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theorems are shown to persist in this model, not for single voters but
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there social choice functions such that for every profile of preferences
there exists a strong Nash equilibrium resulting in the alternative as-
signed by the social choice function? Such social choice functions are
called exactly and strongly consistent. The study offers an exten-
sion of the work of Peleg (1978a) and others. Specifically, a class of
anonymous social choice functions with the required property is char-
acterized through blocking coefficients of alternatives, and associated
effectivity functions are studied. Finally, representation of effectivity
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1 Introduction

We consider a classical voting system with many voters and finitely many
alternatives. Such a system is representative of political elections on the local
or national level. As an, in our view, best approximation we model voters as
elements of a nonatomic measure space. In particular, this approach allows
us to accommodate the fact that in such voting systems single voters have
negligible influence on the final outcome, and to avoid potential combinatorial
peculiarities of a model with a large but finite number of voters.

The purpose of the paper is to present an extensive study of such voting
systems with an emphasis on strategic aspects. If we talk about strategic
aspects in this model, we necessarily deal with strategic voting by groups
of voters (coalitions). This does not have to imply that coalitions actually
get, together to coordinate their voting behavior. Although single voters are
negligible for the final outcome, they may nevertheless derive utility from
voting and, thus, may also vote strategically, possibly resulting in strategic
behavior of groups of equally-minded voters.

As a prelude, we derive versions of the Arrow (1963) and Gibbard (1973)
and Satterthwaite (1975) theorems in this model, based on these results for
finitely many voters. This works since the number of different preference
relations is finite, and therefore every preference profile induces a finite par-
tition of the set of voters; each element of the partition can then be regarded
as one voter. Our result on social welfare functions—functions that assign
a preference relation to every profile of preference relations—which are in-
dependent of irrelevant alternatives (cf. Arrow, 1963) is closely related to
the result of Kirman and Sondermann (1972) in the sense that we establish
the existence of “invisible dictators”—arbitrarily small dictator coalitions of
positive measure. Our work is, however, independent of theirs since we im-
pose the domain restriction that voter profiles be measurable. Our version
of the Gibbard-Satterthwaite theorem for social choice functions—functions
that assign an alternative to every profile of preferences—shows that the
requirement of nonmanipulability again results in the existence of invisible
dictators.

Inspired by this negative Gibbard-Satterthwaite type of result, in the bulk
of the paper we concentrate on social choice functions satisfying the weaker
requirement of exact and strong consistency (ESC). This means that for every
given profile of preferences there is another profile which (i) is a strong Nash



equilibrium—mno coalition can profitably deviate—in the strategic game in
which each voter reports a preference and the outcome is evaluated according
to given “true” preferences, and (ii) results in the same alternative as the true
preferences. In other words, insincere voting may occur but is likely to result,
insofar as a particular strong Nash equilibrium is likely to result, in the same
alternative as if the voters had voted sincerely. In view of the Gibbard-
Satterthwaite result for our model, this seems the best that can be achieved.
ESC social choice functions were first studied in Peleg (1978a,b) for finitely
many voters. See also Dutta and Pattanaik (1978); Ishikawa and Nakamura
(1980); and Kim and Roush (1981).

In order to investigate ESC social choice functions we make extensive use
of effectivity functions. Effectivity functions were first introduced by Moulin
and Peleg (1982); see also Abdou and Keiding (1991) for an overview. For a
given social choice function the associated effectivity function describes, more
abstractly, the power of each coalition in terms of subsets of alternatives into
which the coalition can force the final alternative by an appropriate choice of
preferences. We show that, for an ESC social choice function, the associated
effectivity function is, among other things, stable: its core, consisting of those
alternatives that cannot be blocked by any coalition, is nonempty for every
profile of preferences.

The main results of the paper concentrate on anonymous ESC social
choice functions. These induce so called blocking coefficients on the alterna-
tives, and it turns out that this assignment of blocking coefficients is additive.
A coalition can block a subset of alternatives (and thus, is effective for the
complement) if the size of the coalition is either larger than or at least as
large as the sum of the blocking coefficients of the subset. Depending on these
two cases, we call a subset of alternatives either an i-set or an e-set. This
distinction is the source of major differences with the finite case as treated in
Peleg (1978a,1991), Oren (1981), Polishchuk (1978), and Holzman (1986a,b);
see also Peleg (1984, Chapter 5). Conversely, we define effectivity functions
by specifying i-sets and e-sets and associated blocking coefficients, and show
that these effectivity functions are stable.

We show that for effectivity functions with exactly one alternative that
must be strictly blocked, i.e., exactly one i-alternative, every element of the
core can be obtained by a so called feasible elimination procedure and con-
versely, and that any anonymous selection from the core is an anonymous
ESC social choice function and conversely. We also show that these results



are not true for an arbitrary number of i-alternatives. Specifically, in that
case an anonymous selection from the core does not have to lead to an anony-
mous ESC social choice function.

A social choice function can be viewed as a game form: the strategy
set of each voter is the set of potential preferences, and a strategy combi-
nation fed into the social choice function leads to an alternative, which is
evaluated according to the true preferences. An ESC social choice function
is therefore a game form that has a strong Nash equilibrium for each pro-
file of preferences with the special property that this equilibrium leads to
the same alternative as the true preferences. In the final part of this paper
we broaden our view by starting with an arbitrary effectivity function and
looking for a game form which represents this effectivity function—meaning
that it preserves the power induced by this effectivity function—and which
for every profile of preferences has a strong Nash equilibrium. We find that
maximality and stability are necessary and sufficient conditions; the proof of
this is an extension of the argument in Peleg and Moulin (1982).

The organization of the paper is as follows. In Section 2 the basic model is
presented, and in Section 3 the classical approaches by Arrow and Gibbard-
Satterthwaite are considered within our model. The core of the paper is
Section 4, where we investigate ESC social choice functions. The broadening
to strong Nash consistent representation of effectivity functions is considered
in Section 5, and Section 6 concludes.

2 The basic model

Let (2,%,)) be a nonatomic measure space. Here () is the set of voters
or players, Y is the o-field of permissible coalitions, and A is a nonatomic
measure on ¥. The number A(S) for a coalition S is interpreted as the size of
S. By Xy = £\{0} we denote the set of all nonempty coalitions, and by ¥
we denote the set of all coalitions S with A(S) > 0. Throughout we assume
Qe X, and () < oo.

Let A be a finite set of alternatives. We assume throughout that |A] > 2.
(For a finite set D, |D| denotes the number of elements of D.) A linear
ordering of A is a complete, transitive, and antisymmetric binary relation on
A. The set of all linear orderings of A is denoted by L(A).

A profile (of preferences) is a measurable function R : Q — L(A) (i.e.,



for each R € L(A), {t € Q| R(t) = R} is in X). Two profiles Ry and R, are
equivalent, written Ry ~ Ry, if A({t € Q | Ry(t) # Ra(t)} = 0. Let p denote
the set of all profiles.

In our model, a partition of €2 is a finite collection of pairwise disjoint sets
in ¥, the union of which has measure equal to A(2). Let Ry,..., R4 be an
enumeration of the elements of L(A). Each profile R results in a collection
P = {S1,..., S} of subsets of Q with S, = {t € Q | R(t) = Ry} € ¥ for
each 1 < k < |A|l. We denote by P(R) the collection obtained from P by
omitting the sets of measure 0 and call this the partition generated by R.

A social choice function (SCF) is a surjective function F' : p — A that
satisfies

(1) for all RI,RQ & P, if R1 ~ RQ, then F(Rl) = F(Rg)
A social welfare function (SWF) is a function f : p — L(A) that satisfies
(2) for all Rl, R2 cp, if R1 ~ RQ, then f(Rl) = f(RQ)

Conditions (1) and (2) imply that social choice functions and social welfare
functions do not depend on the preferences of coalitions of measure 0. In
particular, because of nonatomicity, single agents do not have any influence
at all.

3 Classical approaches: independence and
nonmanipulability

In this section we investigate, in our model, the implications of the approaches
by Arrow (1963) to social welfare functions and by Gibbard (1973) and Sat-
terthwaite (1975) to social choice functions. The former approach concen-
trates on the well known independence of irrelevant alternatives condition,
while the latter approach concentrates on nonmanipulability.

3.1 Independence of irrelevant alternatives

For a profile R and a,b € A, a # b, we say that a Pareto dominates b if
A({t € Q | bR(t)a}) = 0. A social welfare function f satisfies Pareto (P) if
for all R € p and a,b € A with a # b, if a Pareto dominates b, then af(R)b.



For BC A, R € L(A), and R € p, we denote by R|B the restriction of R
to B, and we define R|B by (R|B)(t) = R(t)|B for all t € Q2. A social welfare
function f satisfies Independence of Irrelevant Alternatives (IIA) if for all
R;,R; € pand B C A with |B| = 2 and R;|B = Ry|B we have f(R,)|B =
f(Ry)|B. In words, the societal preference between two alternatives should
only depend on the individual preferences between these alternatives and not
on individual preferences between other alternatives.

We shall characterize all social welfare functions satisfying Pareto and
ITA. This characterization is closely related to the results in Kirman and
Sondermann (1972). It is independent because of our domain restriction of
measurability of preference profiles.

