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Abstract

Let X,,,..., X1 be i.i.d. random variables with distribution function F. A statisti-
cian, knowing F', observes the X values sequentially and is given two chances to choose
X’s using stopping rules. The statistician’s goal is to stop at a value of X as small
as possible. Let V,2 equal the expectation of the smaller of the two values chosen by
the statistician when proceeding optimally. We obtain the asymptotic behavior of the
sequence V2 for a large class of F’s belonging to the domain of attraction (for the
minimum) D(G?), where G*(z) = [1 — exp(—z®)]I(z > 0). The results are compared
with those for the asymptotic behavior of the classical one choice value sequence V!,
as well as with the “prophet value” sequence E(min{X,, ..., X1}).

1 Introduction

Kennedy and Kertz (1990, 1991) study the asymptotic behavior of the value sequence, as
n — 00, when optimally stopping an n long sequence of i.i.d. random variables with common
distribution function F, with the objective being to stop on as large a value as possible.
They show that the asymptotic behavior of the value sequence depends upon the domain of
attraction, for the maximum, to which F' belongs.

Recently Assaf and Samuel-Cahn (2000) and Assaf, Goldstein, and Samuel Cahn (2002)
have studied optimal stopping problems where the statistician is given several choices, and
his return is the expected value of the maximal element chosen. The goals in these works
were the derivation of “prophet inequalities.”

In the present paper we study the limiting behavior of the value sequence when the
statistician, knowing F', is given two choices. It turns out to be more convenient here to take
as objective to stop on as small a value as possible, and therefore to take as the statistician’s
goal the minimization of the expected value upon stopping.

The two choice problem we consider is more difficult by an order of magnitude than the
optimal one-choice problem. To be convinced of this, let V,!(x) (which we will also denote
by gn(z)) and V2(z) be the value of the optimal one and two choice policy respectively,
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when applied to the i.i.d. sequence X,, ..., X7, when the statistician is already guaranteed
the value x. Note that for convenience we are indexing the variables so that the first one

observed is X, and the last is X;. Then by the dynamic programming principle, for one
choice V}!(z) = E[X; A z] and we have

Vii(z) = E[X,1 AV, (z)] forn>1, (1)
whereas with two choices, V2(z) = F[X2 A X; A z] and
V2 i(z) = B[V, (X41) AVZ(2)] forn > 2. (2)

The first term inside the square brackets in (2) corresponds to choosing the current vari-
able X, 11 and being left with only one additional choice among the remaining n observations,
while the second term corresponds to passing up the current random variable X,,; and re-
taining two choices among the remaining n observations. Comparing (1) and (2) we see that
for one choice the expectation computed in (1) is with respect to the random variables X, 1
with identical distributions, whereas the distribution of the random variable V,!(X,;) in
(2) depends on the function V,! which changes with n.

Let

xp =sup{z: F(z) < 1}. (3)
When nothing is guaranteed, the value for the one and two stop problems will be denoted
VI and V2 respectively, and satisfy V! = V!(zr) and V2 = V2(zp).

As in the one choice problem, the asymptotic behavior of the value sequence depends
on which of the three extreme value classes the distribution function F' belongs to. In the
present paper, we only consider F' which belongs to one of these domains of attraction and
take up the study of the remaining two classes in subsequent work. Specifically in this
paper, by a suitable shift of the origin, we assume that the distribution function F' of the
i.i.d. random variables belongs to the domain of attraction (for the minimum) D(G?), where
a > 0 and

o 0 x <0
G*(x) = { 1 —exp(—2z%) =z Z<O, (4)

and satisfies F'(0) = 0 and F(z) > 0 for all x > 0. (This is the Type III of Leadbetter,
Lindgren and Rootzén, 1983, and Type W, of Resnick, 1987.) A necessary and sufficient
condition for F' € D(G®) is

F(z) = 2“L(z)
where L(x) is slowly varying at 0, and a sufficient (and close to necessary) condition is

/
lim vk (z) = q,
10

see e.g. de Haan, 1976, Theorem 4.

Let m,, be the minimum of n i.i.d. random variables. The results for the maximum (see
e.g. Resnick 1987, Chapter 2.1) and the work of Kennedy and Kertz (1991) translate for the
minimum as follows: If F' € D(G®), then

lim nF(Em,) = T'(l+1/a)®

n—oo

lim nF(V}) = (1+1/a). (5)

n—oo

Our main result for a statistician with two choices is as follows.



Theorem 1.1 Let X,,,..., X be non-negative integrable i.i.d. random wvariables with dis-
tribution function

F(x) =a“L(xz) where lim, o L(z) exists and equals L € (0, 00).
Then the optimal two choice value V? satisfies

lim nF(V?) = h*(b,) (6)

n—oo

where b, > 0 is the unique solution to

/0 " hu)du + (1)a — y)hiy) = 0, (7)

and h(y) is the function

y 1/
v = (rrmtsy)  Fruzo s)

The value h(b,) depends only on « but unfortunately, unlike the values of (5) cannot
be given in closed form in terms of a. A short table of the limiting values of (5) and of
h*(bs) are given in Table 1. The performance improvement between having two choices over
having only one is substantial, in that the optimal value becomes much closer to that of the
prophet. For example, for a distribution with o = 1 such as the uniform, the limiting values
(for the minimum) for the statistician with one choice is 2, with two choices it is 1.165.. .,
while the value for the prophet is 1. More explicitly, with n variables the optimal value for
a statistician with one choice is roughly 2/n, for the prophet it is roughly 1/n, and for a
statistician with two choices it is 1.165... /n.

Since the limits in (6) are the same for all F' € D(G®), we first prove Theorem 1.1 for
the case where F' is of the form

0 forxz<O
U(z) =< 2 for0<z <1 (9)
1 forz>1.

for a fixed value of o > 0.

The paper is organized as follows. In Section 2 we derive some fundamental equations
for the family (9), and show heuristics which explain the form of the function h(y) of (8).
In Section 3 we show that a particular sequence of functions h,,, which determine VnQH,
converges to h. Section 4 contains some general convergence results. In Section 5 we derive
(6) for the special family (9) and some results concerning the finiteness of the limit of the
moments of properly scaled randomly selected values. In Section 6 the results are generalized
to other distributions belonging to D(G®). Section 7 contains numerical results presented in
Table 1, along with explanations and several additional remarks.

2 The Fundamental Equations and Heuristics

For X with distribution function F', let

g(x) = E[X Nz

3



When F(0) = 0, writing g(z) = z— [ F(u)du, we see easily that g(x) is positive and strictly

increasing on the interval (0,zp). Hence the same is true for g,41(z) = g(gn(2z)). In the

sequel we shall consider a > 0 as fixed, to avoid the necessity of indexing quantities by a.
For the distribution function U as in (9) we have explicitly on the interval [0, 1]

g(x)zE[X/\x]zx—a+1, (10)
and with ¢;(z) = g(x), "
ir() = gale) = P )

a+1
Since a statistician with two choices does at least as well as one with a single choice

gn(0) =0 < Vn2 < an =gn(l) n>2.

