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Using the approach of bounded rationality and myopic learning, we attempt to explain why bees (as
examples of a forager animal) do the right (optimal) thing in an environment of many foragers, namely
to adopt the Ideal Free Distribution, but do the wrong thing when they are alone, namely stick to the
Matching Law. We discuss two types of simple foraging strategies for bees. Each of these explicit strategies
explains that in a multi-bee community the bees will distribute themselves over the nectar sources
according to the Ideal Free Distribution. At the same time, these strategies explain that in single-bee
experimental settings a bee will match, by its number of visits, the nectar supply from the available sources
(the Matching Law). Moreover, both strategies explain that in certain situations the bees may behave as
if they are risk averse. These results indicate that a competitive market in a multi-bee community permits
individuals to be boundedly rational and still forage optimally.
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1. Introduction

In animal behavior studies, many experiments of
the following type have been performed (Commons
et al., 1982; Maynard-Smith, 1982; Staddon, 1983;
Houston, 1983; Davison & McCarthy, 1988; Menzel &
Gregger, 1992):

An animal subject can repeatedly choose from two
different food sources that give precisely the same
quantity of the same food, however with different
frequencies. Suppose that, at each point in time,
the yellow source Y gives one unit of food with
probability p, and the blue source B gives one unit of
food with probability q (and 0 units otherwise). These
experiments reveal that the animal subject behaves as
if, asymptotically, it matches the reward probabilities
by the frequencies of visiting the alternatives, i.e. the
number of visits to Y relates to the number of visits to
B as p to q. This kind of behavior has been called the
‘‘Matching Law’’ (see Staddon, 1983; Maynard-Smith,
1984; Davison & McCarthy, 1988; Menzel & Gregger,
1992, for a detailed review on experiments, and see

Houston, 1983; Houston & McNamara, 1986;
Houston & Sumida, 1987; and Krebs & Kacelnik,
1991, for theoretical considerations).

These single-animal experiments are closely related
to so-called two-armed bandit problems in statistical
decision theory, where a player wishes to maximize
his profits from playing a two-armed gambling
machine of which one arm gives a greater probability
of winning. The rational player, not knowing the
winning probabilities of the arms, should try to
find the more profitable arm and play it exclusively
(DeGroot, 1970; Rotschild, 1974). A behavior
of matching the success probabilities seems to be
irrational (Houston et al., 1982; Staddon, 1983; Real,
1992). One of our goals is to explain this ‘‘irrational’’
behavior by presenting simple foraging strategies that
are optimal and rational in a multi-animal natural
environment.

We show that in a multi-animal setting these
strategies lead to what is known as the Ideal Free
Distribution (IFD: Fretwell, 1972; Milinski &
Parker, 1991). Peleg & Shmida (1992) have proved the
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existence of the IFD in a general framework of an
environment with many types of flower and bee. To
explain briefly the IFD, consider n (identical) animals
and two food sources Y and B where food is being
supplied with rates p and q respectively. Then after
some time a fraction p/(p+q) of the animals will be
feeding at the Y source while a fraction of q/(p+q) will
be at B. Thus, the number of animals at Y relates to
the number of animals at B as p to q. In a natural
multi-animal situation, establishing the IFD seems to
be the rational thing to do, since at the IFD the average
intake of food is the same at all food sources, so no
animal can improve its payoff by feeding at another
food source: game-theoretically we have a Nash
equilibrium. When non-cooperatively trying to
establish the IFD is the ‘‘natural’’ thing to do for the
animal, then in an artificial single-animal setting one
may observe irrational behavior.

When applying our strategies to a situation where
the animal can choose between two probabilistic
food sources in which the food supply is normally
distributed with the same mean but with different
variances, our result shows that the animal may act as
if it is risk-sensitive (sensu Real & Caraco, 1986). An
animal will act as if it is risk-averse if its (individual)
critical level is smaller than the mean, and risk-prone
otherwise.Here the critical level is a threshold bywhich
the animal judges each quantity of food it obtains as
being satisfactory or not. The animal will prefer the
food source with the smallest probability of getting
something below critical level.

For simplicity, we shall focus on bees foraging for
nectar instead of general animals in this paper, but very
similar ideas apply to a wide variety of choices animals
make between alternative reward sources and for
different types of rewards (food, mates, territory, etc.).
Most of the wild bees, especially in the Mediterranean
area, are solitary and live for about four to five weeks
(Shmida et al., 1993). Each female has its own nest and
raises its brood alone. There is no exchange of foraging
information among bees. Each bee is assumed to be a
maximizer of Darwinian fitness (Hammerstein &
Selten, 1993), i.e. it maximizes its average nectar intake
per time unit. Nectar will be considered as the only
reward for the bee in the model. Nectar is produced by
flowers for the sole purpose of attracting pollinators.
Bees have no innate preference to particular flowers
(Heinrich, 1979; Menzel, 1985, 1990; Menzel &
Shmida, 1992) and their foraging patterns appear to be
influenced by experience. Our approach is based on the
assumption, derived from recent experimental studies,
that bees use mainly their short-term memory for
decision-making in local flower patches (Menzel &
Gregger, 1992) and use simple decision rules, taking

into account only the last one or two flowers, in the
process of deciding on leaving or staying in a patch of
a given flower type (Real et al., 1990; Cresswell, 1990;
Real 1991, 1992; Kadmon & Shmida, 1992; Kadmon
et al., 1992). These experimental results suggest that
the bees have bounded recall. The strategieswe provide
are described by finite automata (Ben-Porath & Peleg,
1987; Kalai, 1990) by which the bees respond only to
their own payoffs and remember only payoffs of the
last few visits. In this paper we do not include travel or
handling times for the flower types. These parameters
are considered in some other models (Laverty, 1980;
Harder, 1987; Friedman & Shmida, 1992; Peleg &
Shmida, 1992).

