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Abstract

Acceptable game forms were introduced in Hurwicz and Schmeidler
(1978). Dutta (1984) considered effectivity functions of acceptable
game forms. This paper unifies and extends the foregoing two papers.
We obtain the following characterization of the effectivity functions
of acceptable game forms: An effectivity function belongs to some
acceptable game form iff (i) it belongs to some Nash consistent game
forms; and (ii) it satisfies an extra simple condition (our (3.1) or (4.2)).
(Nash consistent game forms have already been characterized by their
effectivity functions in Peleg et al. (2001).) As a corollary of our
characterization we show that every acceptable game form violates
minimal liberalism.
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1 Introduction

In this paper we completely characterize acceptable game forms in terms of
their effectivity functions. A game form is acceptable if for every profile of
preferences of the players the set of Nash equilibria is non-empty, and every
Nash equilibrium outcome is (weakly) Pareto optimal. Acceptable game
forms were introduced in Hurwicz and Schmeidler (1978), who obtained,
in particular, the following results: For two players only dictatorial game
forms are acceptable; for three or more players there exist certain families
of acceptable game forms. (The reader should notice that our notion of
acceptability is identical to weak acceptability of Hurwicz and Schmeidler
(1978). We reserve the term weak acceptability to a weaker notion of stability
(see Section 8).)

An effectivity function is (roughly) the coalitional function of a game
form. Effectivity functions were introduced in Moulin and Peleg (1982).
Dutta (1984) considers acceptable game forms with maximal effectivity func-
tion (see Section 2 for the precise definition). He shows that a maximal ef-
fectivity function E is an effectivity function of some acceptable game form
if, and only if, there is a strong (and proper) simple game G such that F
is the effectivity function of G (see, again, Section 2 for the relevant defini-
tions). Our analysis extends Dutta’s work in two respects. First, we drop
the assumption of maximality and obtain a (still simple) characterization in
the general case. Second, in our model the set of alternatives is a (compact
Hausdorff) topological space and preferences are continuous. Thus, for fi-
nite sets of alternatives we obtain the foregoing result as a corollary. (The
reader should notice that our proof is entirely different from that of Dutta,
and therefore, it does not yield dominance solvable game forms when the
effectivity function is maximal.)

We shall now review our paper. In Section 2 we collected all the necessary
definitions. Section 3 contains the proof of a necessary condition on the
effectivity function of an acceptable game form (see (3.1) of Lemma 3.1).
((3.1) says that two disjoint coalitions cannot both be strong.) We also
reprove Theorem 1 of Hurwicz and Schmeidler (1978) and Theorem 3.5 of
Dutta (1984) in a topological framework. Our main result is formulated
in Section 4. Theorem 4.1 details our necessary and sufficient conditions.
Roughly, it says that an effectivity function belongs to some acceptable game
form if, and only if, it belongs to some weakly acceptable game form and
satisfies, in addition, our necessary condition. (Here a game form is weakly



acceptable if for every profile of continuous preferences it has a Pareto optimal
Nash equilibrium).

Fortunately, Peleg et al. (2001) contains sufficient (and almost necessary)
conditions for an effectivity function to belong to some weakly acceptable
game form. This leads to Theorem 4.2. If the set of alternatives is finite, then
Theorem 4.2 yields a complete characterization. Sections 5 and 6 provide the
proof of the main result.

Section 7 describes an important application of our result. Let G be a
proper simple game (i.e., a committee), and let A be compact Hausdorff
space of alternatives. If G contains at most one vetoer, then there exists
an acceptable game form (interpreted as a (generalized) voting procedure),
that allows G to choose an alternative from A (that is, the effectivity func-
tion of the game form is the same as that of G). This result continues and
complements Keiding and Peleg (2001a) ((In Keiding and Peleg (2001a) it
is proved that every committee with vetoers has stable (generalized) vot-
ing procedures in economic situations. Clearly, our topological framework
includes the Keiding-Peleg framework as a special case. Moreover, our sta-
bility requirements are necessarily different.)

