
  האוניברסיטה העברית בירושלים
THE HEBREW UNIVERSITY OF JERUSALEM  

  

 
  

  

  

 
BETTING ON THE OUTCOMES OF MEASUREMENTS: 
A BAYESIAN THEORY OF QUANTUM PROBABILITY    

 
 

by 
 

 

ITAMAR    PITOWSKY 

 
  

              Discussion Paper  # 304                  December  2002 
  

 
 
 
  

  מרכז לחקר הרציונליות  
  

CENTER FOR THE STUDY  
OF RATIONALITY 

 
 
 
 

Feldman Building, Givat-Ram, 91904 Jerusalem, Israel 
PHONE:  [972]-2-6584135      FAX:  [972]-2-6513681 

E-MAIL:              ratio@math.huji.ac.il 
     URL:    http://www.ratio.huji.ac.il/ 



Betting on the Outcomes of Measurements:
A Bayesian Theory of Quantum Probability

Itamar Pitowsky
Department of Philosophy, the Hebrew University,

Mount Scopus, Jerusalem 91905, Israel.
E-mail: itamarp@vms.huji.ac.il

November 18, 2002

Abstract

We develop a systematic approach to quantum probability as a theory
of rational betting in quantum gambles. In these games of chance the
agent is betting in advance on the outcomes of several (finitely many)
incompatible measurements. One of the measurements is subsequently
chosen and performed and the money placed on the others is returned to
the agent. If the rules of rationality are followed one obtains the pecu-
liarities of quantum probability, the uncertainty relations and the EPR
paradox among others. The consequences of this approach for hidden
variables and quantum logic are analyzed.

Preface

This paper was written originally for physicists and philosophers of science
who are familiar with quantum mechanics and its foundational problems. To
make it more accessible to readers from other disciplines I have added two
appendices. The first covers the basic concepts state and observable and the
rules for calculating quantum probabilities. The second gives a simple derivation
of two basic results: the Kochen and Specker theorem, and Bell’s theorem.
(These results are also covered, from a Bayesian perspective, in the main text).
The background knowledge required is of linear algebra of finite dimensional
complex vector spaces. The single major subject not covered in the appendix is
Bohm’s theory (section 3.2). Covering it in any detail will take too much space.
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1 Quantum Gambles

1.1 The Gamble

The Bayesian approach takes probability to be a measure of ignorance, reflecting
our state of knowledge and not merely the state of the world. It follows Ram-
sey’s contention that “we have the authority both of ordinary language and of
many great thinkers for discussing under the heading of probability ... the logic
of partial belief” (Ramsey 1926, p. 55). Here we shall assume, furthermore, that
probabilities are revealed in rational betting behavior: “The old-established way
of measuring a person’s belief ... by proposing a bet, and see what are the lowest
odds which he will accept, is fundamentally sound”1. My aim is to provide an
account of the peculiarities of quantum probability in this framework. The ap-
proach is intimately related and inspired by the foundational work on quantum
information of Fuchs (2001), Schack, Brun and Caves (2001) and Caves, Fuchs
and Schack (2002)..
For the purpose of analyzing quantum probability we shall consider quantum

gambles. Each quantum gamble has four stages:
1. A single physical system is prepared by a method known to everybody.
2. A finite setM of incompatible measurements is announced by the bookie,

and the agent is asked to place bets on possible outcomes of each one of them.
3. One of the measurements in the setM is chosen by the bookie and the

money placed on all other measurements is promptly returned to the agent.
4. The chosen measurement is performed and the agent gains or looses in

accordance with his bet on that measurement.
We do not assume that the agent who participates in the game knows quan-

tum theory. We do assume that after the second stage, when the set of mea-
surements is announced, the agent is aware of the possible outcomes of each
one of the measurements, and also of the relations (if any) between the out-
comes of different measurements in the setM. Let me make these assumptions
precise. For the sake of simplicity we shall only consider measurements with a
finite set of possible outcomes. Let A be an observable with n possible distinct
outcomes a1,a2,...,an. With each outcome corresponds an event Ei = {A = ai},
i = 1, 2, ..., n, and these events generate a Boolean algebra which we shall de-
note by B = hE1, E2, ..., Eni. Subsequently we shall identify the observable A
with this Boolean algebra. Note that this is an unusual identification. It means
that we equate the observables A and f(A), whenever f is a one-one function
defined on the eigenvalues of A. This step is justified since we are interested in
outcomes and not their labels, hence the scale free concept of observable. With
thisM is a finite family of finite Boolean algebras. Our first assumption is that
the agent knows the number of possible distinct outcomes of each measurement
in the setM.

1Ramsey, 1926, p. 68. This simple scheme suffers from various weaknesses, and better ways
to associate epistemic probabilities with gambling have been developed (de Finetti, 1972). Any
one of de Finetti’s schemes can serve our purpose. For a more sophisticated way to associate
probability and utility see Savage (1954 )
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Figure 1:

Our next assumption concerns the case where two measurements in the set
M share some possible elements. For example, let A,B,C be three observables
such that [A,B] = 0, [B,C] = 0, but [A,C] 6= 0. Consider the two incompatible
measurements, the first of A and B together and the second of B and C
together. If B1 is the Boolean algebra generated by the outcomes of the first
measurement and B2 of the second, thenM = {B1,B2} and the events {B = bi}
are elements of both algebras, that is B1 ∩ B2. The smallest nontrivial case of
this kind is depicted in figure 1.
The graph represents two Boolean algebras B1 = hE1, E2, E3i, B2 = hE1, E4, E5i

corresponding to the outcomes of two incompatible measurements and they
share a common event E1. The complement of E1 denoted by E1 is identified
as E2 ∪ E3 = E4 ∪ E5. The edges in the graph represent the partial order
relations in each algebra from bottom to top. A realization of these relations
can be obtained by the system considered in Kochen and Specker (1967): Let
S2x, S

2
x‘, S

2
y , S

2
y‘, S

2
z be the squared components of spin in the x, x‘, y, y‘, z

directions of a spin-1 (massive) particle, where x, y, z and x‘, y‘, z form two
orthogonal triples of directions with the z-direction in common. The operators
S2x, S

2
y and S

2
z all commute, and have eigenvalues 0, 1. They can be measured

simultaneusly, and they satisfy S2x + S
2
y + S

2
z = 2I. Similar relations hold in

the other triple x‘, y‘, z. Hence, if we define E1 = {S2z = 0}, E2 = {S2x = 0},
E3 = {S2y = 0}, E4 = {S2x‘ = 0}, E5 = {S2y‘ = 0} we obtain the two Boolean
algebras depicted in figure 1.
We assume that when the set of measurementsM is announced in the second

stage of the quantum gamble the agent is fully aware of the number of outcomes
in each measurement and of the relations between the Boolean algebras they
generate. In the spin-1 case just considered the agent is assumed to be aware
of the graph structure in figure 1. We shall refer in short to this background
knowledge as the logic of the gamble. We assume no further knowledge on the
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part of the agent, in particular, no knowledge of quantum mechanics. Our
purpose is to calculate the constraints on the probabilities that a rational agent
can place in such gambles.

1.2 Methodological Interlude: Identity of Observables and
Operational Definitions

Already at this stage one might object that the identity of observables in quan-
tum mechanics depends on probability. Consider the case of the operators
A,B,C such that [A,B] = 0, [B,C] = 0, but [A,C] 6= 0, and the two in-
compatible measurements of A together with B, and of B together with C. We
are assuming that the agent is aware of the fact that the events {B = bi} are
the same in both measurements. However, the actual procedure of measuring
B can be very different in the two cases, so how is such awareness comes about?
Indeed, the identity criterion for (our kind of) observables is: Two procedures
constitute measurements of the same observable if for any given physical state
(preparation) they yield identical probability distribution over the set of possi-
ble outcomes2 . It seems therefore that foreknowledge of the probabilities is a
necessary condition for defining the identities of observables. But now we face
a similar problem, how would one know when two states are the same? Iden-
tical states can be prepared in ways that are physically quite distinct. Well,
two state preparations are the same if for any given measurement they yield the
same distribution of outcomes. A vicious circle.
There is nothing special about this circularity, a typical characteristic of

operational “definitions” (Putnam, 1965). In fact, one encounters a similar
problem in traditional probability theory in the interplay between the identity
of events and their probability. The way to proceed is to remember that the
point of the operational exercise is not to reduce the theoretical objects of the
theory to experiments, but to analyze their meaning and their respective role in
the theory. In this idealized and nonreductive approach one takes the identity
of one family of objects as somehow given, and proceeds to recover the rest.
Consider how this is done in a recent article by Hardy (2001). Assuming

that the probabilities of quantum measurements are experimentally given as
relative frequencies, and assuming they satisfy certain relations, Hardy derives
the structure of the observables (that is, the Hilbert space). His “solution” to
the problem of the identity of states, or preparations, is simple. He stipulates
that “preparation” corresponds to a position of a certain dial, one dial position
for each preparation. The problem is simply avoided by idealizing it away.
Our approach is the mirror image of Hardy’s. We are assuming that the

identities of the observables (and in particular, events) are given, and proceed to
recover the probabilities. This line of development is shared with all traditional
approaches to probability where the identity of the events is invariably assumed
to be given prior to the development of the theory. It is, moreover, easy to think

2 In a deterministic world we would have a different criterion: Two procedures constitute
measurements of the same observable if for any given physical state they yield identical out-
comes. We shall come back to this criterion in section 3.2

4



of an idealized story which would cover our identity assumption. For example,
in the three operator case A,B,C mentioned above, we can imagine that the
results of their measurements are presented on three different dials. If B is
measured together with A then the A-dial and B-dial show the results; if B and
C are measured together the B-dial and C-dial show the results. Thus, fraud
notwithstanding, the agent knows that he faces the measurement of the same
B simply because the same gadget shows the outcome in both cases.

