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Abstract

We exhibit a general class of interactive decision situations in which all the
agents benefit from more information. This class includes as a special case the
classical comparison of statistical experiments à la Blackwell.

More specifically, we consider pairs consisting of a game with incomplete
information G and an information structure S such that the extended game
Γ(G,S) has a unique Pareto payoff profile u. We prove that u is a Nash payoff
profile of Γ(G,S), and that for any information structure T that is coarser
than S, all Nash payoff profiles of Γ(G, T ) are dominated by u. We then prove
that our condition is also necessary in the following sense: Given any convex
compact polyhedron of payoff profiles, whose Pareto frontier is not a singleton,
there exists an extended game Γ(G,S) with that polyhedron as the convex hull
of feasible payoffs, an information structure T coarser than S and a player i
who strictly prefers a Nash equilibrium in Γ(G, T ) to any Nash equilibrium in
Γ(G,S).

AMS 2000 Subject Classification: Primary 91A35.

Keywords: Information structures, value of information, Pareto optima.



1 Introduction

Blackwell’s theory of comparison of statistical experiments shows that for single-agent
decision problems, more information to the agent is always better (see Blackwell (1951,
1953)). The formalization of similar ideas actually goes back to Ramsey, whose note
on the topic has been recently published (Ramsey (1990)). However, monotonicity of
payoffs with respect to information fails to hold in many cases. For instance Kadane,
Schervish, and Seidenfeld (1996) have shown that a Bayesian decision maker may
rationally pay not to see the outcome of a certain cost-free experiment, when only fi-
nite additivity of the probability measures is assumed. Wakker (1988), Schlee (1990,
1991), Safra and Sulganik (1995), Chassagnon and Vergnaud (1999) among others
have dealt with similar phenomena for decision makers whose choice criterion is not
the maximization of expected utility. Sulganik and Zilcha (1997) have shown that
information is not always beneficial if the feasible set of actions depends on the sig-
nal and the information system. Building on the work of Kreps and Porteus (1978),
Grant, Kajii, and Polak (1998a, 1998b) consider intrinsic preference for information,
and provide conditions for a dynamically consistent agent always to prefer more in-
formative signals. Lehmann (1988) weakened Blackwell’s criterion for the comparison
of experiments. His idea has been used by Athey and Levin (1998) and Persico (2000)
to compare attitudes towards information in some classes of models.

In the context of more than one decision maker, i.e. in game theory, the nega-
tive value of information and its economic implications were examined by Hirshleifer
(1971). Kamien, Tauman, and Zamir (1990a, 1990b) considered games in which an
outside agent can send signals to the players. The effect of information was captured
by the equilibria of the games induced by these messages. Neyman (1991) empha-
sized the fact that more information to a player cannot have a negative effect as long
as other players are not aware of it. Gossner (2000) compared information struc-
tures according to the correlated equilibrium distributions they induce in games with
incomplete information.

Recall the following simple instance of information rejection (see e.g. Kamien,
Tauman, and Zamir (1990)). A card is drawn at random from a deck, and it can be
either red or black, with equal probabilities. Player I declares a color and player II
listens to what player I says, and then declares a color. If both players declare the
same color, they get two dollars each. Otherwise the player, whose declared color
matches the color of the drawn card, gets six dollars, and the other player gets zero.
It is clear that, if the first player gets to see the card before making her declaration,
then her dominant strategy is to declare the color of the drawn card. If it is common
knowledge that the first player saw the card before making her declaration, then
the best reply of the second player is to declare what the first player declared. The
equilibrium leads to a payoff profile of two dollars each. If the first player does not get
to see the card before making her declaration, and this is common knowledge, then
any strategy is equivalent for her, and the dominant strategy for the second player is
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to declare the other color. The equilibrium expected payoff is three dollars each. In
this game it is better for both players that no information be made available to the
first player.

The issue of negative value of information bears some analogy with the following
so-called Braess paradox (see e.g. Cohen and Kelly (1990), and Bean, Kelly, and Tay-
lor (1997)): In non-cooperative networks it is possible that the addition of resources
to the network is accompanied by a degradation of the performance. Korilis, Lazar,
and Orda (1999) explained how the paradox is due to the non-cooperative structure
of the network and to the fact that in general Nash equilibria are not Pareto efficient.
Furthermore they found conditions under which the paradox cannot happen.