We need the following concept. A collection D C X, is called an wltrafilter
if (i) DN D" € D for all D,D" € D and (ii) D € D or Q\D € D for every
DeXx,.

Let P = {Ds,..., Dy} be a partition of Q. Let D be an ultrafilter. We
claim that there is at least one ¢ for which D; € D. If not, then by property
(ii) of D, D" := Ujzy, . j2 Dj € D for every i = 1,...,k, so by property
(i), @ = Ni=1,.x D' € D, a contradiction since ) ¢ ¥ . Hence, there is an i
with D; € D and by property (i) again there is exactly one such i. Also, if a
partition P’ of €2 is coarser than P (i.e., each element of P is contained in an
element of P’; we also say that P is finer than P’) then (i) implies D C D',
where D and D’ are the elements of P and P’ that are in D, respectively.
Therefore, there is a well defined mapping d that assigns to each partition
its element in D, and d satisfies:

(3) If P is coarser than P, then d(P) C d(P’).
The following lemma shows that also the converse holds.

Lemma 3.1 Let d be a mapping that assigns to each partition of €2 exactly
one element. Suppose d satisfies (3). Then the collection

D ={D € X, | there is a partition P of Q with D = d(P)}
s an ultrafilter.

Proof. Let P! and P? be partitions and D' = d(P'), D? = d(P?). We show
that D' N D? € D. Consider the join P of P! and P2, i.e., the partition

P={DNE|DeP, EcP, DNEecX.}.
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Obviously, P is finer than both P! and P2 Suppose D* = d(P). Then by
(3), both D* C D! and D* C D? hence D* C D' n D% By definition of P
therefore, D* = D' N D?, which implies D' N D? € D.

Finally let D € X,. If A(D) = A(Q) then D = d({D}), so D € D.
Otherwise, either D = d({D,Q\D}) or Q\D = d({D,Q\D}), hence either
DeDor Q\De€D.

Thus, D is an ultrafilter. O

We now associate with an ultrafilter D an SWF fP, as follows. For a profile
R € plet D be the unique element from P(R) that is in D. Define fP(R) :=
R where R = R(t) for (all) t € D.

Obviously, fP satisfies Pareto. We first show:

Lemma 3.2 f? satisfies IIA.

Proof. Let a,b € A (a # b) and Ry, Ry € p such that Ry|{a, b} = Ry|{a, b}.
Let, for i = 1,2, fP(R;) = R; = R;(t;) for some t; € D;, D; € D as in the
definition of fP. Since D; N Dy € D, we have D; N D, # (), so we may take
t; =ty and hence R;|{a,b} = Ry|{a,b}. Consequently,

fP(R1){a, b} = Ri|{a,0} = Ral{a,0} = [7(R:)|{a, b}

This proves that f? satisfies IIA. O

Conversely, let f be an SWF satisfying Pareto and ITA. If |A| = 2 then f
could for instance be majority rule. Assume now |A| > 2. We will show
that f is of the form f? for some ultrafilter D. To this end, let P C X, be
a partition of ). Regard every element of P as a separate agent. By the
classical theorem of Arrow (see Arrow, 1963) for a finite number of agents
there is a fixed element of P, call it d/(P), such that, for every profile R € p
that is measurable with respect to P (i.e., R(t) = R(#') for all D € P and
t,t' € D), we have f(R) = R(t) for (all) t € d/(P). (Note that, if R
is measurable with respect to P, then P is at least as fine as P(R), the
partition generated by R.) Let

DI .= {d/(P) | P C %, is a partition}.

Lemma 3.3 D/ is an ultrafilter.



Proof. By Lemma 3.1, it is sufficient to prove that d/ satisfies (3). Let P
and P’ be partitions with P’ coarser than P. Let D' € P’ with d/(P) C D'.
Let R,QQ € L(A) be different and take a profile R € p that is measurable
with respect to P’, and hence with respect to P, and with R(¢) = R for all
t € D' and with R(¢) = @ otherwise. Then f(R) = R since R = R(t) for
(all) t € d/(P). Hence, d/(P') = D', so that d/(P) C d/(P'). O

Lemmas 3.2 and 3.3 have the following corollary.

Corollary 3.4 Let |A| > 3. A social welfare function [ satisfies Pareto and
IIA if and only if there is an ultrafilter D with f = fP.

The next result shows existence.

Theorem 3.5 There exists a social welfare function satisfying Pareto and
IIA.

Proof. By Corollary 3.4 it is sufficient to show that there exists an ultrafilter
of sets in .
A filter in X, is a collection F C X, satisfying

(i) forall D,D" € F, DN D' € F;
(ii) for all D € F and D' € ¥, with D C D', D' € F.
Let U be the collection of all filters F that satisfy, additionally,
(iii) for all D € F and D' € ¥, with D' C D and \(D) = \(D'), D' € F.

Any set of positive measure together with all its subsets of the same measure
and all measurable supersets of these form a filter, so I/ is non-empty. The
inclusion relation is a partial ordering on ¢/ and each chain in ¢/ has an
upper bound, namely the union of all filters in the chain. Hence, Zorn’s
Lemma implies that ¢/ has a maximal element, say D. We claim that D is
an ultrafilter. If not, then there is a D € ¥ such that D ¢ D and Q\D ¢ D
(D € D and Q\D € D is not possible by (i)). By (ii), we have D' N D # ()
and D' N (Q\D) # 0 for every D' € D and by (iii), we have A(D' N D) > 0
and A\(D' N (2\D)) > 0. Now consider the collection D’ obtained by adding
to D the collection {D'N D | D' € D}. Then it is easy to check that D’ is a



filter in U that is larger than D, contradicting the maximality of D. Hence,
D is an ultrafilter. O

It is easy to construct an ultrafilter. For instance, let Q = [0,1] and let
A be the Lebesgue measure. If D is an ultrafilter, then for any t € [0, 1]
exactly one of the two intervals [0,¢] and [¢, 1] must be in D. Suppose, for
the sake of the argument, that this is always the lower one, [0,¢]. Then 0
is an “invisible dictator” in the sense of Kirman and Sondermann (1972).
Of course, the singleton 0 does not have any power at all, but always needs,
roughly, a coalition of positive measure in any arbitrarily small neighborhood
to exercise its “dictatorship”.

3.2 Nonmanipulability

In this subsection and in the remainder of the paper we focus on social
choice functions. Clearly, an SCF F' cannot be manipulated by a single
player because of (1). We will see, however, that if A contains at least three
alternatives, then for F' to be nonmanipulable it has to exhibit an “invisible
dictator” as above. (For |A| = 2, we can again take the majority rule, which
is not manipulable.) We proceed to a precise formulation of this result.

Let R € p and S € X. The social choice function F' is manipulable by
S at R if there exists a @ € L(A) with the following property: if Ry € p
is a profile with Ry(t) = R(¢) for all t ¢ S and Ry(t) = Q for all t € S,
then F(R) # F(R;) and F(R)R(¢)F(R) for all t € S. (Clearly, if F is
manipulable by S at R, then A(S) > 0.) We call F' nonmanipulable if there
exist no R € p and § € ¥ such that F' is manipulable by S at R. In
words, it can never happen that all members of a coalition obtain a preferred
alternative if that coalition coordinates on an untruthful preference profile.
See also Remark 3.9 below.

We associate with an ultrafilter D an SCF FP, as follows. For a profile
R € plet D be the unique element of P(R) that is in D. Define FP(R) :=z
where 2Ry for all y € A and R = R(t) for (all) ¢ € D. We have:

Lemma 3.6 F? is nonmanipulable.

Proof. Let R € p. Clearly, if a coalition S can manipulate at R, then
SN D =0, where D is the element of P(R) in D. Hence, a manipulation of



S results in a profile R’ such that P(R') shares D with P(R). But then D
is also the element of P(R') that is in D by condition (i) of an ultrafilter. So
FP(R') = FP(R). O

Conversely, let F' be an SCF satisfying nonmanipulability. Let |A| > 2. In
order to apply the Gibbard (1973) and Satterthwaite (1975) theorem we need
to make sure that the range condition is satisfied. Therefore, we fix profiles
Ri,..., R4 in p such that [{F(R;) | i =1,...,[A[}| = |A] (this is possible
since F' is surjective by assumption). For an arbitrary partition P C X, of Q
let P* be the coarsest common refinement of P and the generated partitions
P(R;), i =1,...,|A|. Regard every element of P* as a separate agent. By
the Gibbard-Satterthwaite theorem for a finite number of agents there is a
fixed element D* of P* such that, for every profile R € p that is measurable
with respect to P*, we have f(R) = x where z is the top element of R(¢) for
(all) t € D*. Denote by d”(P) the element of P that contains D* and let

DY .= {d"(P) | P C X, is a partition}.
Lemma 3.7 DY is an ultrafilter.

Proof. The proof is analogous to the proof of Lemma 3.3 if we assume that
R and @ in that proof have different top elements. O

Lemmas 3.6 and 3.7 have the following corollary.

Corollary 3.8 Let |A| > 3 and let F : p — A be an SCF. Then F is
nonmanipulable if and only if there is an ultrafilter D with F = FP.

