti)i∈I

)
be a minimal MBS. Then,

(
Ωc, ω0, s, (tci )i∈I

)
is

a CSBS whenever Ic = I.

When the initial MBS is already a CSBS, that is, when the beliefs about the state
of nature of all agents are common belief, then communication does not lead to any
further revision.

Proposition 8 Let
(
Ω, ω0, s, (ti)i∈I

)
be a minimal CSBS. Then, if agents’ orderings

ºc
i are consistent,

(
Ωc, ω0, s, (tci )i∈I

)
=

(
Ω, ω0, s, (ti)i∈I

)

The notion of CSBS does not entail a strong notion of agreement since indeed,
disagreement can be common belief. A particular case of a CSBS is when the first
level beliefs of all agents are the same, and thus ti(ω) = tj(ω) for all i, j ∈ I and all
ω ∈ Ω. This represents a situation of consensus, when all agents have the same beliefs.

Definition 10 A minimal MBS, (Ω, ω0, s, (ti)i∈I) is consensual if for all i, j ∈ I,
ti(ω0) = tj(ω0).8

We now give a sufficient condition that entails that revision leads to a consensual
MBS.

Proposition 9 Let
(
Ω, ω0, s, (ti)i∈I

)
be a minimal MBS and assume it is totally cor-

rect. Assume further that Ic = I and that agents’ orderings ºc
i are consistent. Then,(

Ωc, ω0, s, (tci )i∈I

)
is consensual.

This Proposition establishes that only under rather strong assumption will the
revision process lead to a consensual belief system, in which all agents agree. Indeed,
the assumption that the MBS be totally correct is necessary to get consensus, as can
be seen on Example 4, in which the MBS is correct but not totally correct and no
revision occurs after full communication.

4.6 General revision rule: dynamics

We now extend the static framework considered so far to study situations in which
announcements are made sequentially. A communication sequence of length T , is
the specification of a sequence of sets {Ic

τ}τ=1,...,T and of announcements at each stage
{ti,τ (ω0)}i∈Ic

τ ,τ=1,...T since here also we’ll restrict attention to communication sequences
in which agents announce precisely their true beliefs. We’ll say that the communication
is exhaustive if ∪τ=1,...,T Ic

τ = I, i.e., if all agents announce at some point in time. One
can also easily adapt the definition of the orders to take into account this temporal
aspect (it is enough to have orders indexed by τ) as well as the notion of consistency
(which must hold at each given date).

8Recall that the MBS we are interested in are minimal. If the MBS is not minimal then the
definition of consensus need to be modified: an MBS is said to be consensual if it has a representation
that is consensual.
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The sequential rule of revision in that case is a straightforward extension of the
revision rule proposed in Definition 8. This rule is implemented at each stage, yielding
an MBS at stage τ denoted Ωc

τ . Recall however that, without further restrictions on
agents’ ordering of the states, the revision rule has to be applied to MBS that are
minimal. Hence, if at the end of any given stage, the resulting MBS is not minimal,
then we replace it by one of its minimal representations (as defined in appendix A)
before proceeding to the next round of announcement/revision. In this process, we
always make sure that the labelling of the true state remains ω0 at all stages. The
revision process is well defined in the sense that it does not depend on the choice of
the minimal representation (see Proposition 15 in appendix B).

Of particular interest in this dynamic setting are first whether agreement is even-
tually reached and second, whether the order of the announcements (who announces
when) might matter for the situation eventually reached. We answer these two ques-
tions affirmatively.

Proposition 10 Let
(
Ω, ω0, s, (ti)i∈I

)
be a minimal MBS and assume the communi-

cation (Ic
τ )τ=1,...,T is exhaustive, then

(
Ωc

T , ω0, s,
(
tci,T

)
i∈I

)
is a CSBS.

The revision process ends when the smallest k such that ∪τ=1,...,kI
c
τ = I is reached.

Hence, we established that convergence occurs and at the point of convergence, beliefs
about the state of nature are common beliefs (but might be different). The next point
we address is whether the order of announcements matters and show that it does not
if the MBS is totally correct, but might otherwise.

Proposition 11 Let
(
Ω, ω0, s, (ti)i∈I

)
be a minimal totally correct MBS. Consider two

sequential communications (Ic
τ )τ=1,...,T and (Īc

τ )τ=1,...,T̄ of length T and T̄ respectively,
such that ∪τ=1,...,T Ic

τ = ∪τ=1,...,T̄ Īc
τ . Assume finally that agents have consistent orders

at any point in time. Then, the revision rule leads to two equivalent MBS.

The Proposition provides a rather strong sufficient condition (that the MBS is to-
tally correct) under which the order of announcement does not matter. This sufficient
condition can be relaxed but not much. In Example 11, it is shown that as soon as one
has to cope with contradictions, the order matters. One may wonder whether commu-
tativity holds when the second rule is applicable, i.e., when there is no contradiction.
Example 12 is a case of a correct MBS in which the second revision rule is applicable
when all agents announce simultaneously but is not for a sequential announcement. In
this case, the order does matter. This points out the fact that whether an agent will
have to deal with contradiction depends on the order of announcements. We conjecture
that for two sequential communication with the same set of agents announcing their
beliefs, the two revised MBS will be the same whenever the second rule is applicable.