As we are interested in the two choice case, we will henceforth write V}, to denote V;? whenever
convenient. Because the function g, is strictly increasing on [0, 1], there exists a unique
number b, € [0, 1] satisfying
Vi = gn(by). (12)
We call b, the “threshold value” for the following reason; by (2) the statistician at stage
n + 1 will choose X,, 11 when ¢, (X, 411) < V,,, that is, when X,, 11 < by,.
Since b, € [0,1], P(X > b,) =1 — 02, and the basic equation (2) becomes

bn
Ve =a [ gnaa o+ (1= BV, nz2 (13)
0

Letting Uy be independent U0, 1] variables, U;/ “ has distribution 4%, and hence we may
begin recursion (13) at Vo = E[Uy’* A U;/%]. We scale

W, =n"*V,, B, =n""b, (14)
and

gn(x) = 2 fn(nz?) (15)

with f,,(0) = 1. Since g,(z) is defined and positive for 0 < x < 1, the function f,(x) is
defined and positive for 0 < z < n, and setting f,,(0) = 1 makes f,(x) continuous as = | 0,
since ¢/,(0) = 1.

Substitute (15) into (13) and make the change of variable y = nz® to obtain

Bo

Visr = n~ (1) / gV fu )y + (1 — BV, n> 2.
0

Multiply by n'/® and set

ha(y) =y fu(y) (16)
to obtain
n Lo 1 [Bn
- 1— b2 > 9. 1
() W= [ bl = bW, 0 (17)



We can now write (17) as our fundamental equation

1/« n
n 1
Wi =c and (n—l—l) [[n+lzﬁ/0 (hn(y)/\”n)dy foran, (18)

with m = 2 and ¢ = 2Y°E[U,/* A U}’®], where by (12),(14),(15) and (16),
Wi = hn(By). (19)
Later we allow for arbitrary initial times m > 1 and any positive starting values c.
For U was in (9), we give a heuristic argument explaining (6) and (7), the appearance

of the function & in (8) and of Theorem 1.1. Firstly, ((n +1)/n)Y* =1+ 1/(an) + O(n~2).
Thus we have from (17)

Bg
W1 — W, =n"" / ho(y)dy +n ' (1/a — BY)W,, + O(n™?).
0
If for large n the difference n(W, 11 — W,,) = o(1), then multiplying by n we have

0= /O " hay)dy + (1o — BYW, + o(1), (20)

and if BY — b,, W,, — d, and h, — h as n — 0o we obtain from (20)

ba
0= / h(y>dy + (1/Oé - ba)daa
0
where from (19) also
do = h(by),

which explains (6) and (7) of Theorem 1.1. By (16) finding the limiting h is equivalent to
finding the limiting f, since

hiy) =y f(y). (21)
Using (11) and (15) and the substitution y = nz?, it follows that
fual(14+ ) 0) = fult) = o faly)* (22)
e n' Y Y (a+1)nny '

Subtracting f,(y) from both sides, dividing by y/n and taking limits as n — oo indicates
that the limiting function f should satisfy the differential equation

f'y) ==fly)**/(a+1) (23)

with the initial condition f(0) = 1. Equation (23) has the unique solution

) =0+ )7 (24)

which together with (21) yields the function h of (8).



3 Preliminary Lemmas
With f, as in (15) and h,, as in (16), we have the following Lemma.

Lemma 3.1 The function f,(y) is strictly decreasing iny fory € [0,n] and h,(y) is strictly
increasing in y for y € [0,n].

Proof: We prove the lemma by induction on n. For n =1 from (10) and (15)

Yy
a+1’

fily) =1~

so the result is immediate for f;, and for hy by (16). Now assume the assertions are true for n.
We shall show they are true for n+1. Note that for 0 <y < n we have 0 < y(n+1)/n < n+1.
Differentiating (22), for 0 < y <mn,

()

L e —

Frn

< 0,

where we have used f/(y) <0 and 0 < f3(y) < 1for 0 <y <n.
From(22) and (16) we have

n
n+1

)1/ah n 4+ 1y) — h(y) — mh"(y)aﬂ'

(

n+1(

Thus for 0 < y < n we have

n 1/a—1y1 7’L+]_ RN _l o
(—n—i—l) By ( " y) = h,(y)[1 nhn(y) ] >0

since by the induction hypothesis h/ (y) > 0 and

ha(y)® < ha(n)* = [0 fu(n)]* < nfi(0) = n. y
Let f(y) be given by (24) and define
en(y) = f(y) = fuly)- (25)

Lemma 3.2 With €,(y) as in (25),
en(y) >0 for0<y<n. (26)
Proof. We use the following two well known inequalities.

Foro<a<landz>-1, (14+2)* <1+ ax, (27)



and
fora>1landz > -1, 14+ ar<(1+x)" (28)

We prove the lemma by induction. For n = 1 we must show that for 0 <y <1

1—L<(1+

ay )71/04
a+1

a—+1

which is equivalent to

(1= o) < (14 =)

a+1 a+1
or ay y
1 11— —2—)*<1. 29
<+a+ﬂ( a+ﬁ (29)

Now for 0 < a < 1 we have by (27) that the left hand side of (29) is less than or equal to

ay ay ay s
1 1— —1- 1.
<+a+lx a+ﬁ (a+1)<

For a > 1 the left hand side of (29) is by (28) less than

gt =i

Thus €;(y) >0 for 0 <y < 1.
Now suppose €,(y) > 0 for 0 < y < n. That €,,1(y) > 0 for 0 < y < n + 1, is equivalent

to
ay -1/
" <(1+—— .
fasaly) < (14 =)
By the induction hypothesis
fuly) < (1+ ao‘—fl)-l/a for 0 <y <n

and thus by (15)

anx®

gn(z) < 2(1+ )V for0 <z <1,

a+1

and since ¢(-) is an increasing function, using (11),

@ anx® .

(1+ 225 (30)

Thus, again by (15), it suffices to show that the right hand side of (30) is less than

anx® T

—1/Oc1_
) [ a+1

n < z(1
gui(a) < a1+ S0

aln+ 1)z

1 yVe for0<a <1
a

x(1+

Set y = x*/(a+ 1). Then it suffices to show that

(Lﬁmw*mﬂ—ff§@%d1+wn+nw*”:M0<y§1,
i.e. that ay Y
1+ —2 Mo ——2  J<1
[+1—|—omy] [ 1+omy] ’



which is equivalent to
ay Y
1 1—
[ +1—|—omy][ 1+omy]

For a < 1 use (27) to get that the left hand side of (31) is less than or equal to

“ <. (31)

< 1.

Y- -y

1+ —
1+ any 1+ any 1+ any

For a > 1 use (28) to get that the left hand side of (31) is less than

Y o Y o Y 21«
1 1- =1—(———— < 1.
: +1+omy] | 1—|—omy] : (1+any)] :
Lemma 3.3 With €,(y) as in (25),
en(y) < 2£ for0<y<n. (32)
n

Proof: We prove (32) by induction. For n = 1 we must show that

1 1
&)_1/a< 1—y( ——) for0<y<1. (33)

1
( JroH—l a+1 2

For a > 1, equation (33) is obvious, since the left hand side is less than 1 and the right hand
side is greater than 1. For o« < 1 we have, by (28) that

ay l/a y
14+ — >1 .
( +Oz+1) - +oz+1

Thus to show (33) it suffices to show

1 y(l —a)

1+y/(a+1) <1_2(a+1)’
i.e. that a ) (1 )
y y(l1—o y y(l-o
1<<1+a+1)<1_2(a+1)):1+§_2(a+1)2

which clearly holds for 0 < y < 1.
Now suppose (32) holds for n. Let 0 <y <n+1, and p, =n/(n+1). By (22)

ent1(y) = fy) = far1(y)
= S = hew) G

= (f(y) = fpuy)) + (f(puy) — falpay)) +

fa(Pny)*t!

CESCESY) Ja(pay)™™.