1.3 Rules of Gambling

Our purpose is to calculate the constraints on the probabilities that a rational
agent can place in a quantum gamble M. These probabilities have the form
p(F | B) where B ∈M and F ∈ B. The elements F ∈ ∪B∈MB will be called
simply “events”. It is understood that an event is always given in the context of
a measurement B ∈M. The probability p(F | B) is the degree of belief that the
event F occurs in the measurement B. There are two rules of rational gambling,
the first is straightforward and the second more subtle.
RULE 1: For each measurement B ∈M the function p(· | B) is a proba-

bility distribution on B.
This follows directly from the classical Bayesian approach. Recall that after

the third stage in the quantum gamble the agent faces a bet on the outcome of
a single measurement. The situation at this stage is essentially the same as a
tossing of a coin or a casting of a dice. Hence, the probability values assigned
to the possible outcomes of the chosen measurement should be coherent. In
other words, they have to satisfy the axioms of the probability calculus. The
argument for that is that an agent who fails to be coherent will be compelled by
the bookie to place bets that will cause him a sure loss (this is the “Dutch Book”
argument ). The argument is developed in detail in many texts (for example,
de Finetti, 1974) and I will not repeat it here. Since at the outset the agent
does not know which measurement B ∈M will be chosen by the bookie RULE
1 follows.
RULE 2: If B1,B2 ∈M, F ∈ B1 ∩ B2 then p(F | B1) = p(F | B2).
The rule asserts the non-contextuality of probability (Barnum et al, 2000). It

is not so much a rule of rationality, rather it is related to the logic of the gamble
and the identity of observables (remembering that we identify each observable
with the Boolean algebra generated by its possible outcomes).
Suppose that in the game M, there are two measurements B1,B2 ∈ M,

and an event F ∈ B1 ∩ B2. Assume that an agent chooses to assign p(F |
B1) 6= p(F | B2). A natural question to ask her then is why she assigns F
different probabilities in the two contexts, though she thinks it is the same
event. The only answer consistent with Bayesian probability theory is that she
takes the p(F | Bi) as conditional probabilities and therefore not necessarily
equal. In other words, she considers the act of choosing an experiment Bi (in
stage 3 of the gamble) as an event in a larger algebra B which contains B1,B2.
Consequently she calculates the conditional probability of F , given the choice
of Bi.
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There are two problems with this view. Firstly, the agent can no longer
maintain that F ∈ B1 ∩ B2, in fact F is not an element of any of the Bi’s
and can no longer be described as an outcome of a mesurement. Secondly,
the agent assumes that there is a single “big” Boolean algebra B, the event
F is an element of B, and B1,B2 are sub-algebras of B. The trouble is that
for sufficiently rich games M this assumption is inconsistent. In other words,
there are gamblesM which cannot be imbedded in a Boolean algebra without
destroying the identities of the events and the logical relations between them.
This is a consequence of the Kochen and Specker (1967) theorem to which we
shall come in (2.2). It means, essentially, that an agent who violates RULE 2, is
failing to grasp the logic of the gamble and wrongly assumes that she is playing
a different game.
Another possibility is that assigning p(F | B1) 6= p(F | B2) indicates that

the agent is using a different notion of conditional probability. The burden
of clarification is then on the agent, to uncover her sense of conditionalization
and show how it is related to quantum gambles. Thus, we conclude that the
violation of RULE 2 implies either an ignorance of the logic of the gamble, or an
incoherent use of conditional probabilities. It is clear that our argument here is
weaker than the Dutch book argument for RULE 1. A violation of RULE 2 does
not imply a sure loss in a single shot game. We shall return to this argument,
with a greater detail in section 2.2.
Rational probability values assigned in finite games need not be numer-

ically identical to the quantum mechanical probabilities. However, with suffi-
ciently complex gambles we can show that all the interesting features of quantum
probability- from the uncertainty principle to the violation of Bell inequality-are
present even in finite gambles. If we extend our discussion to gambles with an
infinity of possible measurements, then RULE1 and RULE 2 force the probabil-
ities to follow Born rule (section 2.4).

1.4 A Note on Possible Games

A quantum gamble is a set of Boolean algebras with certain (possible) relations
between them. The details of these algebras and their relations is all that the
agent needs to know. We do not assume that the agent knows any quantum
theory.
However, engineers who construct gambling devices should know a little

more. They should be aware of the physical possibilities. This is true in the
classical domain as much as in the quantum domain. After all, the theory of
probability, even in its most subjective form, associates a person’s degree of be-
lief with the objective possibilities in the physical world. In the quantum case
the objective physical part concerns the type of gambles which can actually be
constructed. It turns out that not all finite families of Boolean algebras repre-
sent possible games, at least as far as present day physics is concerned. I shall
describe the family of possible gambles, in a somewhat abstract way. It is a con-
sequence of von Neumann (1955) analysis of the set of possible measurements.
Let H be the n-dimensional vector space over the real or complex field,
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equipped with the usual inner product. Let H1,H2, ...,Hk be k non zero sub-
spaces of H, which are orthogonal in pairs Hi ⊥ Hj for i, j = 1, 2, ..., k, and
which together span the entire space, H1⊕H2⊕ ...⊕Hk = H. These subspaces
generate a Boolean algebra, call it B(H1,H2, ...,Hk), in the following way: The
zero of the algebra is the null subspace, the non zero elements of the algebra are
subspaces the form Hi1 ⊕Hi2 ⊕ ...⊕Hir where φ 6= {i1, i2,..., ir} ⊆ {1, 2, ..., k}.
If H,H‘ are two elements in the algebra let H ∨H‘ = H ⊕H‘ be the subspace
spanned by the (set theoretic) union H ∪H‘, let H ∧H‘ = H ∩H‘, and let the
complement of H, denoted by H⊥, be the subspace orthogonal to H such that
H ⊕H⊥ = H. Then B(H1,H2, ...,Hk) with the operations ∨, ∧, ⊥ is a Boolean
algebra with 2k elements. Note that a maximal algebra of this kind is obtained
when we take all the Hi‘s to be one-dimensional subspaces (rays). Then k = n
and the algebra has 2n elements.
Now, let B(H) be the family of all the Boolean algebras obtained from sub-

spaces of H in the way described above. Obviously, If B1,B2 ∈ B(H) then B1∩B2
is also Boolean algebra in B(H). We shall say that two subspaces G,H of H
are compatible in H if there is B ∈ B(H) such that G,H ∈ B, otherwise G and
H are incompatible. Two algebras B1,B2 are incompatible in H if there are
subspaces G ∈ B1 and H ∈ B2 which are incompatible.
POSSIBILITY CRITERION:M is a possible quantum gamble if there

is a finite dimensional complex or real Hilbert space H such that M is a finite
family of Boolean algebras in B(H) which are incompatible in pairs.
One could proceed with the probabilistic account disregarding this criterion

and, in fact, go beyond what is known to be physically possible (see, for example,
Svozil, 1998). We shall not do that, however, and all the games considered in
this paper are physically possible. With each of the gambles to be discussed in
this paper we proceed in two stages. Firstly, we present the Boolean algebras,
their relations and the consequences for probability. Secondly, we prove that
the gamble obeys the possibility criterion.