The two explicit strategies examined in this paper are
the e-sampling strategy and the failures strategy.
Briefly, one could say that the e-sampling strategy is to
visit one alternative repeatedly, but every nowand then
sample the other alternative and switch if the other
alternative is better than the one previously selected.
The failures strategy describes an innate behavior
leading to matching according to some simple finite
automaton (e.g. leave Y after y empty flowers, leave B
after b empty flowers). The two behavioral strategies
represent two alternative approaches to model choice
rules of foraging animals: resource dependent moves
vs. resource independent moves. These strategies will
be discussed in Sections 2 and 3 respectively, each with
respect to multi-animal and single-animal settings and
in relation to risk. Section 4 concludes with some
discussion on related literature.

To simplify notations we restrict our attention to the
situation where there are only two food sources: Y
(yellow) and B (blue). However, our results can be
extended to situations with any finite number of food
sources.

2. The e-Sampling Strategy

The e-sampling strategy is briefly described as
follows. A foraging bee which has to choose between
two colored resources will use the following rule:
initially choose one of the colors at random, then at
each point in time stay at the current color with
probability 1−e and sample the other color with
probability e; when sampling, if you find a payoff
above your critical level, then switch to this new color,
otherwise return to the previous color immediately;
at this next color (new or old) again at each point in
time stay with probability 1−e, sample elsewhere with
probability e. This e-sampling strategy is close to
Heinrich’s (1979) idea of ‘‘Major–Minor behavior’’
of bees, which motivated our research. We formally
define the e-sampling strategy and the critical level
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below. The bee’s critical level is a dynamic function of
its memory where most recent experiences are reflected
strongest. For the reflection of memory we use a
parameter a $ (0, 1).

 2.1. Let a, e $ (0, 1), let a(t) $ {Y, B}
represent the action selected and let r(t) $ R be the
payoff at time t $ {1, 2, 3,...}. Define cl(1)=0 and

cl(t+1)=acl(t)+(1−a)r(t) (1)

for te1. Then cl(t) is called the critical level at
time t. Let Ye denote the mixed action: choose Y
with probability 1−e and B otherwise and let Be be
defined similarly. The e-sampling strategy is defined by
playing:

at t=1 use Y0.5,
at t=2 use a(1)e ,
at tq2 use a (t−1)e in case a(t−1)$a(t−2) and
r(t−1)qcl(t−1), use a(t−2)e otherwise.

Note that eqn (1) is the linear operator function
originally used by Bush & Mosteller (1955). In this
definition the parameters a and e are the individual
bee’s factors. The first one is related to memory and the
second one to searching elsewhere. Those familiar with
game theory can think of e as a bee’s trembling hand
(Selten, 1975) trying to play a pure action. We wish to
emphasize that different individuals may have different
parameters, but our results remain the same.

Consider what happens if we have a population of
n $ {1, 2, 3,...} bees that are foraging on two patches
of flowers, a yellow patch Y and a blue patch B.
Per unit of time, the yellow patch has a total nectar
supply of yq0, while there is a total quantity bq0 at
patch B. We make the following assumptions:

(i) The total quantity of nectar at Y is equally
distributed over the visiting bees at Y at each
stage; that is, if at some stage t $ N there are nY

bees at Y, then we assume that at this stage each
of these bees is receiving r(t)=y/nY units of
nectar. Likewise for B.

(ii) There is no accumulation of nectar at a patch.
All nectar is taken by the bees at each stage and
if at some stage there are no bees at a patch then
at the next stage the total quantity is still the
same.

(iii) The bees’ sampling factors e are sufficiently
close to 0 to have a negligible probability of two
or more bees moving at the same time. Thus the
distribution of bees over flower types changes
by one bee moving either from Y to B or from
B to Y. (Here ‘‘moving from Y to B’’ means:
previously the bee was at Y, now it has gone to
B for a sample and since the payoff received at

B is larger than the critical level it decides to stay
at B.)

(iv) We assume that, when going out sampling, the
bee has been in Y sufficiently long to have its
critical level close to y/nY .

 2.2. Under the above assumptions the
population will stabilize in the Ideal Free Distribution.

Proof. First, observe that, due to its e, each bee will
go out sampling the other color infinitely often. Hence,
if the process stabilizes in some distribution of bees
over Y and B, then it must be such that no single bee
can strictly improve its payoff by moving to the other
color. Second, observe thatwhenever a beemoves from
Y to B we must have that y/nYQb/(nB+1), where nY

and nB are the numbers of bees before the move at Y
and B respectively.

