2Y9RINY2 N2V WODN2NINT
THE HEBREW UNIVERSITY OF JERUSALEM

SOCIAL CHOICE AND
THRESHOLD PHENOMENA

by
GIL KALAI

Discussion Paper # 279 November 2001

NPIRIPRT IR 1o

CENTER FOR THE STUDY
OF RATIONALITY

Feldman Building, Givat-Ram, 91904 Jerusalem, | sr ael
PHONE: [972]-2-6584135 FAX: [972]-2-6513681
E-MAIL: ratio@math.huji.ac.il

URL: http://www.ratio.huji.ac.il/



Social Choice and Threshold Phenomena

Gil Kalai *
Institute of Mathematics
Hebrew University of Jerusalem, Jerusalem, Israel

November 20, 2001

Abstract

Arrow’s theorem asserts that under certain conditions every non-
dictatorial social choice function leads to nonrational social choice for
some profiles. In other words, for the case of non-dictatorial social
choice if we observe that the society prefers alternative A over B and
alternative B over C' we cannot deduce what its choice will be between
B and C. Here we ask whether we can deduce anything from observing
a sample of the society’s choices on the society’s choice in other cases?

We prove that the answer is “no” for large societies for neutral and
monotonic social choice function such that the society’s choice is not
typically determined by the choices of a few individuals.

The proof is based on threshold properties of Boolean functions and
on analysis of the social choice under some probabilistic assumptions
on the profiles. A similar argument shows that under the same condi-
tions for the social choice function but under certain other probabilistic
assumptions on the profiles the social choice function will typically lead
to rational choice for the society.

1 Introduction

Arrow’s impossibility theorem asserts that under certain natural conditions,
if there are at least three alternatives then every non-dictatorial social choice
gives rise to a non-rational choice function, i.e., there exist profiles such that
the social choice is not rational. Arrow’s theorem can be seen in the context

*I wish to thank Bezalel Peleg for explaining several issues concerning choice functions
and social choice and for several useful discussions. I am also thankful to Peter Fishburn,
Yuval Peres, Yossi Rinnot, Ariel Rubinstein and Ran Spiegler for helpful remarks and
suggestions. Section 5 was motivated by a question posed by Ran Spiegler.



of Condorcet’s “paradox” which demonstrates that the majority rule may
result in the society preferring A over B , B over C and C over A. Arrow’s
theorem shows that such “paradoxes” cannot be avoided with any non-
dictatorial voting method. It is the general form of Arrow’s theorem, which
can be applied to general schemes for aggregating individual rational choices,
that made it so important in economic theory.

For certain voting methods, the social choice may become chaotic as the
number of alternatives increases. McGarvey (1953) appears to have been
the first to show that for every asymmetric relation R on a finite set of
candidates there is a strict-preferences (linear orders, no ties) voter profile
that has the relation R as its strict simple majority relation. This implies
that we cannot deduce the society’s choice between two candidates even if
we know the society’s choice between every other pair of candidates. Saari
(1989) proved that the plurality method gives rise to every choice function
for sufficiently large societies. This implies that knowing the outcome of the
plurality choice for several examples, where each example consists of a set .S
of alternatives and the chosen element ¢(S) for S, cannot teach us anything
about the outcome for a set of alternatives which is not among the examples
we have already seen.

In this paper we strengthen the condition that the social choice function
is not dictatorial and demand (in a technical sense that will be explained
later) that the power of individuals be small. As a result we will obtain a
much stronger conclusion regarding the resulting choice functions.

We will always refer to the number of alternatives as m and the number
of individuals in the society as n. In the first case considered in Section 3
the social choice function is an asymmetric relation R = F(R1, Ra,...,Ry)
on pairs of alternatives which depend on the preference relations R; of the
individuals in the society. We will also assume that the social choice func-
tion is neutral and monotone. We obtain the result that every asymmetric
relation is in the range of the social choice function. This is precisely the
result of McGarvey’s theorem for the majority rule.