Example 11 Let S = {α, β, γ} and I = {1, 2, 3}. Consider Ω = {ω0, ω1, ω2} where
ω0 = (α, {ω1, ω2} , {ω0, ω1} , {ω0, ω2})
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ω1 = (β, {ω1, ω2} , {ω0, ω1} , {ω1})
ω2 = (γ, {ω1, ω2} , {ω2}, {ω0, ω2})

• First consider the case where there is only one round of announcement and Ic =
{1, 2, 3}. Given this announcement, it has to be the case that any consistent order
has that ω0 Âc

i ω2 and ω0 Âc
i ω1 for i = 2, 3. Observe furthermore that only agent

1 is faced with a contradiction: he did not contemplate any state of the world in
which he was expecting agent 2 and 3’s simultaneous announcement. The only
three consistent orders that are possible for agent 1 are therefore: ω1 ∼c

1 ω2, or
ω1 Âc

1 ω2, or ω2 Âc
1 ω1. We give the outcome of the revision in these three cases:

– If ω1 ∼c
1 ω2, then the revision rule yields the following MBS

ω0 = (α, {ω1, ω2} , {ω0} , {ω0})
ω1 = (β, {ω1, ω2} , {ω0} , {ω0})
ω2 = (γ, {ω1, ω2} , {ω0} , {ω0})

– If ω1 Âc
1 ω2, then the revision rule yields the following MBS

ω0 = (α, {ω1} , {ω0} , {ω0})
ω1 = (β, {ω1} , {ω0} , {ω0})

– If ω2 Âc
1 ω1, then the revision rule yields the following MBS

ω0 = (α, {ω2} , {ω0} , {ω0})
ω2 = (γ, {ω2} , {ω0} , {ω0})

• Consider now the case where 1 and 2 announce first, revision occurs, and then 3
announces, that is, Ic

1 = {1, 2} and Ic
2 = {3}. In the first round, the only possible

consistent orders are that ω1 Âc
1 ω2 for agent 1 and ω0 Âc

i ω1 and ω0 Âc
i ω2 for

i = 2, 3. Thus, the revised MBS after the first round is given by

ω0 = (α, {ω1} , {ω0, ω1} , {ω0})
ω1 = (β, {ω1} , {ω0, ω1} , {ω1})
The same type of computation after 3’s announcement yields:

ω0 = (α, {ω1} , {ω0} , {ω0})
ω1 = (β, {ω1} , {ω0} , {ω0})

• Finally, consider the case where 1 and 3 announce first, revision occurs and then
2 announces, that is, Ic

1 = {1, 3} and Ic
2 = {2}. Here again, consistent orders

can be determined and we obtain after the first round:

ω0 = (α, {ω2} , {ω0} , {ω0, ω2})
ω2 = (γ, {ω2} , {ω2} , {ω0, ω2})
and finally we have, after 2’s announcement:

ω0 = (α, {ω2} , {ω0} , {ω0})
ω2 = (γ, {ω2} , {ω0} , {ω0})
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Thus, we end up with different MBS according to the order of announcements.

In this example, observe that non-commutativity does not come from possible
inconsistencies in the orders. Non-commutativity comes from the fact that agents’
revisions are done sequentially without keeping a memory of the reason why they
changed their initial beliefs to begin with. This absence of memory explains why,
in the sequential process in which 1 and 3 announce first and 2 second, 1 does not
reconsider the elimination of ω2 (made upon 3’s announcement) when 2 announces in
the second stage. In the next example, the outcome of the revision process depends on
the sequence of announcements although the MBS is initially correct (but not totally
correct).

Example 12 Let S = {α, β, γ} and I = {1, 2, 3}. Consider Ω = {ω0, ω1, ω2, ω3} where
ω0 = (α, {ω0, ω1} , {ω0} , {ω0})
ω1 = (β, {ω0, ω1} , {ω0} , {ω2})
ω2 = (α, {ω0, ω1} , {ω3}, {ω2})
ω3 = (γ, {ω3} , {ω3}, {ω3})

• First consider the case where all agents announce simultaneously: Ic = {1, 2, 3}.
The only consistent order for agent 1 must rank ω0 and ω1 in the following way:
ω0 Âc

1 ω1. Then we obtain the following MBS:

ω0 = (α, {ω0} , {ω0} , {ω0})

• Consider now the case where Ic
1 = {1, 2} and Ic

2 = {3}. Observe that the “elim-
ination stage” is irrelevant in the first revision, and the only operation to do is
to replace any inconsistencies by the announcements of agent 1 and 2, yielding:

ω0 = (α, {ω0, ω1} , {ω0} , {ω0})
ω1 = (β, {ω0, ω1} , {ω0} , {ω2})
ω2 = (α, {ω0, ω1} , {ω0}, {ω2})
Note that ω3 has been dropped since, after the revision, it does not belong to any
belief horizon. Before proceeding to the second round of revision, it is important
to observe that the MBS after the first round is not minimal since state 1 and 2
are identical. Hence, it has a minimal representation:

ω0 = (α, {ω0, ω1} , {ω0} , {ω0})
ω1 = (β, {ω0, ω1} , {ω0} , {ω0})
Now, consider the second step, in which 3 announces his beliefs, i.e., ω0. This
does not lead to any further revision.

Hence, the MBS we end up with is different from the one in which all agents were
making their announcements simultaneously, showing that the order of these announce-
ments matter, even though the initial MBS was correct.
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This last example has the feature that 1 believes that when the state of nature
is β, 3 is mistaken about 2’s beliefs. Hence, when 2 announces in the first round, 1
knows that 3’s beliefs about 2 are now correct and no further revision takes place. On
the other hand, when the three agents announce simultaneously, 3’s announcement is
enough to get rid of ω2, i.e., when 3 announces his beliefs, 1 learns that the state of
nature is not β.