The Liberal Paradox (Sen (1970)) appears in Section 8: Every acceptable
game form violates minimal liberalism. Thus, acceptable game forms cannot
represent constitutions that allow for individual rights. (For the investiga-
tion of representations of constitutions see Peleg (1998), Keiding and Peleg
(2001b), and Peleg et al. (2001).)

2 Definitions and Notations

Throughout this paper, A denotes the set of alternatives. The set A may be
finite or infinite; however, if A is finite, then |A| > 2. (If D is a finite set,
then |D| is the number of members of D.) Further, we assume that A is a
compact Hausdorff (topological) space. The topology on A is denoted by 7.
A preference ordering on A is a complete and transitive binary relation. A
preference ordering R is continuous if the sets {b € A|laRb} and {b € A|bRa}
are closed (in (A,7)), for every a € A. We denote by V' the set of all
continuous preference orderings on A. If R € V and a € A, then L(a, R) =
{b € AlaRb}. For aset S, V° = {f|f:S — V} is the set of mappings from
S to V. If D is a set, then P(D) = {D*|D* C D}, and Py(D) = P(D)\ {0}.



Finally,
k(A) ={B € Py(A)|B is closed}.

Let N = {1,...,n} be the set of players and let (A4, 7) be the (topological)
space of alternatives. An effectivity function (EF)is a function E : P(N) —
P(k(A)) that satisfies the following conditions:

(i) E(N) = k(A); (ii) E(0) = 0; and (iii)) A € E(S) for every S € Py(N).
As a general interpretation, B € F(S) means that the coalition S can force
the final alternative to be an element of B. The interpretation of the three
conditions is fairly obvious.

An EF FE is superadditive if it satisfies the following condition: If S; €
Py(N) and B; € E(S;) for i = 1,2, and S; N Sy = (), then

By N By € E(S;US,)
The EF FE is monotonic if
(B € E(S), B* € k(A), BC B* and S C S*]= B* € E(S")

Monotonicity and superadditivity of EF’s are natural properties in view of
the foregoing interpretation. Moreover, EF’s derived form game forms (see
below) have these properties.

The polar of an EF E is the EF E* defined by: E*()) = 0, and for
S € Py(N),

E*(S)={B e w(A)|BNB #0 forall B' € E(N\S)}

Thus, if B € E*(S), then N \ S cannot guarantee that the final alternative
is not in B. An FF FE is maximal if E is superadditive and F = E*.

We need also a topology on k(A). We shall use the upper topology 7,. A
basis for 7, is given by

{Bek(A)|BCU}, Uer.

If Fis an E'F, then E*(S) is closed in (k(A), ,) for every S € P(N).

We recall the following definitions. A social choice correspondence is a
function H : V¥ — Py(A). A social choice correspondence H is Maskin
monotonic if for all QV, RN € VN and a € A,

[a € H(RY) and L(a,R") C L(a,Q") forall i € N] = ac H(Q").
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We also use some basic properties of simple games. A simple game is a
pair (N, W), where N = {1,...,n} is a society and W C P,(N) is the set of
winning coalitions. We always assume monotonicity

[SeW and SCTCN]|=T¢eW.
A simple game G = (N, W) is proper if
SeW=N\S¢W forall Se PFy(N).
G is strong if G is proper and
S¢W=N\SeW foral S e P(N).

G is weak if
VET =n{S|S e W} #0.

V ET is the set of vetoers of G. G is dictatorial if there exists 7 € N such
that S e Wiff j € S.

Let G = (N,W) be a simple game. We associate with G an EF, E(G),
by

k(A), SeWw,
EG)(S)=q{A}, S¢W, S#0,
0, S=0.
An EF FE is dictatorial if there exists a dictatorial simple game G such that

E = FE(G).