Although it seems that the typical situation in game theory is that the ‘expected
payoff profile’ is not necessarily improved when agents get more informed, we prove
that under some conditions (which include as a special case the one-agent maximiza-
tion problem) the value of information is positive.

We consider a game with incomplete information and an information structure
such that the extended game possesses a unique Pareto payoff. We remark that
this Pareto payoff is necessarily a Nash payoff of this game, and we show that every
Nash payoff induced by any coarser information structure is Pareto dominated by this
payoff profile. The class of pairs (game and information structure) that we consider
is the one with the common interest property of Aumann and Sorin (1989).

Vice versa we show that for any closed convex polyhedron ∆ whose Pareto frontier
is not a singleton there exists an extended game such that the convex hull of the set
of its feasible payoffs is the above set ∆ and the value of information is not positive
for at least one player. This provides a full characterization of a property that we call
positive value of information, and shows that we cannot get rid of uniqueness of the
Pareto payoff if we want to be sure that information has a positive value.

2 Some examples

In this section we provide some examples exhibiting various effects of information.
Many more can be found in Bassan, Scarsini, and Zamir (1997), from which these
examples are drawn. Since we consider matrix games, Nash equilibrium always exists
(in mixed strategies). Typically, there are several equilibria and there is no “obvious
outcome” of the game. The games that we consider are all solvable by iterative
deletion of dominated strategies, thus we avoid all the difficulties that may rise due
to the existence of multiple Nash equilibria, and we use the expression “the outcome
of the game”.

In all the following examples, nature chooses one of the two matrices GA, GB with
probability 1/2, the interpretation being that the state of nature is either A or B
with equal probabilities. If the state is A (respectively: B), the payoff matrix is GA

(respectively: GB). We shall refer to GA and GB as state-games. The state-games
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are given in normal (strategic) form (the choices are made simultaneously). An entry
(a, b) represents a payoff of a units to the row player and b units to the column player.

Each example consists of four games corresponding to four different information
structures.

Example 1.

GA =

L R
T 0, 0 6,−3
B −3, 6 5, 5

GB =

L R
T −20,−20 −7,−16
B −16,−7 −5,−5

We refer to the rows as T (top) and B (bottom) and to the columns as L (left) and
R (right). The two matrixes are common knowledge, and so is the fact that nature
chooses one of them with probability 1/2. First of all notice that in GA the top row,
T , strongly dominates the bottom row, B, and the left column, L, strongly dominates
the right column, R. In GB the situation is reversed: B strongly dominates T and R
strongly dominates L. Therefore (0, 0) is the unique Nash equilibrium payoff in GA

and (−5,−5) is the unique Nash equilibrium payoff in GB. From this it follows that,
if, before the players make their move, the state-game is revealed to both of them,
they expect a payoff equal to

1

2
(0, 0) +

1

2
(−5,−5) = (−2.5,−2.5).

If it is common knowledge that both players are uninformed about the state-game
that is being played, they act as if they were playing the game

1

2
GA +

1

2
GB =

L R
T −10,−10 −0.5,−9.5
B −9.5,−0.5 0, 0

In this game B strongly dominates T and R strongly dominates L. Therefore the
unique Nash equilibrium payoff is (0, 0).

If it is common knowledge that the state-game is revealed only to the row player,
then the column player will expect the row player to choose T in GA and B in GB.
Therefore the payoffs are (depending whether the column player chooses L or R).

L R
0, 0 6,−3 with probability 1/2,

and
L R

−16,−7 −5,−5 with probability 1/2,

Hence she will have to choose left or right in the following row of expected payoffs

−8,−3.5 0.5,−4
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The outcome of the game is now (−8,−3.5).
By using the symmetry of the games, we can see that, if only the column player

is informed, and this is common knowledge, then the outcome is (−3.5,−8).
If we summarize these results in what we shall refer to as the I-U (Informed-

Uninformed) matrix,
2-Inf 2-Uninf

1-Inf −2.5,−2.5 −8,−3.5
1-Uninf −3.5,−8 0, 0

we immediately see that the situation in which both players are uninformed is strongly
preferred by both of them to all other three situations.