The two previous examples show that the revision process is not necessarily com-
mutative, unless the initial MBS is well behaved (i.e., totally correct) as established
in Proposition 11. This points out few interesting issues. First, the non commutativ-
ity is not directly linked to the procedure we adopted to treat announcements that
are in contradiction with the initial beliefs of the agents. Indeed, in Example 12, the
two sequential processes studied do not entail any contradiction: in both cases, the
announcements made in the first round are compatible with part of the initial beliefs.
Thus, agents only keep those states that are exactly compatible with the announce-
ments. Second, non-commutativity of the revision procedure arises because agents
treat each new MBS afresh, without keeping a memory of how they arrived at it. In
that respect the sequential revision process we have described is “myopic”. Another
way of saying this is to describe the revision process we have defined as a markovian
process: at each stage, the only information taken into account to revise is the state
of the system at that stage. An alternative, more demanding, way of modelling things
would be to go back, after each round of announcement, to the initial MBS and use
all the sequence of announcements made up to that point in time to revise it. It is
not clear whether the framework developed here is the most appropriate to treat this
way of revising. Further, the “unbounded” memory assumption that this alternative
approach would require might be too demanding in terms of the amount of information
agents would have to keep at each stage of the revision process. Indeed, it is not nec-
essary for totally correct MBS. Here again, an intuition that is correct in the absence
of mistakes (i.e., the path through which one arrives at a given state of the epistemic
system is not relevant) appears to be misleading in the more general case. Finally, non
commutativity points out the fact that communication has another strategic aspect to
it beyond its mere content: the order of the agenda (i.e., who gets to speak when) is
important and agents are bound to take this into account if they have the choice as
to when to speak (as is recognized in the “herd behavior” literature, see e.g., Gul and
Lundholm (1995)).

Beyond these general remarks, we would like to argue that there is an impor-
tant difference between the two examples of non-commutativity. In Example 11, non-
commutativity is problematic: for instance, in the case where agents 1 and 2 announce
first and then 3 announces, agent 1 should be allowed to reconsider the elimination
of state ω2, since 2’s and 3’s announcements have essentially the same value to agent
1. The situation in Example 12 is different: the mistakes were not on the first level
beliefs but on higher order beliefs. Hence, these beliefs do change after a first round
of announcement. Thus, the non-commutativity of the rule is simply the reflect that
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higher order mistaken beliefs are corrected according to the announcements made at
a given stage, before further revision is done.

5 Concluding Remarks

We have studied in this paper the representation of beliefs in a framework general
enough to accommodate the presence of mistaken beliefs. The general setting de-
veloped was then used to study the revision of beliefs when agents are allowed to
communicate truthfully their beliefs. At this stage of our work, we have focussed on
communication processes in which agents announce truthfully and exactly their com-
plete beliefs. We showed that the presence of mistakes can explain disagreement even
after this form of communication (which forces consensus when there is no mistakes)
has taken place. The communication process we considered could be interpreted as a
process in which agents tell each other all what they believe. This is a rather natural
notion from where to start. We could generalize the rule to communication in which
agents do not necessarily announce exactly their beliefs but potentially some super set,
but this does not seem to us the most promising avenue for further research. Rather,
we believe that the next step is to come up with ways of representing more general
“communication rules”. Take for instance the three hat examples: there, the three
girls answer a well defined question, “can you tell the color of your hat?”. They do
not communicate to each other the entire hierarchy of beliefs but only the answer to
this question. How to represent such a communication rule in our framework is an
open issue. Only after such a work has been done could we proceed to analyze con-
vergence properties of communication processes that are less demanding than the one
we studied here. Another interesting issue for future research is to allow for strategic
communication among agents.

Another interesting issue is to model private information in our setting. More
specifically, assume that after communication, agents agree and this is common belief.
If they are then given some private information (from an external source), communicat-
ing their revised beliefs should reveal the private information they got. The situation
might well be rather different when the MBS one starts from entails some (commonly
believed) disagreement. Then, communicating the revised beliefs, after reception of
(outside) private information might not be enough to fully reveal which information
each agent got. Since revelation of private information is at the heart of no-trade theo-
rems (see Milgrom and Stokey (1982)), we might conjecture that such theorems would
not necessarily hold in this (extended) setting. Thus, it would be interesting to know
whether (and when) the no trade result remains valid in a setting in which mistaken
beliefs are allowed. In a similar vein, one could wonder, starting from a situation with
mistaken beliefs, whether additional private information would lead to a correct belief
structure (and restore no trade results).
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Appendix A: Equivalent Representations and Minimality of MBS

We introduce here the notion of equivalence of two beliefs systems. An MBS can
be represented by another MBS if the entire belief hierarchy of the first is captured by
the second. Formally, this means that there exists an onto relationship between the
two MBS which projects two (or more) states of the first MBS onto a unique state in
the second MBS. In that case, the two states in the first MBS, while formally different,
are actually representing the same situation of mutual beliefs.

Definition 11 An MBS, (Ω′, ω′0, s
′, (t′i)i∈I), is a representation of the MBS,

(Ω, ω0, s, (ti)i∈I), if there exists a mapping σ from Ω to Ω′ such that
(i) σ (Ω) = Ω′

(ii) σ(ω0) = ω′0
(iii) s′ ◦ σ = s

(iv) ∀i ∈ I, t′i ◦ σ = σ ◦ ti.

Definition 12 Two MBS, (Ω, ω0, s, (ti)i∈I) and (Ω′, ω′0, s
′, (t′i)i∈I), are equivalent if

they have a common representation, i.e., if there exists an MBS, (Ω′′, ω′′0 , s′′, (t′′i )i∈I),
that is a representation of both (Ω, ω0, s, (ti)i∈I) and (Ω′, ω′0, s

′, (t′i)i∈I).

A special case of equivalence of two MBS is when each is a representation of the
other, in which case the two spaces are identical up to a renaming of the states (σ is
hence a bijection). It is relatively easy to show that this notion of equivalence is in
fact an equivalence relationship. Note that, by definition, the relation is symmetric.
It is also reflexive since any MBS is equivalent to itself via the identity mapping.
Transitivity can also be established (we do no report the proof for sake of brevity).
We now define a notion of redundancy within an MBS.