Thus

ent1(y) = F(y) = f(pay) + en(pny) + ( )fn(pny)a“. (34)

Y
a+1)(n+1
Note that

fly)=—fy)**/(a+1) <0 fory>0 (35)



and
") = fw)?** ™ /(a+1) >0 fory>0. (36)

Thus if we use the Taylor expansion
A2
flx+A)=f(z)+Af'(z) + Tf"(x +&A) forsome 0 < ¢ <1
with = p,y and A = y/(n + 1) so that  + A = y, we get, by use of (35) and (36)
2

Y a+1 Y 20+1
fW) — f(pay) = RCECE 1)f(pny) + eV 1)f(9y) (37)

where p, < 6 < 1. Substituting (37) into (34) yields

2

a+l a+1 Y 2a+1
[f(pny) - fn(pny) ] + 2(& + 1)(77, + 1>2 f(ey) .
(38)

B )
€nt1(y) = €n(Pry) — (a+1)(n+1)

Since by (26) f(pny) > fu(pny) for 0 <y <n + 1, we have

Fay)* ™ = fulony)* > F(0at) [ (0ny) = Fa(0n)] = f(0ny)*en(pny). (39)

Substituting (39) into (38) yields
2

Y
2(a+1)(n+1)

ent1(y) < en(pny)[l — ( F(pay)™] + S f(0y)**+h (40

Y
a+1)(n+1)

It follows from the induction hypothesis that for 0 <y <n+ 1 (so that 0 < p,y < n)

Py y
en(pny) < 5 - = 2(n+ 1)
Thus (40) yields
y y o y? 20t
eny1(y) < 2(n+1>[1— (Q+1)(n+1>f(pny) |+ 2(a—|—1)(n+1)2f(9y)

v yf(pay)*{1 — f(Hy)a“}] Y
2(n+1) (a+1)(n+1) 2(n+1)’

where we have used the fact that f is decreasing, f < 1 and 6 > p,. f

Corollary 3.1

faly) = fly) = (1—1—%)_1/“ for ally >0, as n — oo
Q

1/a
Y
. h(y) = y>0, .
hin(y) — h(y) <1+ay/(a+1)) forally >0, asn — oo



Remark 3.1 Note that by (15),(16) and (1)
ha(n) = n¥2g, (1) = n¥/oV;)

and thus, by (5)
lim h,(n) = [1+1/a]"®.

n—oo

On the other hand, we also have

lim h(y) = [1+1/a]V/*

Yy—00
Thus, the convergence to h in Corollary 3.1 satisfies

lim h,(n) = lim lim h,(y).

n—oo Y—00 Nn—00

4 Convergence of Recursions

To prove convergence of the sequence W,, determined by the recursion (18), we first study
the behavior of a sequence Z,,, whose values are given by the simpler recursion (42) where
the function in the integral does not depend on n. For o > 0 a fixed value and ¢(-) a given
function, define

Qy) = / " gudu+ (1 — g)aly). (41)

We prove the convergence of Z,, under the following conditions:
(i) g(0) =0
(i) g(u) for 0 < u < oo is non-decreasing everywhere and strictly increasing and differentiable
for 0 < u < A where 1/a < A < 0.
(iii) There exists a unique positive root b € (1/a, A) to the equation Q(y) = 0.
Under (i) and (ii), Lemma 4.1 shows that Q(A) = lim,;4 Q(y) exists and is in [—o0, 00),
even when A = oo, and that (iii) is satisfied if Q(A) < 0.

Lemma 4.1 Under conditions (i) and (ii), the function Q(-) is strictly increasing for 0 <
y < 1/a, strictly decreasing for 1/a < y < A, and non-increasing for A < y. Hence Q(A)
exists and (iii) holds if Q(A) < 0.

Proof: For 0 < y; < yo < 1/a straightforward calculations yield

Qy2) — Qy1) > (a(y2) — q(y))(1/a — ya2),

and for 1/a < y; < ys,

Qy2) — Qy1) < (a(y2) — q(y))(1/a — y1).

The claims now follow directly. f

The main result of this Section is

10



Theorem 4.1 Let (i), (it) and (iii) hold, let m > 1 be any integer and ¢ € (0,00) any
constant. If

1/« n
1
Zm =c and (n i 1) D1 = E/o (qly) N Zp)dy  for n > m, (42)
then the limit of Z,, exists and
lim Z, =d,

where d = q(b), where b is the unique root of Q(y) = 0.
Lemma 4.2 is the crux of of the proof of Theorem 4.1.

Lemma 4.2 Assume that (i), (ii) and (iii) hold. Let m > 1 be any integer and ¢ € (0, 00)
any constant, and suppose that Z, for n > m is defined by (42). Then for every 6 €
(0, min{q(A) —d,d — q(1/a)}) there there exists A > 0 and ng such that for all n > ng,

if Zp <d—0 then Z,.1 > (1+ A/n)Z,, (43)
if Zp, > d+0 then Zp1 < (1 —A/n)Z,, (44)
if Z, <d then Z,.1 <d, and (45)
if | Zn —d| <0 then |Z,41 —d] <. (46)
Proof: We have 1 1 11 !
1/ - o= -3
e =1y Syt oy Lo,
and hence
n+1 1/ 1 1,1 1 1 1,1 1 _3
Ao —)=1—-(=—= (e =) 10, , 47
R e B TR iR ) BRI Ny

where we write O,(f,) to indicate a sequence bounded in absolute value by f, times a
constant depending only on A, a collection of parameters.

Define A
q
M(t):/ (1—@)6&; for 0 <t < q(A).
0

From (41), Q(b) = 0 and d = ¢(b), we have
M(d)=1/a.
It is not hard to see that M (t) is strictly increasing over its range. Hence, setting A; =

(1/ae — M(d —0))/2 and Ay = (M(d+9) — 1/a)/2 we have A = min{A;, A} > 0. Now

consider the function

0 [ (o [ ()

11



Since Z,, > 0 we have Z, > 0 for all n > m, and now by (42) we have

n+1\Y°
L= (") iz (48)
By definition

ra(t) =1~ %M(t) for 0 <t < q(n).

To prove (43), assume Z,, < d — §. Since r,, is decreasing, using (48) and (47), we have
for all n > ¢~ '(d — 4),

1
Zir > Zo() o (d - 0)
_ nt1a, Ly
= Zy() (1 - —M(d - 6))
1.1

= (14 (== M(d ) + Oaa-s(n?)Z,
> (1+ %)Zn > (1+—)Z,

for all n sufficiently large, showing (43).
Next we prove (44). When Z,, > d + 4, we have similarly that for n > ¢=(d + ¢),

Zon < Zo("ELyer (a4 6)
= Zn(n—H)l/a(l—%M(dJr(S))
1 1
= (1- E(M(d—f- 9) — E) + Oa,d+5(n_2))Zn
A, A
< (1-—)2,<(1--—)Z
< n) n < ( n) n

for all n sufficiently large.
Turning now to (45) and (46), for Z,, < d+ 4, since d + § < q(A), [, is well defined by

Now by (42) and (41)
1/a Bn . .
(n i 1) L1 = % (/0 q(y)dy + (n — ﬁn)q(ﬁn)) = ~Q(Bn) + (1= —)Zn;
thus
1\ 1

where , 1

_ “Nlap &

R = (1+ =)0 (1= —). (50)

12



Consider g
g Hu
Q)= [ alwdy+ (/o - g @)
0
Since ¢~ !(u) is differentiable for 0 < u < g(A),

QW W) = 1o~ 7' ).