We now define a potential function (Monderer &
Shapley, 1988) on the distributions of bees as

P(nY , nB )=y s
nY

m=1

1/m+b s
nB

m=1

1/m, (2)

where a0
m=1 1/m is understood to be equal to 0. If a bee

moves from Y to B, then the distribution changes from
(nY , nB ) to (nY−1, nB+1). At the same time the
potential changes from P(nY , nB ) to P(nY−1, nB+1).
Now P(nY−1, nB+1)−P(nY , nB )=b/(nB+1)−
y/nYq0, because the bee decided to stay at B.
Hence, with each bee movement the potential strictly
iicreases. Since there are only finitely many distri-
butions of the n bees and since the bees will keep
moving as long as possible, the potential function will
eventually reach its maximum. At this maximum
we have that y/nYeb/(nB+1) and b/nBey/(nY+1);
hence

y/nY1b/nB (3)

and the population has reached the IFD. q

We remark that a stable situation that arises from all
bees doing e-sampling strategies, needs not be
Pareto-optimal, i.e. there may exist an alternative
distribution for which all bees have a higher payoff.
Take, for example, four bees, 8 units of nectar at Y and
1 unit of nectar at B. For this situation the IFD will be
that all four bees will go to Y and the 1 unit at B is not
being consumed. Thus each bee obtains a payoff of 2
all the time. The bees could all improve their payoffs
by visiting B in turns, giving each bee the average
payoff 9/4q2. In the case of infinitely many bees, the
distribution obtained from the e-sampling strategies
will indeed be Pareto-optimal, so that in a natural
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environment with many bees and flowers the IFD
solution obtained is practically Pareto-optimal.

Let us now see what happens if we take a single bee
for an experiment of the following type (Fig. 1). We
have two artificial (Bernoulli) flowers Y (yellow) and
B (blue). Each time the bee visits the yellow flower it
will receive 1 unit of nectar with probability p and 0
units otherwise. Equivalently, in a natural situation
one can think of a patch of yellow flowers, where
a p-fraction of the flowers is full, while a
(1−p)-fraction is empty. For the blue flower we have
probability q for a full flower. As before, let e be the
bee’s sampling factor. Using the e-sampling strategy,
the bee will always have a critical level in between 0 and
1, and it will decide to stay in the sample color if and
only if it finds a full sample. If the bee applies the
e-sampling strategy, then its behavior corresponds
with the Markov chain depicted in Fig. 1. In this
figure Y1 and B1 correspond to the sampling stages at
the respective colors; one gets there by sampling
probability e and one decides to remain (or else to
return) with probability p and q respectively.
Consequently, Y2 and B2 represent situations where the
bee has decided to stay in the particular color.

Computing the stationary distribution of this
Markov chain, one finds that the number of visits to
Y relates to the number of visits to B as p+qe to q+pe,
which is approximately as p to q if e is small. Thus we
have the following theorem.

 2.3. If e is small, then a bee applying
the e-sampling strategy in a single-bee experiment
will exhibit matching the payoff probabilities by the
frequency of its visits (the Matching Law).

  

Consider a single bee foraging on two patches Y and
B, in which all flowers have a normally distributed
nectar supply with a common mean m, but where the
distributions differ in variance; for the yellow flowers
the variance is vY while for the blue ones it is vB .

F. 2. Two patches of flowers with normal nectar distributions.

 2.4. Suppose that the bee is using the
e-sampling strategy and has a fixed critical level cl to
decide whether any flower is full or empty. Without loss
of generality we assume vYQvB . If clQm, then the bee
will act as if it is risk-averse, i.e. it will spend more time
on Y than on B. If clqm, then the bee will act as if
it is risk-prone, i.e. it will spend more time on B than on
Y.

Proof. If clQm, then the probability of getting a
reward above the critical level is larger for Y than it is
for B (cf. Fig. 2). So, when sampling, the bee will decide
to move to Y more often than it will decide to move to
B. Hence the result. The second part is similar. q

We are aware of the fact that assuming a fixed
critical level is not very realistic, but, nevertheless,
we feel that this is an interesting observation. Also, a
similar assumption is quite realistic for the failures
strategy, where, for a similar result, one only needs the
critical level to be below, or above, the mean during the
observed foraging period (cf. Section 3). It is also
important to notice that the result of this theorem
holds for any continuous nectar supply distributions
FY , FB on the interval [a, b] which have a common
mean m=(a+b)/2 and continuous derivatives fY , fB for
which

(i) fi is symmetric with respect to the mean m, i.e.
fi (m+x)=fi (m−x) for all x $ [0, b−m] and
i=Y, B, and

(ii) there is x* $ [0, b−m] with

fY (x)qfB (x) if =x−m =Qx*,

fY (x)QfB (x) if =x−m =qx*.

It should be noted that the result depends on how
FY (cl) and FB (cl) are compared. If FY (cl)QFB (cl), then
an e-sampling bee with critical level cl will favour the
yellow patch, since Fi (cl) is the probability of having
an empty flower at i=Y, B. Thus, if FY , FB are nectar
supply distribution functions on (0, a) with
FY (r)QFB (r) for all r $ (0, a) (i.e. FY strictly
dominates FB according to the ‘‘first-order stochasticF. 1. Markov chain for the e-sampling strategy.
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dominance criterion’’; Fishburn, 1976), then every
bee that uses an e-sampling strategy and judges
flowers full or empty according to some critical level,
will favour the yellow patch. This means that under
these conditions, every bee would visit more yellow
flowers than blue flowers or, in other words, spend
more than half of its foraging time at the yellow
patch.