As a consequence of Corollary 3.8, the only social choice functions that guar-
antee sincere voting if there are at least three alternatives exhibit again an
“invisible dictator”. (Existence of such SCFs follows similarly to Theorem
3.5.) In the next section we will therefore relax the nonmanipulability re-
quirement.

Remark 3.9 Our nonmanipulability condition has necessarily the form of
coalitional nonmanipulability since single agents have no influence. Never-
theless, it can be weakened to a version that is a closer approximation of
individual nonmanipulability. Call F' e-manipulable if for every £ > 0 there

10



is a profile R € p and a coalition S € ¥ with A(S) < € such that F is ma-
nipulable by S at R. Call F' non-e-manipulable if it is not e-manipulable.
This means that there is an £ > 0 such that at no profile coalitions with
size smaller than £ can manipulate. Clearly, non-e-manipulability is weaker
than nonmanipulability, hence for every ultrafilter D the SCF FP satisfies
it. Conversely, suppose that the SCF F' is non-e-manipulable. Take ¢ > 0
so small that no coalition of size smaller than ¢ can ever manipulate, and
take an arbitrary partition Pj441 of €2 such that each element of P44
has size smaller than €. Modify the definition of P* preceding Lemma 3.7
such that P* is now the coarsest common refinement of P44 and P(R;),
i =1,...,]4]. Then Lemma 3.7 and Corollary 3.8 continue to hold if we
replace nonmanipulability by non-e-manipulability.

4 Exactly and strongly consistent social
choice functions

For |A| > 3, Corollary 3.8 implies that every SCF F' : p — A is manipulable
unless it exhibits an invisible dictator. Thus, we cannot guarantee sincere
voting but we are still interested in optimizing the chance of reaching the
sincere outcome F'(R) for every profile R € p. To be more precise, observe
that for every R € p the pair (F,R) defines a game in strategic form in a
natural way: each player ¢ € Q has strategy set L(A) and preference R(t) on
A for evaluating any outcome F(R*) € A, R* € p. For S € Xy, denote by p°
the set of all measurable functions R® : S — L(A). Let R € p. The profile Q
is a strong Nash equilibrium (SNE) of the game (F, R) if for every S € ¥, and
every V5 € p°, there exists T € ¥, with T C S and F(Q)R(t)F(Q™\%, V¥)
for every t € T. The SCF F is exactly and strongly consistent (ESC) if for
every R € p there exists an SNE Q of (F, R) such that F/(Q) = F(R). Thus,
if F'is an ESC SCF, then for every profile there is a strong Nash equilibrium
profile that results in the same outcome, and therefore F' is not necessarily
distorted. Exactly and strongly consistent SCFs were introduced in Peleg
(1978a).

Before we proceed to an investigation of ESC SCFs, we first consider a
simple example. In our model an SCF F : p — A is anonymous if for all
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R, R, € p we have:
4) it AX{teQ|Ri(t)=R}) = A{t€Q|Ry(t)=R}) forall Re L(A)
then F(Ry) = F(Ry).

For a profile R, call an alternative a € A Pareto optimal with respect to R if
it is not Pareto dominated by some other element of A (see the beginning of
Subsection 3.1), and denote by PAR(R) the set of Pareto optimal alternatives
with respect to R.

Example 4.1 Let s € A be a designated alternative, called the status quo,
and let Ry € L(A) be fixed. Define an SCF F': p — A by

s if s € PAR(R)
FR) =< a if s¢ PAR(R) and a is the Ry-maximum
of {b € PAR(R) | b Pareto dominates s}

for all R € p. We show that F' is an anonymous ESC SCF. Obviously, F' is
surjective. Now let R € p. We distinguish the following possibilities.
(i) s € PAR(R).

Let Q € p satisfy sQ(¢)a for all t € Q and a € A\{s}. Then Q is an SNE
of (F,R) and F(Q) = F(R).
(ii) s ¢ PAR(R).

Let ¢ be the Ry-maximum of
B = {b € PAR(R) | b Pareto dominates s}.

Define Q € p by ¢Q(t)sQ(t)a for all t € Q and a € A\{s,q}. Then F(Q) =
¢ = F(R) and Q is an SNE of (F,R). Indeed, © does not have a profitable
deviation from Q since ¢ is Pareto optimal with respect to R. Now let
S e ¥, MS) <1, and V¥ € p%. Then F(Q?\, V¥ € {s,q}. Hence, V*°
cannot be a profitable deviation for S.

In the remainder of this section we first study ESC social choice functions
through their associated effectivity functions. Such effectivity functions pro-
vide an alternative description of the power that coalitions have as the result
of using a specific social choice function in the society. This description
is independent of the preference profile. We show that exact and strong
consistency implies that the associated effectivity function has a number of
interesting properties: maximality, stability, and convexity. Next, we narrow
down on anonymous ESC SCFs.

12



4.1 Effectivity functions of ESC social choice functions

We start with introducing the concept of an effectivity function in our model.
Then we derive the effectivity function associated with an ESC social choice
function, and some interesting properties of it.

First a notation: for a set D we denote by P(D) the set of all subsets of
D and by Py(D) = P(D)\{0} the set of all non-empty subsets of D.

Definition 4.2 An effectivity function (EF) is a function E : ¥ — P(Py(A))
that satisfies the following conditions: (i) F(Q) = Py(A); (ii) E(0) = 0; (iii
A € E(S) for every S € Yy; and (iv) if Si, So € Yo and A(S1\S2)+A(S2\S1) =
0, then E(S;) = E(S,).

If B € E(S) we sometimes say that S is effective for B: the interpretation
is that the coalition S can guarantee that the outcome (alternative) is in B.
Condition (iv) in Definition 4.2 is specific for our model. It says that the
effectivity function does not distinguish between coalitions that differ only
in a set of measure 0.

An effectivity function F is superadditive if for all S;,S, € ¥ with S; N
So = and all B; € E(S;) and By € E(S3) we have: B; N By € E(S; U S,).
The EF E is monotonic if for all S,S* € ¥ and B, B* € Py(A) with B €
E(S), S C S* and B C B*, we have B* € E(S*). These two conditions are
natural and satisfied by many effectivity functions.

An EF FE'is mazimal if for all S € ¥y and B € Py(A) we have: if B ¢ E(S)
then A\B € E(Q\S).

Let F' : p — A be a social choice function. We associate with F' an
effectivity function E¥ as follows. Let S € ¥y and let B € Py(A). Call S
effective for B if there exists an R¥ € p% such that F(R®, Q?\%) is in B for
every Q5 € p®\5. Formally, E¥()) = 0 and for S € X\ {0}

EF(S) ={B € Py(A) | S is effective for B}.

It is easy to see that ET is superadditive and monotonic. We will prove that,
if F' is exactly and strongly consistent, then ET is also maximal. We first
prove the following lemma. (For readers familiar with the terminology, this
lemma shows that for an ESC SCF a-effectivity and [-effectivity coincide.)

Lemma 4.3 Let F : p — A be an ESC social choice function. Let S € ¥
and B € Py(A). Suppose that for every R®\S € p™\ there exists RS € p°
such that F(RS, R?\%) € B. Then B € EF(S).
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Proof. Let R} satisfy bRg(t)a for all b € B, a € A\B, and t € S. We
claim that F(R3, R?\9) is in B for all R®\Y € p?\%. Indeed, assume to the
contrary that there exists Ry " € p™\5 such that F(Ry) =y ¢ B. Let Q be
an SNE of (F,Ry) such that F(Q) = y. By the assumption in the lemma
there exists VS € p¥ such that F(V5, Q%%) = v € B. As zRy(t)y for all
t € S, this contradicts the fact that Q is an SNE of (F, Ry). O

Lemma 4.3 has the following corollaries.

Corollary 4.4 If F : p — A is an ESC social choice funtion, then ET is
mazximal.

Proof. Let S € ¥y and B € Py(A). If B ¢ EF(S) then for every R® € p°
there exists an RMY € p\% such that F(R) € A\B. By Lemma 4.3, A\B €
EF(Q\S). O

Corollary 4.5 Let F : p— A be ESC. Let S € Xy and B € E¥(S). IfR® €
p° satisfies bR (t)a for allb € B, a € A\B, and t € S, then F(R%, Q"\Y) is
in B for all Q2\9 € p2\5.

Corollary 4.5 follows directly from the proof of Lemma 4.3.

We now turn to cores of effectivity functions. Let E : ¥ — P(Py(A)) be
an EF and let R € p. Let B € Py(A), v € A\B, and S € ¥. We say that
B dominates x via S at R if B € E(S) and bR(t)x for allb € B and t € S.
Also, x is dominated at R if there exists B € Py(A) and S € ¥ such that B
dominates x via S at R. If b is not dominated at R then b is undominated
at R.

Definition 4.6 The core C(E,R) is the set of all undominated alternatives
at R. The EF E is stable if C(E,R) # () for all R € p.

We next prove that the effectivity functions associated with ESC social choice
functions are stable.

Theorem 4.7 Let F : p — A be an ESC SCF. Then ET is stable, and
F(R) € C(E",R) for all R € p.

