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Abstract

The forecasting problem for a stationary and ergodic binary time se-
ries {Xn}∞n=0 is to estimate the probability that Xn+1 = 1 based on the
observations Xi, 0 ≤ i ≤ n without prior knowledge of the distribution of
the process {Xn}. It is known that this is not possible if one estimates
at all values of n. We present a simple procedure which will attempt
to make such a prediction infinitely often at carefully selected stopping
times chosen by the algorithm. We show that the proposed procedure is
consistent under certain conditions, and we estimate the growth rate of
the stopping times.

Keywords: Nonparametric estimation, stationary processes
Mathematics Subject Classifications (2000): 62G05, 60G25, 60G10

1 Introduction

T. Cover [3] posed two fundamental problems concerning estimation for sta-
tionary and ergodic binary time series {Xn}∞n=−∞. (Note that a stationary
time series {Xn}∞n=0 can be extended to be a two sided stationary time series
{Xn}∞n=−∞.) Cover’s first problem was on backward estimation.
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Problem 1 Is there an estimation scheme fn+1 for the value P (X1 = 1|X−n, . . . , X0)
such that fn+1 depends solely on the observed data segment (X−n, . . . , X0) and

lim
n→∞

|fn+1(X−n, . . . , X0)− P (X1 = 1|X−n, . . . , X0)| = 0

almost surely for all stationary and ergodic binary time series {Xn}∞n=−∞?
This problem was solved by Ornstein [13] by constructing such a scheme. (See
also Bailey [2].) Ornstein’s scheme is not a simple one and the proof of consis-
tency is rather sophisticated. A much simpler scheme and proof of consistency
were provided by Morvai, Yakowitz, Györfi [12]. (See also Weiss [18].)
Cover’s second problem was on forward estimation (forecasting).
Problem 2 Is there an estimation scheme fn+1 for the value P (Xn+1 = 1|X0, . . . , Xn)
such that fn+1 depends solely on the data segment (X0, . . . , Xn) and

lim
n→∞

|fn+1(X0, . . . , Xn)− P (Xn+1 = 1|X0, . . . , Xn)| = 0

almost surely for all stationary and ergodic binary time series {Xn}∞n=−∞?
This problem was answered by Bailey [2] in a negative way, that is, he showed
that there is no such scheme. (Also see Ryabko [16], Györfi, Morvai, Yakowitz
[7] and Weiss [18].) Bailey used the technique of cutting and stacking developed
by Ornstein [14] (see also Shields [17]). Ryabko’s construction was based on a
function of an infinite state Markov-chain. This negative result can be inter-
preted as follows. Consider a market analyst whose task it is to predict the
probability of the event ’the price of a certain share will go up tomorrow’ given
the observations up to the present day. Bailey’s result says that the difference
between the estimate and the true conditional probability cannot eventually be
small for all stationary and ergodic market processes. The difference will be
big infinitely often. These results show that there is a great difference between
Problems 1 and 2. Problem 1 was addressed by Morvai, Yakowitz, Algoet [11]
and a very simple estimation scheme was given which satisfies the statement
in Problem 1 in probability instead of almost surely. However, for the class of
all stationary and ergodic binary Markov-chains of some finite order Problem 2
can be solved. Indeed, if the time series is a Markov-chain of some finite (but
unknown) order, we can estimate the order (e.g. as in Csiszár, Shields [5]) and
count frequencies of blocks with length equal to the order.
Let X ∗− be the set of all one-sided binary sequences, that is,

X ∗− = {(. . . , x−1, x0) : xi ∈ {0, 1} for all −∞ < i ≤ 0}.

Let d(·, ·) be the Hamming distance (that is for x, y ∈ {0, 1}, d(x, y) = 0 if and
only if x = y and d(x, y) = 1 otherwise), and define the distance on sequences
(. . . , x−1, x0, ) and (. . . , y−1, y0) as follows. Let

d∗((. . . , x−1, x0), (. . . , y−1, y0)) =
∞∑

i=0

2−i−1d(x−i, y−i). (1)
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(For details see Gray [6] p. 51. )
Definition: The conditional probability P (X1 = 1| . . . , X−1, X0) is almost surely
continuous if for some set C ⊆ X ∗− which has probability one the conditional
probability P (X1 = 1| . . . , X−1, X0) restricted to this set C is continuous with
respect to metric d∗(·, ·) in (1).
We note that from the proof of Ryabko [16] and Györfi, Morvai, Yakowitz [7] it
is clear that even for the class of all stationary and ergodic binary time-series
with almost surely continuous conditional probability P (X1 = 1| . . . , X−1, X0)
one can not solve Problem 2.
For n ≥ 1, let the function pn(·) be defined as