One can also take nectar distributions as in Fig. 3
(or, e.g. negative exponential distributions), in which
most flowers are empty or have very small nectar
quantities. Such leptokertic distributions are very
common in nature (Shreiber, 1993; Boker, 1993).
In case the bee forages on two flower patches Y and
B with distributions as in Fig. 3, then the bee will
compare the two patches. If we assume that fY and
fB are continuous and cross each other only once (e.g.
fY starts above fB ), then such a comparison also
falls in the first-order stochastic dominance. If a bee
forages on such flower patches and uses a critical
level for switching between Y and B, then it will stay
more frequently in the blue patch with the higher
variance than in the yellow patch with the lower
variance.

We emphasize that the results presented in this
section do not really depend on e. All that matters is
that e $ (0, 1) is sufficiently small to have a bee
staying in the same patch long enough to get a good
estimate of the payoff in this patch. One can even
allow e to be payoff dependent, getting smaller with
high current payoffs and getting larger with low
current payoffs. The only thing needed is that no
matter at what color (patch) the bee is foraging, with
probability 1 it will eventually sample at another
color (e.g. this condition is satisfied if e is bounded
away from 0). In the multi-bee model the IFD result
will still be valid if all individual bees have
(sufficiently small) different e’s.

3. The Failures Strategy

In the previous section the probability of the bee
going out to sample the other color was independent
of the payoffs received in the current color; it was
determined solely by the innate sampling factor, e. In
this section we present a foraging strategy which will
make the bee move to another color after engaging
a certain number of consecutive empty flowers.
Recall that empty is to be interpreted as ‘‘below
critical level’’. The bee is assumed to behave as a
finite automaton (Neyman, 1985; Ben-Porath &
Peleg, 1987; Kalai, 1990).

This automaton strategy corresponds to the
well-known ‘‘area-restricted search’’ (Real et al.,
1990) of animal behavior, which was termed
‘‘near–far’’ by Motro & Shmida (1995). The near–far
strategy is A(1, 1) (see below), a special case of our
automaton strategy where the bee uses only the last
flower visited to evaluate the current patch. It means:
stay in the patch as long as you find food and leave
otherwise (similar strategies have been reviewed by
Houston et al., 1982). Experimental studies reveal
this near–far behavior (see in Motro & Shmida,
1995).

Let us return to the experiment with two artificial
flowers Y (yellow) and B (blue) that give 1 unit of
nectar with probability p and q respectively (and 0
units otherwise). As already mentioned above,
observations indicate that the frequencies of visits by
the bee will match these probabilities. The event of
receiving 1 shall be called a success, receiving 0 is a
failure.

 3.1. Let y, b be positive integers. The finite
automaton A(y, b) is given by:

(i) leave Y after y consecutive failures and move to B,
(ii) leave B after b consecutive failures and move to Y.

As an example, we depict automaton A(3, 2) in
Figure 4(a), where Yk indicates the automaton state
of being at Y while the last k consecutive yellow
visits were failures (k=0, 1, 2). Obviously the
automaton states B0 and B1 are to be interpreted
similarly. If the bee, in any of the automaton states,
gets a full flower (1), then it goes to a new automaton
state according to the 1-arrow, otherwise it goes
according to the 0-arrow for having experienced a
failure. The automaton corresponds with a Markov
chain on the states Y0, Y1, Y2, B0, B1, which is depicted
in Figure 4(b). In this figure and elsewhere in this paper
we write p̄ to denote 1−p and q̄ for 1−q. This Markov
chain in turn corresponds to the transition

F. 3. Two patches of flowers with decreasing nectar
distributions.
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F. 4. (a) The automaton A(3, 2) with 1-arrows and 0-arrows to indicate successes and failures, respectively. (b) The related Markov chain.

matrix T given by:

Y0 Y1 Y2 B0 B1

Y0 p p̄ 0 0 0

Y1 p 0 p̄ 0 0

T=Y2G
G

G

G

G

F

f

p 0 0 p̄ 0 G
G

G

G

G

J

j

.

B0 0 0 0 q q̄

B1 q̄ 0 0 q 0

If the bee uses A(3, 2), then we can compute its
frequencies of visits to Y and B by finding the
stationary distribution p=(y0, y1, y2, b0, b1) of T. The
frequency of visits to Y is y0+y1+y2 and that to B is
b0+b1. The vector p is nonnegative and adding its
components gives 1. Furthermore, p has the property
that pT=p. Using A(3, 2) the bee would confirm the
matching law if and only if

6y0+y1+y2

b0+b1

=p/(p+q)

=q/(p+q)
(4)

The equation pT=p yields

y1=p̄y0, y2=p̄2y0,

b1=q̄b0 and b0=(p̄3/q̄2)y0.

Hence we find the equations

y0+y1+y2=y0(1+p̄+p̄2)=y0
1−p̄3

p
,

b0+b1=b0(1+q̄)=b0
1−q̄2

q
=y0

p̄3(1−q̄2)
q̄2q

.

So, if we let f(2,3) denote the ratio of the frequencies

of visits to Y and B, then

f(2, 3)=
frequency of visits to Y
frequency of visits to B

=
qq̄2(1−p̄3)
pp̄3(1−q̄2)

(5)

and the automaton A(2, 3) is matching if and only if
f(2, 3)=p/q, which is equivalent to:

p2p̄3

1−p̄3=
q2q̄2

1−q̄2. (6)

Similarly one can show the following theorem.