Example 2.

GA =

L R
T 2, 2 −1,−6
B −6,−1 −2,−2

GB =

L R
T −20,−20 −5,−5
B −5,−5 2, 2

This example can be solved along the lines of the previous one, and it is easily
verified that the I-U matrix is

2-Inf 2-Uninf
1-Inf 2, 2 −1.5,−1.5

1-Uninf −1.5,−1.5 0, 0

Information is good for both, if both have it, bad for both, if only one has it. Put
differently, the information of the two players is complementary to each other. The
reason for this complementarity, as can be seen from the matrices, is that in order to
take advantage of the knowledge about the state of nature, they have to coordinate,
and to do that they both have to know the state.

3 A characterization result

We consider a set of agents I (with an abuse of notation we define I to be {1, 2, . . . , I}),
a probability space (Ω,F , P ), a measurable mapping κ from Ω to some measurable
space (K,K) (the parameter set, or the set of states of nature, which, as in Mertens,
Sorin, and Zamir (1994) is fixed), and a family (Si)i∈I of sub σ-fields of F . We call
S = (Ω,F , (Si)i∈I , κ, P ) an information structure. The σ-field Si is interpreted as the
information available to agent i. To be precise the definition of S should depend also
on (K,K). For the sake of simplicity we omit the indication of this dependence, also
because, as we said, it is assumed to be the same throughout the paper.

Given S = (Ω,F , (Si)i∈I , κ, P ) and T = (Ω,F , (Ti)i∈I , κ, P ), we say that S is more
informative for all players than T , and we write S ⊇ T , when Si ⊇ Ti for all i ∈ I.

A game of incomplete information G is given by a family of measurable sets (Ai)i∈I

and by a measurable and bounded payoff function g : ×i∈IAi ×K → RI .
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An information structure S together with a game of incomplete information (with
the same state space K), defines an extended (Bayesian) game Γ(G,S). In this game,
the set of strategies ΣS

i for player i is the set of Si-measurable functions fi : Ω → Ai,
and the payoff function is defined by the relation gS (f) = EP g ((f(·)), κ(·)), where
f = (fi)i∈I . (The boundedness of g is to ensure that the expectation is well defined.)
We denote ΣS = ×i∈IΣ

Si . We let F (G,S) denote the set of feasible payoffs of Γ(G,S).
Given two points x, y in RI , we write y ≥ x when for every i, yi ≥ xi. The following
definitions are needed in the sequel.

Definition 3. We say that x (Pareto) dominates y if x ≥ y and x 6= y. Given a
subset B of RI , we denote by Pa(B) its Pareto frontier, namely,

x ∈ Pa(B) ⊆ B iff 6 ∃y ∈ B such that y 6= x and y ≥ x.

Definition 4. For a closed set B define co(B) its convex hull, and Ex(B) the set of
the extreme points of co(B).

Definition 5. A game Γ(G,S) has the positive-value-of-information property (PVIP)
if, whenever S ⊇ T , every Nash equilibrium payoff of Γ(G, T ) is dominated by a Nash
equilibrium payoff of Γ(G,S).

Our result of monotonicity of payoff with respect to information is the following:

Theorem 6. Let ∆ be a closed convex subset of RI with a finite number of extreme
points. Then the following are equivalent:

(i) All games Γ(G,S) such that F (G,S) is closed and co(F (G,S)) = ∆ have the
PVIP,

(ii) Pa(∆) is a singleton.

Proof. First we prove that (ii) implies (i). Let Pa(∆) = {v}, and let (G,S) be such
that F (G,S) is closed and co(F (G,S)) = ∆.

Since F (G,S) is closed, it contains all its extreme points, hence v ∈ F (G,S):
v = gS (f0) for some f0 ∈ ΣS . Notice that f0 is a Nash equilibrium of Γ(G,S):
indeed, all feasible payoffs of Γ(G,S) are dominated by v.

Consider now T such that S ⊇ T . Remark that

• ΣT
i ⊆ ΣS

i , for all i ∈ I, and

• for any f ∈ ΣT , we have gT (f) = gS (f).