2 Consequences

2.1 Uncertainty Relations

Consider the following quantum gamble M consisting of seven incompatible
measurements (Boolean algebras), each generated by its three possible out-
comes: hE1, E2, F2i, hE1, E3, F3i, hE2, E4, E6i, hE3, E5, E7i, hE6, E7, F i, hE4, E8, F4i,
hE5, E8, F5i. Note that some of the outcomes are shared by two measurements,
these are denoted by the letter E. The other outcomes belong each to a single
algebra and denoted by F . As before, when two algebras share an event they
also share its complement so that, for example,E1 = E2 ∪ F2 = E3 ∪ F3, and
similarly in the other cases. The logical relations among the generators are de-
picted in the graph of figure 2. This is the compatibility graph of the generators.
Each node in the graph represents an outcome, two nodes are connected by an
edge if, and only if the corresponding outcomes belong to a common algebra;
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Figure 2:

each triangle represents the generators of one of the algebras.
We assume that the agent is aware of the seven algebras and the connections

between them. By RULE 2 the probability he assigns to each event is indepen-
dent of the Boolean algebra (measurement) which is considered, for example,
p(E2 |hE1, E2, F2i) = p(E2 |hE2, E4, E6i ) ≡ p(E2). RULE 1 entails that the
probabilities of each triple of outcomes of each measurement should sum up to
1, for example, p(E4)+p(E8)+p(F4) = 1. There are altogether seven equations
of this kind. Combining them with the fact that probability is non-negative (by
RULE 1) it is easy to prove that the probabilities assigned by our rational agent
should satisfy p(E1) + p(E8) ≤ 3

2 . This is an example of an uncertainty rela-
tion, a constraint on the probabilities assigned to the outcomes of incompatible
measurements. In particular, if the system is prepared in such a way that it is
rational to assign p(E1) = 1 (see 2.5) then the rules of quantum games force
p(E8) ≤ 1

2 .
To see why M represents a physically possible gamble we use the POSSI-

BILITY CRITERION and identify each event with a one dimensional subspace
of C3 (or R3) in the following way E1 is the subspace spanned by the vec-
tor (1, 0, 2), E2 v (0, 1, 0), F2 v (2, 0,−1), E3 v (2, 1,−1), F3 v (2,−5,−1),
E4 v (0, 0, 1), E5 v (1,−1, 1), E6 = (1, 0, 0), E7 v (0, 1, 1), F v (0, 1,−1),
F4 v (1,−1, 0), F5 v (−1, 1, 2), E8 v (1, 1, 0). Note that the vectors associated
with compatible subspaces are orthogonal, so that figure 2 is the orthogonality
graph for these thirteen vectors.
A more concrete way to represent this game is to consider each of these

vectors as depicting a direction in physical space. For the vector v let S2v be
the square of the spin in the v-direction of a massive spin-1 particle, so that its
eigenvalues are 0, 1. Now, for each of the thirteen vectors above take the event
{S2v = 0}. Then the relations in figure 2 are satisfied.
This example is a special case of a more general principle (Pitowsky, 1998):
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Theorem 1 let H1,H2 be two incompatible rays in a Hilbert space H whose
dimension ≥ 3. Then there is a (finite) quantum gamble M ⊂ B(H) in which
H1,H2 are events, and every probability assignment p for M which satisfies
RULE 1 and RULE 2 also satisfies p(H1) + p(H2) < 2.

2.2 Truth and Probability, The Kochen and Specker’s The-
orem

Consider the gamble M of eleven incompatible measurements, each with four
possible outcomes.
B1 = hE1, F1, F2, F3i, B2 = hE1, F1, F4, F5i, B3 = hE1, F2, F6, F7i,
B4 = hE1, F3, F8, F9i, B5 = hE2, F10, F11, F12i, B6 = hE2, F7, F10, F13i,
B7 = hE2, F8, F11, F14i, B8 = hE2, F4, F12, F15i, B9 = hF9, F14, F16, F17i,
B10 = hF5, F15, F16, F18i, B11 = hF6, F12, F17, F18i
The two outcomes denoted by the letter E are shared by four measurement

each, and the outcomes denoted by F are shared by two measurements each.
Altogether there are twenty outcomes. This example is based on a proof of the
Kochen and Specker (1967) theorem due to Kargnahan(1994). (The original
proof requires hundreds of measurements, with three outcomes each and 117
outcomes in all). Again, when an event is shared by two measurements then so
does its complement, for example, F 8 = E1 ∪ F3 ∪ F9 = E2 ∪ F11 ∪ F14.
Now, suppose that all the algebras Bk are sub-algebras of a Boolean algebra

B. Assume, without loss of generality, that B is an algebra of subsets of a set
X. With this identification the events Ei, Fj are subsets of X. The logical
relations between the events dictates that any two of the events among the
Ei’s and Fj ’s that share the same algebra Bk are disjoint. Moreover, the union
of all four outcomes in each algebra Bk, is identical to X, for example, X =
E2 ∪ F7 ∪ F10 ∪ F13 is the union of the outcomes in B6. But this leads to a
contradiction because the intersection of all these unions is necessarily empty!
To see that suppose, by contrast, that there is x ∈ X such that x belongs

to exactly one outcome, Ei or Fj , in each one of the eleven algebras Bk. This
means that x belong to eleven such events (with repetition counted). But this
is impossible since each one of the outcomes appears an even number of times
in the eleven algebras, and eleven is an odd number.
One consequence of this is related to RULE 2 discussed in section 1.3. Sup-

pose that an agent thinks about the probabilities of the events Ei, Fj as condi-
tional on the measurement performed. If the term “conditional probability” is
used in its usual sense then the events should be interpreted as elements of a
single Boolean algebra B (taken again as an algebra of subsets of some set X).
To avoid the Kochen Specker contradiction the agent can use two strategies.
The first to take some of the generating events in at least one algebra to be
non-disjoint in pairs, for example, E2 ∩ F8 6= φ. In this case the agent ceases
to see the events E2, F8 as representing measurement outcomes, and associates
with them some other meaning (although he eventually takes the conditional
probability of E2 ∩ F8 to be zero). The other strategy is to take the union of
the outcomes of some measurements to be proper subset of X. For example, in
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the case of B9, F9 ∪ F14 ∪ F16 ∪ F17 Ã X. In this case the agent actually adds
another theoretical outcome (which, however, has conditional probability zero).
Both strategies represent a distortion of the logical relations among the events,
which we have assumed as given.
On a less formal level we can ask why would anyone do that? The additional

structure assumed by the agent amounts to a strange “hidden variable theory”
for the set of experiments M. There is a great theoretical interest in hidden
variable theories, but they are of little value to the rational gambler. A classical
analogue would be a person who thinks that a coin really has three sides ‘head’,
‘belly’ and ‘tail’ and assigns a prior probability 1

3 to each. But the act of tossing
the coin (or looking at it, or physically interacting with it) causes the belly side
never to show up, so the probability of belly, conditional on tossing (or looking,
or interacting), is zero. The betting behavior of such a person is rational in the
sense that no Dutch book argument against him is possible. However, as far
as gambling on a coin toss is concerned, his theory of coins is not altogether
rational. It is the elimination of this kind of irrationality which motivates RULE
2.
Another consequence of this gamble concerns the relations between proba-

bility and logical truth. Often the Kochen and Specker theorem is taken as an
indication that in quantum mechanics a classical logical falsity may sometimes
be true (Bub, 1974; Demopoulos, 1976). To see how, consider the Ei and Fj as
propositional variables, and for each 1 ≤ k ≤ 11 let Ck be the proposition which
says: “exactly one of the variable in the group k is true”, for example,

C6 = (E2 ∨ F7 ∨ F10 ∨ F13)∧ ∼ (E2 ∧ F7)∧ ∼ (E2 ∧ F10) ∧
∼ (E2 ∧ F13)∧ ∼ (F7 ∧ F10)∧ ∼ (F7 ∧ F13)∧ ∼ (F10 ∧ F13)

Then
V11
k=1Ck is a classical logical falsity. But

V11
k=1Ck is ‘quantum mechani-

cally true’ with respect to the system described above, because each one of the
Ck’s is a true description of it.
In our gambling picture we make a more modest claim. A rational agent

who participates in the quantum gamble will assign, in advance, probability 1
to each Ck. Therefore, arguably the agent also assigns

V11
k=1Ck probability 1.