 3.2. The finite automaton A(y, b) matches
the payoff probabilities p and q respectively if and only if

p2p̄y

1−p̄y=
q2q̄b

1−q̄b. (7)

We would like to remark that there are infinitely many
(y, b) $ R2

+ for which (7) holds, because the function
y�p2p̄y/(1−p̄y) is strictly decreasing on (0, a) from a
to 0. In fact we have the following result.

 3.3 Let d $ (0, 0.5) and let M $ N be
such that (1−d)M−1E4d(1−dM). Then, for all

dEpEqE1−d there exist y, b $ [1, M] with

p2p̄y

1−p̄y=
q2q̄b

1−q̄b.

Proof. If pp̄=qq̄, then y=b=1 gives the result.
Otherwise, assume without loss of generality that
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pp̄Qqq̄. Then

q2q̄M

1−q̄M=
qq̄q̄M−1

(1−q̄M)/(1−q̄)

E 0.25(1−d)M−1

(1−dM)/(1−d)
Ed(1−d)Epp̄. (8)

By continuity there exists b $ [1, M] with

q2q̄b/(1−q̄b)=pp̄=p2p̄/(1−p). q

For any p,q-situation of yellow and blue
flowers with p, q $ [d, 1−d] this theorem provides
the existence of real numbers y, b $ [1, M] for which
p2p̄y/(1−p̄y)=q2q̄b/(1−q̄b). However, to have an
automaton for the bee, we need to have numbers in
the range {1, 2,..., M}. We therefore propose to
see (y, b) as a convex combination of pure pairs
(y*, b*) $ {1, 2,..., M}2 and to have the bee performan
initial randomization over the pure automata
A(y*, b*) according to the weights of the convex
combination. Then, in expectation, the bee will leave
Y after y consecutive failures and it will leave B
after b consecutive failures. In view of the bee’s
bounded recall, it is worth noting that with M=2
one can handle d as small as 0.22, while with M=3
one can handle d as small as 0.18. Thus, for
all p, q $ [0.22, 0.78] one can obtain matching with
automata A(y, b) with y, b $ {1, 2}.

For a bee performing matching with an automaton
of the above type, the number of consecutive empty
flowers it allows itself to encounter in yellow can be
different from that in blue. One can think of the
bee as having an internal mechanism by which, after
some rough estimation of p and q, the natural numbers
y* and b* are selected. It is not necessarily true that the
bee can use an automaton of type A(x, x) since there
does not always exist a real number xe1 with
p2p̄x/(1−p̄x)=q2q̄x/(1−q̄x). If for example one takes
p=0.6 and q=0.8, then such x does not exist.
However, in natural situations it is frequently observed
that p and q are small if there are many visits (Shreiber,
1993). Then we either have pEqE1−p or
qEpE1−q. The following theorem says that in this
case the bees can use an automaton of type A(x, x).

 3.4. If pEqE1 −p or qEpE1−q, then
there exists xe1 such that

p2p̄x

1−p̄x=
q2q̄x

1−q̄x. (9)

Proof. If p=q or if p̄=q, then one can take x=1.
Now consider pQqQp̄. Using an automaton A(x, x)
the ratio of the frequencies of visits to Y and B is

(cf. example A(3, 2) above)

f(x, x)=
qq̄x(1−p̄x)
pp̄x(1−q̄x)

. (10)

Then limx:a f(x, x)=0 and f(1, 1)=q̄/p̄qp/q. Hence,
by continuity there exists xe1 with f(x, x)= p/q, or
equivalently p2p̄x/(1−p̄x)=q2q̄x/(1−q̄x). Obviously a
similar result can be obtained for qQpQq̄. q

Suppose we have finitely many bees foraging on two
patches Y and B consisting of Bernoulli flowers. At Y
each flower gives 1 unit of nectar with probability p. At
B each flower is full with probability q. We assume that
the nectar supply probabilities are independent of the
numbers of visiting bees. If in this situation each
individual bee determines, by its internal mechanism,
an automaton to forage on Y and B, then each of these
individuals will approximately spend p/(p+q) of its
foraging time on Y and q/(p+q) on B. Even stronger,
we can say that for each individual bee the probability
of being at Y at time t converges to p/(p+q). Thus, by
the strong law of large numbers the fraction of the
number of bees we encounter at Y at time t converges
to p/(p+q) as t and the number of bees increase. That
is, a p/(p+q)-part of the bee population will be at Y,
while the others, a q/(p+q)-part, will be at B for large
t and a large number of bees. In otherwords, onewould
observe the Ideal Free Distribution.