Hence, evaluating Q(q~*(u)) by a Taylor expansion around d, and using Q(b) = Q(q¢~*(d)) =
0, we obtain that there exists some £, between d and Z,, such that

Q(Bn) = Q™ (Zn)) = (Zn — d) (1) = 471 (€2,)). (51)

Subtracting d from both sides of (49) and using (51) we obtain

1 1 1
Zr —d = {1 C Yyl e, - —>} (Zo—d)+[Ro-1Z0.  (52)
n n (0%
Take n; such that for all n > ny
1+ Hyvelgi@y —1a) <1
n n '

Then for Z, < d we have £z, < d and hence ¢~ '(¢z,) < ¢~'(d), and so

0< {1 —(1+ %)”al(q‘l(ézn) - l)} :

n (0%

Hence the first term on the right hand side of (52) is strictly negative. Next, there exists
ny > ny so that for n > ny we have 0 < R,, < 1, by (50) and (47) with v = a. For such n
the second term on the right hand side is also negative, and the sum of these two terms is
therefore negative. This proves (45).

To consider (46) suppose that |Z, — d| < 0. Then |z, — d| < ¢, and therefore

¢ (d=06) <q ' (&z,) < q N (d+9).

Hence, for all n sufficiently large so that

(1+ %)”“% (7' (d+6)—1/a) <1,

letting Az = ¢~ '(d — ) — 1/a > 0 we have ¢~ '(¢z,) — 1/a > Aj and therefore

o< i et - D) < 1= (53

n n n.

Further, from (50), again using (47) with v = «, there exists K, such that

Ko
n

13



Then for all n so large that
K
(d+9) <Az

n
we have, using (52) and (53),

A
[ Znia —d] < (1—73)|Zn—d|+|Rn—1\Zn

A K,
(1-=2)+ —(d+9)

n
0.

IA A

This proves (46). f

Proof of Theorem 4.1: Let ¢ € (0,min{q(A) —d,d — q(1/a)}), and n > ny.
Case I: Z,, >d+0. If Z, > d+ ¢ for all n > ngy then by (44) we would have

= A
Zn+1 < H (1 - _-)Zno - 0’
< J

a contradiction. Hence for some n; > ng we have Z,,, < d+ ¢, and we would therefore be in
Case II or Case III.

Case II: Z,, < d — ¢ for some ny; > ngy. If Z, < d— ¢ for all n > n; we would have by
(43) that

- A
Zn 12 1"’_ Zn1—>OO,
+ ]1:1( ])

a contradiction. Hence there exists ny > n; such that Z,, > d — §. By (45), Z,, < d,
reducing to Case III.

Case I1I: |Z,, —d| < ¢ for some ny > ng. In this case | Z,, —d| < ¢ for all n > ny, by (46).
Hence |Z, — d| < ¢ for all n sufficiently large. Since § can be taken arbitrarily small, the
Theorem is complete. f.

The following Lemma may be of general interest, and presumably has been noticed
independently by others. We will apply it to obtain asymptotic properties of moments in
Section 5.

Lemma 4.3 A. Let D,,,n > ng be a non-negative sequence satisfying
D, <9,D,+ v, n>ng. (54)

Suppose that there exist 9 > 0 and C' > 0 such that

0<¥,<(1—=9/n) and 0<~, <

=10

Then
limsup D,, < oo.

n—oo

14



B. Let D,, > 0, n > ng satisfy

Dn+1 2 ﬂnDn + T n 2 nyg.

Suppose there exists 9 > 0 such that

9n > (1+0/n),

Then

Proof: Consider A. If (54) holds, then by induction, for all n > ny and k > 0,

n+k+

Using ¥, < (1 —9/n) and 1 —

n+k

1o

I=j+1

and v, > 0.

lim D,, = oc.

n—oo

n+k n+k n+k
L < (Hﬁ)D +Z<H f}l)%.
j=n \l=j+1

z < e % we have

n+k
< H L
I=j+1
n+k
= exp(—d Y 1/1)
I=j+1

< exp(=V(log(n + k)

(it Y
o n+k

—log(j +1)))

Hence, from (56), for all k£ > 0,

Dn+k+1

M+

n+k n+k n+k
< (H%) D, + (H 191) V5
j= Jj=n \l=j+1

VA
S
+
3
M+
-
-
N
_|_
>~
v
<

AN
‘%
~| Q

co
[ing

.

$

< Dn+

200 n+k+1
) n+k

Letting k — oo we see that the D,, sequence is bounded.

To prove B, note that for a

which gives, by (55),

1l 5 sufficiently large
U5 > (1 +9/j) = exp(d/(25)),

n+k 9 n+k 1
Dyipr 2 (H 79;‘) D, > exp(§ Z E)Dn — 00 as k — 00. f

j=n

j=n

15
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5 The Family U®

As in (41), with A(-) defined in (8), let

H(y) = /Oy h(u)du + (1/a — y)h(y);

note that h(-) is strictly increasing for 0 < y < oc.

Lemma 5.1 There exists a unique value b, > 1/a such that H(b,) =0, and
1
ho(ba) < 1+ . (57)
«

Proof: By Lemma 4.1, H(y) is strictly increasing for 0 < y < 1/« and strictly decreasing
for 1/a < y < 0o. Hence a root exists in (1/«, 00) and is unique if H is ever negative. Since

H'(y) = (1/a = y)W (y),

for some constant a y

Hy) = a+ / (1/a — w)H(u)du. (58)

1/
Now, since h(y) converges to a finite positive limit at infinity, and

1
a (1+ay/(a+1))%

we have that y2h/(y) is bounded away from zero and infinity as y — oo, and therefore

0 Y

h'(u)du < 0o and / uh/(u)du — oo as y — oo,
1

1/a a

yielding from (58) that
lim H(y) = —oc.

Yy—oo

Inequality (57) follows from lim, . h*(y) =1+ 1/a .f

For f(y) as given in (24), setting

i) =fy) —y/2j (59)
we have p ot
0 W fr(y) =y (fg) — yfa(gi) - 2%.(1/04 + 1)) : (60)

Since y f(y)* is strictly increasing with limit (a+1)/a at infinity, f(y)/a > yf(y)*™/(a+1)
for all y > 0. Hence, for any A > b, we have

e <f(y) B yf(’y)““) S 0.

0<y<A \ « a+1

16



It follows that there exists jo = jo(A) such that the derivative in (60) is positive for all
0 <y <Aandall j > j,. For these j, set

1/a £x
oy Joyefily) for0<y<A
kily) = { AV fr(A) for A<y < oo (61)

and
Ky(y) = / ky(w)du + (10— y)ky (). (62)

Lemma 5.2 There exists j; such that for all j > j; there are unique values bj o > 1/ such
that K;(bjo) = 0. Setting d; o = k;j(b;) we have

bjow — bo and dj, —d, asj— 0o, whered, = h(b,) . (63)

Proof: We apply Lemma 4.1. The functions k() satisfy k;(0) = 0, are non-decreasing
everywhere and are strictly increasing and differentiable for 0 < y < A. Further, k;(y)
converges uniformly to h(y) in [0, A, yielding the uniform convergence of K;(y) to H(y) in
[0, A]. Since H is strictly decreasing in (1/c, 00), it follows that H(A) < H(b,) = 0. Hence,
since K;(A) — H(A) as j — oo, for all j sufficiently large K;(A) < 0. For such j Lemma
4.1 now yields the existence of a unique root b;, > 1/« satistying K;(b;,) = 0.

The uniform convergence of K; to H implies H(b;,) — 0 as j — oo, from which the
convergence of b; , to b, follows. That d;, converges to d, follows from the uniform conver-
gence of k; to h in [0, A]. b.