pn(x−n+1, . . . , x0) = P (X−n+1 = x−n+1, . . . , X0 = x0) (2)

where x−i ∈ {0, 1} for 0 ≤ i ≤ n− 1.
The entropy rate H associated with a stationary binary time-series {Xn}∞−∞
is defined as H = limn→∞− 1

nE log2 pn(X−n+1, . . . , X−1, X0). We note that
the entropy rate of a stationary binary time-series always exists. For details cf.
Cover, Thomas [4], pp. 63-64.
Now we may pose our problem.
Problem 3 Is there a sequence of strictly increasing stopping times {λn} with

λn ≤ 2n(H+ε)

and an estimation scheme fn(X0, . . . , Xλn) which depends on the observed data
segment (X0, . . . , Xλn) such that

lim
n→∞

|fn(X0, . . . , Xλn)− P (Xλn+1 = 1|X0, . . . , Xλn)| = 0

almost surely for all stationary and ergodic binary time series {Xn}∞n=−∞ with
almost surely continuous conditional probability P (X1 = 1| . . . , X−1, X0)?
It turns out that the answer is affirmative and such a scheme will be exhibited
below. This result can be interpreted as if the market analyst can refrain from
predicting, that is, he may say that he does not want to predict today, but will
predict at infinitely many time instances, and not too rarely, since λn ≤ 2n(H+ε),
and the difference between the prediction and the true conditional probability
will vanish almost surely at these stopping times. We note that the stationary
processes with almost surely continuous conditional distribution generalize the
processes for which the conditional distribution is actually continuous, these
are essentially the Random Markov Processes of Kalikow [8], or the continuous
g-measures studied by Mike Keane in [9]. Morvai [10] proposed a different
estimator which is consistent on a certain stopping time sequence, but those
stopping times grow like an exponential tower which is unrealistic and much
faster growth than the mere exponential one in Problem 3.
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2 The Proposed Estimator

Let {Xn}∞n=−∞ be a stationary time series taking values from a binary alphabet
X = {0, 1}. (Note that all stationary time series {Xn}∞n=0 can be thought to
be a two sided time series, that is, {Xn}∞n=−∞. ) Now we exhibit an estimator
which is consistent on a certain stopping time sequence for a restricted class
of stationary time series. For notational convenience, let Xn

m = (Xm, . . . , Xn),
where m ≤ n.
Define the stopping times as follows. Set ζ0 = 0. For k = 1, 2, . . ., define
sequence ηk and ζk recursively. Let

ηk = min{t > 0 : X
ζk−1+t
ζk−1−(k−1)+t = X

ζk−1

ζk−1−(k−1)} and ζk = ζk−1 + ηk.

One denotes the kth estimate of P (Xζk+1 = 1|Xζk

0 ) by gk, and defines it to be

gk =
1
k

k−1∑
j=0

Xζj+1. (3)

It will be useful to define other processes {X̃n}0n=−∞ and {X̂(k)
n }∞n=−∞ for k ≥ 0

as follows. Let

X̃−n = Xζn−n for n ≥ 0, and X̂(k)
n = Xζk+n for −∞ < n < ∞. (4)

For an arbitrary stationary binary time series {Yn}, and for all k ≥ 1 and
1 ≤ i ≤ k define ζ̂k

0 (Y 0
−∞) = 0 and

η̂k
i (Y 0

−∞) = min{t > 0 : Y
ζ̂k

i−1−t

ζ̂k
i−1−(k−i)−t

= Y
ζ̂k

i−1

ζ̂k
i−1−(k−i)

}

and
ζ̂k
i (Y 0

−∞) = ζ̂k
i−1(Y

0
−∞)− η̂k

i (Y 0
−∞).

When it is obvious on which time series η̂k
i (Y 0

−∞) and ζ̂k
i (Y 0

−∞) are evaluated,
we will use the notation η̂k

i and ζ̂k
i . Let T denote the left shift operator, that is,

(Tx∞−∞)i = xi+1. It is easy to see that if ζk(x∞−∞) = l then ζ̂k
k (T lx∞−∞) = −l.