14



Proof. Let R € p and x = F(R). We claim that z € C(ET,R). Indeed,
assume to the contrary that x is dominated by B via S at R. Let Q be an
SNE of (F,R) such that x = F(Q). As B € E'(9), there exists V* € p°
such that y = F(VS, Q™) € B. Since yR(t)z for all t € S, we arrive at the
desired contradiction. O

Thus, we have proved that the effectivity function associated with an ESC
social choice function is maximal and stable, and that the alternative assigned
by the SCF is always in the core of the associated EF. Next, we show that
such effectivity functions have special structure.

We call an effectivity function E : ¥ — P(Py(A)) subadditive if for all
S1, 89 € ¥ and By, By € Py(A) with B, € E(S), By € E(S3) and B; N By =
@, we have By U By € E(Sl N Sg)

For S € ¥, B,B' C A and R* € p° we write BRYB' if bR®(¢)¥/ for all
be B,V e€B,andteS.

Lemma 4.8 Let the effectivity function E : ¥ — P(Py(A)) be mazimal and
stable. Then E is subadditive.

Proof. Let Sl,SQ € ¥ and B, By € Po(A) with B; € E(Sl), By € E(Sg)
and B; N By = (). Assume, contrary to what we wish to prove, that B;UB, ¢
E(S1 N Sz). We distinguish the following possible cases:

(i) S1 NSy =10.

Let R € p satisfy BiR% A\B; and BoR*?A\B,. Then C(E,R) = 0,
contradicting the stability of E.
(il) Sy N Sy # 0.

In this case By U By # A (otherwise B; U By = A € E(S; N S,)). By the
rnaximality of E, A\(B1 U Bg) € E(Q\(Sl N SQ)) Denote B; = A\(B1 U Bg)
and S = Q\(S; N Sy). Consider the profile R given by the following table:

RslﬁSQ Rsl\SQ RQ\SI

By Bs; B
By, By Bs
Bs By, Bj.

As BiR®1 By, BsR*:By, and B,R*Bs, it follows that C'(E,R) = (), contra-
dicting the stability of E. O
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The proof of the following lemma is similar to that of Lemma 4.8 and there-
fore omitted.

Lemma 4.9 Let the effectivity function E : ¥ — P(Py(A)) be mazimal and
stable. Then E is superadditive.

We call an effectivity function convez if for all S;,S, € ¥ and By € E(S5)),
By € E(SQ) we have BN By € E(Sl U 52) or BUB, € E(Sl N Sg)
We conclude this part with the following result.

Theorem 4.10 A mazimal and stable effectivity function is conver.

Observe that Theorem 4.10 strengthens Lemmas 4.8 and 4.9 since convexity
implies subadditivity and as superadditivity, as is easy to check.

The proof of Theorem 4.10 is completely analogous to the proof of The-
orem 6.A.9 in Peleg (1984). Theorem 4.10 implies in particular that the
effectivity function associated with an ESC social choice function is convex.

4.2 The blocking coefficients of an anonymous ESC so-
cial choice function

In the remainder of Section 4 we concentrate on anonymous ESC social choice
functions. Anonymity is a natural requirement for voting procedures. More-
over, imposing this condition will enable us to derive much more detailed
results on both social choice functions and effectivity functions.

Let F': p — A be an anonymous ESC social choice function, with asso-
ciated effectivity function E¥. In Subsection 4.1 we established that E* is
maximal, stable, and therefore convex. Here, we will study the additional
implications of anonymity.

For B € Py(A)\{A}, the blocking coefficient is the real number

(5)  B(B) =inf{A(S) | A\B € E"(S)}.

The number §(B) is well defined since F' is anonymous. It represents the
minimum size of a blocking coalition of B (cf. Corollary 4.5). We call B an
e-set (“e” from “equality”) if S € ¥ and A(S) = 3(B) imply that A\B €
ET(S); otherwise, B is called an i-set (“i” from “inequality”).
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If Bl, B; € P()(A)\{A} and B; U By 7£ A, then

(6) B(B1UB,) < B(By)+ (By).

To see this, note that we may assume that the right hand side is smaller
than A(Q2). Let ¢ > 0 be small and let S; € ¥ with \(S;) = 3(B;) + ¢
and A\B; € E(S;) for i = 1,2, such that S; NSy = (). By superadditivity,
A\(B, U By) € E(S, U Sy), hence 3(B; U By) < (3(By) + (By) +2¢. By
letting € approach 0, (6) follows.

For every B € Py(A)\{A} we have

(7)  B(B) + B(A\B) > A(Q)

because otherwise there would be disjoint coalitions S and T with B € E*'(9)
and A\B € ET(T), contradicting the superadditivity of E'. We shall now
show the reverse inequality. Assume 3(B) > 0 otherwise there is nothing left
to prove. For every 0 < 0 < 3(B) and S € ¥ with A(S) = ¢ we have A\B ¢
E*(S). Hence by maximality of E*, B € E¥(Q\S), so 8(A\B) < A(Q2) — 4.
This implies the reverse inequality of (7), hence

(8)  B(B)+ B(A\B) = A(Q)
for every B € Py(A)\{A}. Superadditivity, maximality and (8) imply
(9) B is an e-set & A\B is an i-set

for every B € Py(A)\{A}.
Moreover, monotonicity of EX clearly implies monotonicity of the func-

tion 3(-):
(10) By C By = ((By) < B(B»)
for all By, By € Py(A)\{A}.

We now show that blocking coefficients are actually additive.

Theorem 4.11 [(-) is additive.

Proof. Let B; € Py(A),i=1,2, with BN By = ) and B;UB; # A. In view
of (6) it is sufficient to prove that 5(B; U By) > 3(B) + f(Bs). By (10) we
may assume [3(B;) > 0fori =1,2. Let S and T satisfy A(S) < §(By), A(T) <
B(By), and SNT = (). Then by (8), B; € EF(Q\S) and By, € EF(Q\T).
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By the subadditivity of Ef (Lemma 4.8), B; U B, € EF(Q\(SUT)). Thus,
by definition of 3(-) and superadditivity of E¥', 3(B; U By) > X(S) + A(T).
Since, by (8) and (10), B(B;) + 3(Bz2) < A(R2), we can choose A(S) and A(T)
as close to 3(B;) and [(B,), respectively, as desired, which completes the
proof. O

We note that Theorem 4.11 is a substantial deviation from the case with
finitely many voters, see Theorem 5.2.16 in Peleg (1984).

In view of Theorem 4.11 and (8) it is useful to define 3(A) = A(R2) and
let A be an i-set.

For e-sets we have the following corollary.

Corollary 4.12 If By and By are disjoint e-sets, then By U By is an e-set.

Proof. Let B; and B, be disjoint e-sets. Take disjoint coalitions S; and Sy
of sizes 3(Bj) and B(B,), respectively, then A\B; € E"(S;) and A\B, €
ET(S;). By superadditivity, A\(B; U By) € EF'(S;US,). Since A\(S; USy) =
((B; U Bs) by Theorem 4.11, we conclude that B; U B, is an e-set. O

A similar result holds for i-sets:
Corollary 4.13 If By and By are disjoint i-sets, then By U By is an i-set.

Proof. Let By and By be disjoint i-sets. We are done if B; U By = A.
Otherwise, let S,T,U € X be pairwise disjoint sets with U = Q\(S U T)
and with A\(S) = 3(B;) and \(T) = ((By). Then A\B; ¢ E"(S) and
A\By ¢ E"(T). Then by maximality By € E¥(UUT) and B, € EF(U U
S), so by subadditivity B; U By € ET(U). Therefore, by superadditivity,
A\(By U By) ¢ EF(SUT). This implies that B; U By is an i-set. O

Example 4.14 For the effectivity function associated with the ESC SCF of
Example 4.1 we have (#(s) = A\(Q) and 3(a) = 0 for a € A\{s}: any positive
coalition can block any set of alternatives not containing s by putting s on
top of its preference profile. The i-sets are A and every B C A\{s}. In
particular, if |A| > 3 and a € A\{s} then {a, s} is an e-set.

A final observation concerning e-sets is stated in the following lemma.

Lemma 4.15 If By and By are e-sets, then By N By or By U By are e-sets.
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Proof. Let By and B; be e-sets. In view of Corollary 4.12 we may assume
B; N By # (). Choose pairwise disjoint sets S;, Sy, and S3 in X, such that
)\(Sl) = ﬂ(Bl N Bg), )\(SQ) = B(Bl) — B(Bl N BZ); and )\(53) = ﬂ(BQ) —
ﬂ(Bl N BZ) Define T1 = 51 U SQ and T2 = 51 U 53. Then )\(TI) = ﬁ(Bl)a
)\(TZ) = 5(82)7 )\(TI N TZ) == ﬂ(Bl N BQ), and )\(TI U TZ) == ﬂ(Bl U BQ)
By assumption, A\B; € ET(T}) and A\B, € EF(T,). Since ET is convex
(Theorem 410), A\(Bl U Bz) € EF(T1 U Tg) or A\(Bl N Bz) € EF(T1 N TQ)
Thus, By U By or B; N B, are e-sets. O

In the next section we will consider effectivity functions satisfying all proper-
ties on e-sets and i-sets derived above but not necessarily derived from ESC
social choice functions.