It will become convenient to consider value and scaled value sequences arising from stop-
ping on the independent variables Uns/®, .. ., U:n/fl, X, Xon_1,...,X1. The scaled value se-
quence for this problem satisfies (18) with ¢ = m'/*V,,(X,,,..., X;). Note that for any m
and ¢ there exists X,,, ..., X such that ¢ = m"*V,,(X,,, ..., X); the simplest construction
is obtained by letting X; = em~ Y for 1 < j < m. Our suppression of the dependence of
W,, on m and c is justified by Theorem 5.1, which states that the limiting value of W,, is the
same for all such sequences.

Lemma 5.3 Let m > 1 be any integer and ¢ € (0,00) be any constant. For n > m let W,
be determined by the recursion (18) with starting value W,, = ¢, and let

1/a n
+_ n T + >
Zt =c¢ and <n n 1) Zyg = - /0 (h(y) NZF)dy  forn>m. (64)

With ji as in Lemma 5.2, for all j > ji let m} = max{m, j}. Now define sequences 2 for
n>mk, by
- ]7

1/ n
_ n - 1 — *
ijm; = Wm; and (n n 1) i1 = —/0 (kj (y) A ij) dy  forn >m3. (65)

Then for all n > mj,

Ziy <W, < Z7 (66)
and
lim 77 =dj, and lim ZF = d,. (67)
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Proof: With j > j; and f; defined in (59), Lemmas 3.3, 3.2 and monotonicity of f, give

fiy) < faly) < f(y) foralln>jand 0 <y <n.

Therefore, by (61), (16) and (21),
kij(y) < ho(y) < h(y) foralln>jand 0 <y <n.

Equation (66) now follows by a comparison of (65), (18) and (64), and (67) follows directly
from Theorem 4.1. f

Theorem 5.1 Letm > 2 be any integer and suppose the variables Uﬁ/a, cee U,L/fl, D CRD. €1
are independent. Let

Vi = V(UYL UMY X, X)), (68)
be the optimal two choice value, and suppose Vi (X, ..., X1) =c € (0,00). Then

W, = nl/o‘Vn,m forn >m,

satisfies
lim W,, = h(b,), (69)

n—oo

where b, is the unique solution to (7).
In particular, the optimal two stop value V,, for a sequence of i.i.d. variables with distri-
bution function U*(x) =z for 0 <z <1 and o > 0 satisfies

lim nU*(V,) = h%(ba); (70)

n—oo

that is, the conclusion of Theorem 1.1 holds for the U* family of distributions.
Proof: We apply Lemma 5.3. Letting n — oo in (66) and using (67),

djo < liminf W, <limsupW, <d, forall j > j;.

n—0oo n—o0

Now letting j — oo and using (63) gives (69). The W,, values for the i.i.d. sequence with
distribution function U are generated by recursion (18) for the particular case m = 2 and
¢ = 2Y°E[U,* A U}’®], thus proving (70) &.

We conclude this section with some results on the existence of moments for both the one
and two-stop problems.

Theorem 5.2 Let Ué/a, ce Ull/a be an i.i.d. sequence with distribution function U*, a, a
sequence of constants in [0, 1] with ag = 1, and

T, =max{l <k <n: Ug/a < ag_1}. (71)
When A,, = n'/®a, satisfies

0 < k=Iliminf A, <limsup A, =k < o0

n—oo n—oo
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we have

lim sup E(nl/aU%ia)r < oo forallr < ak®. (72)
If
R < 00,
we have
lim E(nl/“U%a)’” =00 forall r > aR*. (73)
Proof: Let

M, (r) = E(U®)

be the r* moment of the a; stopped sequence. The sequence M, (r) satisfies the recursion
M, (r) = / "oz tdr + (1 —a®)M,(r), n>1.
0

Substituting y = nz®,

1 An
—_— r/eg 1—ad)M,(r).
e [ (=) (0)

Multiplying by n'/®, and letting n™/*M, (r) = S, (r),

r/a Al «a

n 1 n A

< ) Spi1(r) = —/ y"/“dy+(1—7")5n(7“)
0

n—+1 n
AL

Aot
n(l+r/a) n

Mn—&-l(T)

= (1=,

To show (72), first note that

r/a
n+1 r _
< ) =14 o+ Orja(n™).
n an

Now multiply by ((n + 1)/n)"/* and use the boundedness of the sequence A, and r < ax®
to obtain, for all n sufficiently large,

2r/aAg+r
Sn+1 (T) <

(A —r/a)
“n(l+r/a)

1—
+( 2n

)Sn(r);

(72) now follows from Lemma 4.3 A.
To show (73) we note that for all n sufficiently large, recalling that r > ar®,

Sea(r) = (hyr - Sy, )
- (1L 0l - s,
_ (1 4 M + Or/a,n(n‘2)> Sa(r)
> g oA yg o),

2n
Now apply Lemma 4.3 B.
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Corollary 5.1 Let 1V and 20" be the one and two choice random values obtained from
optimally stopping an independent sequence of variables having distribution U*. In the one
choice case,

ifr<1l+a, limsup E(nl/alf{”‘*)r < 00, (74)
while if r > 1+ «, limsup E(nl/algl/a)T = 0.
In the two choice case,
ifr<1+a, limsup E(nl/o‘2gl/a)’" < 00. (75)

Proof: For one choice, apply Theorem 5.2 with a,, = V!, and therefore T,, = 172]1/&. By (5),

lim nY°V} = lim (nU(V)VY = (1 + 1/a)V/e.
The one choice results now follow from (72) and (73) of Theorem 5.2 with & = k = (1 +
1/a)l/e.

For two choices, let T;, be defined as in (71) with b, the first choice thresholds given in
(12), replacing a,, and let B, = n'/®b,. Then as 2U"" < U%a, it clearly suffices to show
that for r < 1+ a,

lim sup E(nl/anlﬂia)r < 00.

Reiterating (19), W,, = h,(B2), and by Theorem 5.1
lim W, = d, = h(ba).

n—oo

We show lim,,_,», BY = b,. Suppose limsup,,_,., BY = B* > b,. Then there exists € > 0
such that B*—¢ > b,. But then limsup,,_, . h,(B2) > limsup,,_, . h,(B*—¢€) = h(B*—¢) >
h(b,), a contradiction. Similarly if liminf, .., BY < b,. Thus the limit of B,, exists and

n*/%b, = B, — bl/*.

By (72) it suffices to show that b, > 1 + 1/a, which, by Lemmas 4.1 and 5.1, would follow
from H(1+1/a) > 0. Now

T (ﬁ)%d@/—(%—ig)ua]

1 1/ 1+1/c 1—|—1/Oé 1/a
1 1/a - / 1/ad Y Y el
> (1+a) (2(1+a)> VYT Qe
= O7

completing the proof.

Remark 5.1 Kennedy and Kertz (1991, Theorem 1.4) obtain the limiting distribution of
the scaled optimal one stop random variable nl/algl/a. It is easily checked that this limiting

distribution has a finite r'" moment if and only if r < 1+ o, which is not surprising, when
compared with (74) in Corollary 5.1.
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Remark 5.2 From the proof that b, > 1+ 1/c in Corollary 5.1, it follows that the limiting
thresholds b,, for the first choice in the optimal two-choice problem are larger than the corre-
sponding values V! for the optimal one choice problem, for all o > 0. This is reasonable, as
with two choices one ‘can afford’ to make the first of the two choices in the two stop problem
earlier than the only choice in the one stop problem.