But this is an epistemic position which does not oblige the agent to assign truth
values to the Ei’s and Fj ’s, nor is he committed to say that such truth values
exist. Indeed, this is a strong indication that ‘probability one’ and ‘truth’ are
quite different from one another. The EPR system (below) provides another
example. There is, however, a weaker sense in which

V11
k=1Ck is true and we

shall discuss it in the philosophical discussion 3.1.
The following is a proof that our game satisfies the POSSIBILITY CRITE-

RION. Each Ei and each Fj is identified with a ray (one dimensional subspace)
of C4 (or R4). Two outcome which share the same algebra correspond to
orthogonal rays. The rays are identified by a vector that spans them:
E1 v (1, 0, 0, 0), F1 v (0, 1, 0, 0), F2 v (0, 0, 1, 0), F3 v (0, 0, 0, 1),
F4 v (0, 0, 1, 1), F5 v (0, 0, 1,−1), F6 v (0, 1, 0, 1), F7 v (0, 1, 0,−1),
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F8 v (0, 1, 1, 0), F9 v (0, 1,−1, 0), E2 v (1, 1,−1, 1), F10 v (−1, 1, 1, 1),
F11 v (1,−1, 1, 1), F12 v (1, 1, 1,−1), F13 v (1, 0, 1, 0), F14 v (1, 0, 0,−1),
F15 v (1,−1, 0, 0), F16 v (1, 1, 1, 1), F17 v (1,−1,−1, 1), F18 v (1, 1,−1,−1).

2.3 EPR and Violation of Bell’s Inequality

Given two (not necessarily disjoint) events A, B in the same algebra, denote
AB = A ∩ B, and for three events A,B,C denote by {A,B,C} the Boolean
algebra that they generate:

{A,B,C} = ­ABC, ABC, ABC, ABC, ABC, ABC, ABC, ABC®
In order to recover the argument of the Einstein Rosen and Podolsky (1935)

and Bell (1966) paradox within a quantum gamble we shall use Mermin (1990)
representation of GHZ, the Greenberger-Horne-Zeilinger (1989) system. Con-
sider the gamble which consists of eight possible measurements: The four mea-
surements B1 = {A1, B1, C1}, B2 = {A1, B2, C2}, B3 = {A2, B1, C2}, B4 =
{A2, B2, C1} each with eight possible outcomes and
B5 =

­
S, D1, A1B1C1, A1B1C1, A1B1C1, A1B1C1

®
,

B6 =
­
S, D2, A1B2C2, A1B2C2, A1B2C2, A1B2C2

®
,

B7 =
­
S, D3, A2B1C2, A2B1C2, A2B1C2, A2B1C2

®
,

B8 =
­
S, D4, A2B2C1, A2B2C1, A2B2C1, A2B2C1

®
,

each with six possible outcomes.
Assume that the agent has good reasons to believe that p(S) = 1. Such a

belief can come about in a variety of ways, for example, she may know something
about the preparation of the system form a previous measurement result (see
section 2.5). Alternatively, the bookie may announce in advance that he will
raise his stakes indefinitely against any bet made for S. Whatever the source
of information, the agent has good reasons to assign probability zero to four
out of the eight outcomes in each one of the four measurements B1 to B4. The
remaining events are

in B1 A1B1C1, A1B1C1, A1B1C1, A1B1C1 (1)

in B2 A1B2C2, A1B2C2, A1B2C2, A1B2C2

in B3 A2B1C2, A2B1C2, A2B1C2, A2B1C2

in B4 A2B2C1, A2B2C1, A2B2C1, A2B2C1

Denote by P the sum of the probabilities of these sixteen events. Given that
p(S) = 1 the probabilities of the events in each row in (1) sum up to 1. Al-
together, the rational assignment is therefore P = 4. However, if A1, B1, C1,
A2, B2, C2 are events in any (classical) probability space then the sum of the
probabilities of the events in (1) never exceeds 3. This is one of the constraints
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on the values of probabilities which Boole called “conditions of possible expe-
rience”3 and it is violated by any rational assignment in this quantum gamble.
On one level this is just another example of a quantum gamble that cannot be
imbedded in a single classical probability space without distorting the identity
of the events and the logical relations between them. A more dramatic example
has been the Kochen and Specker’s theorem of the previous section.
The special importance of the EPR case lies in the details of the physical

system and the way the measurements B1,B2,B3,B4 are performed. The system
is composed of three particles which interacted in the past, but are now spatially
separated and are no longer interacting. On the first particle we can choose to
perform an A1-measurement or an A2-measurement (but not both) each with
two possible outcomes. Similarly, we can choose to perform on the second
particle one of two B-measurement, and one of two C-measurement on the
third particle. The algebras B1,B2,B3,B4 represent the outcomes of four out
of the eight logically possible combinations of such local measurements. In this
physical arrangement we can recover the EPR reasoning, and Bell’s rebuttal,
which I will not repeat here. The essence of Bell’s theorem is that the EPR
assumptions lead to the conclusion that A1, B1, C1, A2, B2, C2 belong to a
single Boolean algebra. Consequently, the sum of the probabilities of the events
in (1) cannot exceed 3, in contradiction to RULE1 and RULE 2.
Which of two EPR assumptions ‘reality’ or ‘locality’ should the Bayesian re-

ject? In the previous section we have made the distinction between ‘probability
1’ and ‘truth’. But the identification of the two is precisely the subject mat-
ter of EPR’s Principle of Reality: “If without in any way disturbing a system
we can predict with certainty (i.e. with probability equal to unity) the value
of a physical quantity, then there exists an element of reality corresponding
to this physical quantity” (Einstein Rosen and Podolsky, 1935). Quite inde-
pendently of Bell’s argument, a Bayesian should take a sceptical view of this
principle. “Probability equal to unity” means that the degree of rational belief
has reached a level of certainty. It does not reflect any prejudice about possible
causes of the outcomes. On the other hand, there seem to be no good grounds
for rejecting the Principle of Locality on the basis of this or similar gambles.
To prove that this gamble satisfies the possibility criterion let H2 be the two

dimensional complex Hilbert space, let σx, σy be the Pauli matrices associated
with the two orthogonal directions x, y, and let Hx, Hy the (one dimensional)
subspaces of H2 corresponding to the eigenvalues σx = 1, σy = 1 respectively,
so that H⊥x , H⊥y correspond to σx = −1, σy = −1. In the eight dimensional
Hilbert space H2 ⊗ H2 ⊗ H2 we shall identify A1 = Hx ⊗ H2 ⊗ H2, B1 =
H2 ⊗Hx ⊗H2, C1 = H2 ⊗H2 ⊗Hx, A2 = Hy ⊗H2 ⊗H2, B2 = H2 ⊗Hy ⊗H2,
C2 = H2 ⊗ H2 ⊗ Hy, all these are four dimensional subspaces. The outcomes
in B1,B2,B3,B4 are one dimensional subspaces, for example A1B2C2 = H⊥x ⊗
H⊥y ⊗ Hy. The subspace S is the one dimensional ray along the GHZ statep
1/2 (|+zi1|+zi2|+zi3 − |−zi1|−zi2|−zi3) where z is the direction orthogonal
3See Pitowsky (1989, 1994, 2002) and Pitowsky and Svozil, (2001) for a discussion of

Boole’s conditions, their derivations and their violations by quantum frequencies.

12



to x and y. The subspaces Di are just the orthocomplements, in H2⊗H2⊗H2,
to the direct sum of the other subspaces in their respective algebras. Hence,
dimDi = 3.

2.4 The Infinite Gamble: Gleason’s Theorem

Let us take the idealization a step further. Assume that the bookie announces
that M contains all the maximal Boolean algebras in B(H) for some finite di-
mensional real or complex Hilbert space H with dimH = n≥3. Recall that if
H1,H2, ...,Hk are k non zero subspaces of H, which are orthogonal in pairs,
and whose direct sum is the entire space, they generate a Boolean algebra
B(H1,H2, ...,Hk) (section 1.4). If k = n the algebra is maximal and each
subspace Hj is one dimensional. In other words, the set M consists of all
non-degenerate measurements with n outcomes. There is a certain difficulty in
extending quantum gambles to this case since there are a continuum of possible
measurements, and the agent is supposed to place money on each. We can over-
come this difficulty by assuming that the agent makes a commitment to pay a
certain amount on each outcome of each measurement, without paying any cash
in advance. When a single measurement B ∈M is chosen by the bookie all the
agent’s commitments are canceled, except those pertaining to B.
RULE 1 and RULE 2 imply in this case that for any n orthogonal rays

H1,H2, ...,Hn in H the agent’s probability function should satisfy

p(H1) + p(H2) + ...+ p(Hn) = 1 (2)

Gleason (1957) proved

Theorem 2 Let H be a Hilbert space over field of real or complex numbers
with a finite dimension n ≥ 3. If p is a non negative function defined on the
subspaces of H and satisfies (2) for every set of n orthogonal rays then there is
a statistical operator W such that for every subspace H of H

p(H) = tr(WPH) (3)

where PH is the projection operator on H.