Hence all feasible payoffs (and in particular all Nash payoffs) of Γ(G, T ) are dominated
by v.

Now we prove that not (ii) implies not (i), namely, that if Pa(∆) is not a singleton,
then there exists a game Γ(G,S) such that F (G,S) is closed, co(F (G,S)) = ∆, and
Γ(G,S) does not have the PVIP.
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Take K = Ex(∆), and define inductively for i ∈ I,

K0 = K,

Ki = {k ∈ Ki−1 : ∀h ∈ Ki−1, ki ≥ hi}.

Points in Ki are thus the points in Ki−1 preferred by player i. By definition Ki ⊆
Ki−1, and KI = ∩iK

i. Note also that two points in Ki have the same i-coordinate,
and hence also same j-coordinates for j ≤ i. In particular, KI is a singleton {α}.
Clearly α ∈ Pa(∆). In fact, if not, then there is γ ∈ K such that γ ≥ α and γ 6= α.
Let i0 ∈ I be such that γi = αi for all i < i0 and γi0 > αi0 . This would imply α /∈ Ki0 ,
a contradiction.

To continue the proof we need the following

Lemma 7. There exists a game G0 of complete information with finite strategy sets,
with ∆ as the convex hull of feasible payoffs, and with α as its unique Nash payoff.

Proof. First, assume that for every i, Ki 6= Ki−1, and let γi ∈ Ki−1 \Ki.
Let G0 be the game with complete information where player 1 chooses k ∈ K and

all the other players choose either c (continue) or s (stop). Given a strategy profile
(k; a2, · · · , aI); aj ∈ {c, s}, the payoff is defined as follows:

(a) The payoff is k in each of the following cases:

• aj = s; ∀j ∈ I \ {1},
• k = α,

• k ∈ K \K1.

(b) In all other cases, let m be such that k ∈ Km−1 \Km (note that m ≥ 2); follow
the following procedure starting at stage m◦.

2◦ If player 2 chooses s, the payoff is γ2, if not go to 3◦.

3◦ If player 3 chooses s, the payoff is γ3, if not go to 4◦.

. . .

i◦ If player i chooses s, the payoff is γi, if not go to (i + 1)◦.

. . .

I◦ If player I chooses s, the payoff is γI , if not it is α.

To see that the convex hull of the set of feasible payoffs of G0 is ∆, observe that
the payoff is always a point in K. Furthermore any point k ∈ K is a feasible payoff
(obtained for example when 1 chooses k and all other players choose s).

Now we show that α is the only Nash payoff of G0. In particular we prove the
following:

6



(A) For 2 ≤ m ≤ I and k ∈ Km−1 \Km any strategy profile of the form (a1, . . . , aI),
with a1 = k, a2, . . . , am−1 ∈ {c, s}, am = am+1 = · · · = aI = c, is a Nash
equilibrium, whose payoff is α.

(B) The profile (a1, . . . , aI) with a1 = α and a2, . . . , aI ∈ {c, s} is a Nash equilibrium
whose payoff is α.

(C) Any other strategy profile is not a Nash equilibrium.

First we prove (A). Clearly, such a strategy profile yields a payoff α. To see that
it is an equilibrium we observe the following:

• Any player i such that 1 < i < m does not affect the payoff and hence has no
profitable deviation,

• A player i ≥ m plays c. A deviation to s would yield an outcome γi, which for
her is worse than α, hence she has no profitable deviation.

• Player 1 receives the same payoff α1 for any choice k ∈ K1 and any deviation
to k ∈ K \K1 yields a lower payoff by definition of K1.

(B) is evident.
To prove (C), observe first that in any equilibrium player 1 has to choose k ∈ K1

since any other k is strictly dominated. Once player 1 has chosen k ∈ Km−1 \ Km,
for m ≥ 2, players 2, . . . ,m − 1 are irrelevant and any player i ≥ m who chooses s
receives a payoff γi which is worse for her than any payoff she might get by playing c.

To finish the proof, in case there exist some players j such that Kj = Kj−1, we
simply modify the game G0 above in such a way that the final payoff does not depend
on the actions chosen by those players.

To continue the proof of “not (ii) implies not (i)”, let β ∈ Ex(∆) be a point not
dominated by α (such β exists since (ii) is not satisfied). Let i0 be a player such that
β ∈ Ki0−1 \Ki0 .