Another interpretation of the inequality b, > V! is gained by applying V.}() to both sides,
to obtain V,, > Vi i.e. one is better off having one choice among 2n variables than having
two choices among n variables.

Remark 5.3 Whereas it follows from Resnick, (1987, Proposition 2.1) that all scaled mo-
ments of the minimum exist, it is of interest to note that no moment with r > 1 + « exists
for the optimal scaled one-choice value.

6 Extension to General Distributions

In Theorem 5.1 we considered the special case where the variables had distribution function
U (z) as in (9). In this section we prove Theorem 1.1, thus extending our results to a much
wider class.

For X,,,..., X7 an i.i.d. sequence of random variables with distribution function Fx, we
will let VX denote its optimal two stop value. The proof of Theorem 1.1 will be given at
the end of this section. First note, however, that without loss of generality, we may take
lim, o L(z) = 1, since if Fy(z) = 2*Lc(x) with lim,|o Le() = £ € (0,0), then Z = L£1/*X
has distribution function Fyz(z) = 2%(1/L£)Lc(L7Y2) with lim, o(1/£)Le(L7Y2) = 1.
Since VZ = LY*VX | we have

Fy(VZ) = Fx(V:X5),

and hence we can assume that X has distribution function F such that
F(x) =2%L(z) limgoL(z) =1. (76)

To prove Theorem 1.1 the two stop problem is considered for X,,..., X , independent
but not necessarily identically distributed random variables; it is direct to see that the
dynamic programming equations given in the introduction for an i.i.d. sequence hold under
the assumption of independence alone. In particular, the functions V!(x) and the two stop
value V,, are again given through (1) and (2) respectively. We begin by giving conditions
such that the threshold sequences are uniquely defined.

Lemma 6.1 Let X,,,..., X, be non-negative independent random variables with distribution
functions F,, ..., Fy respectively, and with xp given in (3), let
T =min{zp,...,zp}, 1<E<n.

Then the function Vi} (x) given by (1) is continuous and strictly monotone increasing in x €
0, 25, ]. Furthermore, assuming E(X,AX,) < oo , the indifference numbers by, 2 < k <n—1
given by

Vi =V (bx)

exist and are unique in [0,z ].
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Proof: The function V{'(z) = E[zAX;] = z— [ Fi(y)dy is continuous and strictly increasing
for x in [0, 2], and 0 < Vi}(z) < z. Now assume V;! | (z) is continuous and strictly increasing
in [0,25,_,] and that 0 < V;'_ () < 2. That V;}(z) is continuous follows directly from the
dominated convergence theorem. To prove strict monotonicity, take 0 <z <y < xp . Since
tp, < o we have 0 < Vi!(z) = E[V,L,(2) A Xi] < Vi (2) < 2. Using the induction
hypotheses, 0 < V' (z) < ViL,(y) <y < xf,. Therefore P(X}, > V1, (z)) > 0, and hence

Vi (2) = B[V, (x) A Xi] < B[V, (y) A Xi] = Vi (y).

Since

Vkl(bk) =Vi < Vkl = Vkl(xﬁk),

and V}'(z) is continuous and strictly monotone increasing in [0, 2z, ], the value b, < xj, is
determined uniquely in this interval.g

Lemma 6.2 For any sequence of nonnegative independent random variables X, . .., X1 with
E[X5 N Xi] < o0 the b, sequence is monotone non-increasing.

Proof: We first show that
V2, < X AV,

The right hand side is the value of the one choice problem for the two variables X, 1, V2.
But this value can be achieved in the two choice problem by the suboptimal rule of choosing
X,11 and forgetting about any second choice if X,y is less than V2, and retaining two
choices otherwise. Therefore

an+1(bn+1) = VnZJrl < E[Xnﬂ A Vn2] = E[Xnﬂ A Vn1<bn)] = an+1<bn)-

Since the functions V,!(z) are strictly monotone increasing in [0,z | for all n, the Lemma
is shown. .

Lemma 6.3 Let X,,,..., X7 and Y,, ..., Y, be sequences of independent non-negative ran-

dom variables satisfying
E[Yo NY1] < E[ X5 A Xq] < 00, (77)

and having two choice value and threshold sequences VjX, V;-Y and bJX, b}/ respectively.
If for some m > 2,

Y; <o X5, j=3,...,m (78)
and there exists T such that
7 >max{by, b} and TAYj1 <aTAXj1 form<j<n, (79)

then
Y X .
Vi <V73 forj=2....n.

Hence, if the inequalities in (77), (78) and (79) are replaced by equalities, then V¥ = V;*, j =
2,3,...,n, and so in particular V.Y is unchanged upon replacing any Yii1 by 7 A Yj41,2 <
j <mn, for any T >0bY.
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Proof: Clearly V}' < VX for 2 < j < m. Let V;*'(z) and V,)>!(x) denote the optimal one
choice value functions for the X and Y sequences respectively, with guaranteed value z, as
n (1). Clearly, for j = m we have V}¥ <V;*, and ij’l(m) < V;-X’l(x) for all z < 7. Assuming
these statement are true for some m < j < n, then for x < 7 we have VjX’l(az) < VjX’l(T) <rT

and so
Vi AV @) < Vi AV ) < Xjor AV (@),

giving
V(@) = BV AV (@) € B A VS (@)] = VI (@),
Therefore

Vi = BIV;" (Vi) AV = BIV; (Vi) AV 07) AV = BV (Yia AB)) AV

< BV (X AR AV < BV (X A ATY)

= BV (XG) AV AV = BV (XGa) AV 0]

BV (Xj) AV < BV (X) AV

= Vfilh
Corollary 6.1 Let X,,,..., X be a sequence of i.i.d. non-negative random variables with
E[XoNX1]| < 0o and distribution function satisfying (76). Then there exists an i.i.d. sequence
Yo, ..., Y1 of bounded non-negative random variables with distribution function satisfying (76)

and VY = VX for alln > 2.

Proof: Assume xr = 00, else there is nothing to prove. For all z > 0 sufficiently small, using
the non-degeneracy of the distribution on [0, z], Jensen’s inequality applied to the concave
function ¢ (u) = u A z yields

Elz N Xi] <z A EX,;, with strict inequality for all z sufficiently small.
Thus
E[Xs AN X1|Xs] < Xo A EXy,  with strict inequality having positive probability
and therefore, since Vj'(0co) = FX; (which may be infinite),
Vo = B[X, A X)) < E[Xz A EX)] = Vj (c0).

Using zp = oo and Lemma 6.1, V;'(x) is continuous and strictly monotone increasing on

(0, 00), hence the solution by to
Vo =Vj (x)

exists, is unique, and satisfies by < oc.
For j=1,...,nlet

Y, — Xj for Xj S bz
J K for Xj > bs.

Since the distribution of X; is unbounded, P(X; > by) > 0, which guarantees that K can
be chosen to yield E[Y2AY;] = E[X3A X;]. Now apply Lemma 6.3 with m = 2 and 7 = b,. .

We have the following Lemma.
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Lemma 6.4 Let X have distribution function F(z) = P(X < x), and set
Fl(u) =sup{z: F(z) <u} for0<u<1l.