For the proof see also Pitowsky (1998). This profound theorem gives a
characterization of all probability assignments of quantum theory. Furthermore,
if we know that the system is prepared with p(R) = 1, for some ray R, then p is
uniquely determined by p(H) = kPH(r)k2 for all subspaces H, where r is a unit
vector that spans R. The theorem can be easily extended to closed subspaces
of the infinite dimensional Hilbert space.
It is interesting to note that many of the results about finite quantum gam-

bles that we have considered are actually consequences of Gleason’s theorem.
Consider, for example the Kochen and Specker’s theorem (section 2.2). To con-
nect it with Gleason’s theorem take an appropriate first order formal theory of

13



the rays of Rn, the orthogonality relation between them, and the real functions
defined on them (where n ≥ 3 finite and fixed). Add to it a special function
symbol p, the axiom that p is non negative, the axiom that p is not a constant,
the axiom that p has only two values zero or one. Now, add the infinitely many
axioms p(H1) + p(H2) + ... + p(Hn) = 1 for each n-tuple of orthogonal rays
in Rn. By Gleason’s theorem this theory is inconsistent (since by (3) p has a
continuum of values). Hence, there is a finite subset of this set of axioms which
is inconsistent, meaning a finite subset of rays which satisfy the Kochen and
Specker’s theorem. This is, of course, a non constructive proof, and an explicit
construction is preferable. However, the consideration just mentioned can be
used to obtain more general non-constructive results about finite games. One
such immediate result is Theorem 1 which also has a constructive proof. (In
fact, the proof of Gleason’s theorem involves a construction similar to that of
theorem 1, see Pitowsky, 1998)
Gleason’s theorem indicates that the use of the adjective ‘subjective’ to de-

scribe epistemic probability is a misnomer. Even in the classical realm it has
misleading connotations. Classically, different agents that start with different
prior probability assignments eventually converge on the same probability distri-
bution as they learn more and more from common experience. In the quantum
realm the situation is more extreme. For a given a single physical system Glea-
son’s theorem dictates that all agents share a common prior or, in the worst
case, they start using the same probability distribution after a single (maximal)
measurement.

2.5 A Note on Conditional Quantum Probability

Consider two gambles, M1, M2 and assume that A is a common event. In
other words, there is B1 ∈M1 and B2 ∈M2 such that A ∈ B1 ∩ B2. We can
consider sequential gambles in which the gambleM1 is played, and subsequently
after the results are recorded, the gamble M2 follows with the measurements
performed on the same system. In such cases the agent can place conditional
bets of the form: “If A occurs in the first gamble place such and such odds
in the second gamble”. This means that the of probabilities assigned in the
second gameM2 are constrained by the condition p(A) = 1 (in addition to the
constraints imposed by RULE 1 and RULE 2). The EPR gamble in 2.3 can be
seen as such a conditional game, when we consider the preparation process as a
previous gamble with an outcome S. In fact, all preparations (at least of pure
states) can be seen in that light.
If the gamblesM1,M2 are infinite, and contain all the maximal algebras in

B(H), Gleason’s theorem dictates the rule for conditional betting. In the second
gamble the probability is the square of the length of the projection on (the
subspace corresponding to) A. The conditional probability is therefore given by
Lüders rule (Bub, 1997).
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3 Philosophical Remarks

3.1 Bohr, Quantum Logic and Structural Realism

The line we have taken has some affinity with Bohr’s approach -or more precisely,
with the view often attributed to Bohr4-in that we treat the outcomes of future
measurements as mere possibilities, and do not associate them with properties
that exist prior to the act of measurement. Bohr’s position, however, has some
other features which are better avoided. Consider a spin-1 massive particle and
suppose that we measure Sz, its spin along the z-direction. Bohr would say that
in this circumstance attributing values to Sx and Sy is meaningless. But the
equation S2x+S

2
y+S

2
z = 2I remains valid then, as it is valid at all times. How can

an expression which contains meaningless (or valueless) terms be itself valid?
Indeed, non-commuting observables may satisfy algebraic equations, the Laws of
Nature often take such form. What is the status of such equations at the time
when only one component in them has been meaningfully assigned a value?
What is their status when no measurement has been performed? Quantum
logic, in some of its formulations, has been an attempt to answer this question
realistically.
It had began with the seminal work of Birkhoff and von-Neumann (1936).

A later modification was inspired by the work of Kochen and Specker (1967).
The realist interpretation of the quantum logical formalism is due to Finkelstein
(1962), Putnam (1968), Bub (1974), Demopoulos (1976). Consider, for example,
the gamble B1 = hE1, E2, E3i, B2 = hE1, E4, E5i made of two incompatible
measurements, with one common outcome E1 (figure 1). Let us loosely identify
the outcomes Ei with the propositions that describe them. The realist quantum
logician maintains that both E1∨E2∨E3 and E1∨E4∨E5 are true, and therefore
so is A = (E1∨E2∨E3)∧ (E1∨E4∨E5). But only one of the measurements B1
or B2 can be conducted at one time. This means that, generally, only three out
of the five Ei’s can be experimentally assigned a truth value (except in the case
that E1 turns out to be true which makes the other four events false). This does
not prevent us from assigning hypothetical truth values to the Ei’s that make
A true. However, as we have seen in 2.2, the trouble begins when we consider
more complex gambles. To repeat, let M be the gamble of 2.2, and for each
1 ≤ k ≤ 11 let Ck be the proposition which says: “exactly one of the variables
in the group k is true”, for example,

C6 = (E2 ∨ F7 ∨ F10 ∨ F13)∧ ∼ (E2 ∧ F7)∧ ∼ (E2 ∧ F10) ∧
∼ (E2 ∧ F13)∧ ∼ (F7 ∧ F10)∧ ∼ (F7 ∧ F13)∧ ∼ (F10 ∧ F13)

Then B =
V11
k=1Ck is a classical logical falsity. This means that we cannot

make B true even by assigning hypothetical truth values to the Ei’s and Fj ‘s.

4 See Beller (1999). Although Bohr kept changing his views and contradicted himself on
occasions, it is useful to distill from his various pronouncements a more or less coherent set.
This is what philosophers mean by “Bohr’s views”.
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Still, the quantum logician maintains that B is true. Or, by analogy, that
S2x + S

2
y + S

2
z = 2I is true for every orthogonal triple x, y, z in physical space.

This is the quantum logical solution of the Bohrian dilemma and it comes with
a heavy price-tag: the repudiation of classical propositional logic. But what
does it mean to say that B is true? As I have shown elsewhere (Pitowsky, 1989)
the operational analysis of the quantum logical connectives, due to Finkelstein
and Putnam, leads to a non-local hidden variable theory in disguise. Moreover,
from a Bayesian perspective it is quite sufficient to say that B has probability
1, meaning that each conjunct in B has probability 1 that is, a degree of belief
approaching certainty. Indeed, the Bayesian does not consider even the Laws of
Nature as true, only as being nearly certain, given present day knowledge.
Nevertheless, there is a sense in which A or even B are true, and this is the

sense that enables our Bayesian analysis in the first place. Thus, to assert that
“ (E1 ∨E2 ∨E3) ∧ (E1 ∨E4 ∨E5) is true” is nothing but a cumbersome way to
say that the gamble M = {hE1, E2, E3i , hE1, E4, E5i} exists. This is first and
foremost a statement about the identities: the outcome E1 is really the same in
the two measurements, and E1 = E2∨E3 = E4∨E5. It is also a statement about
physical realizations, this gamble can be designed and played (experimental
difficulties notwithstanding). Viewed in this light quantum gambles together
with RULE 1 and RULE 2 form semantics for quantum logic, in that they
assign meaning to the identities of quantum logic (in its partial Boolean algebra
formulation).
The metaphysical assumption underlying the Bayesian approach is therefore

realism about the structure of quantum gambles, in particular those that satisfy
the possibility criterion (1.4). This position is close in spirit (but not identical)
to the view that quantum mechanics as a complete theory, so let us turn to the
alternative view.