    

Consider a population of infinitely many identical
bees (think of a continuum) that are all using the
failures strategy A(r, s) with r, s $ N, to forage on
patches Y and B that have respectively total nectar
supply y and b. The quantities are shared at each color
by the present bees. Given critical levels for the bees at
Y and B, the ‘‘full-flower’’ probabilities, p and q
respectively, are determined by the proportions of bees
currently present in each of the patches. This
population of bees can be distributed according to
the IFD, i.e. there are full-flower probabilities p and q,
and related critical levels, for Y and B respectively,
such that each bee using A(r, s) is matching p/q, while
the ratio of the fractions of bees at Y and B is y/b. More
formally:

 3.5. If yqb and ysqbr, then there exist
p, q $ (0, 1) such that

y
b
=f(r, s)=

qq̄s(1−p̄r)
pp̄r(1−q̄s)

=
p
q
. (11)

Proof. For q $ (0, b/y] define:

g(q)=
(y/b)2(1−qy/b)r(1−(1−q)s)

(1−q)s(1−(1−qy/b)r)
(12)
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Then g is continuous on (0, b/y] with g(b/y)=0 and
with

lim
q40

g(q)=(y/b)2 lim
q40

1−(1−q)s

1−(1−qy/b)r

=(y/b)2 lim
q40

s(1−q)s−1

(ry/b)(1−qy/b)r−1

=
(y/b)2s
ry/b

=
ys
rb

q1. (13)

By continuity of g there exists q* $ (0, b/y] with
g(q*)=1. Now q* and p*=yq*/b are as desired. q

Note that this theorem is a static result for the existence
of the IFD with matching bees doingA(r, s). The result
does not provide a dynamic process of how to reach the
IFD. We have to assume an infinite number of bees in
order to have p and q not be affected by single bees
moving from one state of the automaton to another
state of the automaton. The proportions of bees in the
states of the automaton have to be independent of
time. With a finite number of bees the probabilities p
and q would always depend on the precise number of
bees in those states.

  

Consider the single-bee situation of foraging on two
patches Y and B, where all flowers have a normally
distributed nectar supply with a common mean m. The
yellow flowers have variance vY , the blue ones have
variance vB .

 3.6. Suppose the bee is using a failures
strategy and has a fixed critical level cl to decide whether
any flower is full (success) or empty (failure). Without
loss of generality assume vYQvB . If clQm, then the bee
will act as if it is risk averse, i.e. it will spend more time
on Y than on B. If clqm, then the bee will act as if it is
risk prone, i.e. it will spend more time on B than on Y.

Proof. If clQm, then the probability of getting a full
flower is larger for Y than for B (Fig. 2). Hence the
probability p of getting a full Y flower is larger than q
for a B flower. Since the bee’s mechanism will find an
automaton to match p and q, the bee will spend more
time in Y than in B. The second part is similar. q

It is very important to notice that the same result is
valid for dynamic critical levels, by only assuming that
the critical level is below, or above, the mean during the
obseved foraging period.Moreover, this result can also
be extended to apply to other nectar distribution
functions, like the ones discussed for the e-sampling
strategy.

Finally, for this section, note that we have only

considered finite automata of the type: leaveY (B) after
y (b) consecutive failures. However, one could also
examine automata of a more general type. Let S, SY

and SB be finite non-empty sets of states
with S=SY*SB and SY+SB=f. We can describe
a foraging automaton for the bee as a map
T: S×{0, 1}:S with the interpretation that a bee in
state s $ SY is visiting a yellow flower; if this particular
yellow flower is full (empty) then the bee moves to state
T(s, 1) (respectively T(s, 0)). Further research
is required to fully understand the possibilities of
obtaining matching and IFD results by means of these
general foraging automata.

4. Discussion and Related

Literature

  

There is much published literature devoted to the
phenomena of the ‘‘Matching Law.’’ (Some main and
recent references are Simon, 1956; Herrenstein, 1970;
Heyman, 1979; Commons et al., 1982; Houston
et al., 1982; Houston, 1983; Staddon, 1983; Davison &
McCarthy, 1988; Staddon & Horner, 1989). A reader
of the above literature may be confused (as we are) by
the rich and complicated details of the experimental
results as well as by the theoretical analyses. There are
also many versions of the mathematical formulation of
the Matching Law (compare for example Krebs &
Kacelnik, 1991, to Houston et al., 1982, to Houston &
Sumida, 1987, to Davison & McCarthy, 1988, to the
commentary by Herrenstein & Vaughan in Maynard
Smith, 1984).

In this study we have focused on one main issue
related to the matching law: why does the animal in an
artificial binary choice setting behave ‘‘irrationally’’
and does not go exclusively to the resource with the
higher probability? Instead, the matching law reveals
(Krebs & Kacelnik, 1991) that the animal allocates its
long-term behavior to two alternatives in proportion
to the reward it obtains from them. To answer this
question, we have presented boundedly rational
strategies for which the irrational matching behavior
is compatible with the equilibrium conditions for the
natural IFD.

We have presented foraging rules that lead the
forager to match over time the reward probabilities by
the fractions of the visits to the alternatives. However,
one should not confuse this matching law with
‘‘probability matching’’ (Maynard Smith, 1984).
Probability matching is a foraging rule where, at each
point in time, the forager is choosing an alternative
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according to the observed full flower probabilities at
the respective patches. While probability matching is
a moment-to-moment foraging rule, the matching law
describes the average behavior of the forager over an
asymptotically long period of time.

 

As Maynard Smith (1984) points out, a learning rule
(i.e. a foraging strategy) observed in animals should
have several properties:

(i) It should have the relative payoff sum (RPS)
property, which says that, after a sufficiently
long period of time, the probability of
performing a certain act should equal the total
payoff received so far for performing this act,
divided by the total payoff received so far for all
acts.

(ii) None of the available acts should ever fall to
zero probability, since the environment might
change.

(iii) Any naive animal should start with some prior
probabilities of performing the different acts.