Definition 13 Let (Ω, ω0, s, (ti)i∈I) be an MBS. Two states ω1, ω2 ∈ Ω are said to be
identical if there exists an MBS, (Ω′, ω′0, s

′, (t′i)i∈I) and a mapping σ : Ω → Ω′ as in
Definition 11 such that σ(ω1) = σ(ω2).

Two states of the world are thus identical if there exists a representation of the
MBS in which these two states are represented by the same state of the world. Our
next step is to define minimal MBS, in which such a problem does not arise.

Definition 14

• An MBS, (Ω, ω0, s, (ti)i∈I) is minimal if no two distinct states of the world ω, ω′ ∈
Ω, are identical.

• An MBS, (Ω′, ω′0, s
′, (t′i)i∈I) is a minimal representation of (Ω, ω0, s, (ti)i∈I) if it

is a representation of (Ω, ω0, s, (ti)i∈I) and it is minimal.
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Proposition 12 Let (Ω, ω0, s, (ti)i∈I) be an MBS. Then it has a minimal representa-
tion (Ω′, ω′0, s

′, (t′i)i∈I) and all its minimal representations are equivalent.

Proposition 13 Let (Ω, ω0, s, (ti)i∈I) and (Ω′, ω′0, s
′, (t′i)i∈I) be minimal and equiva-

lent MBS. Then there exists a one-to-one and onto mapping φ from Ω to Ω′ such that
conditions (i) to (iv) of definition 11 hold.

In the paper we deal exclusively with minimal MBS. This is without loss of gener-
ality as we just saw that non minimal MBS always have a minimal representation.

Appendix B: Minimality and Revision of MBS

In this appendix, we tackle the issue of whether the revision process we defined
depend (in a meaningful way) on the representation of the MBS we consider. We first
establish that if an MBS is correct so must be any representation of it.

Proposition 14 Let (Ω, ω0, s, (ti)i∈I) and (Ω′, ω′0, s
′, (t′i)i∈I) be minimal and equiva-

lent MBS. If Ω is correct then, Ω′ is also correct.

The following example illustrates why the revision rule we defined is restricted to
minimal MBS: if it were not the case, the outcome of the revision process might depend
on the representation adopted.

Example 13 Let S = {α, β} and I = {1, 2} = Ic. Consider Ω = {ω0, ω1, ω2} where
ω0 = (α, {ω0} , {ω1, ω2})
ω1 = (β, {ω1} , {ω1, ω2})
ω2 = (α, {ω2} , {ω1, ω2})

Assume agent 2’s ordering is given by ω1 ∼2 ω2, which is consistent. Then, the revision
gives the following MBS:

ω0 = (α, {ω0} , {ω1, ω2})
ω1 = (β, {ω0} , {ω1, ω2})
ω2 = (α, {ω0} , {ω1, ω2})

which admits the following minimal representation:
ω0 = (α, {ω0} , {ω0, ω1})
ω1 = (β, {ω0} , {ω0, ω1})

as state ω0 and ω2 are identical.
Now, observe that the initial MBS is not minimal, and admits the following minimal

representation:
ω0 = (α, {ω0} , {ω0, ω1})
ω1 = (β, {ω1} , {ω0, ω1})

If one considers this MBS, 2’s order is given by ω0 Âc
2 ω1, and hence revision yields

ω0 = (α, {ω0} , {ω0})
which is clearly different from the one obtained above. Hence, it is important to restrict
the application to our revision rule to minimal MBS.
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The reason for which there is a discrepancy between the two revised MBS although
they were equivalent to begin with is that the order ºc

2 does not recognize the fact that
ω0 and ω2 are identical. Thus, one way to cope with this difficulty is to apply the
revision rule only on minimal MBS. Another way would be to assume that the agents’
orderings of the states are such that ω ∼c

i ω′ whenever ω and ω′ are identical (i.e., if
there exists a representation that projects these two states onto the same state).

In the last proposition of this appendix, we show that the sequential revision process
does not depend on the choice of a minimal representation at each stage. We first
need to define a notion of compatibility of an agent’s ordering between two equivalent
minimal MBS.

Definition 15 Let (Ω, ω0, s, (ti)i∈I) and (Ω′, ω′0, s
′, (t′i)i∈I) be two minimal and equiv-

alent MBS such that there exists a one-to-one and onto mapping φ : Ω → Ω′ as in
Proposition 13. ºc and ºc′ are compatible if, for all ω1, ω2 ∈ Ω, ω1 ºc ω2 if and only
if φ(ω1) ºc′ φ(ω2).

Proposition 15 Let (Ω, ω0, s, (ti)i∈I) and (Ω′, ω′0, s
′, (t′i)i∈I) be two minimal equiva-

lent MBS. Assume that agents’ orders are consistent and compatible.
Then (Ωc, ω0, s, (tci )i∈I) and ((Ω′)c, ω′0, (s

′), ((t′i)
c)i∈I) are equivalent MBS.