4.3 Systems of e-sets and i-sets

We start by specifying a system of e-sets and i-sets and associated blocking
coefficients, imposing the conditions that were derived above as properties of
the effectivity function E" associated with an anonymous ESC social choice
function F. Then we define the effectivity function E associated with this
system, and show that E shares the main properties of an effectivity function
ET, namely, maximality, convexity, and stability.

Let 5 : Po(A) — [0, A(©2)] and let {i, e} be a partition of Py(A) satisfying

(11) f is additive, and B(A) = A(£2).
(12) For all B € Py(A)\{A}, Bee<= A\Bciand A €i.
(13) For all By, B, € e, we have BN B, € e or B; U By € e.

Properties (11)—(13) are also the properties of the e-sets and i-sets of the
EF associated with an anonymous ESC social choice function, as derived in
Subsection 4.2 (the property in Corollary 4.13 can be derived from the three
conditions above). Next, for a system (f; e, i) satisfying (11)—(13), we define
an effectivity function E by E(()) = () and

(14) For all B € e and S € X, if A\(S) > B(B) then A\B € E(S).

(15) Forall Beiand S € X, if \(S) > (B) then A\B € E(S5).

19



We now show that the effectivity function E defined in this way shares
the following properties of an EF derived from an anonymous ESC SCEF:
maximality, convexity, and stability.

Theorem 4.16 Let (§;e,i) be a system satisfying (11)-(13) and let E be
the derived effectivity function. Then E is maximal and conver.

Proof. Maximality of E is straightforward, so we only prove convexity. Let
BI,BQ € PO(A) and A\Bl € E(SZ) for 1 = 1,2. Then )\(Sl) > ﬁ(Bl) and
A(S2) > B(Bs), hence

(16) A(S1NS)) + ASIUSy) = A(S)) + A(Sh)
> B(B1) + B(B2)

B B(Bi N By) + B3(B1UBy) if BN By #0)
| B(BIUBy) if By N By =0.

If )\(Sl N Sg) > ,B(Bl N Bg) then (A\Bl) U (A\BQ) € E(Sl N 52), and if
A(S1USy) > B(B1UBy) then (A\B;) N (A\Bs) € E(S;1US,); so we are done.
Otherwise, there are only equality signs in (16), which implies that both By
and B, are in e. In that case, the desired result follows from (13). O

Theorem 4.17 Let (3;e,1) be a system satisfying (11)-(13) and let E be
the derived effectivity function. Then E 1is stable.

Proof. The theorem follows from Theorem 4.16 and stability of any convex
EF in our model, see Theorem 6.1 in the Appendix. O

In the remainder of Section 4 we consider the following question: Given a
system (3; e, 1) and associated effectivity function F, is there an (anonymous)
ESC social choice function F such that E = EF? We tackle this problem
through the study of so-called feasible elimination procedures (Subsection
4.4) and their relation with the core (Subsection 4.5). Our affirmative answers
to this question are collected in Corollary 4.27. A counterexample, showing
that the answer to the question in complete generality is negative, is given
in Subsection 4.6.
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4.4 Feasible elimination procedures

In this section we describe a procedure that, in the end, will result in an
anonymous ESC social choice function. Later, in Subsection 4.5, we will see
that in this way we obtain a characterization of a class of ESC social choice
functions.

Let |A| = m > 2. Let s € A be a designated element, sometimes called
the status quo, and let real numbers 3(a) > 0 be given with 3 ,c4 B(a) = A(£2)
and with f(a) > 0 for all a # s.

Definition 4.18 Let R € p. A pseudo feasible elimination procedure (p.f.e.p.)
is a sequence (z;,,Ch;...;2;, ,,Cm_1;x;, ) that satisfies the following condi-
tions:

(17) A = {xil, e ,.ﬁUZ'm};

(18) for all j,k=1,...,m —1 with j # k, we have
C; €Q, C;NCr =0, and A(Cj) > B(xy,);

(19) forallj=1,...,m—1andallt € C},
yR(t)z;; for all y € {x;, ..., 25, }.

As Y,caB(a) = A(Q), it is obvious that for each profile there always
exists at least one p.f.e.p. A more demanding procedure is the following.

Definition 4.19 Let R € p. A p.fep. (z;,,C;...52;,_,,Cm1;25,) is a
feasible elimination procedure (f.e.p.) if it satisfies the following condition:

(20) =, = s or [s = x;; for some j < m and A(C}) > B(s)].

We shall now prove the existence of f.e.p.’s in our model and then relate them
to ESC social choice functions. We start with the following lemma.

Lemma 4.20 Let R € p and let x € A satisfy
A{t € Q| yR(t)x for all y € A}) > B(x).

Then there exists a p.f.e.p. (x,Cy;x;, Cr;.. . 5m ) with N(Cy) > B(x).
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Proof. The proof will be by induction on m. The case m = 2 is obvious.
Let m > 3. We define

(21) A*={yec A| M N{t € Q| 2R(t)y for all z € A}) > [B(y)}.
By assumption, x € A*. We distinguish the following cases.
(i) |A*[ = 2.

Let y € A*\{z} and choose C, C  such that A(Cy) = B(y) and C, C
{t € Q| 2R(t)y for all z € A}. Define the profile Q € p as follows. If
t € Q\C, with zR(t)y for all z € A, then let 2Q(t)A\{z, y}Q(t)y; otherwise,
Q(t) = R(t). Consider the restricted profile Q; = Q®\“v|A\{y}. By the
induction hypothesis and by the construction of Q there exists a p.f.e.p.
(x,Cpy i), Ch; . .52y, _,) with respect to Qp such that A\(C,) > f(z) and
C, C{teQ|zR(t)x for all z € A}. Then the p.f.e.p.
(,Cp;y,Cys i, Ch; .52y, ) is as required.
(i) A* = {z}.

Let C,, satisfy C,, C {t € Q | yR(t)x for all y € A} and \(C,) = ((z).
Consider the profile Ry = R%\% |4\ {z}. For y # z let C, = {te NG, |
2R (t)y for all z € A\{z}}. We distinguish two subcases.

(ii.1) AM(Cy) = B(y) for all y # =.
Choose § € A\{z} such that

A{t € O\C, | zZR(H)yR(t)z for all z € A\{z}}) > 0.
Let C' C {t € Q\C, | 2R(t)yR(t)z for all z € A\{z}} satisfy \(C) > 0.
(Observe that C' C Cy, hence A(C) < B(y).) Let C, = C, UC, and
let A\{z,9} = {y1,---,ym—2}. Then (2,Cr;y1,Cy;. . i Ym—2,Cy, »;9) is
a p.f.e.p. as required.
(ii.2) There exists y # x such that A\(Cy) > 5(y).
By the induction hypothesis there exists a p.f.e.p. (7, C’g; 2, Cry oy, )

~

with respect to R, such that A(Cy) > B(y). Choose C C {t € Cy |

ZR(H)FR(t)z for all z € A\{x}} such that 0 < A(C) < A(Cy) — B(7). Then
(x,C,UC;5,C\C; ), Cy;. .55, ) is a p.fe.p. as required. O
Next, we establish the existence of feasible elimination procedures.

Theorem 4.21 For every R € p there is an f.e.p. with respect to R.
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Proof. Let R € p. The proof is by induction on m. The case m = 2 is
obvious. Let m > 3. Define A* as in (21). We distinguish the following
possibilities.

(i) A* = 0.

For a € Alet C(a) = {t € Q | yR(t)a for all y € A}. Then A\(C(a)) =
B(a) for all a € A. Let A\{s} = {a1,...,am-1}-

Then (a1, C(a1);...;am-1,C(am-1);s) is an f.e.p.
(i) A* #0 and s ¢ A*.

Let y € A" and let C, C {t € Q | zZR(¢)y for all z € A} satisfy A\(C,) =
B(y). By the induction hypothesis for R\ |A\{y} there exists an f.e.p.
(z;,,Cy;. .52, _,) for the restricted profile. Then (y,Cy;x;,,Ch;. .52, _,)
is an f.e.p. for R.

(iif) s € A*.
This case follows from Lemma 4.20. O

We shall use the existence of feasible elimination procedures established in
Theorem 4.21 to derive the existence of an interesting class of ESC social
choice functions. Let R € p. Call z € A R-maximal if there exists an f.e.p.
(xi,,Ch;.. .5, ) with respect to R such that z = z;, . Further, denote

M(R) = {z € A | z is R-maximal}.

M(-) is an anonymous social choice correspondence that satisfies Pareto. (A
social choice correspondence is set-valued; the definitions of anonymity and
Pareto are analogous to those for SCFs.)

The following remark will be very useful in the sequel.

Remark 4.22 Let R € p and let © € A\{s} satisfy
A{t € Q| yR(t)x for all y € A}) > [(x).

Then z ¢ M(R). This is so since A(Uyea\(1{t € © | A\{y}R(t)y}) <
A(Q2) — B(x) and s has to be eliminated strictly in an f.e.p.

Theorem 4.23 Let the SCF F : p — A be a selection from M(-), that is,
F(R) € M(R) for every R € p. Then F is ESC.
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Proof. Let R € p and z = F(R). Then there exists an f.e.p.