We now define a a game G1 with incomplete information as follows:

• There are 4 states of the world, R1, R2, B1, B2, chosen with probabilities p/2, (1−
p)/2, (1− p)/2, p/2 respectively, with 0 < p < 1/2.

• In R1, R2 the state of nature is R while in B1, B2 the state of nature is B.

• Following the chance move choosing the state of the world (and the private
information given to the players), player i0 has to announce, publicly, the state
of nature (R or B). If i0 is right, G0 is played. If i0 is wrong, the outcome is β.
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In the information structure S, player i0 is informed of the digit 1, 2 appearing
in the state of the world, (but not of letter R or B). In the (coarser) information
structure T , i0 receives no information about the state of the world. All other players
receive no information, both in S and in T .

We proceed to prove that Γ(G1,S) does not have the PVIP: In G extended by
S or T , player i0 has no strategy that ensures her to be wrong with probability 1.
Hence the probability that the subgame G0 is played is positive for every strategy of
i0. In particular, at all Nash equilibria of G1 extended by S or T the outcome in the
subgame G0 is α (the only Nash equilibrium of G0). This is reached with positive
probability.

Since βi0 < αi0 , player i0 prefers to be right than wrong. So in Γ(G1,S) she will
be right with probability (1− p) while in Γ(G1, T ) she will be right with probability
1/2. It follows that

• in the game extended by Γ(G1,S) the only Nash payoff is (1− p)α + pβ,

• in the game extended by Γ(G1, T ) the only Nash payoff is α/2 + β/2,

• since α does not dominate β, the payoff (1 − p)α + pβ does not dominate
α/2 + β/2 and hence the game Γ(G1,S) does not have the PVIP.

The last stage of the proof is now to modify the game G1 to G2 so that Γ(G2,S)
also does not have the PVIP and co(G2,S) = ∆.

With any strategy she may use, player i0 in (G1,S) will be right with probability
(1− p), 1

2
, or p. Hence

F (G1,S) = {pβ + (1− p)K} ∪ {1

2
β +

1

2
K} ∪ {(1− p)β + pK}

Since β ∈ K, this can be written as

F (G1,S) = {β, pβ + (1− p)K} ∪ {β,
1

2
β +

1

2
K} ∪ {β, (1− p)β + pK},

and so

co(F (G1,S)) = co

{
co{β, pβ + (1− p)K} ∪ co{β,

1

2
β +

1

2
K} ∪ co{β, (1− p)β + pK}

}
Since p < (1− p), 1/2 < (1− p),

co{β, (1− p)β + pK} ⊂ co{β, pβ + (1− p)K} = co{pβ + (1− p)K},

and

co{β,
1

2
β +

1

2
K} ⊂ co{β, pβ + (1− p)K} = co{pβ + (1− p)K},
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we conclude that

co(F (G1,S)) = co{pβ + (1− p)K} = pβ + (1− p)co(K) = pβ + (1− p)∆.

Notice now that the PVIP is preserved under positive linear transformation of
the payoffs. Thus in the game G2 which is obtained from G1 by the positive linear
transformation of the payoffs:

x → x− pβ

1− p

we have

• F (G2,S) is closed (being finite) and co(F (G2,S)) = ∆,

• Γ(G2,S) does not have the PVIP,

completing the proof of Theorem 6.

The rationale of the part “(ii) implies (i)” of the theorem is that any payoff
that can be obtained under an information structure, can also be obtained under an
information structure which is more informative for all agents (it’s enough to ignore
the additional information). In this respect the multi-agent situation does not differ
from the one-agent case. What is different is that the property of being an equilibrium
in general is not preserved when going to more informative information structures.
This is the origin of the many information paradoxes found in the literature. The
assumption of uniqueness of Pareto payoff under the richer information structure
is the key to avoid the paradoxes: More information accompanied with a unique
Pareto payoff does yield a ‘better’ outcome. It is clear that our assumptions include
in particular the case of one single player: In this case the Pareto payoff is always
unique. This is coherent with Blackwell’s idea that more information is always better
for a single decision maker.