Then
F(z) >u if and only if = > F'(u), (80)

and with U ~ U(0,1) we have
X =, FY(U). (81)

In addition, if
F(x) = 2*Lp(x), for all >0, with lim, o Lp(z) =1,
then there exists a function L* such that

FYu) = uYLp-i(u) = u*L*(u®),  with h?ol L*(u) =1, (82)

so that by (81)
X =4 UYL (UY). (83)

Proof: Let A, = {z : F(z) < u}. If F(z) > u then z € A, and therefore F~'(u) < .
If F(z) < u then by right continuity there exists ¢ > 0 such that F(z +¢) < u. Thus
x4+ e € A,, which gives that F~!(u) > 2 + € > z. This demonstrates (80). Now replacing u
by a random variable U having the U[0, 1] distribution we obtain (81), by P(F~1(U) < x) =
P(U < F(z)) = F(x).

The claim in (82) is equivalent to

G
Using that F(z) = 2*Lp(x),
F~Yu) = sup{z : 2°Lp(v) < u},
and hence, setting Lo (y) = Lr(y'/®),

(F~(w)* = sup{a® : 2Ly (z) < u} = sup{y : yLp(y"/*) < u} = sup{y : yLa(y) < u}.
Note yL.(y) = F(y'/®) is non-decreasing. Let ¢ € (0,1) be given. Since lim,o Lo (y) i851),
there exists 0 > 0 such that

l—e<Ly(y) <l4e€ foral0<y<d. (86)
Let 0 <u < (1 —¢). Thenif 0 <y < u/(1+ ¢€) we have y < § and so
yLa(y) <y(l+¢) <u,

{y:0<y<u/(1+¢€} C{y:yLlaly) < u}.
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Thus
u/(1+¢€) < (F'(u)* forall0<u<d(l—e).

By (86)
u<(1=-€ey<yLaly) (87)
holds for any y € (u/(1 — €),6); it follows by (85) that

(F~H(w)* < u/(1—e).
Hence,
1/(14¢€) < wgl/(l—e) for 0 <u < d0(1—e),
and (84) is shown. f.

Lemma 6.5 Let x,,n =1,2,... be a uniformly integrable non-negative sequence of random
variables, and 0 < L,, < L, L a constant, with L, —, 1 as n — oco. Then

limsup Ex,L, = limsupEyx,

n—o0o n—oo

so that in particular, if lim,, .. Ex, ezists,

limsup ExpL, = lim Ex,.

n—oo

Proof: Let ¢ > 0 be given. Since Y,, is uniformly integrable, there exists § > 0 such that
Exnla <€ whenever P(A) <. (88)

Since L,, —, 1 as n — oo, there exists ny such that for all n > ng

O, ={|L, — 1| <€} satisfies P(,)>1-0.
Hence, for n > ng, using (88) and that y, > 0, with A = Q¢

(1 —€)Exnla, < Ex,L, < (1+¢€)Ex,1lq, + Le
and
Exn — € < Exnla, < Exn,

so that for n > ng we have

(1—€)(Ex,—¢€) < Ex,L,<(1+¢€)Ex, + Le.

Taking lim sup and recalling ¢ > 0 was arbitrary completes the proof. f

Lemma 6.6 Let X,,,..., X be an integrable i.i.d. sequence with distribution function F(z)
satisfying (76). Let WX = nY/oVX and WU = /oy U - Then

limsup W;* < lim ng/a.

n—oo n—oo

25



Proof: Using Lemma 6.4, we construct i.i.d. pairs (U;, X;) with U; ~U, X; ~ F, and
X = Uil/aL*(Uil/a)~

By Corollary 6.1, without loss of generality we can take the X variables to be bounded,
and since L*(u) — 1 as u | 0, it follows that L* is bounded.

Let 20" and 2 be the optimal random n-variable two-stop value for the Lo ! /o
and X,, ..., X, sequences respectively. Since En!/®2U"" = pl/oy UV — WU converges

(to h(ba)), we have

Ul/a

P(zgl/a > E) — P(nl/azgl/a > nl/ae) S 11/ 0 asn — oo.
n+/%e

Hence 2V"% — 0, and therefore L*(2U"")
1/a2U1/“

—, 1. Furthermore, by Corollary 5.1, the
collection n has a bounded r** moment for some r» > 1 and hence is uniformly
integrable.

Let 25’(]1/& denote the X sequence stopped on the optimal rules for the U sequence.
Then 2XV"* = 2U"* [#(2U"*) "and since these rules may not be optimal for the X sequence
we have

En'/°2X < En'/e2 XU = ppt/eal " L (20,

Taking limsup and using that n'/®2V Vs uniformly integrable and L* is bounded and
L*(Zgl/a) —, 1, the result follows from Lemma 6.5 and the fact that WnUl/a converges.

Lemma 6.7 Let X,,..., X, be i.i.d. random variables with distribution function F' satisfy-
ing (76). Then the indifference values b, for X satisfy
lim b, = 0.

n—oo

Proof: Since b,, is monotone non-increasing by Lemma 6.2, b, | b > 0. We have
V(X Aby ., X1 Ab) = ga(b) < ga(bn) = V. (89)

Hence the two choice value from X,,, ..., X is greater (worse) than the optimal one choice
value of a sequence of i.i.d. random variables bA X, ..., bA Xy, If b > 0, by (5), the limit of
the scaled optimal one choice value, say, WX""! of this sequence is the same as the limit of
WX1 the scaled optimal one choice value for X,,, ..., X;. But then, using (89) in the first
inequality, Lemma 6.6 for the second inequality, Theorem 5.1 for the equality, (57) for the
strict inequality and the results of Kennedy and Kertz (1991) for the last two equalities we
have

lim WX < limsup WX < lim WY = h(by) < (1+1/a)* = lim WV""! = lim W51,

n—oo n—oo n—oo n—o0 n—oo

a contradiction. f

Lemma 6.8 Let (U;, X;), i = n,...,1 be independent pairs of random wvariables with U;
uniform on [0,1] and X; having distribution function F satisfying (76). Let V,, ,, be defined
as in (68), giving in particular V,,,, = VX. Then for every e € (0,1), there exists m such
that

1
< lim inf Vm < lim sup Yom (90)

1+e€ n—0oo n,n n—00 n,n T 1l-e
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Proof: Using (83) of Lemma 6.4, we can construct the i.i.d. X sequence using an i.i.d.
sequence U with distribution 2 by defining X; as

X, =UMLUM*)  as. (91)
where lim, o L*(u) = 1. Hence, for the given € € (0, 1) there exists § > 0 such that
l—e< L*(ut*) <14e for0<u<S§, (92)
and so by (91) and (92) we have
(1+6)7'X, <UY* < (1—¢)'X; when U; <.

By condition (76), F' is continuous at 0 and satisfies F'(0) = 0, and therefore there exists
p >0 with 0 < F(p) < 6. But by (80), since

Ui < F(p) ifandonlyif X; <p,
we have
if X;<p then U; <.

Let 7 = min{4, p}, and b* and bY " be the indifference values for the X and U@
variables, respectively, which by Lemma 6.7 converge monotonically to zero. Hence there
exists m with

max{b%l/a,bi} <,
and for all n > m, by Lemma 6.3,
(146 WVa(Xn,..., X1)
= 1+ Vo Xu AT, Xonit AT, Xy -, X1)
Vn((l + 6)71(Xn A T)a ce (1 + 6)71(Xm+1 A T)? (1 + 6)71Xm7 R (1 + 6)71X1)

< Vo(UYo AT, UNS AT X, X))

— V(UM UM X, X))

= Vu(UM AT, UYS AT X, X)

< V(=) Y XuAT), o (=) M Xt AT), (1 — &) Xy, (1 — €)1 X))
< (1= WouXu AT, Xt AT, Xy -, X1)

(1 =€) VX, ..., X1).
Now dividing by V;,, we see that for all n > m,

1 Vi 1
< oo :
14+e™ Vo = 1—¢

completing the proof.