(i, Cy; .. 5y, Cu_q; ) with respect to R. Choose Q € p that satisfies
yQ(t)x;, for all t € Cj, y € A, and j = 1,...,m — 1. We claim that
F(Q) = F(R) and that Q is an SNE of the game (F,R). We distinguish the
following cases.

(i) x = s.

By Remark 4.22 F(Q) = s. Now assume, on the contrary, that Q is
not an SNE of (F,R). Then there exist S € ¥, and V¥ € p° such that
F(Q™S, V) =y, y # s, and yR(t)s for all t € S. Let y = ;, for some
1 <j<m—1. Then SNCj; =0 because sR(t)x;, for all t € C;. Hence, by
Remark 4.22, F(Q™¥,V¥) # z; , which is the desired contradiction.

(ii) = # s.

Then s = w;; for some jo < m — 1. Hence, by definition of an f.e.p.,
A(Cj,) > B(s). Hence, it is not possible to eliminate all  # s in an f.e.p.
with respect to Q, and therefore F/(Q) # s. Thus, by Remark 4.22 applied
to all 2’ € A\{z, s}, F(Q) = z. The proof that Q is an SNE of (F,R) is
analogous to that in case (i), observing that a profitable deviation from Q
can never result in s since A(Cj,) > 3(s). O
Let F' be an anonymous selection from M(-). (E.g., for every R € p select
the maximal element in M (R) according to a fixed order Ry € L(A).) By
Theorem 4.23 F is an anonymous ESC SCF, and therefore its associated
effectivity function EF is characterized by blocking coefficients (say) ((B)
for B € Py(A) (cf. (5)). Since alternatives assigned by F' result from feasible
elimination procedures with weights 3(a) (a € A), it is easy to check that
B(a) = B(a) for every a € A, and that {s} is an i-set whereas all other
singleton sets are e-sets. By the results established in Subsection 4.2, it
follows that a set B C A is an i-set if and only if it contains s. Also,
Theorems 4.7 and 4.23 imply that M(R) C C(EF,R) for all R € p. More
generally, M(R) C C(E,R) for all R € p, where F is the effectivity function
associated with the system (/3,e,1) as above (cf. Subsection 4.3).

In the next section we shall establish a converse of these observations.
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4.5 Core and feasible elimination procedures

In this section we prove that for any anonymous ESC social choice function
that generates positive blocking coefficients for the e-alternatives and that
results in exactly one i-alternative, every element in the core of the associated
effectivity function can be obtained by a feasible elimination procedure. The
proof basically uses an extension of the “marriage theorem” to our model.
We comment on this in Remark 4.25.

Let (f;e,i) be a system satisfying (11)-(13) with i containing exactly
one singleton {s} for some designated s € A, and with coefficients 3(y) for
y € A\{s} positive. Let E be the associated effectivity function and let
R € pand z € C(E,R) (cf. Theorem 4.17). For every y € A\{z} denote

S(y) = {t € Q2 [2R(t)y}.
The fact that x € C(E,R) is equivalent to

(22) MU S) = B8(B) ifs¢B

yeB

M S(y) > B(B) ifseB.

yeB

In this setting we have the following result.

Theorem 4.24 There exist disjoint measurable sets C(y) (y € A\{x}) such

(y
that (i) C(y) C S(y) for every y € A\{x}; (ii) N(C(y)) > B(y) for all y # x
and N(C'(s)) > B(s).

Proof. Before we start with the actual proof we note that, if x # s, we may
increase ((s) with a small £ > 0 and decrease ((z) with the same amount
(note that 3(x) > 0). In this way, all inequalities in (22) still hold as weak
inequalities and it is sufficient to prove (ii) in the theorem with only weak
inequalities. Moreover, we may regard x as the i-alternative instead of s. For
the rest of the proof we assume that this is the case.

We prove the theorem by induction on |A| = m > 2. The case m = 2 is
obvious, so we concentrate on the induction step for m > 3. We first make
the following observation.

Remark. Suppose there exists a set B* C A\{x} with () # B* # A\{x},
such that A(Uyep- S(y)) = B(B*). Then, for every B C A\({z} U B*) we
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have AM(Uyes S(4)\ Ujen- S(4)) > B(B). Hence, we can decompose our prob-
lem into two smaller problems, namely: (i) the problem with set of alter-
natives A\B*, set of voters Q\ U,cp- S(y), blocking coefficients unchanged,
and preferences R(t) restricted to A\B*; (ii) the problem with set of alter-
natives B* U {r}, set of agents U,cp- S(y), blocking coefficients B(x) =0
and 3(y) = 8(y) unchanged for y € B*, and preferences R(t)|B* U {z} for
t € Uyep- S(y). Then we can apply the induction hypothesis to both smaller
problems and find sets C'(y) (y € A\{z}) as required.

We now proceed to the induction step. Let m > 3. We are done if there
is a decomposition possible as in the Remark, so suppose there is none. Let
b € A\{z} and consider the set S = S(b)\ Uyea\(zp} S(y). We distinguish
two cases.

Case 1: A(S) > [(b). Note that for every t € S, yR(t)xzR(t)b for all
y # x,b. Hence, since z € C(E,R), 0 < A(S) < f(z) + f(b). Now take
C(b) equal to S, and apply the induction hypothesis to the problem with
set of alternatives A\{b}, set of voters Q\S, blocking weights 3’ unchanged
except ' (z) = B(x) — (A(S) — B(b)), and preferences equal to the original
preferences restricted to A\{b}.

Case 2: \(S) < ((b). We also know A(S(b)) > ((b) otherwise \(S(b)) =
G(b) by (22), and we would have a decomposition as in the Remark with
B* = {b}. Now choose a measurable set S* satisfying S C S* C S(b) and
A(S*) = B(b) (this is possible by Lyapunov’s theorem). Consider the set of
vectors

(23) {A(S*UTU | S()caipa}, By | 0 ST C S(H)\S*}.

yeB

For T = S(b)\S* and B = ) we have
(24) MSTUT U S(y) =A(S(®)) > B(b)

yeB
and for T'= S(b)\S* and B C A\{z, b} arbitrary we have
(25) A(S*UTU | S(y) > B(b) + B(B)

yeB
by (22). For B C A\{xz,b} with B # A\{z,b} and T' C S(b)\S* consider the
expression

MS*UTU | S(y) = MT)+ S U U S®)

yeB yeB
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AT (sTu{ Sw)).
yeB
This is an affine function of two measures A(1") and A(T'N (S*UU,ep S(y))).
As B varies on {B' | B' C A\{b,z}, B # A\{b,z}} we obtain an affine
combination of two vector measures. Hence, its range (23) is compact and
convex by Lyapunov’s theorem. By (24) and (25) we can choose T = T; such
that all inequalities in (25) are still valid but with at least one equality, say
for By. Now set Sp = S* U Ty, and set B* = By U {b}. On S(b)\Sp change
the preferences by shifting b over x. The problem with the new profile is
decomposable according to the Remark. Applying the Remark, we obtain
the desired sets: in particular, the resulting set C'(b) is a subset of Sy and
therefore of S(b). This concludes the proof of the theorem. O

Remark 4.25 Consider the following continuous version of the discrete “mar-
riage theorem” (cf. Halmos and Vaughan, 1950). Let Sy, ..., Sy be measur-
able sets and let (3,...,8r be nonnegative real numbers such that for all
nonempty subsets B C {1,...,k} we have A(U;ep Si) > Yicp fi- Then there
exist disjoint measurable sets C1,...,Cy with C; C S; and A\(C;) > f; for
every i € {1,...,k}. As an interpretation of this result, think of 1,...,k as
the names of different crops, the S; as the parcels of land suited to grow crop
i, and the [; as the required minimal area to grow crop 7 in order to reach
a certain production level. Alternatively, © may be a computer program, S;
the part of memory suited to store program i, and [; the minimal storage
requirement. The “marriage theorem” provides conditions under which it is
possible to reach the required production of crops, or storage of computer
programs. Theorem 4.24 gives a version of this theorem suited for our con-
text, in particular also for deriving Theorem 4.26 below. For a proof of a
slightly less general version of the continuous “marriage theorem” see Hart
and Kohlberg (1974, p. 171).

Theorem 4.24 can be used to prove the following result. Let F' be a social
choice function that always selects from the core of E: then F'is ESC. The
proof (cf. Lemma 5.3.6 in Peleg, 1984) is as follows. Consider the sets C'(y)
as in Theorem 4.24. Construct a profile Q € p where, for every y € A\{z}
and every t € C'(y), 2Q(t)y for all z € A\{y}. Then it is not much work to
show that Q is an SNE in the game (F,R) and F(Q) = z. This result is
also implied by Theorem 4.26 below combined with Theorem 4.23.
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For every R € p let M(R) be the set of alternatives attainable through
a feasible elimination procedure, as in Subsection 4.4. We have already es-
tablished that these alternatives are in the core C'(E,R). We will now show
the converse. Call b € A a bottom alternative of R if the set S(b) = {t €

Q| yR(t)b for all y € A} has measure A\(S(b)) > B(b), with strict inequality
sign for b = s.