Given a set X of m alternatives, a choice function c¢ is a mapping which
assigns to nonempty subsets S of X an element ¢(S) of S. A rational choice
function is one for which there is a linear ordering on the alternatives such
that ¢(S) is the maximal element of S according to that ordering.

In the second more general case considered in Section 4 the social choice
function is a choice function ¢ = F(Ri, Ra,...,Ry,) on the set of alterna-
tives. Let cx(S) be the (rational) choice of the k-th individual for the set S.
In other words, ck(S) is the maximal element of S according to the order
relation Ry. We assume a strong for of the Independence of Irrelevant Al-



ternatives that we call “Independent of Rejected Alternatives (IRA)”. This
condition asserts that ¢(S) depends on the individual choices for the set S,
i.e., that ¢(S) is a function of ¢1(S5), c2(9), ..., cy(S). We also require that
the social choice function is neutral and monotone. In this case the result
we are seeking is that all possible choice functions are within the range of
the social choice function. Precisely the result of Saari for the plurality rule.

Some voting methods, such as the Borda rule, the aggregated social
choice given a set S of alternatives depends on the actual preferences of the
individuals on S and not only on their choices for S. In the Borda rule each
individual ranks the elements of S by the numbers 1,2,...,|S| and ¢(95) is
the element for which the sum of the individual rankings is minimal. When
we allow such a dependence there are social choice functions based on the
Condorcet winners among pairs which give rise to classes of choice functions
whose size is only exponential in a quadratic function in m, much smaller
than the number of all choice functions which is double exponential in m. It
follows from our results that no smaller class of choice functions is possible.
For the Borda rule the size of the class of social choice that arise is O(N?).

The notion of the “power” of an individual within a social choice function
is based on the Shapley value from game theory. We require that the power
of individuals be small which is automatically the case when the number of
individuals is large and all individuals have the same power. We define a so-
cial choice function as weakly anonymous if it is invariant under a transitive
group of permutations of the individuals.! For example, an electoral voting
system such as that in the U.S. in which all states have the same number of
voters and the same number of electoral votes is weakly anonymous but not
anonymous. For weakly anonymous social choice functions the power of ev-
ery individual is identical. Another case where the power of every individual
is small is when the individuals are classified by “types”, two individuals of
the same type are indistinguishable and there are many individuals of each
type.

One consequence of our results is related to the outcome of social choice
functions when individual preferences are restricted. Maskin (1995) and
Dasgupta and Maskin (1997) considered the case in which the individual
orderings are restricted to a set T' of orderings on the alternatives. They
proved that if the majority rule (between pairs of alternatives) leads to non-
rational preferences for the society under this restriction, then non-rational
outcomes cannot be avoided when individual preferences are restricted to T'

YA group T of permutations of {1,2,...,n} is transitive if for every i and j there is a
permutation 7 € I' such that 7 (i) = j.



for a large class of social choice functions. It follows from our result that
non-rational outcomes cannot be avoided for neutral monotone social choice
functions when the power of individuals is sufficiently small.

The proofs are based on threshold properties of Boolean functions and
on an analysis of the social choice under some probabilistic assumptions on
the profiles. There is a large literature on the probability of non-rational
outcomes in voting schemes when individual preferences are uniform and
independent and under certain other probabilistic assumptions as well, (see,
for example, Gehrlein (1997)).

The relevant facts about threshold phenomena for monotone Boolean
functions are described in Section 2 and in more details in Appendix A.
Their application in demonstrating the chaotic behavior of social choice is
presented in Sections 3 and 4. In Section 5 we use the same results on
the threshold behavior of Boolean functions to point out some probabilistic
situations in which a rational outcome is expected. This is the case when
individual choices are biased towards some fixed order relation and certain
other cases when individual choices are positively correlated.