Appendix C: Proofs

Proof. [Proposition 1] Assume (v) and define the set Ω′ ⊂ Ω by

Ω′ = {ω0} ∪
{

ω ∈ Ω|∃r ∈ N and {ik}k=r
k=1, ik ∈ I, ir = i s.th. ω ∈ ti1(ti2(. . . (tir(ω0)))

}

We show that (Ω′, ω0, s|Ω′ , (ti|Ω′)i∈I) satisfies conditions (i) to (iv) of Definition 1.
Conditions (i), (iii), and (iv) are obvious. Consider i ∈ I, ω ∈ Ω′ and take ω′ ∈
ti|Ω′(ω) = ti(ω). It is easy to see that by definition of Ω′, ω′ ∈ Ω′ which proves that
ti|Ω′ is a mapping from Ω′ to 2Ω′ . Therefore, condition (v) implies that Ω′ = Ω and
thus condition (v′) holds.
Assume now (v′) and suppose there exists Ω′  Ω such that (Ω′, ω0, s|Ω′ , (ti|Ω′)i∈I)
satisfy conditions (i) to (iv) of Definition 1. Hence, ∃ω ∈ Ω \ Ω′. However by (v′),
∃r ∈ N and {ik}k=r

k=1, ik ∈ I, ir = i s.th. ω ∈ ti1(ti2(. . . (tir(ω0))). Since ω0 ∈ Ω′, then
tir |Ω′(ω0) = tir(ω0) ⊂ Ω′ since condition (ii) applies. By induction, we can show that
for all k = 1, ..r,

(tik |Ω′(. . . (tir |Ω′(ω0))) = (tik(. . . (tir(ω0))) ⊂ Ω′

and thus ω ∈ Ω′ yielding a contradiction.

27



Proof. [Proposition 2] For i ∈ I consider

NHi(ω0, t) ={
ω ∈ BHi(ω0, t)|∀r ∈ N and {ik}k=r

k=1, ik ∈ I, ir = i s.th. ω /∈ ti1(ti2(. . . (tir(ω0)))
}

and suppose NHi(ω0, t) 6= ∅. Consider

Y = BHi(ω0, t)\NHi(ω0, t)

Note that Y is strictly included in BHi(ω0, t) since NHi(ω0, t) 6= ∅. Remark that
trivially ti(ω0) ⊂ Y which shows that Y 6= ∅ and condition (i) of Definition 2 is
satisfied.

Consider ω′ ∈ Y and j ∈ I. Since ω′ ∈ BHi(ω0, t), tj(ω′) ⊂ BHi(ω0, t). Suppose
that tj(ω′) * Y and thus there exists ω ∈ NHi(ω0, t) ∩ tj(ω′). Since ω′ ∈ Y , there
exists a sequence {ik}k=r

k=1, ik ∈ I, ir = i such that ω′ ∈ ti1(ti2(. . . (tir(ω0))). Then
define the sequence {i′k}k=r+1

k=1 by i′1 = j, i′k = ik−1 for all k = 2, .., r + 1. Note that
i′r+1 = i. Then we have that ω ∈ ti′1(ti′2(. . . (ti′r+1

(ω0))) which is a contradiction with
ω ∈ NHi(ω0, t). Thus, condition (ii) of Definition 2 is also satisfied. That proves that
BHi(ω0, t) is not the minimal subset which satisfies these conditions.

Thus NHi(ω0, t) = ∅ and

BHi(ω0, t) ⊂
{

ω ∈ Ω|∃r ∈ N and {ik}k=r
k=1, ik ∈ I, ir = i s.th. ω ∈ ti1(ti2(. . . (tir(ω0)))

}

Conversely, consider ω ∈ Ω such that there exists9 r ∈ N and {ik}k=r
k=1, ik ∈ I,

ir = i such that ω ∈ ti1(ti2(. . . (tir(ω0))) and let us suppose that ω /∈ BHi(ω0, t).
Then there exists {ωk}k=r

k=1 such that ωr = ω0, ∀k = 1, .., r − 1 ωk ∈ tik+1
(ωk+1)

and ω ∈ ti1(ω1). Since ω /∈ BHi(ω0, t), condition (ii) of Definition 2 implies that
ω1 /∈ BHi(ω0, t). Recursively, we have that ∀k = 1, .., r − 1, ωk /∈ BHi(ω0, t). Hence,
since ωr−1 /∈ BHi(ω0, t), ti(ω0) * BHi(ω0, t), contradicting (i) of Definition 2.

Proof. [Proposition 4] Let (Ω, ω0, s, (ti)i∈I) be a totally correct MBS and con-
sider a communication Ic. We first check that for the two rules, the revision yields
a well defined MBS. Remark that the collection

(
Ωc, ω0, s, (tci )i∈I

)
satisfies conditions

(i) and (iii) to (v) of Definition 1. For condition (ii), we have to check that ∀ω ∈ Ωc,
∀i ∈ I, tci (ω) 6= ∅. Given Proposition 2, it is equivalent to show that for all se-
quence {ik}k=r

k=1, for all ω ∈ tci1(t
c
i2

(. . . (tcir(ω0))) and for all i, tci (ω) 6= ∅. Consider
ω ∈ tci1(t

c
i2

(. . . (tcir(ω0))). There exists ω′ ∈ Ωc such that ω ∈ tci1(ω
′). For the first

rule, that means that tci1(ω
′) = ti1(ω

′)∩ (∩j∈Ictj(ω0)) and thus ω ∈ (∩j∈Ictj(ω0)). Yet,
since (Ω, ω0, s, (ti)i∈I) is a totally correct MBS, ω ∈ ti(ω) and therefore ω ∈ tci1(ω)
which proves that tci (ω) 6= ∅. For the second rule, that means that tci1(ω

′) = ti1(ω
′) ∩

{ω′′ ∈ Ω|tj (ω′′) = tj(ω0); ∀j ∈ Ic} and thus ω ∈ {ω′′ ∈ Ω|tj (ω′′) = tj(ω0); ∀j ∈ Ic}
and therefore tci (ω) 6= ∅.

9By Proposition 1, such an r exists
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We now proceed to show that the second revision rule coincides with the first
revision rule. To that end, it is enough to show that, for all j ∈ Ic, ω ∈ tj(ω0) if and
only if tj(ω) = tj(ω0). This is a direct consequence of the fact that the MBS is totally
correct. Hence, the two definitions coincide when the MBS is totally correct.