We will need the next lemma for later use.

Lemma 1 Let {Xn}∞n=−∞ be a stationary binary process. Then the time series
{X̂(k)

n }∞n=−∞, {X̃n}0n=−∞ and {Xn}∞n=−∞ have identical distribution. Thus all
these time series are stationary, and {X̃n}0n=−∞ can be thought to be two sided
stationary time series {X̃n}∞n=−∞.

sc Proof:
Let k ≥ 0, n ≥ 0, m ≥ 0, xm

m−n ∈ Xn+1 be arbitrary. It is immediate that for
l ≥ 0,

T l{Xζk+m
ζk+m−n = xm

m−n, ζk = l} = {Xm
m−n = xm

m−n, ζ̂k
k (X0

−∞) = −l}. (5)
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First we prove that for k ≥ 0, P ((X̂(k)
m−n, . . . , X̂

(k)
m ) = (xm−n, . . . , xm)) =

P (Xm
m−n = xm

m−n). By the construction in (4), the stationarity of the time
series {Xn}, and (5) we have

P ((X̂(k)
m−n, . . . , X̂(k)

m ) = (xm−n, . . . , xm))

= P (Xζk+m
ζk+m−n = xm

m−n)

=
∞∑

l=0

P (Xζk+m
ζk+m−n = xm

m−n, ζk = l)

=
∞∑

l=0

P (Xm
m−n = xm

m−n, ζ̂k
k (X0

−∞) = −l)

= P (Xm
m−n = xm

m−n).

Now we prove that P (X̃0
−n = x0

−n) = P (X0
−n = x0

−n). By the construction
in (4), the stationarity of the time series {Xn}, and (5) (with m = 0) we have

P (X̃0
−n = x0

−n) = P (Xζn

ζn−n = x0
−n)

=
∞∑

l=0

P (Xζn

ζn−n = x0
−n, ζn = l)

=
∞∑

l=0

P (X0
−n = x0

−n, ζ̂n
n (X0

−∞) = −l)

= P (X0
−n = x0

−n).

The proof of Lemma 1 is complete.
Now we show the consistency of our estimate gk defined in (3).

Theorem 1 Let {Xn} be a stationary binary time series. For the estimator
defined in (3),

lim
k→∞

∣∣∣gk − P (Xζk+1 = 1|Xζk

0 )
∣∣∣ = 0 almost surely

provided that the conditional probability P (X1 = 1|X0
−∞) is almost surely con-

tinuous. Moreover, under the same conditions,

lim
k→∞

gk = lim
k→∞

P (Xζk+1 = 1|Xζk

0 ) = P (X̃1 = 1|X̃0
−∞) almost surely.

Proof: Recalling (3) we can write

gk =
1
k

k−1∑
j=0

[Xζj+1 − P (Xζj+1 = 1|Xζj

−∞)] +
1
k

k−1∑
j=0

P (Xζj+1 = 1|Xζj

−∞)

=
1
k

k−1∑
j=0

Γj +
1
k

k−1∑
j=0

P (Xζj+1 = 1|Xζj

−∞). (6)
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Observe that {Γj , σ(Xζj+1
−∞ )} is a bounded martingale difference sequence for

0 ≤ j < ∞. To see this notice that σ(Xζj+1
−∞ ) is monotone increasing, and Γj is

measurable with respect to σ(Xζj+1
−∞ ), and E(Γj |X

ζj−1+1
−∞ ) = 0 for 0 ≤ j < ∞

(where you may define ζ−1 = −1). Now apply Azuma’s exponential bound for
bounded martingale differences in Azuma [1] to get that for any ε > 0,

P

∣∣∣∣∣∣1k
k−1∑
j=0

Γj

∣∣∣∣∣∣ > ε

 ≤ 2 exp(−ε2k/2).

After summing the right hand side over k, and appealing to the Borel-Cantelli
lemma for a sequence of ε’s tending to zero we get 1

k

∑k−1
j=0 Γj → 0 almost surely.

Define the function p : X ∗− → [0, 1] as p(x0
−∞) = P (X1 = 1|X0

−∞ = x0
−∞).