(iv) Recent payoffs should have a bigger effect on
behavior than early ones (discount factor).

A strategy having these properties is Harley’s RPS
rule (Harley, 1981; Maynard Smith, 1984). For a
two-choices situation (Y, B) this rule is defined as
follows (Harley, 1981):

Let rY , rBq0 (residual values) and let 0QxQ1
(memory factor). Let Pi (t) denote the payoff in
i $ {Y, B} at time t $ N. Now let Si (0)=ri and for te1
define

Si (t)=xSi (t−1)+(1−x)ri+Pi (t). (14)

At time t choose alternative i $ {Y, B} with probability

fi (t)=
Si (t−1)

SY (t−1)+SB (t−1)
(15)

‘‘In words, the (this) RPS rule says the following:
display most frequently the behaviour which has, up to
the present, paid the most, but only in proportion,
roughly, to its cumulative payoff relative to the overall
total’’ (Harley, 1981).

Although this rule is fairly simple, the foraging
animal is required to adjust its probabilities of
choosing either Y or B at each point in time. In contrast
we have presented an explicit ‘‘molecular’’ (‘‘moment
to moment’’ in Krebs’ and Kacelnik’s terms) strategy
that has the above properties, but for which the
foraging animal will only switch every once in a while.
Notice that Harley’s rule assumes the animal to update
probabilities at all time points and chooses Y or B
independent of the patch it is currently visiting. We

question whether bees are capable of updating and
computing probabilities before each visit (10 to 40
visits per minute!). Our foraging strategies give the
same results while the bee is following very simple
movement rules. For the sampling strategy, the way of
updating the critical level should not necessarily be as
in eqn (1). In fact, we only use the fact that the critical
level at any stage depends on the critical level at the
previous stage and on the previous payoff, while if the
same payoff is given repeatedly, then the critical level
converges to this payoff.

  

We can use e-sampling also in this case to reach
the IFD, as can be seen from an alternative potential
function (Monderer & Shapley, 1988). Thus, the
potential function approach gives us a simple, quite
general, but explicit, dynamic mechanism of how
foraging animals can reach the IFD.

Consider a population of e-sampling bees with
different consumption potentials (CP). Different body
sizes of bees are an example of different consumption
potentials. However, the relation between size and CP
does not need to be linear, but only positive
monotonic. We show that a population of e-sampling
bees with different CPs will stabilize in the IFD, that
is, y/nY1b/nB where nY and nB are the total CP at Y and
B respectively. To see this we define the alternative
potential function P'.

P'(nY , nB )=min{y/nY , b/nB} (16)

for nY$0 and nB$0, while P'(0, nB )=b/nB and
P'(nY , 0)=y/nY .

If we have a finite number of bees with CPs in [1, k],
where k is the maximum CP present, then the
population has the IFD if and only if y/nYe b/(nB+i)
and b/nBey/(nY+j), where i ( j) is the smallest CP
present at Y (respectively B). Notice that, if nY$0 and
y/nYQb/(nB+i), then y/(nY+j)Qy/nY Qb/(nB+i)
Qb/nB implying that no bee will move from B to Y. On
the other hand, a bee with CP i sampling from Y to B
would decide to stay at B. There is at least one bee with
CP i at Y and hence, by the e-sampling strategy, at least
one bee will move from Y to B. Suppose that it has CP
xei. Then the distribution changes from (nY , nB )
to (nY−x, nB+x) and P'(nY−x, nB+x)=
min{y/(nY−x), b/(nB+x)}qy/nY=min{y/nY , b/nB}
=P'(y/nY , b/nB ). Hence, with each moving bee P'
is strictly increasing and the process will reach
a (local) maximum after a finite number of moves.
At this (local) maximum the population is in
an IFD. Note that, if all bees have the same CP
(as we have in Section 2), then every local maxi-
mum of this alternative potential function P', as
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of the original potential function P, is necessarily a
global maximum.

 

Our e-sampling strategy explains explicitly the
dynamics in which ‘‘Milinski fishes’’ reach the IFD
(Milinski, 1979, 1984; Godin & Keenleside, 1984;
Milinski & Parker, 1991). Each fish has to remember
only an estimate of the average payoff received so far
in the old resource, and to compare it with the current
payoff in the new food source when sampling. If the
current payoff is higher, the fish stays; if it is lower, it
goes back to the old food source. This biological
behavior corresponds to the potential function of
Monderer & Shapley (1988). Milinski & Parker (1991:
144) have a stationary model of the IFD with foraging
fishes, but they do not have an explicit dynamic model
by which the fishes can reach the IFD. Their model
(including Parker & Sutherland, 1986) can be viewed
as a special case of the short-run stable matching of
Peleg & Shmida (1992) where the fishes’ different
competitive weights correspond to the bees’ different
handling times (technological abilities, sensu Selten,
1978).

Godin & Keenleside (1984) have shown exper-
imentally that the IFD can be achieved through
‘‘sampling.’’ However, no explicit strategy has been
suggested in the literature of how fish carried out
the sampling procedure. Our e-sampling strategy
corresponds to the ‘‘Major–Minor behavior’’ of bees,
which has been observed in bumblebees by Heinrich
(1979). The bumble-bee visits mainly a certain flower
type, the major one, but once in a while it samples
(doing minoring) other flower types. It would be
interesting to investigate how an individual bee’s
parameter e is influenced by its life history and its
environment.