Proof. [Proposition 5] It is straightforward to check conditions (i) to (v) of
Definition 1 for both systems.

Proof. [Proposition 6] Let
(
Ω, ω0, s, (ti)i∈I

)
be a minimal MBS and a com-

munication Ic. Let suppose that the second revision rule is applicable and note(
Ωc(2), ω0, s, (t

c(2)
i )i∈I

)
the resulting MBS. Denote Ω̃,

(
t̃i

)
i∈I

and
(
Ωc, ω0, s, (tci )i∈I

)

as defined in Definition 8. Since the second revision rule is applicable, for all sequence
{ik}k=r

k=1, for all ω ∈ t
c(2)
i1

(tc(2)
i2

(. . . (tc(2)
ir

(ω0))), and for all i, t
c(2)
i (ω) 6= ∅.

For i and ω0 we have that t
c(2)
i (ω0) = {ω ∈ ti(ω0)|tj (ω) = tj(ω0); ∀j ∈ Ic} and

t̃i(ω0) = {ω′ ∈ ti(ω)|ω′ ºc
i ω∗, ∀ω∗ ∈ ti(ω)}. Let ω ∈ t

c(2)
i (ω0). Then, ω ∈ Ωi ∩ {ω′ ∈

Ω|tj(ω′) = tj(ω0),∀j ∈ Ic} and thus, since ºc
i is consistent, that implies ω ºc

i ω′

for all ω′ ∈ ti(ω0) and thus ω ∈ t̃i(ω0). Therefore, t
c(2)
i (ω0) ⊆ t̃i(ω0). Conversely,

consider ω ∈ t̃i(ω0). Since t
c(2)
i (ω0) ⊆ Ωi ∩ {ω′ ∈ Ω|tj(ω′) = tj(ω0), ∀j ∈ Ic}, thus

Ωi ∩ {ω′ ∈ Ω|tj(ω′) = tj(ω0), ∀j ∈ Ic} 6= ∅ and since ºc
i is consistent, ω ∈ Ωi ∩ {ω′ ∈

Ω|tj(ω′) = tj(ω0), ∀j ∈ Ic}. Therefore, ω ∈ t
c(2)
i (ω0) and thus t

c(2)
i (ω0) = t̃i(ω0).

Furthermore, it is straightforward to check that tci (ω0) = t̃i(ω0).
Let suppose that for r ≥ 1, for all r′, such that r ≥ r′ ≥ 1, for all sequence

{ik}k=r′
k=1 , for all ω ∈ t

c(2)
i1

(tc(2)
i2

(. . . (tc(2)
ir′

(ω0))), t
c(2)
i (ω) = tci (ω) = t̃i(ω). Consider a

sequence {ik}k=r+1
k=1 , and ω ∈ t

c(2)
i1

(tc(2)
i2

(. . . (tc(2)
ir+1

(ω0))). By assumption,

t
c(2)
i1

(tc(2)
i2

(. . . (tc(2)
ir+1

(ω0)))) = tci1(t
c
i2(. . . (t

c
ir+1

(ω0)))) = t̃i1(t̃i2(. . . (t̃ir+1(ω0))))

and thus ω ∈ t̃i1(t̃i2(. . . (t̃ir+1(ω0)))). Since the second revision rule is applicable,

t
c(2)
i (ω) = ti(ω) ∩ {

ω′ ∈ Ω|tj
(
ω′

)
= tj(ω0); ∀j ∈ Ic

} 6= ∅

and therefore, by a same argument as before, t
c(2)
i (ω) = t̃i(ω). If i ∈ I\Ic, tci (ω) = t̃i(ω).

If i ∈ I \ Ic, tci (ω) = t̃i(ω0). Now, there exists ω′ ∈ t
c(2)
i2

(. . . (tc(2)
ir+1

(ω0))) such that

ω ∈ t
c(2)
i1

(ω′) = ti1(ω) ∩ {
ω′′ ∈ Ω|tj

(
ω′′

)
= tj(ω0); ∀j ∈ Ic

}

Therefore, ti (ω) = ti(ω0) and thus t̃i (ω) = t̃i(ω0) = tci (ω).
Thus we proved that for all sequence {ik}k=r

k=1, for all ω ∈ t
c(2)
i1

(tc(2)
i2

(. . . (tc(2)
i (ω0))),

t
c(2)
i (ω) = tci (ω) = t̃i(ω). Therefore, Ωc(2) = Ω̃ = Ωc which completes the proof.

Proof. [Proposition 7]
Before proceeding to the proof of the Proposition itself, we need a lemma in which

CSBS is characterized by the fact that any given agent must have the same beliefs in
all the states of the world.
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Lemma 1 Let (Ω, ω0, s, (ti)i∈I) be a minimal MBS. Then, the following assertions are
equivalent

(i) (Ω, ω0, s, (ti)i∈I) is CSBS
(ii) SB(ω0, t) = Ω
(iii) ∀ω ∈ Ω,∀i ∈ I, ti(ω) = ti(ω0)

Proof. [Lemma 1] We first prove (i) ⇔ (ii). Since SB(ω0, t) is common beliefs,
we know by Corollary 2 that ∪i∈IBHi(ω0, t) ⊂ SB(ω0, t) ⊂ Ω = {ω0} ∪i∈I BHi(ω0, t).
Note that by definition, ω0 ∈ SB(ω0, t) and thus SB(ω0, t) = Ω. Conversely, if
SB(ω0, t) = Ω, then (Ω, ω0, s, (ti)i∈I) is a CSBS.