For arbitrary j ≥ 0, by the construction in (4),

X
ζj

ζj−j = (X̂(j)
−j , . . . , X̂

(j)
0 ) = X̃0

−j and lim
j→∞

d∗(X̃0
−∞, (. . . , X̂(j)

−1 , X̂
(j)
0 )) = 0 (7)

almost surely. By assumption, the function p(·) is continuous on a set C ⊆ X ∗−
with P (X0

−∞ ∈ C) = 1, and by Lemma 1, P (X̃0
−∞ ∈ C) = 1, and for each

j ≥ 0, P ((. . . , X̂(j)
−1 , X̂

(j)
0 ) ∈ C) = 1, and finally,

P (X̃0
−∞ ∈ C, (. . . , X̂(j)

−1 , X̂
(j)
0 ) ∈ C for all j ≥ 0) = 1.

By Lemma 1, the construction in (4), the continuity of p(·) on the set C, and
by (7)

P (Xζj+1 = 1|Xζj

−∞) = p(. . . , X̂(j)
−1 , X̂

(j)
0 ) → p(X̃0

−∞) = P (X̃1 = 1|X̃0
−∞)

and 1
k

∑k−1
j=0 P (Xζj+1 = 1|Xζj

−∞) → P (X̃1 = 1|X̃0
−∞) almost surely. We have

proved that gk → P (X̃1 = 1|X̃0
−∞) almost surely.

Now observe that by (1) and the continuity of p(·) on the set C, almost surely,
for all ε > 0, there is a J(ε, X̃0

−∞), such that for all z0
−∞ ∈ C, if z0

−J = X̃0
−J

then |p(z0
−∞) − p(X̃0

−∞)| < ε. By (7), and since ε > 0 was arbitrary, almost
surely,

lim
j→∞

P (Xζj+1 = 1|Xζj

0 ) = lim
j→∞

E{P (Xζj+1 = 1|Xζj

−∞)|Xζj

0 }

= lim
j→∞

E{p(Xζj

−∞)|Xζj

0 }

= p(X̃0
−∞) = P (X̃1 = 1|X̃0

−∞).

The proof of Theorem 1 is complete.
Remark. We note that for all stationary binary time-series, the estimation
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scheme described above is consistent in probability. This may be seen as follows:

E
∣∣∣gk − P (Xζk+1 = 1|Xζk

0 )
∣∣∣

≤ E

∣∣∣∣∣∣1k
k−1∑
j=0

[Xζj+1 − P (Xζj+1 = 1|Xζj

−∞)]

∣∣∣∣∣∣
+

1
k

k−1∑
j=0

E
∣∣∣P (X̂(j)

1 = 1| . . . , X̂(j)
−1 , X̂

(j)
0 )− P (X̂(j)

1 = 1|X̂(j)
−j , . . . , X̂

(j)
0 )

∣∣∣
+ E

∣∣∣∣∣∣1k
k−1∑
j=0

P (X̂(k)
1 = 1|X̂(k)

−j , . . . , X̂
(k)
0 )− P (X̂(k)

1 = 1|X̂(k)

ζ̂k
k

, . . . , X̂
(k)
0 )

∣∣∣∣∣∣ ,

where we used (7) and Lemma 1. The first term converges to zero since Xζj+1−
P (Xζj+1 = 1|Xζj

−∞) is a martingale difference sequence with respect to σ(Xζj+1
−∞ )

and an average of bounded martingale differences converges to zero almost surely
cf. Azuma [1]. Applying (4), (7) and Lemma 1, the sum of the last two terms
can be estimated by the sum

1
k

k−1∑
j=0

E
∣∣P (X1 = 1|X0

−∞)− P (X1 = 1|X0
−j)

∣∣
+ E

∣∣∣∣∣∣1k
k−1∑
j=0

P (X1 = 1|X0
−j)− P (X1 = 1|X0

ζ̂k
k

)

∣∣∣∣∣∣
and both terms converge to zero since by the martingale convergence theorem
limj→∞ P (X1 = 1|X0

−j) = P (X1 = 1|X0
−∞) almost surely, and thus the limit in

fact exists and equals zero.
Next we will give some universal estimates for the growth rate of the stopping
times ζk in terms of the entropy rate of the process. This is natural since the
ζk are defined by recurrence times for blocks of length k, and these are known
to grow exponentially with the entropy rate. (Cf. Ornstein and Weiss [15].)