Milinski (1984) and Godin & Keenleside (1984)
obtained interesting results when comparing the
switching rate between two resources of fish with
different competitive ability: individuals experiencing
a high feeding rate (high payoff) tend to switch patches
less frequently than those individuals that received
lower payoffs. These results can be explained by our
e-sampling strategy (and also by the failures strategy).
The fishes which are receiving less, reach the threshold
of leaving more frequently, and the initiative to sample
somewhere else is greater when e-sampling is
payoff-dependent (with e increasing with low payoffs
and decreasing with high payoffs).

  

Our model explains in a simple way (without the
need of utility theory) the well-known pattern in

animal behavior of risk aversion and risk proneness
(Real & Caraco, 1986; Stephens & Krebs, 1986; Krebs
& Kacelnik, 1991; McNamara & Houston, 1992): in an
environment in which the resource is normally
distributed, the critical level can be interpreted as an
existing condition for the animal. If the critical level is
below the resource mean (Fig. 2), then the animals
should behave as if they are risk-averse, while if the
critical level is above the mean, then they should
behave as if they are risk-prone. Our model predicts
only a tendency to visit one of the resources more
frequently and not to make an exclusive choice for one
of the resources. In the case where nectar is distributed
as in Fig. 3: no matter what its critical level is, the bee
will prefer the blue flower.

The elucidated review on risk sensitivity by
McNamara & Houston (1992) has technically similar
results to our points on attitude towards risk.
However, they ask themselves which alternative the
animal would prefer, while we find out what would
happen to the animal if we take into account the
observations of the IFD and matching. In their model
the critical level is a kind of evolutionary knowledge
which, in a sense uses complete information about the
environment. In our model the animal’s actions are
governed only by its own recent experiences and no
complete information is required.

    

Our approach to studying foraging behavior is quite
different from the ‘‘optimal foraging theory’’ used in
ecology (Pyke et al., 1977; Krebs & Kacelnik, 1991;
Stephens & Krebs, 1986; Bernstein et al., 1988). In
optimal foraging theory, the decision to leave a patch
(resource alternative) is based on a comparison to the
surroundings; in other words, it assumes that the
animal has complete information and a powerful
memory and computational ability. Our basic
approach is that the animal uses ‘‘bounded memory’’
and makes its decisions only on the basis of its own
recent experience. It does not know its competitor’s
moves/payoffs. It even may not know that it is involved
in a game situation. The animal uses very simple
decision rules to decide when to leave a patch (flower
type), to decide where to go, and to decide whether or
not to stay at the ‘‘new’’ patch. In such very fast
biological activities (one bee makes very many visits
per minute) the animals mainly use their short-term
memory (Menzel, 1985, 1990) and the movement rules
depend on very short recall (e.g. remember the last one
to three flowers) and very simple calculations (Real
et al., 1990; Real, 1991, 1992).

These issues are related to myopic learning models
(Monderer & Shapley, 1988; Fudenberg & Kreps,



,       315

1991; Milgrom & Roberts, 1991; Monderer & Sela,
1993) and to theory on bounded rationality (Kalai,
1990; Selten, 1990; Aumann, 1992). We believe that
bees and most other animals are not able to perform
sophisticated calculation of probabilities (e.g. as in the
RPS-rule of Harley, 1981, the learning rule
by McNamara & Houston, 1985, or in learning rules
that require Bayesian updating) and cannot update
expected payoffs by functions that comprise a long
recall. Of course, in a matching experiment the reward
probabilities are not known to the bee; these are known
only to the researcher. One of the main limitations of
many of the previous models is that they analyze the
situation as if the bee knows those probabilities.

This bounded rationality approach is explained
nicely in Boyd & Richerson (1985: 93) when they
address the issue of how animals and people apply
Bayesian rationality:

simple rules of thumb (... called heuristics by psychologists)
may greatly reduce cognitive complexity of decisions but still
result in behavior that closely approximates normatively
rational behavior in some restricted range of environments
... These heuristics often work well but occasionally lead to
behavior that is irrational according to canons of Bayesian
rationality.

In this paper we have presented an explicit model in
which simple decision rules, which need only very short
recall and only elementary calculations, can dictate an
optimal foraging strategy. We have seen that finite
automatawith very few states appear to be appropriate
tools for such tasks (Ben-Porath, 1991; Ben-Porath &
Peleg, 1987). Our model stands in agreement with
recent experiments of foraging animals which reveal
that animals take into account only the last one to three
rewards when making short-term decisions (sensu
Menzel, 1990). It also fits the ‘‘melioration approach’’
(Herrenstein & Vaughan, 1980) that animals use very
simple choice rules which lead them to behave
(sub)optimally in very complex natural situations
(Houston et al., 1982; Hinson & Staddon, 1983; and
Boyd & Richerson, 1985). To an outside observer this
simple behavior looks very sophisticated and compli-
cated—as if they use utility functions, probability
updating and complicated calculus.Webelieve that the
same approach can explain some ‘‘irrational’’ behavior
in economics and sociology; some ‘‘bounded
rational’’—ad hoc—strategies that are optimal under
particular natural conditions may look very irrational
in artificial situations. This is illustrated by the
comparison of the matching experimental and the IFD
phenomenon in nature.
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