Proof of Theorem 1.1: Clearly, for all 0 < m < n,

Va(UN, UM™Y Vo Vio Vi

Vn<Xn7 s 7Xn) B Vn,n n,m Ynmn
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Given € € (0, 1), let m be such that (90) holds. But for any fixed m we have by Theorem
5.1 that

Vn 0
lim — =1.
n—00 Vn,m
Hence by Lemma 6.8,
Vi ) Va 1
< lim inf 0 < lim sup 0 < ,
I+e n—oo Vnn n—oo n,n I —e

and therefore the limit of the ratio exists and equals one. Applying Theorem 5.1 to the
sequence n/*V,, o completes the proof of Theorem 1.1. |

7 Numerical Results and Additional Remarks

In Table 1, for the a = 0.1,0.2,...1,2,...10 values in column (1), we tabulate the following
quantities in the columns indicated:

3) lim, oo nF (V) = (14 1/a)
) = h*(b,) = d% and

I
>

for F(z) = x*L(z) and lim,_0 L(z) = L existing in (0,00). In columns (6),(7), and (8),
we tablulate the ratios (3)/(4), (4)/(5) and (3)/(5). Note that another natural comparison
would be among the values listed raised to the power 1/, as this would yield a comparison
of the actual limiting values of V!/V?2 V?2/E(m,) and V! /E(m,) respectively. The reason
that Table 1 lists the values in the way it does is to display them in a comparable order
of magnitude to make numerical comparisons easier. The final column of Table 1 presents
the relative improvement attained by using two stops rather than one, as compared to the
reference value of the prophet,
T (V) — V2)/ (V! — Em,). (93)

As evident from the table, the improvement is highly significant for all values of a.

The following asymptotic results can be shown to hold:

(i) For a — o0,

lim lim nF(V)) =1

a—00 N—00

lim lim nF(V?)=1-1/e

a—00 N—00

lim lim nF(Em,) ="

a—00 N—00
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where v = .5772. .. is Euler’s constant. The limiting value for the relative improvement (93)
given in the last column is

[1 —log(e —1)]/y=0.7946.. ..
(ii) For @« — 0,
The quantities in columns (3), (4) and (5) all tend to infinity, but the ratios in columns
(6),(7),(8) and (9) tend to a finite limit, and are respectively

clyli% nILIEO nF(V?2) N

n

ili% nh_}n;) —nF(Emn) =e/2=1.3591...
F 1
lim lim nB(V,)

=e=2.7T182...
a—0n—oo nF(Emn) ¢

The relative improvement (93) given in the last column can be shown to tend to 1.

Remark 7.1 Though we have proven Theorem 1.1 for the case where F(z) = x*L(z), o > 0
and L(x) having finite positive limit as x | 0, we believe it holds true for all F € D(G®) of
(4), that is, whenever L(x) is slowly varying as x | 0.

Remark 7.2 The approach in the present paper can easily be applied to obtain the asymp-
totic behavior of the one-choice value (obtained in Kennedy and Kertz (1991) by a different
method), when F(x) = x“L(z) and lim, o L(z) = £ € (0,00). First assume that X ~ U*(x)
as in (9). Then for the one choice value V!, we have

n

v
VI = EX AV = a/ 2 da 4+ (1— (V2 VL
0

Set W' = n/2V1 and make the change of variable y = nx®, as in Section 2. Now multiply
by n'/ to obtain

n \"° 1 Lo 1/ 1 1
Wi, = - ody + (1 — (V)W
() Wi = 2 [ v @

1 n
=
nJo

Thus W} satisfies (42) with q(y) = y*/*, and now Theorem 4.1 can be applied to yield that
W} — q(b) where b is the unique root of

y
/ udu + (1/a — y)y® =0,
0
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Table 1: Limiting Values of nF(V,}), nF(V,?),nF(Em,), and their ratios.

O | @ (3) (4) (5) (6) (7) (8) (9)
a bo | limnE(V,)) | imnF (V) | imnF(Em,) | (3)/(4) | (4)/() | 3)/(5) | ((3)-(4))/((3)-(5))
0.1 | 11.9312] 11.0000 | 5.72334 452873 | 1.92195 | 1.26379 | 2.42804 99868
0.2 | 6.8927 | 6.0000 3.20772 2.60517 | 1.87049 | 1.23129 | 2.30311 97131
0.3 | 52004 | 4.3333 2.36372 1.94980 | 1.83327 | 1.21229 | 2.22245 93248
0.4 | 4.3485 | 3.5000 1.93919 1.61670 | 1.80488 | 1.19947 | 2.16490 90235
0.5 | 3.8342 | 3.0000 1.68310 141421 | 1.78242 | 1.19013 | 2.12132 88102
0.6 | 3.4806 | 2.6667 1.51157 1.27776 | 1.76417 | 1.18298 | 2.08699 86571
0.7 | 32423 | 2.4286 1.38853 117940 | 1.74902 | 1.17732 | 2.05916 85460
0.8 | 3.0561 | 2.2500 1.29590 110506 | 1.73624 | 1.17270 | 2.03610 84614
0.9 | 29107 | 21111 1.22362 1.04684 | 1.72530 | 1.16887 | 2.01665 83958
1.0 | 27940 | 2.0000 1.16562 1.00000 | 1.71583 | 1.16562 | 2.00000 83438
2.0 | 2.2634 | 1.5000 0.90214 0.78540 | 1.66270 | 1.14864 | 1.90984 81217
3.0 | 2.0839 | 1.3333 0.81309 0.71207 | 1.63983 | 1.14186 | 1.87245 80556
4.0 | 1.9934 | 1.2500 0.76825 0.67497 | 1.62707 | 1.13820 | 1.85193 80252
50 | 1.9388 | 1.2000 0.74123 0.65255 | 1.61895 | 1.13590 | 1.83897 80078
6.0 | 1.9023 | 1.1666 0.72316 0.63753 | 1.61324 | 1.13432 | 1.82994 79967
70 | 1.8762 | 1.1429 0.71023 0.62677 | 1.60914 | 1.13317 | 1.82343 79892
8.0 | 1.8566 | 1.1250 0.70052 0.61867 | 1.60592 | 1.13230 | 1.81839 79831
0.0 | L8412 | 11112 0.69296 0.61236 | 1.60350 | 1.13162 | 1.81455 79789
10.0 | 1.8291 | 1.1000 0.68689 0.60731 | 1.60147 | 1.13105 | 1.81134 79756
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giving b = 1+ 1/a. Hence, lim,, . W} = (1 4+ 1/a)', or, lim, .o nF(V,}) = (1 + 1/a).
The general result for the wider class of distribution functions mentioned now follows in a
manner similar to, but simpler than, the calculation for two choices.

Remark 7.3 A similar approach can also be used to obtain the limiting value for more than
2 choices. For three choices one must first obtain the function h® (y) which replaces the
function h® (y) = h(y) of (8). (Note that by Remark 7.2, hM)(y) = y'/*).

Remark 7.4 Our results translate easily to the case where the statistician is given two
choices and his goal is to pick as large a value as possible, his payoff being the expectation
of the larger of the two values chosen. Denote the optimal two-choice value based on n i.i.d.
observations by V2. Then for X ~ F(z), where xp < 0o, and

Fx(z)=1—(zp —x)*L(zp — x)
where L(-) satisfies limyjoL(y) = £ and 0 < £ < oo, we have

lim [1 — F(V2)] = h¥(by).

n
n—oo
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