We next prove (i) ⇔ (iii). From what we just proved, one way is obvious: since
the condition ti(ω) = ti(ω0) ∀ω ∈ Ω, ∀i ∈ I implies that SB(ω0, t) = Ω, and hence the
MBS is CSBS.

Conversely, assume that the MBS is CSBS. Then SB(ω0, t) = Ω. Consider Ω′ =
{ω′s}s∈s(Ω) and the MBS,

(
Ω′, ω′s(ω0), s

′, (t′i)i∈I

)
defined by ∀ω′s ∈ Ω′, s′ (ω′s) = s and

∀i ∈ I, t′i (ω
′
s) = {ω′s′ ∈ Ω|s′ ∈ s(ti(ω0))}. Define the mapping σ : Ω → Ω′ by ∀ω ∈ Ω,

σ(ω) = ω′s(ω). By construction, we have that σ(Ω) = Ω′, σ(ω0) = ω′s(ω0), and s′ ◦σ = s.
Consider now i ∈ I and ω ∈ Ω. Then

t′i ◦ σ(ω) = t′i
(
ω′s(ω)

)
= {ω′s′ ∈ Ω|s′ ∈ s(ti(ω0))}

while

σ ◦ ti(ω) = {ω′s′ ∈ Ω|∃ω′′ ∈ ti(ω) such that ω′s′ = σ
(
ω′′

)}
= {ω′s′ ∈ Ω|∃ω′′ ∈ ti(ω) such that s′ = s

(
ω′′

)}
= {ω′s′ ∈ Ω|s′ ∈ s(ti(ω))}

But since SB(ω0, t) = {ω ∈ Ω|s(ti(ω)) = s(ti(ω0)) ∀i ∈ I} = Ω, we have

σ ◦ ti(ω) = {ω′s′ ∈ Ω|s′ ∈ s(ti(ω0))} = t′i ◦ σ(ω)

Thus t′i◦σ = σ◦ti which shows that the MBS,
(
Ω′, ωs(ω0), s

′, (t′i)i∈I

)
is a representation

of the MBS, (Ω, ω0, s, (ti)i∈I). Since (Ω, ω0, s, (ti)i∈I) is minimal, σ is a one-to-one
mapping. Remark now that by construction ∀ω′s ∈ Ω′,∀i ∈ I, ti(ω′s) = ti(ω′s(ω0)) and
since σ−1 is a one-to-one mapping, ti(σ−1(ω′s)) = ti(σ−1(ω′s(ω0))), establishing that
∀ω ∈ Ω, ∀i ∈ I, ti(ω) = ti(ω0).

The proof of Proposition 7 is now trivial: If Ic = I, then by the construction of tci
given in Definition 8, ∀i, ∀ω ∈ Ωc, tci (ω) = t̃i(ω0) and thus according to Proposition 1,(
Ωc, ω0, s, (tci )i∈I

)
is a CSBS.

Proof. [Proposition 8] Since
(
Ω, ω0, s, (ti)i∈I

)
is a CSBS, Lemma 1 yields that

∀ω ∈ Ω,∀i ∈ I, ti(ω) = ti(ω0). Hence, Ω = {ω ∈ Ω|tj(ω) = tj(ω0),∀j ∈ Ic} and since
agents’ orderings ºc

i are consistent,

∀ω ∈ Ω, ∀i ∈ I, t̃i(ω) = ti(ω) = ti(ω0)
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Therefore, we also have ∀ω ∈ Ω, ∀i, tci (ω) = ti(ω0) and thus

Ωc = {ω0} ∪ (∪i∈IBHi(ω0, t
c)) = Ω

which establishes that
(
Ωc, ω0, s, (tci )i∈I

)
=

(
Ω, ω0, s, (ti)i∈I

)
.

Proof. [Proposition 9] From Proposition 6, one can deduce that

(
Ωc, ω0, s, (tci )i∈I

)
=

(
Ω̃, ω0, s,

(
t̃i

)
i∈I

)

and ∀ω ∈ Ωc, tci (ω) = ti(ω) ∩ (∩j∈Ictj (ω0))
The result readily follows.

Proof. [Proposition 10] This is readily deduced from three observations:

• After a communication, if i ∈ Ic, then by definition, for all ω ∈ Ωc, tci (ω) = tci (ω0).

• If we start from a situation where the MBS is such that for i, ∀ω ∈ Ω, ti(ω) =
ti(ω0), then after a communication, it is also the case that ω ∈ Ωc, tci (ω) = tci (ω0).

• Reducing MBS at each stage to minimal MBS if necessary, does not affect the
two previous properties.

Thus if the sequential communication is exhaustive, we have that ∀ω ∈ Ωc
T ,

tci,T (ω) = tci,T (ω0) which characterizes CSBS.

Proof. [Proposition 11] This reaily deduced from the following observations:

• When the MBS is totally correct the first revision rule can be applied even if
the MBS is not minimal. It yields the same MBS as if it were applied on the
minimal MBS to begin with.

• At each stage, the revised MBS is totally correct, and the general revision rule
is equivalent to the first rule.

• Therefore, revision can be done without worrying minimality of the MBS.

• Thus, the MBS eventually reached corresponds to taking the intersection of the
all the agents’ announcements, an operation that does not depend on the order
of these announcements.

Proof. [Proposition 12]
Let R(Ω) be the set of representations of Ω, i.e., the set of MBS (Ω′, ω′0, s

′, (t′i)i∈I)
such that there exists a mapping σ from Ω to Ω′ that satisfies the properties of Defi-
nition 11.
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Let σ be a mapping from Ω to Ω that satisfies σ (ω1) = σ (ω2) if and only if there
exists an MBS (Ω′, ω′0, s

′, (t′i)i∈I) and a mapping σ from Ω to Ω′ that satisfies the
properties of Definition 11 such that σ (ω1) = σ (ω2). Let Ω = σ (Ω) and ω0 = σ(ω′0).