We now turn to define some basic properties of game forms. A game
form (GF) is an (n + 2)-tuple I' = (X',..., %% m; A) where (i) 3¢ is the
(non-empty) set of strategies of player i € N; and (ii) m: Xt x - x X" — A
is the outcome function. For S € Py(N) we denote ¥° = x;csX% Also, we
denote ¥ = XV, Let RN € VY. The pair (I', RY) defines, in an obvious
way, a game in strategic form. A strategy combination o € ¥ is a Nash
equilibrium (NE) if

(' € ¥ i € N| = n(0) Rz (o™ 1)

(Here o(M\{#} is the restriction of o to N\ {i}.) The set of all NE’s of (I, R™)
is denoted by NE(T, RY). A GF T is Nash consistent if NE(I',RY) # ()
for all RN € VN, I'is acceptable if (i) T' is Nash consistent; and (ii) if o €
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NE(T, RY), then 7(0) is (weakly) Pareto optimal with respect to RY (z € A
is (weakly) Pareto optimal with respect to RY if for every y € A there exists
i € N such that xR'y).

Let I' = (Z,...,2% 1 A) be a GF and assume that 7 is surjective.
The EF EV, associated with I', is defined in the following way. For S €
Py(N) and B € k(A), S is effective for B if there exists 0° € X% such that
m(o%,7V\9) € B for all 7V\% € ¥M\S. Now E' is defined by E"(()) = () and
EY(S) = {B € k(A)|S is effective for B}, for S € Py(N). Clearly, E" is
superadditive and monotonic. Let E : P(N) — P(k(A)) bean EF. A GF T
is a representation of E if E(S) = E'(S) for every S € Py(N). Basically,
this means that the GF' distributes the same power among the players as the
EF does.

Notational convention: Instead of E({i}) and E*({i}) we usually write
E(i) and E*(1).

3 Some properties of acceptable game forms

Let (A,7) be a compact Hausdorff space. If I' is an acceptable GF on V¥,
then the FF of I', ET, satisfies the following restriction.

Lemma 3.1. Let I' = (X', ... 5% m; A) be an acceptable GF on VV. Then
(3.1)
[S,T € Py(N),B € E"(S),C € E"(T), and SNT=0=BUC=A

Proof. Assume, on the contrary, that there exist S,T € Py(N), B € E¥(S),
and C' € E'(T) such that SNT =0 and BUC # A. Let x € A\ (BUC).
(A, 7) is normal, because it is compact and Hausdorff. Hence there exists
a continuous function u : A — [0,1] such that u(z) = 1 and u(y) = 0 for
all y € BUC. Define now a profile RN € V¥ by yR'z iff u(y) > u(z), for
all y,z € A and 7+ € N. We shall construct a Pareto-dominated NE with
respect to RY.

Let 0% € %9 satisfy n(0, 7V\%) € B for all 7V\% € M9 and let 0" € ©7
satisfy 7(o7,7V\T) € C for all 7¥\T € YN\ Further let oV\5YT) be a

member of SV\SYT) - Then 0 = (0%,07,0M\EY)) is an NE of (T, RN)
whose outcome is Pareto-dominated by z. Thus the desired contradiction
has been obtained. O

Lemma 3.1 has the following interpretation. If S and T are disjoint



coalitions, then E'(S) and E"(T) cannot both be large. For example, if
{x} € E"(S) for some x € A, then T is powerless, that is, E' (T) = {A}.
We shall now characterize all maximal EF’s that satisfy (3.1).

Theorem 3.1. Let E: P(N) — P(k(A)) be a monotonic and mazimal EF.
E satisfies

(3.2) [Si € Po(N), B; € E(S:), i=1,2, and S, NSy = 0] = B, UB, = A,
iff there exists a strong simple game G such that E = E(G).

Proof. Necessity. Let E : P(N) — P(k(A)) be a monotonic and maximal
EF that satisfies (3.2). Further let S € Py(N),S # N, and let x € A. We

claim that
(3.3) {z} e E(S)UE(N\S).

Assume, on the contrary, that {z} ¢ E(S)UE(N \ S). Call D € k(A) thick
if there exists an open set U such that € U and cl(U) = D. Let

60 ={D € k(A)|D is thick}.
Then (0, D) is a net. Indeed, if D; = ¢l(U;) isin 6, i = 1,2, then
D1 N D2 2 Cl(Ul N U2) and Cl(Ul N UQ) € 0.