Theorem 2 Let {Xn} be a stationary and ergodic binary time series. Then for
arbitrary ε > 0,

ζk < 2k(H+ε) eventually almost surely,

where H denotes the entropy rate associated with time series {Xn}.

Proof:
Let X ∗ be the set of all two-sided binary sequences, that is,

X ∗ = {(. . . , x−1, x0, x1, . . . ) : xi ∈ {0, 1} for all −∞ < i < ∞}.
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Define Bk ⊆ {0, 1}k as

Bk = {x0
−k+1 ∈ {0, 1}k : 2−k(H+0.5ε) < pk(x0

−k+1)},

where pk(·) is as in (2). Note that there is a trivial bound on the cardinality of
the set Bk, namely,

|Bk| ≤ 2k(H+0.5ε). (8)

By Lemma 1, the distribution of the time series {X̃n} is the same as the dis-
tribution of {Xn} and by the Shannon-McMillan-Breiman Theorem (cf. Cover,
Thomas [4], p. 475),

P

 ∞⋃
k=1

⋂
i≥k

{X̃0
−i+1 ∈ Bi}

 = 1. (9)

Define the set Qk(y0
−k+1) as follows:

Qk(y0
−k+1) = {z∞−∞ ∈ X ∗ : −ζ̂k

k (z0
−∞) ≥ 2k(H+ε), z0

−k+1 = y0
−k+1)}.

We will estimate the probability of Qk(y0
−k+1) by means of the ergodic theo-

rem. Let x∞−∞ ∈ X ∗ be a typical sequence of the time series {Xn}. Define
α0(y0

−k+1) = 0 and for i ≥ 1 let

αi(y0
−k+1) = min{l > αi−1(y0

−k+1) : T−lx∞−∞ ∈ Qk(y0
−k+1)}.

Define also β0(y0
−k+1) = 0 and for i ≥ 1 let

βi(y0
−k+1) = min{l > βi−1(y0

−k+1) + 2k(H+ε) : T−lx∞−∞ ∈ Qk(y0
−k+1)}.

Observe that for arbitrary l > 0,

∞∑
j=1

1{βl−1(y0
−k+1)<αj(y0

−k+1)≤βl(y0
−k+1)} ≤ k + 1.

By Lemma 1 and the ergodicity of the time series {Xn},

P ((. . . , X̂(k)
−1 , X̂

(k)
0 , X̂

(k)
1 , . . . ) ∈ Qk(y0

−k+1)) = P (X∞
−∞ ∈ Qk(y0

−k+1))

= lim
t→∞

1
βt(y0

−k+1)

∞∑
j=1

1{αj(y0
−k+1)≤βt(y0

−k+1)}

= lim
t→∞

1
βt(y0

−k+1)

t∑
l=1

∞∑
j=1

1{βl−1(y0
−k+1)<αj(y0

−k+1)≤βl(y0
−k+1)}

≤ lim
t→∞

t(k + 1)
t2k(H+ε)

=
(k + 1)
2k(H+ε)

. (10)
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By the construction in (4), −ζ̂k
k (. . . , X̂(k)

−1 , X̂
(k)
0 ) = ζk(X∞

0 ), and (X̂(k)
−k+1, . . . , X̂

(k)
0 ) =

X̃0
−k+1 and by the upper bound on the cardinality of set Bk in (8) and by (10),

we get

P (ζk(X∞
0 ) ≥ 2k(H+ε), X̃0

−k+1 ∈ Bk)

= P (−ζ̂k
k (. . . , X̂(k)

−1 , X̂
(k)
0 ) ≥ 2k(H+ε), X̃0

−k+1 ∈ Bk)

= P (−ζ̂k
k (. . . , X̂(k)

−1 , X̂
(k)
0 ) ≥ 2k(H+ε), (X̂(k)

−k+1, . . . , X̂
(k)
0 ) ∈ Bk)

=
∑

y0
−k+1∈Bk

P ((. . . , X̂(k)
−1 , X̂

(k)
0 , X̂

(k)
1 , . . . ) ∈ Qk(y0

−k+1)) ≤ (k + 1)2−k0.5ε.

The right hand side sums, the Borel-Cantelli Lemma and the Shannon-McMillan-
Breiman Theorem in (9) together yield that ζk < 2k(H+ε)eventually almost
surely and Theorem 2 is proved.
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