2 Choosing between two alternatives - the sharp
threshold phenomenon

2.1 The threshold interval

In this section I present the main results concerning monotone Boolean
functions that will be used in this paper. These will serve as technical
tools for our purposes although they appears also to be of interest within
theoretical economics and game theory. We will give a short and somewhat
informal description here leaving the more technical details to Appendix A.

Consider a social choice function between two alternatives ¢ and b for
a society with n individuals. We will represent the individual choices by
Boolean variables z1, x3, ..., %,, where z; = 0 if the k-th individual prefers
alternative a on alternative b and x5 = 1 if he prefers b on a. We will
represent the social choice by a Boolean function f(z1,z2,...,,), where
f(x1,29,...z,) = 0 if the society prefers alternative a on alternative b and
f(x1,29,...zy,) = 1if the society prefers b on a. We will define f to be mono-
tone if whenever y; > z;,1 =1,2,...,n, f(y1,y2,---,Yn) > f(z1,%2,...,Tpn)-

Suppose now that each variable z; is chosen at random to be ’1’ with
probability p and '0’ with probability 1 — p. In other words, the k-th in-
dividual prefers b on a with probability p. Suppose also that these choices



are independent. Denote by P,(f) the probability that f will equal '1’, i.e.,
that the society will prefer b on a.

If the function f is monotone and not constant, then the value of Pp(f)
is a strictly monotonic continuous function of p in the interval [0,1]. The
more likely it is that individuals prefer b to a the more likely that the society
does as well.

Let €, 1/2 > € > 0, be a real number. Since Pp(f) is a strictly monotone
and continuous function of p there is a unique value of p denoted by p; such
that Pp, (f) = e. There is also a unique value of p denoted by ps such that
sz (f ) =1-e

The interval [p1, po] is called a threshold interval and its length ps — p1 is
denoted by I.(f). The value p. at which P, (f) = 1/2, is called the critical
probability for f.

2.2 The Shapley value

There are several measures of the power of the k-th individual within the
social choice function given by f. We will use the Shapley value si(f) as
a measure of power. Here f is considered to me a cooperative n-player
simple game. In Appendix A we will reproduce a definition of the Shapley
value which suits our purposes. Recall that s1(f) + so(f) + -+ s (f) = 1.
If f is invariant under some transitive group I' of permutations on [n] =
{1,2,...,n}, then si(f) = 1/n for every k.

2.3 The main result concerning thresholds

The main result used here asserts that if the power of every individual is
small then the threshold interval must also be small!

Theorem 2.1. Consider a monotone Boolean function f on n wvariables.
For every €,6 > 0 there exists y > 0 such that if the Shapley value s;(f) <7y
for every i =1,2,...n, then |I.(f)| < 6.

3 Social preferences and thresholds

3.1 The setting

Consider a social choice function which, given a profile of n order relations
R;, i = 1,2,...,n on m alternatives, yields an asymmetric relation R for
the society. Thus R = F(R1, Rs, ... Ry,) and F is the social choice function.
aR;b indicates that the i-th individual prefers alternative a over alternative



b. aRb indicates that the society prefers alternative a on alternative b. The
social preferences are not assumed to be transitive.

The principal condition (I) of Independent of Irrelevant Alternatives,
states that for every two alternatives a and b the set {i : aR;b} deter-
mines whether aRb. The social preference between a and b can thus be
described by a Boolean function f(,) of n variables z1,z2 ...z, as follows:
Set z; = 1 if aR;b and z; = 0 otherwise. In addition, let aRb if and only
if fap)(71,...7n) = 1. The other standard (Pareto) assumption (P) states
that f(,4)(0,0,...,0) = 0 and fgp)(1,1,...,1) = 1. We will consider the
case in which the number of alternatives m is fixed although the size of the
society can be arbitrarily large.

3.2 Further assumptions
Unrestricted domains

(U) The social choice function is defined for an arbitrary rational profile
of individuals.