The net (0, D) converges in (k(A), 7,) to {x}. Indeed, let U € 7 and z € U.
Then there exists Q € 7 such that z € @ and D = ¢l(Q) C U. Hence, D € §
and if D* € § and D* C D, then D* C U.

E(T) is closed in (k(A), ) for every T' € Py(N), because E is maximal.
Hence, there exists D € § such that D ¢ E(S)U E(N \ S). There exists
U € 7 such that € U and D = ¢l(U). Therefore, by the monotonocity of
E

(3.4) B=A\U¢e E“(S)NnE*(N\S)=E(S)NE(N\S).

As B # A,(3.4) contradicts (3.2). Thus, (3.3) is proved.

By (3.2) and (3.3) for every S € Py(N),S # N, either E(S) = k(A) or
E(N\ S) = k(A). As E is monotonic, F is, indeed, the EF of a strong
simple game.

The sufficiency part is obvious. O



The following corollary extends Theorem 3.5 of Dutta (1984) to topolog-
ical EF"s.

Corollary 3.2. Let T' be an acceptable GF on VN. If EV is mazimal, then
E" is the EF of a strong simple game.

We remark that, unlike Dutta, we are restricted to continuous preferences.
Therefore, our result applies only to topological EF’s.

The final result in this section extends Theorem 1 of Hurwicz and Schmei-
dler (1978) to topological EF’s.

Theorem 3.3. Let ' = (2!, %% 7; A) be an acceptable GF on VN, If EY (i)
is closed in (k(A),7,) fori=1,2, then E' is dictatorial.

Proof. Every two-person strong simple game is dictatorial. Hence it is suffi-
cient to prove that E' is maximal. Thus, we have to prove that (E'(i))* =
E'(i) for i = 1,2. Clearly, (E"(1))* 2 E"(1). Also by Theorem 4.1 of
Peleg et al. (2001), (ET(1))* C (EY(1))*. Finally, by Proposition 5.2 in
Abdou and Keiding (1991, p. 46), (EY(1))** = cl(E'(1)) = E'(1). Thus,
ET(1) = (E"(1))*. Similarly, E"(2) = (E7(2))". 0

4 Formulation of the main result

In this section we shall formulate the main result of this paper and some
of its corollaries. Let (A,7) be a compact Hausdorff space and let N =
{1,2,...,n}, n > 3, be a society.

Theorem 4.1. Let E : P(N) — P(k(A)) be an EF. E has an acceptable
representation on VN iff the following conditions are satisfied:

(4.1) E is monotonic and superadditive.
(42) [Sl € PU(N), B; € E(Sl), 1=1,2, and S;NSy = (b] = B;UB, = A.

For every RN € VN there exists a Pareto optimal alternative

4.3 .
(4.3) r € A such that L(z,R') € E(N\{i}), for all i€ N.



As the reader may easily verify, (4.1) and (4.3) are necessary conditions
for the existence of an acceptable representation. By Lemma 3.1, (4.2) is also
necessary. The sufficiency part of Theorem 4.1 will be proved in Sections 5
and 6.

Peleg et al. (2001) contains sufficient conditions for the validity of (4.3)
(see Theorem A.1, Corollary 4.6, and Theorem 4.7 therein). These conditions
lead to the following result.

Theorem 4.2. Let E : P(N) — P(k(A)) be an EF. E has an accept-
able representation on VN if (4.1), (4.2), and the following two additional
assumptions are satisfied.

(4.4) [B' € E*(i) for all i€ N]=()B #0.
i€N
(4.5) E(N\{i}) is closed in (k(A),1,) for every i € N.

By Peleg et al. (2001) (4.4) is a necessary condition for Nash consistency.
Also, (4.5) is indispensable.

When A is finite (4.5) is satisfied. Hence we obtain a complete character-
ization of the family of EF’s which have an acceptable representation, when
2 <|A| < .

Corollary 4.3. Let 2 < |A] < oo and let E : P(N) — P(k(A)) be an
EF. Then E has an acceptable representation iff (4.1), (4.2), and (4.4) are
satisfied.