Theorem 4.26 Let ((3;e,1) be a system satisfying (11)-(13) with i contain-
ing exactly one singleton {s} for some designated s € A, and with all coeffi-
cients B(y) (y € A\{s}) positive. Let E be the associated effectivity function
and let R € p andz € C(E,R). Thenz € M(R). In particular, if b is a bot-
tom alternative of R, then there is an f.e.p. (b, Cy; yiy, C15 - 5 Yi, o> Crn—2; )
such that Cy, C S(b).

Proof. Let b be a bottom alternative. If b = s we slightly increase the
blocking coefficient of b (as in the beginning of the proof of Theorem 4.24)
so that we still have A(S(b)) > B(b).

The proof is by induction on m = |A|. For m = 2 the result is obvious
again. Let m > 3.

(i) First suppose that the problem is decomposable into two subproblems
with sets of alternatives {z} U B* and A\B* as in the proof of Theorem
4.24, and with b € B*. Note that all voters in the problem with A\ B* rank
B* above z. By the induction hypothesis, each of the subproblems has an
f.e.p. leading to x, with the one in the first subproblem starting with b. Let
|B*| =k, let (b, Cy;y1,Ch; ... yk—1,Cr_1;x) be an f.e.p. in the problem with
{z} U B* and let (xq, Crioo i Tty Conebit x) be an f.e.p. in the problem
with A\ B*. Then

A

(b, Cop; 21, C1; .. 5 Tty Cr—i—13 Y1, C1 o5 Ym1, Ci—1; )

is an f.e.p. for the orginal problem.

(ii) Next, suppose the problem is not decomposable in this way. As in the
proof of Theorem 4.24 let S = S(b)\ Uyea\ (2,01 S(v) and distinguish two cases
as there. In Case 1, A(S) > §(b), we take again C'(b) = S, observing that S C
S(b). Applying the induction hypothesis, we let (3, C;...; Ui, o, Con2; %)
be an f.e.p. in the problem with set of alternatives A\{b}, then
(b, Cy; ¥irs Crs o 5 Yi,_yy Crn2; ) is as desired.
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In Case 2, we proceed again as in the proof of Theorem 4.24 but we
make sure that Sy there is chosen in such a way that A(Sy N S(b)) > 5(b).
This is possible since S C S(b) C S(b) and so we can choose S* (which is
a subset of Sy by construction) such that S* C S(b). We have now again
a decomposition as in (i) of this proof: since b is eliminated first, shifting b
over z in the original preferences of voters in S(b)\\Sy does not change the
restriction of these preferences to A\ B*. a

We note that Theorem 4.26 may also be adapted to apply to the case with
finitely many agents and, thus, provides an alternative and shorter proof of
Theorem 5.4.2 in Peleg (1984).

The following corollary is a summary of the main results of Subsections
4.4 and 4.5.

Corollary 4.27 (i) Let F be an anonymous ESC social choice function.
Suppose that the associated effectivity function E has exactly one i-alternative,
and the blocking coefficients of the e-alternatives are all positive. Then
C(E,-) = M(-) and F is a selection from this set. (ii) Let (;e,i) be a
system satisfying (11)—(13) such that i contains exactly one singleton and all
singletons in e have positive blocking coefficients. Then, for the associated
effectivity function E, C(E,-) = M(-), and any anonymous selection from
these sets is an anonymous ESC social choice function.

4.6 A counterexample

A natural question is whether Corollary 4.27 can be extended to general
systems (f3;e,i). The following example shows that, in the case of three
alternatives and positive blocking coefficients, there must be exactly one i-
alternative for an anonymous ESC social choice function to exist.

Example 4.28 Let A consist of three different alternatives, A = {a,b, c},
let Q = [0,1], and let A be the Lebesgue measure. Let F' be an ESC social
choice function and suppose that the associated effectivity function E = E¥
is characterized by blocking coefficients (a), 8(b), and (c), all positive and
summing to 1. Suppose that a is an e-alternative and that b and ¢ are i-
alternatives. This is the only remaining case if we do not have exactly one
i-alternative: we will in fact show that this case is not possible.
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Consider a partition {By, B, B3, B4} of [0,1] with A\(By) = A(B2) =
:6(a), A(B3) = B(b), and A(Bys) = B(c). The profile R is given in the
following table.

B, By, Bs B,
b ¢ a a
c b ¢ b
a a b ¢

Note that C(E,R) = {b,c}: a is blocked via By U B, but b and ¢ are not
blocked and basically occur symmetrically in this profile. Assume that Q is
an SNE of the game (F,R) and F(R) = b. (The case F(R) = ¢ is analogous.)

Suppose there is an S € X, with S C B; U By and aQ(t)c for all
t € S. Consider the deviation VP:UBt with aV(t)cV(t)b. In the profile
(QPB1YP2 'V B:aUBa) )y is dominated by {a,c} via By U By and ¢ is domi-
nated by {a} via S U B3 U By: observe that the latter coalition has measure
strictly larger than 3(b) + (3(c). Hence, C(E, (QP1YB2 VB:UB1)) = {4} thus
F(QP1YB2 'V BsUBa) — ¢ Therefore, VB84 is a profitable deviation from Q
for the coalition Bs U By, a contradiction. We conclude that ¢Q(t)a for all
t € By U Bs.

Next, consider the deviation W#2UBs given by ¢W (t)aW (£)b for all t €
B, U Bs. Since, by the previous argument, cQ(¢)a for all t € By, we
have that in the profile (QP1YB4 'WPB2UBs) " alternative a is dominated by
{c} via B; U By U B3: A(B1 U By U B;) = f(a) + 3(b) and {a,b} is an
e-set. Also, b is dominated by {a,c} through By U B; which has measure
strictly larger than (3(b). Hence, C(E, (QP1YP1 ' WP2UBs)) = {¢} and there-
fore F((QP1YPs WH2UBs)) = ¢, So WH2UBs g g profitable deviation from Q
for the coalition By U Bs. This is again a contradiction. Hence, the game
(F,R) does not have an SNE.

Examples 4.1 and 4.14 describe an anonymous ESC social choice function
with exactly one e-alternative and with all i-alternatives having blocking
coefficients 0. This shows that it is not possible to extend Example 4.28 to
a general counterexample for all systems different from the ones in Corollary
4.27. The question of existence of anonymous ESC social choice functions
in case that more than one alternative must be strictly blocked, is therefore
still open.
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5 Strong Nash consistent representation of
effectivity functions

In this section the focus remains on strategic behavior by coalitions, but we
relax the requirement that such strategic behavior should result in the same
outcome as truthful revelation of preferences. In order to be more precise,
we start with the definition of a game form and its associated effectivity
function.

For every ¢ € 2 let S* be a nonempty set, let S = [[,co S! be the Cartesian
product, and let 7 : § — A be a surjective function. We assume that for
all 0,7 € § we have (i) {t € Q| o(t) # 7(t)} € ¥ and (ii) (o) = n(7) if
A{t € Q| o(t) # 7(t)}) = 0. (With some abuse of notation we still use the
symbol §.) Then I' = (S8, ) is a game form, the sets S' (t € Q) are the
strateqy sets, o € S is a strateqy profile, and w is the outcome function. For
R € p, (T',R) is a game in the obvious way.

A straightforward example of a game form is a social choice function F'.

A strategy profile o € S is a strong Nash equilibrium of (I', R) if for all
S €Y, and all 7% € 8% we have A({t € S | 7(0)R(t)7 (¢, 7%)}) > 0. The
game form I' is strong Nash consistent if (I', R) has a strong Nash equilibrium
for every R € p.

As an example, if F'is an ESC social choice function, then F' is strong
Nash consistent as a game form.

The effectivity function E' associated with a game form T is defined by
EY(0) =0, and for S € 3 and B € Py(A), B € E'(S) if there is a 0° € §°
such that (0%, 0N%) € B for every o\¥ € S?\5. It is easy to check that
E" indeed satisfies all requirements in Definition 4.2. Also note that this
definition coincides with the definition of E¥ for an SCF F.

For a game form I and an effectivity function E, we say that I" represents
E if E = EY. The purpose of this section is to establish necessary and
sufficient conditions under which an effectivity function can be represented by
a strong Nash consistent game form. In this way we broaden the perspective
taken so far in considering ESC social choice functions. In the case of an
ESC SCF, obviously the associated effectivity function E¥ is strong Nash
represented by F', with the special property that there is always a strong
Nash equilibrium that results in the same outcome as truthful revelation of
preferences. In the broader perspective taken in this section, we consider
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general effectivity functions as representing the power embedded within the
society of voters, and look for a decentralization of this power by means of a
game form that preserves it and for which there is always a “stable” situation
in the sense of a strong Nash equilibrium.

The following lemma extends Corollary 4.4 and Theorem 4.7.

Lemma 5.1 Let I' be a strong Nash consistent game form. Then E = E¥
18 maximal and stable.

Proof. We first show that E is maximal. Let S € ¥; with A(S) < A(2)
and B € Py(A) with B ¢ E(S). Suppose, for contradiction, that A\B ¢
E(Q\S). Take R € p with BR%(A\B) and (A\B)R®\*B. Let o be an SNE
of (I,R) and 7(0) = x. If ¥ € B then, since B ¢ E(S), there is 7% with
m(o%, 7)) € A\B; hence Q\S has a profitable deviation. Similarly, one can
prove x ¢ A\B. Since x € A, this is a contradiction.