Define s : Ω → S by s(ω) = s(ω1) where ω1 ∈ Ω is such that σ (ω1) = ω. This is well
defined since if σ (ω1) = σ (ω2) we know that there exists σ such that σ (ω1) = σ (ω2)
which implies that s(ω1) = s(ω2) since Ω′ is a representation of Ω via σ.

Next, we show that if σ (ω1) = σ (ω2) then σ (ti (ω1)) = σ (ti (ω2)). Since σ (ω1) =
σ (ω2) , it must be the case that there exists σ such that σ (ω1) = σ (ω2). Then,
σ (ti (ω1)) = σ (ti (ω2)). Now, let ω ∈ σ (ti (ω1)). There exists ω3 ∈ t′i (ω1) such that
σ (ω3) = ω. Since σ (ω3) ∈ σ (ti (ω1)) = σ (ti (ω2)) , there exists ω4 ∈ ti (ω2) such
that σ (ω3) = σ (ω4) . Hence, σ (ω3) = σ (ω4) ∈ σ (ti (ω2)) and therefore ω ∈ σ (ti (ω2))
proving that σ (ti (ω1)) ⊂ σ (ti (ω2)). Similarly, the reverse inclusion holds and hence
σ (ti (ω1)) = σ (ti (ω2)).

Finally, define ti : Ω → 2Ω by ti(ω) = ti(σ (ω)) = σ (ti(ω)) where ω ∈ Ω is such
that σ (ω) = ω. This is well defined since we showed that if ω has two antecedents ω1

and ω2, σ (ti (ω1)) = σ (ti (ω2)).
We first show that

(
Ω, ω0, s,

(
ti

)
i∈I

)
so defined is an MBS. The two conditions

to check are condition (iii) and (v) of Definition 1. Check first condition (iii) and
let ω2 ∈ ti(ω1). There exist ω1 and ω2 such that σ (ω1) = ω1 and σ (ω2) = ω2

and ω2 ∈ ti (ω1). Hence ti (ω1) = ti (ω2) and therefore σ(ti (ω1)) = σ(ti (ω2)), i.e.,
ti(ω1) = ti(ω2).

We next check that condition (v′) holds (by Proposition 1, this is equivalent to
check condition (v) of definition 1 directly). Let ω ∈ Ω. By construction, there exists
ω ∈ Ω such that σ(ω) = ω. Thus, there exists r finite and a sequence {ik}k=r

k=1 with
ik ∈ I for all i such that ω ∈ ti1(ti2(...(tir(ω0)))). Hence,

σ(ω) ∈ σ[ti1(ti2(...(tir(ω0))))]

Recall that σ(ti(ω)) = ti(σ(ω)). Hence,

σ[ti1(ti2(...(tir(ω0))))] = ti1(σ[ti2(...(tir(ω0)))])

and, eventually,

σ[ti1(ti2(...(tir(ω0))))] = ti1(ti2(...(tir(σω0)))) = ti1(ti2(...(tir(ω0))))

proving condition (v′) of Proposition 1. Observe that
(
Ω, ω0, s,

(
ti

)
i∈I

)
is a represen-

tation of (Ω, ω0, s, (ti)i∈I), since σ satisfies the conditions of Definition 11.

We next want to show that
(
Ω, ω0, s,

(
ti

)
i∈I

)
is minimal. Assume this is not the

case and that there exists a representation
(
Ω̃, ω̃0, s̃,

(
t̃i

)
i∈I

)
of

(
Ω, ω0, s,

(
ti

)
i∈I

)
and

a mapping σ̃ : Ω̃ → Ω such that σ̃(ω1) = σ̃(ω2) for some ω1, ω2 ∈ Ω, ω1 6= ω2. Let
ω1 and ω2 in Ω be such that ω1 = σ(ω1) and ω2 = σ(ω2). It is easy to show that
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(
Ω̃, ω̃0, s̃,

(
t̃i

)
i∈I

)
is also a representation of (Ω, ω0, s, (ti)i∈I) via the mapping σ̃ ◦ σ.

Hence, Ω̃ ∈ R(Ω) and σ(ω1) = σ(ω2), i.e., ω1 = ω2, a contradiction.

Proof. [Proposition 13] By Proposition 12, Ω and Ω′ have a common minimal
representation Ω”. Let σ : Ω → Ω” and σ′ : Ω′ → Ω” be the associated mappings. By
definition, σ and σ′ are onto. Assume σ is not one-to-one, i.e., there exist ω1, ω2 ∈ Ω,
ω1 6= ω2, such that σ(ω1) = σ(ω2). This implies that Ω is not minimal, a contradiction.
Hence σ is one-to-one. A similar argument holds for σ′. Therefore, (σ′)−1 ◦ σ is a well
defined mapping from Ω to Ω′ that is one-to-one and onto. Take φ = (σ′)−1 ◦ σ.
Conditions (i) to (iv) hold by construction.

Proof. [Proposition 14] Observe that for all i ∈ I, t′i(σ(ω)) = σ (ti(ω)) by
construction and ω ∈ ti(ω) by assumption. Hence, σ(ω) ∈ σ (ti(ω)) and therefore
σ(ω) ∈ t′i(σ(ω)) for all i ∈ I.

Proof. [Proposition 15] Let φ be defined as in Proposition 13. Since the orders
are compatible, it is easy to check that t̃′i ◦ φ(ω) = φ ◦ t̃i(ω) for all ω ∈ Ω. Hence,
((Ω′)c, ω′0, s

′, ((t′i)
c)i∈I) is a representation of (Ωc, ω0, s, (tci )i∈I).
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