5 A representation with only Pareto optimal
NE’s

Let (A,7) be a compact Hausdorff space and let N = {1,2,...,n} be a
society. Further, let the EF E : P(N) — P(x(A)) satisfy (4.1) and (4.2).
We shall construct a GF ' with the following two properties: (i) I' is a
representation of E; (ii) for every RN € V¥ each NE of (T, RY) is Pareto
optimal. (Notice that the game (', R¥) may have no NE.)



We now describe the construction. For i € N let N* = {S C N|i € S}
and let

M'={m:N"— N'xr(A)m(S) C S for all S € N’, and my(S) € E(m,(9))},

where m(S)=(m;(S), ma(5)),S € N'. A selection from k(A) is a function
¢ : k(A) — A that satisfies p(B) € B for every B € k(A). Denote by @
the set of all selections from r(A). We define a GF T = (Z!,... 3% m; A) as
follows. The set of strategies of i € N is ¥ = M* x & x N x {0,1}. Let
o= (c"...,0") € B! x ... x X" where o' = (m', o', t,¢") fori € N. In
order to define 7(0) we introduce the following sequence of partitions of N.
First, for S € Py(NN), we define an equivalence relation ~, on S by

i ~g e mi(S) =m!(S), all i,j€S.

Denote by D(S, o) the partition of S with respect to ~,. Now let the first
partition of N be Hy(o) = {N}, and define inductively the following parti-
tions. If Hy(0) = {Sk1,..., Sk} is the k-th partition, where k& > 0, then we
define

L
Hk+1(0') = U D(Skyj, 0').
j=1

Clearly, there exists a minimal 7 such that H,(0) = Hy(o) for all £ > r. Let
H,(0) = {S1,...,Se}. The coalitions Sy, ..., Sy are called final . For each
final coalition Sj,j = 1,...,¢, there exists B; € F(S;) such that m*(S;) =
(S;, B;), for alli € S;. Further, a final coalition S is called decided if ¢* = 0 for
all 7 € S. In the definition of (o) we distinguish the following possibilities.

(5.1) S; is decided for j=1,...,¢

Let k = Y t"( mod n) and define (o) = ©*(N’_, B;). (We notice that
h=1
ﬂle B; # (0, because E is superadditive).

(5.2) S1,...,5h,1 <h </ areundecided, and Spi1,...,Sy are decided.

In order to simplify notations assume that U?ZIS]- ={1,...,s}, where 1 <

s <mn. Let k=Y #( mods),1 <k <s Then n(o) = ¢*(Nf_,,,B;).
7j=1
(Thus, if h = ¢, then 7(c) = ¢*(A). ) This completes the definition of .

We shall now verify the aforementioned properties of I'.
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Claim 5.1. T is a representation of E.

Proof. Let S € Py(N) and B € E(S). Let m*(T) = (S,B) forall T O S
and i € S. If o' = (m%, ¢',1,0) for all i € S, then for every 7V\¥ ¢ ¥N\¥ g
is a decided coalition with respect to (o, 7V\%). Hence, by (5.1) and (5.2),
m(o%,rN\5) € B for all 7V\5 € ¥N\%. Thus B € E"(S) and we have proved
that E"(S) D E(S) for all S € Py(N).

Now let S € Py(N) and C € k(A) \ E(S). Then S # N because E(N) =
k(A). Also, B\ C # 0 for every B € E(S), because E is monotonic. Let
0% € ¥ be fixed. We shall choose strategies 6* = (m?, @', ,¢"), i € N\ S,
such that 7(c%,5V\%) ¢ C. Indeed, let m*(T) = (N\ S, A) forall T D N\ S
and 7 € N\S. Further, let ¢ = 1 foralli € N\S. Then N\S is an undecided
final coalition with respect to o* = (¢%,6V\%). If Si,..., Sy, h > 0, are the
decided coalitions in the final partition H,(c*), and m4(S;) = B;,i € S;,j5 =
1,...,h, where o' = (m’,¢",t",¢"), i € S, then B = N!_ B; € E(S). Let
k¢ S. N\ S can choose t and @, i ¢ S, such that w(c*) = @*(B) ¢ C.
Thus, C' ¢ E"(S). O

We now prove that all NE’s of [ are Pareto-optimal.
Claim 5.2. Let RN € VN. Then every NE of (T, RN) is Pareto optimal.