3.2 Hidden Variables- A Bayesian Perspective

Consider Bohm’s theory as a typical example5. Recall that in this theory the
state of a single particle at time t is given by the pair (x(t),ψ(x, t)) where x is
the position of the particle and ψ = R exp(iS) -the guiding wave- is a solution
of the time dependent Schrödinger’s equation. The guiding condition m

·
x = ∇S

provides the relation between the two components of the state, where m is
the particle mass. The theory is deterministic, an initial position x(0) and an
initial condition ψ(x, 0) determine the trajectory of the particle and the guiding
wave at all future times. In particular, the outcome of every measurement is
determined by these initial conditions.
As can be expected from the Kochen and Specker’s theorem the outcome

of a measurement is context dependent in Bohm’s theory. This fact can also
be derived by a direct calculation (Pagonis and Clifton, 1995). Given a fixed
initial state (x(0),ψ(x, 0)) the measurement of S2z together with S

2
x and S

2
y can

5The uniqueness theorem (Bub and Clifton 1996; Bub 1997; Bub Clifton and Goldstein
2000) implies that all ‘no collapse’hidden variable theories have essentially the structure of
Bohm’s theory.
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yield one result S2z = 0; but the measurement of S
2
z together with S

2
x‘ and S

2
y‘

can give another result S2z = 1. Now, the identity criterion for observables in
a deterministic theory is: Two procedures constitute measurements of the same
observable if for any given physical state (preparation) they yield identical out-
comes. Therefore in Bohm’s theory the observable “S2z in the x, y, z context” is
not really the same as “S2z in the x‘, y‘, z context”. Nevertheless, the Bohmians
consider S2z as one single statistical observable across contexts. The reason be-
ing that the average outcome of S2z , over different initial positions with density
|ψ(x, 0)|2, is context independent. Hence, Bohm’s theory is a hybrid much like
classical statistical mechanics: the dynamics are deterministic but the observ-
ables are statistical averages. Since the initial positions are not known -not
even knowable- the averages provide the empirical content. Consequently, the
observable structure of quantum mechanics is accepted by the Bohmians “for
all practical purposes”.
This attitude prevails when the Bohmian is betting in a quantum gamble.

There is no detectable difference in the betting behavior of a Bohmian agent;
although the reasons leading to his behavior follow from the causal structure
of Bohm’s theory. At a first glance there seems to be nothing peculiar about
this. Many people who would assign probability 0.5 to ‘heads’ believe that the
tossing of a coin is a deterministic process. Indeed, there is a rational basis to
this belief: if the agent is allowed to inspect the initial conditions of the toss
with a greater precision he may change his betting odds. In other words, his
0.5 degree of belief is conditional on his lack of knowledge of the initial state.
Obtaining further information is possible, in principle, and in the limit of infinite
precision it leads to the assignment of probability zero or one to ‘heads’. For the
Bayesian this is in a large measure what determinism means.
Can we say the same about the Bohmian attitude in a quantum gamble?

According to Bohm’s theory itself6 the position of the particle cannot be known
beyond the information invested in the distribution |ψ|2. Suppose that a particle
is prepared in a (pure) quantum state ψ(x, 0). Then, according to Bohm’s the-
ory, no further information is obtainable by a prior inspection (without changing
the quantum state, in which case the problem starts all over again). Hence, |ψ|2
is an absolute, not a conditional probability. Consequently, from a Bayesian
perspective the determinism of Bohm’s theory is a myth. Luckily, it does not
lead its believers astray in their bets.
What is the function of this myth? Obviously, to retain a sense of deter-

minism, albeit one which is completely disconnected from human knowledge.
But there is also a subtler issue here that have to do with the structure of the
observables. As we have noticed, for the Bohmian the event E1 = {S2z = 0 in
the x, y, z context} is not the same as the event E‘1 = {S2z = 0 in the x‘, y‘, z
context}. Hence, the gamble M = {hE1, E2, E3i, hE1, E4, E5i} is interpreted

6Vallentini (1996) considers the possibility that |ψ|2 is only an ‘equilibrium’ distribution,
and deviations from it are possible. In this case Bohm’s theory is a genuine empirical extension
of quantum mechanics, and the Bohmian agent may sometime bet against the rules of quantum
mechanics.
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by him as being “really”M‘ = {hE1, E2, E3i,
­
E‘1, E4, E5

®}; although, as a re-
sult of dynamical causes, the long term frequencies of E1 and E‘1 happen to be
identical (for any given ψ). It follows that the myth also serves the purpose of
“saving classical logic” by dynamical means (Pitowsky, 1994). Nowhere is this
more apparent than in the EPR case where Bohm’s dynamics violate locality
on the level of individual processes.
In this sense the hidden variable approach is conservative. It is not so much

its insistence on determinism, but rather the refusal to acknowledge that the
structure of the set of events- our quantum gambles- is real. As a gambler the
Bohmian bets as if it is very real; as a metaphysician he provides a complicated
apology.

3.3 Instrumentalism and its Radical Foundations

The Bayesian approach represents an instrumental attitude towards the quan-
tum state. The state is just a code for probabilities, and “probability theory is
simply the quantitative formulation of how to make rational decisions in the face
of uncertainty” (Fuchs and Peres, 2000). Instrumentalism seems metaphysically
innocent, all we are dealing with are experiments and their outcomes, without
a commitment to an underlying, completely described microscopic reality. One
might even be tempted to think that “quantum theory needs no interpretation”
(ibid). Of course, there is a sense in which this is true. One needs no causal
picture to do physics. Like a gambler, the physicist can assign probabilities to
outcomes, assuming no causal or other mechanisms which bring them about.
But instrumentalism simply pushes the question of interpretation one step

up the ladder. Instead of dealing directly with ‘reality’, the instrumentalist
faces the challenge of explaining his instrument, that is, quantum probability.
Unlike other mathematical theories- group theory for example- the application
of probability requires a philosophical analysis. After all probability theory is
our tool for weighing the relative merits of alternative actions and for making
rational decisions; decisions that are made rational by their justifications. In-
deed, we have provided a part of the justification by demonstrating how the
structure of quantum gambles, together with the gambling rules, dictate certain
constraints on the assignment of probability values. The trouble is that these
probability values violate classical constraints, for example Bell’s inequalities.
A hundred and fifty years ago Boole had considered these and other similar
constraints as “conditions of possible experience”, and consequently conditions
of rational choice. Today, we witness the appearance of ‘impossible’ experience.
The Bohmian explains it away by reference to unobservable non-local measure-
ment disturbances. The instrumentalist, in turn, insists that there is nothing to
explain. But the violations of the classical constraints (unlike the measurement
disturbances) are provably real. Therefore, something should be said about it if
we insist that “probability theory is simply the quantitative formulation of how
to make rational decisions”.
Instrumentalists often take their ‘raw material’ to be the set of space-time

events: clicks in counters, traces in bubble chambers, dots on photographic
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plates and so on. Quantum theory imposes on this set a definite structure.
Certain blips in space-time are identified as instances of the same event. Some
families of clicks in counters are assumed to have logical relations with other
families, etc. What we call reality is not just the bare set of events, it is this
set together with its structure, for all that is left without the structure is noise.
It has been von Neumann’s great achievement to identify this structure, and
derive some of the consequences that follow from its details. I believe that von
Neumann’s contribution to the foundations of quantum theory is exceedingly
more important than that of Bohr. For it is one thing to say that the only
role of quantum theory is to ‘predict experimental outcomes’, and that different
measurements are ‘complementary’. It is quite another thing to provide an
understanding of what it means for two experiments to be incompatible, and
yet for their possible outcomes to be related; to show how these relations imply
the uncertainty principle; and even, finally, to realize that the structure of events
dictates the numerical values of the probabilities (Gleason’s theorem).
Bohr’s position will not suffice even for the instrumentalists. Their view,

far from being metaphysically innocent, is founded on an assumption which is
more radical than that of the hidden variable theories. Namely, the taxonomy
of the universe expressed in the structure of the set of possible events, the
quantum gambles which are made possible and the theory of probability they
imply, are new and only partially understood pieces of knowledge. It is the task
of an interpretation of quantum mechanics to make sense of these structures and
relate them to what we previously used to call ‘probability’ and even ‘logic’7.

7 See Demopoulos, 2002 for an attempt at such an explenation.
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4 Appendix

4.1 The Formalism of Quantum Probability

With each quantum system we associate a complex Hilbert space H. The di-
mension of H represents the number of degrees of freedom of the system. In this
paper we consider systems with a finite number of degrees of freedom , hence
dimH = n <∞, and we can identify H with Cn.
Following Dirac we denote a column vector in Cnby “ket” |αi and its trans-

pose (row vector) by “bra” hα|. (Recall that in Cn taking the transpose involves
complex conjugation of the coordinates.). The inner product of |αi and |βi is
then simply hβ| αi. Similarly, |αi hβ| is the linear operator defined for each
ket vector |γi by |αi hβ| (|γi) = hβ| γi |αi. In particular, if |αi is a unit vec-
tor hα| αi = 1, then |αi hα| is the projection operator on the one dimensional
subspace of Cn spanned by |αi.
A pure state is a projection operator on a one dimensional subspace of Cn.