To show that E is stable, take R € p and let 0 be an SNE of (I', R). Let
x = m(0), then it is straightforward to show that = € C(E,R). O

The main result of this section is the following theorem, which establishes

the converse of Lemma 5.1. Its proof is an adaptation of the construction in
Moulin and Peleg (1982).

Theorem 5.2 Let the effectivity function E be stable and maximal. Then
E can be represented by a strong Nash consistent game form.

Proof. Fix an arbitrary preference Ry € L(A). We construct a game form
[' = (S, n) as follows.

For every t € Q let S' consist of all functions o : {S € ¥y |t € S} —
Py(A) that satisfy, for all S,7 € ¥ witht € S C T

(26) o'(S) € E(S), o'(T) € E(T), and o'(T) C *(S).

Let S be the subset of [, S* consisting of all strategy profiles o that satisfy
(i) and (ii) in the general definition of a game form above, and moreover:
{t € S| 0"(S) = B} is a measurable set for every S € X, and every
B € E(S).

Let 0 € §. For every S € ¥ define an equivalence relation ~, on S by

s~y t & 05(S) = o(S)
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for all s,t € S. Let D(S) = D(S,0) denote the partition of S generated by
~,. (Note that every element of such a partition is indeed a measurable set.)
Define Hy(o) = {Q}, Hi(0) = D(Q,0), and if Hy(0) = {Sk1,-..,Sky,} for
k > 0 define

s

Hy1(0) = | D(Sky)-
j=1

Consider the (infinite) tree with root €2, set of nodes Uy~ , Hx (o), and, for each
node Sy ; a finite set of emanating edges, labelled by {o*(S; ;) € E(Sk;) |t €
Sk.;}, and ending in the corresponding nodes in D(Sy j,0) C Hiy1(0). For
every path in this tree, by the monotonicity requirement in (26), there is a
k > 0 such that the edges on the path have some constant label B after the
k-th node. Let J C Py(A) be the set of labels that occur in this way, that is,
as a constant label on some path; say J = {By,...,B,}. For every B; € J
choose a path P; that has B; as constant label after some node on the path.
In this way we obtain a finite collection of paths { Py, ..., F;} in the tree, and
thus there is an r such that (i) all these paths have constant label at each
edge on the path following the r-th node, and (ii) all paths are disjoint after
the 7-th node. Choose an arbitrary k£ > r, and for each B; € J let Si;. be
the k-th node on the path P; corresponding to B;. Then B; € E(Sk,;) by
requirement (i) and the sets Sy;, (B; € J) are disjoint by requirement (ii).
Hence, by stability of E, B = ﬂé-:l B; #0.

Define 7(0) to be the maximal element of B according to Ry. This com-
pletes the definition of the game form I'.

Next we show that I represents F, i.e., that E' = E. First, let B € E(S)
for some S € ¥y. For every t € S let o! be the strategy that assigns B to
every T' € ¥ with 7" D S, and A otherwise. (Note that this is possible since
E is monotonic.) Then there is a path from the root 2 that has constant
label B. Hence, B € J, so that B C B. Therefore, n(c%,7%) € B for
all 70\ € N5 Thus, B € E'(S). For the converse, suppose B ¢ E(S).
Then by maximality of E, we have A\B € E(Q\S), hence by the previous
argument A\B € E'(Q\S). Hence by stability of E we have B ¢ E"(S).
Altogether, E = E'.

Finally, we prove that I' is strong Nash consistent. Let R € p and let
a € C(E,R). For every T € X\ {0} define

BT ={be A|bR"a, b# a}.
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Since a € C(E,R) we have BT ¢ E(T) for every T € ¥y. So by maximality
of E we have A\(B"T) € E(T) for every T € %,. Define, for all ¢t €  and
Al T €S with t € T,

o [ {a) if \(T) = A(Q)
o' (T) = { A\(BAT) if M(T) < A(9).

Then ot satisfies (26) because a € A\(B®\T) for all T € ¥ with ¢t € T and
AMT) < M), and for t € S C T with AM(T') < A(Q2) we have ¢*(T) C o'(S5).
Then 7(0?) = a. It remains to prove that o = o is an SNE of (I, R). Let
T € %y and p7 € ST, Tt is sufficient to prove that w(c™\7, u”) ¢ BT. If
AMT) = A(Q) then this follows from a € C(E,R) C PAR(R). Otherwise,
by construction of 7, (™7, uT) € A\(BNT") for some 7" D Q\T. Hence,
(o™ uT) ¢ BOT' so n(o™\T, ") ¢ BT, which was to be proved. O

For the case of finitely many voters the partitions that are used to define
the outcome function in the game form in the proof of Theorem 5.2 are
constant after a finite number of steps. For that case the game form is
almost identical to the one used in Moulin and Peleg (1982): the difference is
the monotonicity requirement in (26), which is an improvement in the sense
that the strategy sets are smaller than in the Moulin-Peleg game form. In our
model with infinitely many voters, however, it is possible that these partitions
never become constant. The monotonicity requirement on the strategies
nevertheless guarantees that there is a collection of subsets of alternatives
for which disjoint coalitions are effective and which becomes constant in a
finite number of steps.

6 Concluding remarks

In this paper we have carried out a thorough study of a voting system with a
measurable space of voters in which single voters are powerless, and a finite
number of alternatives. We have derived analogues of the classical theorems
of Arrow and Gibbard-Satterthwaite, resulting in the existence of invisible
dictators in the sense of Kirman and Sondermann (1972). The emphasis of
the paper is on exactly and strongly consistent social choice functions, which
we have studied through their effectivity functions and also through feasible
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elimination procedures. The latter may, in principle, be turned into algo-
rithms for computing (anonymous) ESC social choice functions with given
blocking coefficients. The final part of the paper presents a characterization
of effectivity functions through game forms that have strong Nash equilibria
whatever the preference profile.

It is our hope that the model under consideration provides an improved
approximation of large voting systems compared to a model with a finite or
discrete number of voters.

Appendix: Stability of convex functions

Let E : ¥ — P(Py(A)) be convez, that is, for all S;, S, € ¥ and By € E(S)),
B, € E(S;) we have BiN By € E(S;US;) or By U By € E(S;NSy). We will
show that such a function is stable, i.e., has a nonempty core for each R € p,
where the core is defined similarly as for an EF. The proof of this result is an
adaptation of the proof of Theorem 6.A.7 in Peleg (1984) to our model and
is based, similarly, on a result on the core of a specific cooperative game.

An n-person cooperative game without sidepayments is a pair (N, v) where
N ={1,...,n} is the set of players and v : P(N) — IRY (the nonnegative
orthant of IR") satisfies: (i) v(0) = 0 and v(S) # 0 if S # 0; (ii) v(S) is
closed for every S € P(N); (iii) for all S € P(N) and z € v(S), if y € RY
with y; < z; for all ¢ € S, then y € v(S); and (iv) v,(5), the projection
of v(S) on IR?, is bounded. The core of a game (N, v), denoted C'(N,v),
consists of all vectors z in v(IN) such that, for every S € P(N) and every
y € v(S), there is an i € S with x; > y;. A game (N, v) is ordinally convex
if for all S,7 € P(N), we have v(S)Nv(T) Co(SNT)Uv(SUT). We
will use the result that every ordinally convex game has a nonempty core (cf.
Greenberg, 1985, for a short proof).

Theorem 6.1 Let £ : ¥ — P(Py(A)) be convex. Then E is stable.

Proof. Let R € p. Consider the partition P(R) C ¥, generated by R
and write P(R) = {T4,...,T,}. Let N = {1,...,n}, then the function E
induces a function E : P(N) — P(Py(A)) by E(S) := E(U;cg T;) for every
S € P(N). Obviously, E is again convex.
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For each i € N let the function u; : A — IR, represent the preference
R(t) for (all) t € T;. For every i € N define the function w; : Py(A) — R,
by

(27) w;(B) = min{u;(x) | x € B} for all B € Py(A).
For every S € Py(N) define
(28) wv(S) = {r € RY | there is a B € F(S) with r; < w;(B) for all i € S}.

With v(0) := 0, (IV,v) is a well defined cooperative game. Moreover, this
game is ordinally convex (see Claim b in Peleg, 1984, p. 149, using that Eis
convex) and therefore has a nonempty core. The proof of the theorem will
be complete by the following claim.

Claim: If C(N,v) # 0, then C(E,R) # 0.

Indeed, let r € C(N,v). Then there exist B € Py(A) such that r; < w;(B)
for every i € N. Let # € B. We claim that z € C(E,R). Assume, for
contradiction, that this is not the case. Then there exists B’ € Py(A) and a
coalition T € ¥ such that B' € E(T) and B'R(t)x for every t € T. Without
loss of generality we may assume T = {J;cq T; for some S € Py(N). Hence,
w;(B') > u;(z) for every i € S. Since B' € E(S) we can take ¢ € v(S) with
q; = w;(B') for every i € S. Hence, ¢; > u;(x) > w;(B) > r; for every i € S,
contradicting r € C'(N, v). O
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