Proof. Let 0 = (o!,...,0") be an NE of (I', RY) and let {Si,..., Sy} the
partition of N into final coalitions which is associated with 0. We distinguish
the following possibilities.

(i) No final coalition is decided.
Ascoisan NE, m(o)R'z for all z € A and i € N. Thus 7(0) is Pareto
optimal.

(ii) Exactly one final coalition is decided.
Let S; be the decided coalition. Then 7(o)R'z for allz € A and i € S;.
Hence 7(0) is Pareto optimal.

(iii) There exist at least two decided coalitions.

In order to simplify notations assume that Sy, ..., Sy, h > 2, are decided.
Let o' = (m',¢",t",¢"), i € N, and let B; = mi(S;), for i € S; and j =
1,...,h. Denote C; = N{B|lk=1,...,5—1,j+1,...,h} forj=1,...,h. By
(5.2) (o) Rz for all i € Sj,x € Cj, and j =1,...,h. By (4.2) Ul_,C; = A.
Hence 7(0) is Pareto optimal. O
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We point out again that I' may not be Nash consistent.

6 Proof of Theorem 4.1

Let (A, 7) be a compact Hausdorff space and let N ={1,...,n},n >3 be a
society. Furtherlet E : P(N) — P(k(A)) be an E'F that satisfies (4.1)-(4.3).
We shall construct an acceptable representation of E.

Let H : VN — Py(A) be defined by

H(RY) ={a € A|L(a, R") € E(N\{i}) for all i € N and a is Pareto optimal}.
Clearly, H is well-defined by (4.3), and is Maskin monotonic. We denote
graph (H) = {(R",a)|RY € VY and a € H(R")},

and proceed to define a GF' I'y with the desirable properties. Let ['j =
(23,..., 20 m; A) where

¥4 = graph (H) x {0,1} x {0,1} x N x E(i) x ® x ¥, i € N.
(Here ® and ¥ have already been defined in Section 5.) It remains to define
mo. Let n° = (RN, a', ¢, b, th, Bl ©b,0"), i € N, be an n-tuple of strategies.
We distinguish the following possibilities.

(6.1) n' = (RY,a,0,0,t), Bl, ¢, o) forall i€ N.
In this case m(n',...,7n") = a.

There exists j € N such that 7' = (R",a,0,0,t5 B}, 0,0

(6:2) : V(RN o ol dd N j
for all i € N\ {j}, (R} ,d’,q{,q) # (R",a,0,0), and ¢ = 0.

Define mo(n', ..., 1n") = ¢} (L(a, R7)), where R/ is the j-th component of
RN . (my is well defined, because n > 3.)

There exists j € N such that 7" = (R",q,0,0,t, B}, vh,0")

(6.3) , _ .
forall ie N\ {j} and ¢] =1.

12



Define mo(n', ..., n") = @)(L(a, )N B}). (Notice that L(a, R/) € E(N\
{7}). Hence L(a, R7) N B} # 0, because E is superadditive.)

6.4

( T)here exists j,h € N,j # h, such that o' = (R",a,0,0,t, B}, o, o)
for i € N\ {h,j}, n"* = (RY,a,0,1,t" Bt ok o"), and ¢ =1.
Define (1", ..., 7" = ¢k(B]).

(6.5)
There exist j,h € N, j # h, such that ' = (R",a,0,0,t, B}, b, 0"),
forall i € N\ {h,j},7" = (R",a,0, l,t'g,Bg,gog,ah),q{ =0, and
(RY,a?,ql,q}) # (R",a,0,0).

Let S>#5( mod n) =k, 1<k <n. Define my(n',...,n") = pk(A). (m
i=1
is well defined, because n > 3).