A mixture is any non trivial convex combination of pure statesP
j λj |αji hαj|, where |αji’s are unit vectors, λj ≥ 0, and

P
j λj = 1. A

state is either a pure state or a mixture. It is not difficult to see that every state
W is a Hermitian operator on Cn with non-negative eigenvalues and trace 1.
An observable is simply any Hermitian operator. Let A be Hermitian and

let a1, a2, ..., am, m ≤ n, be all the (real) distinct eigenvalues of A. With each
eigenvalue ai corresponds an eigenspace Hi of all eigenvectors associated with
the eigenvalue ai. Then the subspaces Hi are orthogonal in pairs and their
direct sum is the entire space: H1 ⊕ H2 ⊕ ... ⊕ Hm = H. Let Ei denote the
projection operator on Hi then we can represent:

A =
mX
j=1

ajEj

The first bridge between the abstract formalism and experience is given by:
Born’s Rule: Any measurement of the observable A yields one (and only

one) of the outcomes a1, a2, ..., am. If the state of the measured system is W
then the probability of the outcome ai is tr(WEi).
Now, with every physical system (a particle, a pair of particles, an atom, a

molecule etc.) physicists associate a Hilbert space and a state on that space.
The source of physical systems can be either natural (for example, a radioactive
decay) or artificial (an electron gun). The choice of state reflects the physicist’s
knowledge of the nature of the source. With every observable of the system
(energy, momentum, angular momentum, spin) quantum theory associates an
Hermitian operator. Hence, the calculation of the probability of every outcome
of every measurement is made possible. Suppose the physicist chooses to test
Born’s rule using the operator A and the stateW . She prepares many systems in
the same state W , and measures A on each. The prediction is then tested using
standard statistical methods. (In most cases there is no problem to produce a
sample of a very large size). We shall consider several examples below.
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When an agent bets on the possible outcomes of a measurement of A the
actual eigenvalues a1, a2, ..., am are merely used as labels. Any other observable
A0 =

Pm
j=1 bjEj , with bj 6= bk for j 6= k, has exactly the same eigenspaces as

those of A, and will make the same gambling device as A. This is like putting
the numbers 7 to 12 on the faces of a dice instead of 1 to 6.. In the main text we
are interested in the outcomes, not their labels, and we therefore use in the term
‘observable’ to denote the Boolean algebra generated in H by the eigenspaces
Hi, as explained in sections 1.1 and 1.4. In this appendix we shall keep the
traditional meaning. Here observable is a Hermitian operator.
So far there is nothing non-classical about this mathematical description.

One can, in fact, model any experiment with a finite number of possible out-
comes by choosing an appropriate Hermitian operator and state on a suitable
Hilbert space of a finite dimension. But when we consider more than one mea-
surement on the same system we transcend classical reality.
Heisenberg’s Rule: Two observables A, B can be measured simultaneously

on the same system if and only if [A,B] = AB −BA = 0.
Assume that A, B, and C are three Hermitian operators such that [A,B] =

[B,C] = 0, but [A,C] 6= 0. By Heisenberg’s rule we cannot measure A and
C together. However, the eigenspaces of B are elements of the Boolean alge-
bra generated in H by the eigenspaces of AB and also in the Boolean algebra
generated by the eigenspaces of BC. In other words, although non-commuting
observables cannot be measured together, they can have logical relations. The
logical relations between non commuting observables are the source of the un-
certainty relations (section 2.1). In fact, the logical relations determine the
probability rule (Gleason’s theorem section 2.4). This means that, in a sense,
Born’s rule can be derived from Heisenberg’s rule.
Examples:
1.Spin- 12particles: let x, y, and z be three orthogonal directions in physical

space and consider the 2× 2 Hermitian matrices

σx =

µ
0 1
1 0

¶
, σy =

µ
0 −i
i 0

¶
, σz =

µ
1 0
0 −1

¶
(A1)

which satisfy σ2x = σ2y = σ2z = I (where I is the unit matrix). Also

σxσy = −σyσx = iσz, σyσz = −σzσy = iσx, σzσx = −σxσz = −iσy (A2)

The eigenvectors of σz are |+zi =
µ
1
0

¶
and |−zi =

µ
0
1

¶
corresponding

to the eigenvalues +1 and −1 respectively. In other words σz = |+zi h+z| −
|−zi h−z|. The (normalized) eigenvectors of σx are then |+xi = 1√

2
(|+zi +

|−zi) and |−xi = 1√
2
(|+zi − |−zi) corresponding to the eigenvalues +1 and

−1 respectively; and the eigenvectors of σy corresponding to the eigenvalues +1
,−1 are, respectively, |+yi = 1√

2
(|+zi+ i |−zi) and |−yi = 1√

2
(− |+zi+ i |−zi).
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To measure the observable σz we subject the particle (which should be a spin-
1
2particle, for example, an electron or a proton) to a magnetic field oriented in
the z direction. The particle is then deflected above (eigenvalue +1, or spin-
up in the z-direction) or below (eigenvalue −1 spin-down in the z-direction)
its previous plane of motion, where it can be detected. To measure σx we do
exactly the same thing, only with a magnetic field oriented along the x axis, and
similarly for σy. Since none of the observables σx, σy, and σz commute with
the other only one of them can be measured at one time on the same particle.
Consider the unit vector |αi = a |+zi+ b |−zi, |a|2+ |b|2 = 1. If the particle

is in the pure state W = |αi hα| then the measurement of σz gives a spin-up
(+1) result with probability |a|2 and spin down result with probability |b|2.
A measurement of σx yields a +1 result with probability 1

2 |a+ b|2 and a −1
result with probability 1

2 |a− b|2. A σy measurement yields +1 with probability
1
2 |a− ib|2 and −1 with probability 1

2 |a+ ib|2.
2. Spin-1 particles: Define

Sx =
1√
2

 0 1 0
1 0 1
0 1 0

 , Sy = 1√
2

 0 i 0
−i 0 i
0 −i 0

 , Sz = 1√
2

 1 0 0
0 0 0
0 0 −1


(A3)

They satisfy [Sx, Sy] = iSz, [Sy, Sz] = iSx, [Sz, Sx] = iSy. Each operator
has three eigenvalues −1, 0, +1. To measure Sz we subject a spin-1 (massive)
particle to a magnetic field along the z-direction. This time there are three
possible outcomes: The particle may be deflected below (−1), or above (+1) its
plane of motion or simply remain on it (0). For a given intensity of the magnetic
field the amount of deflection in this case is twice as big as the spin- 12case.
Similar consideration apply for Sx and Sy. Since Sx, Sy, Sz do not commute they
cannot be measured together. However, there is an interesting feature to this
system, the squares of the operators commute: [S2x, S

2
y ] = [S

2
y , S

2
z ] = [S

2
z , S

2
x] =

0. Also, S2x + S
2
y + S

2
z = 2I, meaning that in a simultaneous measurement of

S2x, S
2
y , S

2
z one and only one of these observables will have the value 0, and the

other two the value 1. To measure the simultaneous values of S2x, S
2
y , S

2
z we

measure the observable H = S2x − S2y using an electrostatic field. The three
possible outcomes are 1, 0, −1, corresponding respectively to the cases where
the values of S2y is 0, of S

2
z is 0, of S

2
x is 0.

Now let x‘, y‘ be two orthogonal directions so that x, y, z and x‘, y‘, z
form two orthogonal triples of directions with the z-direction in common. The
operators H = S2x − S2y and H‘ = S2x‘ − S2y‘ do not commute, but the (one-
dimensional) eigenspace corresponding to the eigenvalues 0 of H and 0 for H‘are
identical. This situation is depicted in Figure 1. The logical relations depicted
in Figure 2 can also be realized by the same spin-1 system. We simply choose
the orthogonal triples of directions in the end of section 2.1.
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4.2 Composite systems, Kochen and Specker’s theorem,
and the EPR paradox.