The “not (ii) implies not (i)” part says that the uniqueness of the Pareto payoff,
albeit a strong property, cannot be disposed of, if we want to insure PVIP. Whenever
the Pareto frontier of ∆ is not a singleton, we can always construct a game and an
information structure such that the convex hull of the feasible payoffs in this extended
game is ∆ and for at least one player the value of information is not positive.

Remark 8. Theorem 6 would not hold with a stronger definition of PVIP requiring
that every Nash equilibrium payoff of Γ(G,S) dominates some Nash equilibrium pay-
off of Γ(G, T ) that is, the set of Nash set equilibrium payoffs in Γ(G,S) is “above”
the set of Nash equilibrium payoffs in Γ(G, T ). The following is a counterexample.

Let, as usual, GA and GB be chosen by Nature with equal probabilities, where

GA =

50, 50 0, 0 0, 0
0, 0 9, 9 0, 10
0, 0 10, 0 1, 1

GB =

50, 50 0, 0 0, 0
0, 0 1, 1 10, 0
0, 0 0, 10 9, 9
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The game where both players are informed of the choice of Nature has, among
others, (1, 1) as Nash payoff. The Pareto frontier of this game is the singleton (50, 50).

The game where no player is informed is

G =
50, 50 0, 0 0, 0
0, 0 5, 5 5, 5
0, 0 5, 5 5, 5

This game has, among others, the following mixed-strategy Nash payoff profile:
(50/11, 50/11). This is also the lowest equilibrium payoff since 50/11 is the maxmin
payoff for both players. Therefore the equilibrium payoff (1, 1) in the game where all
players are informed does not dominate any equilibrium payoff of the game where no
player is informed.

4 More examples

Now we examine the examples of Section 2 in light of Theorem 6, and provide more
examples to illustrate the strength of Theorem 6.

In Example 1 the Pareto frontier of the payoff set is not a singleton when both
players are informed (it contains (0.5,−4), (0, 0), (−4, 0.5)). It is not a singleton when
only one player is informed (for instance, when the row player is informed it contains
(0.5,−4), (0, 0)). It follows that none of the games with additional information satisfy
the sufficient condition for PVIP. In this example the value of information is always
negative.

In Example 2 when both players are informed the Pareto frontier is a singleton
{(2, 2)}. It is not a singleton when only one player is informed, which shows why the
value of information is positive when both players are informed, but not when only
one of them is.

In the next example we consider a game where, if only one player is perfectly
informed, then there exists a unique Pareto payoff profile, therefore, by Theorem 6,
any coarser information structure is worse. However, when both players are perfectly
informed uniqueness of the Pareto payoff profiles does not hold, and information does
not make the players better off.

Example 9. Consider a two player game in which player 1 chooses the row, player 2
chooses the column, and the payoff matrix is one of the two with equal probabilities:
In state k = 1 the payoff matrix is

N1 N2 F1 F2 P
N1 0, 0 −γ,−γ −5, λ −γ,−γ 10, 10
N2 −γ,−γ −2γ,−2γ −γ,−γ −2γ,−2γ −γ,−γ
F1 λ,−5 −γ,−γ 0, 0 −γ,−γ 0,−10
F2 −γ,−γ −2γ,−2γ −γ,−γ −2γ,−2γ −γ,−γ
P 10, 10 −γ,−γ −10, 0 −γ,−γ −5,−5
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and in state k = 2 the payoff matrix is

N1 N2 F1 F2 P
N1 −2γ,−2γ −γ,−γ −2γ,−2γ −γ,−γ −γ,−γ
N2 −γ,−γ 0, 0 −γ,−γ −5, λ 10, 10
F1 −2γ,−2γ −γ,−γ −2γ,−2γ −γ,−γ −γ,−γ
F2 −γ,−γ λ,−5 −γ,−γ 0, 0 0,−10
P −γ,−γ 10, 10 −γ,−γ −10, 0 −5,−5

where γ is a very large parameter (e.g. 106), and λ ∈ [0, 100].
Note that if a player is not informed of the state of nature, P (passive) is a strictly

dominating action in the expected game. Hence, if no player is informed of k, the
only equilibrium yields (−5,−5).