(6.6) In all other cases let mo(n',...,n") =n(c",...,0"),
' where 7 has already been defined in Section 5

We claim that I'y is an acceptable representation of E. The proof consists
of several steps.
Step 1. I'y is Nash consistent.
Let RN € VN, Choose a € H(R") and define ' = (R",a,0,0,t, BY, p},0%),1 €
N. By (6.1) = (6.3) n=(n',...,n") is an NFE of (g, RV).
Step 2. Every NFE of I'y is Pareto optimal.

Let RN € VN and let n = (n',...,n") be an NE of (Ty,RY). We
distinguish the following possibilities.

(6.1%) n' = (RN,a, 0,0,t, By, b, 0') forall i € N.
Then 74(n) = a and a € H(RY). By (6.2), L(a, R) C L(a, R) for all

i € N. Thus a € H(R"), because H is Maskin monotonic. Hence a is Pareto
optimal.
There exists j € N such that n' = (RN,a, 0,0,t5, B, @b, o)

(6.2" Sl j
fOI' all Z?é], (R] ,a],qqu)%(R ,CL,0,0), a‘nd q1:0

13



Let b = my(n). By (6.5) A C L(b, R") for all ¢ # j. Thus, b is Pareto
optimal.
There exists j € N such that n' = (Z%N, a, 0,0,th, Bi o), o)
for all i # j, and q{ =1.

(6.3%)

Let b = m(n). By (6.2) L(a, R7) C L(b, R7). Further, by (6.4), B} C
L(b, R") for all i # j. Also, L(a, R’) € E(N \ {j}) and B} € E(j). Hence,
by (4.2), B} U L(a, R?) = A. Therefore, b is Pareto optimal.

There exist j,h € N, j # h, such that
(6.4%) ' = (RN,a,0,0,t), By, ¢f, o')for i € N\ {j, h},
n" = (R",a,0,1,th Bl o, "), and ¢ = 1.

Let b = my(n). By (6.5) A C L(b, 7). Hence b is Pareto optimal.
There exist h,j € N, h # j, such that
/’7Z = (RN, a? 07 07 t%) Bé? 8067 O-Z)
for alli € N\ {h,j},n" = (RN, a,0,1,th, B oh o),
¢l =0, and (R;-V,aj,q{,qé) # (R, a,0,0).

(6.5%)

Let b = m(n). By (6.5) A C L(b,R") for all i € N. Hence b is Pareto
optimal.

In all other cases mo(n',...,n") =n(c",...,0"),

6.6 ’
(6.6%) where o = (¢',...,0") is an NE of (I', RY).

By Section 5, w(0) is Pareto optimal.

Step 3. I'y is a representation of £.

First we observe that if S C N,|S| > 2, then E'°(S) = E"(S) = E(9).
Indeed, if |[S| > 2, then E™(S) D E"(S), because S can enforce the play
of strategies of I'. On the other hand E™°(S) C E'(S) as [y gives no extra
power to S (over its power in T').

We shall now prove that E'(i) = E(i) for alli € N. Let i € N and let
B € E(i). Consider the following strategy of i : n* = (RN, a%, 1, ¢, t}, B, b, ")
where o' = (m', ¢, t,0) and m*(S) = {{i}, B} for all S € N*. As the reader
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may easily verify, mo(n, N\ € B for all pN M € S0V Thus, B € ETo(i)
and E' (i) D E(i). As |N\{i}| > 2, N\{i} can enforce the play of I". Hence
i’s power in [y does not exceed its power T', that is, E'°(i) C E' (i) = E(i).
0

7 Acceptable GF’s and simple games

Let N ={1,...,n},n > 3, be asociety, and let (A, 7) be a compact Hausdorff
space (of social states). As a direct corollary of Theorem 4.2 we obtain the
following result.

Theorem 7.1. Let G be a proper simple game with at most one vetoer. Then
the EF E(G) has an acceptable representation on V.