Given a system whose Hilbert space is H1 and another system with a Hilbert
space H2, the space associated with the combined system is the tensor product
H1 ⊗ H2. If |αi ∈ H1 and |βi ∈ H2 we shall denote by |αi |βi ∈ H1 ⊗ H2
their tensor product. Let |α1i, |α2i, . . .,|αni and |β1i, |β2i, . . . , |βmi be
orthonormal bases in H1 and H2 then every vector in H1 ⊗ H2 has the form
|φi =P cjk |αji |βki. Applying the polar decomposition theorem to the matrix
of coefficients cjk we can find bases |α‘1i, |α‘2i, . . .,|α‘ni and |β‘1i, |β‘2i, .
. . , |β‘mi in which |φi has the form |φi = P

dj |α‘ji |β‘ji where the dj are
real and the sum extends to min(m,n). Any Hermitian operator on H1 ⊗ H2
is an observable; those which have the special form A⊗B, where A and B are
Hermitian operators on H1 and H2 respectively, are called ‘local observables’.
The reason is that they are measured by separately perform A on the first
system and B on the second. Notice that if [A,A‘] = 0 and [B,B‘] = 0 then
[A⊗B,A‘⊗B‘] = 0. The extension these observations to three or more systems
are straightforward.
Consider now three spin-12particles. They are associated with the space

C2 ⊗ C2 ⊗ C2 ' C8. Denote by σ
(j)
k the operator σk, k = x, y, z acting on

particle j, j = 1, 2, 3. In other words: σ(1)x = σx ⊗ I ⊗ I, or σ(2)y = I ⊗ σy ⊗ I,
and so on. In particular σ(1)x σ

(2)
y σ

(3)
y = σx⊗σy⊗σy etc. Consider the following

table of observables

σ(1)x , σ(2)x , σ(3)x , σ(1)x σ(2)x σ(3)x (A4)

σ(1)x , σ(2)y , σ(3)y , σ(1)x σ(2)y σ(3)y

σ(1)y , σ(2)x , σ(3)y , σ(1)y σ(2)x σ(3)y

σ(1)y , σ(2)y , σ(3)x , σ(1)y σ(2)y σ(3)x

σ(1)x σ(2)y σ(3)y , σ
(1)
y σ(2)x σ(3)y , σ(1)y σ(2)y σ(3)x , −σ(1)x σ(2)x σ(3)x

The observables in each row in A4 commute in pairs, and the product of the
first three in each row equals the fourth. This is obvious for the first four rows;
as for the fifth row the equation

(σ(1)x σ(2)y σ(3)y )(σ
(1)
y σ(2)x σ(3)y )(σ

(1)
y σ(2)y σ(3)x ) = −(σ(1)x σ(2)x σ(3)x ) (A5)

as well as the fact that the operators commute in pairs follows from A2.
Following Mermin (1990) we shall use this system to prove two major results.

The first is originally due to Kochen and Specker (1967) who used a single
spin-1 particle. The second result is due to Bell (1964) who used a pair of
spin-12particle. In both cases Mermin’s proof is much simpler than the original.
Can we assign each quantum mechanical observable a value at all times, and

regardless of whether it is actually being measured? In classical mechanics we
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associate with every observable (position, energy, momentum, angular momen-
tum, etc.) a value at all times. We can consistently maintain that the system
possesses the value, and a measurement merely reveals the possessed value. Can
we do likewise in quantum mechanics?
Suppose (contrary to Bohr, see 3.1) that we can. To every observable A of

the system we ascribe a value v(A) which may depend on time. Two conditions
seem natural.
1. v(A) is always among the values which are actually observed when we

measure A, in other words v(A) is an eigenvalue of A.
2. If A, B, C, . . . all commute, and if they satisfy a (matrix) func-

tional equation f(A,B,C, ...) = 0 then they also satisfy the (numerical) equation
f(v(A), v(B), v(C), ...) = 0.
Both conditions follow from the requirement that the possessed values v(A),

v(B),...are the ones that are actually found upon measurement. In particular, in
the second condition we assume that all the operators satisfying the functional
relation commute in pairs. This means that they can be measured simulta-
neously, and the measured values indeed satisfy the corresponding numerical
equation.
The Kochen and Specker’s theorem asserts that conditions 1 and 2 are incon-

sistent. In fact, one cannot assign values satisfying these conditions to the ten
observables in A4. To see why suppose by negation that we have assigned such
values. By condition 1 we have v(σ(j)k ) ∈ {−1, 1}, for k = x, y, z and j = 1, 2, 3.
By condition 2 we have v(σ(1)y σ

(2)
x σ

(3)
y ) = v(σ

(1)
y )v(σ

(2)
x )v(σ

(3)
y ), and similar

equations for the other triples. But this is impossible, take the product of the
values of the first three operators in the fifth row: It is +v(σ(1)x )v(σ

(2)
x )v(σ

(3)
x )

since each of the v(σ(j)y )’s occurs twice and v(σ
(j)
y ) ∈ {−1, 1}. This however

contradicts the functional relation A5.
To translate this result to the language of the main text we consider a gamble

M with five possible measurements, one for each row in A4. We write down
the Boolean algebras of the possible outcomes of each measurement. There are
many logical relations among the five Boolean algebras in M, as each one of
the ten operators appear in two different measurements of M. The result is
that the gambleM cannot itself be imbedded in a single Boolean algebra. This
fact is actually equivalent to the Kochen and Specker’s theorem, as explained
in their 1967 paper. In the main text I use a different simple example to derive
the same conclusion.
It seems therefore that we cannot universally assign values to observables

independently of their measurements. However, this does not prevent us from
doing that in special cases when certain reasonable principles apply. A principle
of that kind was proposed by Einstein Podolsky and Rosen (EPR) in their
classical 1935 paper:
Principle R (reality): If, without in any way disturbing a system, we can

predict with certainty (that is, probability 1) that a measurement of A will give
the result a, then we can say that v(A) = a independently of the measurement.
This principle stems from common sense: If I can predict with certainty that
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every time I open my office door the desk will be there, it means that the desk
is there, regardless of weather I (or anyone else) sees it. Next, EPR explain
what they mean by “disturbing the system”. To be more precise, they specify
a necessary condition under which a disturbance can occur.
Principle L (locality): A (singular) event that occurs at point x in space

at time t can influence another event at point x‘ at time t‘ only if kx− x‘k ≤
c |t− t‘|, where c is the velocity of light.
This principle is a cornerstone of Einstein’s theory of relativity, a highly

corroborated theory. It says that no disturbance, or influence, or any form of
information can travel space at a speed greater than c. Bell (1964) proved that
the conjunction of principle R and principle L is inconsistent with quantum
mechanics. Here is a simple version of the proof:
In the Hilbert space of three spin-12particles C

2 ⊗C2 ⊗C2 consider the unit
vector |φi =p1/2(|+zi1|+zi2|+zi3− |−zi1|−zi2|−zi3). It is a simultaneous
eigenvector of σ(1)x σ

(2)
y σ

(3)
y , σ

(1)
y σ

(2)
x σ

(3)
y , σ

(1)
y σ

(2)
y σ

(3)
x , all corresponding to the

eigenvalue +1. Consequently, by A5, it is also an eigenvector of σ(1)x σ
(2)
x σ

(3)
x

with eigenvalue −1. Suppose the a source emits a triple of particles prepared
in the state |φi hφ|. The particles emerge from the source and travel away
from one another, forming trajectories 120◦ apart in a single plane. After the
particles have travelled sufficient distance, say a few light years, each arrive to a
measurement device with an observer. Call the observers Alice, Bob and Carol.
We assume that the observers also move away from one another at a lower speed,
being chased by the particles Each observer performs a measurement, and all
measurements are simultaneous in a frame of reference which is at rest relative
to the source. This means that it will take a long time for any disturbance
that might have been caused by Alice’s measurement to reach Bob’s or Carol’s
location and vice versa. Assume that the observers know that the state is |φi hφ|.
Assume also that they choose which measurement to perform σx or σy only at
the last moment, and that, as a matter of fact, they all chose to measure σx.
Now Alice correctly argues: “my result is v(σ(1)x ), if Bob and Carol each measure
σy then with probability one they will have v(σ

(2)
y )v(σ

(3)
y ) = v(σ

(1)
x )”. Using the

conjunction of R and L we conclude that the observer σ(2)y σ
(3)
y has a value and

it is v(σ(1)x ). By a completely symmetrical reasoning we conclude that σ(1)y σ
(3)
y

has the value v(σ(2)x ), and σ
(1)
y σ

(2)
y has the value v(σ(3)x ). The subtle point here

is to see that there is a whole space-time region in which all three conclusions
are warranted together (given R and L)8 But this is a contradiction since

1 = v(σ(1)y )v(σ
(2)
y )v(σ

(1)
y )v(σ

(3)
y )v(σ(2)y )v(σ

(3)
y ) = v(σ

(3)
x )v(σ

(2)
x )v(σ(1)x ) = −1

Some physicists prefer to avoid this dilemma by assuming that L is false.
8For a precise relativistic analysis of this thought experiment see Clifton Pagonis and

Pitowsky 1992. There are, of course, many other versions of the EPR set-up, some of which
have been tested experimentally.
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Bohm has taken this approach and in his theory there are faster than light
disturbances which, however, cannot be used for communication. In the main
text I argue, on a more general basis, that R is the principle that should go.
More on these subjects in Redhead (1989), and Bub (1997).
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