Now assume that it is common knowledge that only one player, say the row player,
is informed of k. It is still a dominating action for the column player to play P (even
when the row player chooses different actions in the two states). Hence the best
response of the row player is to play Nk (for Nice in state k) in state k. This yields
an equilibrium payoff of (10, 10), which is the only Pareto optimum.

Finally, assume both players are informed. Playing Nk or Fk in state 3 − k is
dominated by any other action, hence the game reduces to:

N F P
N 0, 0 −5, λ 10, 10
F λ,−5 0, 0 0,−10
P 10, 10 −10, 0 −5,−5

where N and F stand for “play Nk (or Fk) in state k”. We shall distinguish the
cases λ > 10 and λ < 10.

If λ > 10, P is dominated by F (fight) for both players and once P has been
deleted F also dominates N . The only equilibrium yields (0, 0). Notice, in particular,
that the strategy profile (Nk, P ) yielding the unique Pareto payoff (10, 10) with only
one player fully informed, is no longer an equilibrium.

If λ < 10, the pure equilibria are (P, N), (N, P ) with payoff (10, 10) and (F, F )
with payoff (0, 0). There are also mixed equilibria.

Let us now examine the shape of the Pareto frontier in these two cases: λ > 10
and λ < 10.

Figures 1 and 2 about here

Figure 1: The set of feasible payoffs in Example 9 when λ < 10

Figure 2: The set of feasible payoffs in Example 9 when λ > 10
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The above example shows the extent of application for our result. The equilib-
rium payoffs are not monotone in the information when λ > 10. The equilibrium
payoffs are (0, 0) when both players are informed, and (10, 10) when only one is.
The information structure corresponding to public perfect information does not lead
to a unique Pareto payoff, and this explains the non-monotonicity. On the other
hand the information structure that corresponds to one-sided information leads to a
unique Pareto payoff, namely (10, 10). If Ω is rich enough, it is possible to build on it
some partial information structures by means of some signaling devices, with different
correlations between the signal and the state. The higher the correlation, the bet-
ter the information. Our theorem guarantees that any one-sided partial information
structure (obtained for instance by signaling) for only one player cannot improve the
equilibrium payoff with respect to the situation where one player is perfectly informed
and the other one is uninformed.

On the other hand, when λ < 10, the Pareto frontier when both players are
informed does reduce to a single point, even if there are multiple equilibria (in par-
ticular there is more than one equilibrium yielding the Pareto payoff). In this case,
both players being informed is at least as good as any other information structure, in
particular it is (weakly) better than if both players are only partially informed.

The final examples aims at showing why the characterization of Theorem 6 has
to be given in terms of payoff sets.

Example 10. As in the games of Section 2, Nature chooses GA or GB with probability
1/2.

GA =

−1, 2 −1, 2
0, 0 0, 0
1, 1 1, 1

GB =

−1, 2 −1, 2
1, 1 1, 1
0, 0 0, 0

Player 2 is a dummy. Under the information structure S, where player 1 is in-
formed, the only Nash payoff is (1, 1). Under the information structure T , where
player 1 is not informed, the only Nash payoff is (0.5, 0.5).

Hence the I-U matrix is

2-Inf 2-Uninf
1-Inf 1, 1 1, 1

1-Uninf 0.5, 0.5 0.5, 0.5

Therefore the value of information under S is positive even if in this case the
Pareto frontier is not a singleton (it contains (−1, 2), (1, 1)).

Example 11. Let

GA =
2, 2 9, 0
0, 9 8, 8 GB =

2, 2 0, 0
0, 0 0, 0

12



Top and Left are dominant strategies in the state-games GA and GB, and also in
1
2
GA + 1

2
GB. Hence (2, 2) is the only Nash payoff in all information structures (zero,

one or two players informed about the state of Nature). However, the Pareto frontier
is never a singleton, and in particular in the case of full information it contains the
points (5, 5), (5.5, 1) and (1, 5.5).

Thus, the game has the PVIP but Pa(∆) is not a singleton.

The above examples show that it is not true that having a unique Pareto feasible
payoff under a certain information structure is necessary for the value of information
to be positive. What is true is that for every closed convex set whose Pareto frontier
is not a singleton, we can always build a game of incomplete information with that
set as payoff set where the value of information is not positive.
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