Proof. As G is proper and monotonic, E(G) = E satisfies (4.1) and (4.2).
Also, E*(i) = {A} for every i € N who is not a vetoer. Therefore, (4.4) is
satisfied. Finally, {A} and k(A) are closed. O

For the sake of completeness we remark that the family of F'F’s that have
acceptable representation is larger than the family described in Theorem 7.1.

We also remark that Theorem 7.1 provides stable voting procedures to
committees without vetoers in a topological framework. Hence it comple-
ments the results of Keiding and Peleg (2001a) on existence of (strongly)
stable representations of weak committees in economic environments.

8 Minimal liberalism

In this section we prove that every E'F which satisfies minimal liberalism
has no acceptable representation. Then we discuss the implications of this
result. Let N = {1,...,n}, n > 3 be a society and let (A, 7) be a compact
Hausdorff topological space (of social states). An EF E : P(N) — P(k(A))
satisfies minimal liberalism (ML) if there exist i,j € N, i # j, B* € E(i),
and B7 € E(j) such that B* # A # B’. The reader is referred to Peleg
(1998) for a discussion of ML. The following impossibility theorem is true.

Theorem 8.1. Let E: P(N) — P(k(A)) be an EF. If E satisfies ML, then
E has no acceptable representation.
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Proof. Assume, on the contrary, that E' has an acceptable representation.
Then, by Theorem 4.2, E satisfies (4.2) and (4.4). Let i,j € N, i # j,B" €
E(i) and B’ € E(j) such that B' # A # B’. By (4.2) B'U B’ = A. Thus
we may choose x € B/ \ B" and y € B"\ B’. Again by (4.2), z € B for all
B e E(N\{i}), and y € B for all Be€ E(N \ {j}). Hence {z} € E*(i) and
{y} € E*(j). As {z} n{y} = 0, we have obtained the desired contradiction
(to (4.4)). O

Let I' = (X!,...,X% m A) be a GF. T is weakly acceptable if for every
RY € V¥ the game (T, RV) has a Pareto optimal NE. Let £ : P(N) —
P(k(A)) be an EF.E has a weakly acceptable representation if it satisfies
(4.1), (4.4) and (4.5) (see Peleg et al. (2001)). Thus, in that model (i.e.,
the model of Peleg et al. (2001)) there is no conflict between existence of
individual rights, Nash stability, and Pareto optimality (see, e.g., Example
3.10 of Peleg et al. (2001)). The role of Theorem 8.1 is to point out that
strengthening of the requirement for Pareto optimality from weak accept-
ability to acceptability leads to GF’s which do not allow individual rights (a
GF T satisfies ML if E' satisfies ML).

9 Concluding remarks

We have obtained a complete characterization of the effectivity functions
which belong to some acceptable game form. Our result can be described as
follows. A game form is weakly acceptable if for every profile of (continuous)
preferences it has a Pareto optimal Nash equilibrium. An effectivity function
can be represented by an acceptable game form if, and only if, it has a
weakly acceptable representation and it satisfies, in addition, (4.2). (Notice
that, by Peleg et al. (2001) an effectivity function has a weakly acceptable
representation iff it satisfies (4.1) and (4.3).) Thus, the set of effectivity
functions with an acceptable representation is a “small” subset of the set of
effectivity functions with a weakly acceptable representation because (4.2) is
a strong condition. Also, using Peleg et al. (2001), we have given sufficient
direct conditions (i.e., conditions referring only to effectivity functions), for
the existence of acceptable representations for effectivity functions (see our
Theorem 4.2).

There are two byproducts of our characterization. First, in Section 8,
we prove that every acceptable game form violates minimal liberalism (as
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formulated for game forms (see Deb et al. (1997)). Thus, we cannot repre-
sent constitutions that allow for individual rights, by acceptable game forms
(see Peleg (1998), Keiding and Peleg (2001b), and Peleg et al. (2001) for
representations of constitutions).

Second, by Theorem 7.1, if G is a proper simple game without vetoers,
then its effectivity function has an acceptable representation. This result
provides stable voting procedures to committees without vetoers in a topo-
logical framework. It complements the work of Keiding and Peleg (2001a)
on existence of (strongly) stable voting procedures for weak committees in
economic situations.
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