Neutrality and weaker conditions:

Neutrality refers to the invariance of the social choice under permutations
of the alternatives. Consider the following conditions:

(N1) (Neutrality) The social choice is invariant under all permutations of
the alternatives.

(N2) If you replace the preference relation between a and b for all indi-
viduals, then the social preference between a and b is reversed as
well. In other words, f(, s satisfies fi,p)(1 — 71,1 —32,... 1 —7p) =
1 — fap) (21, .. 2n).

(N3) (Weak neutrality) The social choice is invariant to a transitive group
of permutations of the alternatives.

(N4) (Balance) For every two alternatives a and b, P(a > b) = 1/2. Here
P(a > b) is the probability that f,(z1,...7) = 1 if 71,... 2, are
chosen at random according to the uniform distribution on the 2™ 0-1
sequences of length n.

(N5) (Weak balance) For every two alternatives a and b, 1/10 < P(a > b) <
9/10.



Clearly (N1) implies N(2) and N(3) and (N2) and (N3) both imply (N4)
which implies (N5). (The numerical values 1/10 and 9/10 can be replaced
by arbitrary p and 1 — p for a fixed small real number p.)

Anonymity and weaker conditions

Anonymity refers to the invariance to permutations of the individuals. Con-
sider the following conditions:

(A1) (Anonymity) The social choice is invariant to permutations of the in-
dividuals

(A2) (Weak Anonymity) The social choice is invariant to a transitive group
of permutations of the individuals.

(A2.5]r )] (Replicated individuals) The individuals are divided into types, and
there are at least r from each type. The social choice is symmetric on
each type.

(A3)[e ] (Diminishing Power of Individuals) For every a and b, the Shapley
value of every individual for f(4p) is smaller than e.

Clearly, (A1) implies (A2) and (A2.5) for every €, (A2) implies (A3)[e]
when n > [1/€], and (A2.5)[r] implies (A3)[¢] when r > [1/¢].

Monotonicity

(M) The function f(4) is monotone. This means that if f(qp) (71,...2n) =
1 and if y; > x; for every i then f, ) (y1,-.-yn) = 1 as well.

3.3 The result

Theorem 3.1. Let X be a set of m alternatives and let R be an arbitrary
asymmetric relation on X. There is a probability distribution v = vg on
the space of orderings of the alternatives with the following property: For
every real number § > 0 there exists € = €(m,0) > 0 such that for every
social choice function which satisfies conditions (I), (P), (U) (N4), (A3)[e]
and (M), if every individual makes the choice at random and independently
according to v, then for every pair of elements a,b the social choice between
a and b coincides with R with probability of at least 1 — 4.



Proof: Consider weights w, of the m! ranking of the alternatives which
sum to one and for two alternatives a, b let p(a,b) = > {w; : a >, b}.

According to the theorem of McGarvey (1953) weights exist such that if
aRb then p(a,b) > 0.5. In fact, according to Stearns (1959) we can realize
R by a majority of m voters and therefore p(a,b) > 1/2 + 1/m if aRb and
p(a,b) <1/2 —1/m if bRa. Next, for every member of the society consider
a random ordering of the alternatives in which they are ordered according
to m with probability w.

By the threshold theorem the probability that the social choice will agree
with R on a pair (a,b) tends to one as the number of individuals tends to
infinity. In order for aRb to hold with probability of at least 1 — ¢ we require
that 1/m < Klog(1/6)/log(1/e), i.e. that log(1/e) < Kmlog(1/d).

If the social choice satisfies the weak anonymity property, namely it is
invariant under a transitive group of permutations of the individuals, then
we require that n > exp(Kmlog(1/4)).

If we desire that with probability of at least 1 — § the social choice will
agree with R on all pairs we require that log(1/¢) < Kmlog(('y)/6). O

Remark: Instead of using random profiles we can simply replicate suf-
ficiently many times each individual as prescribed by McGarvey’s theorem.

Corollary 3.2. Under the conditions of Theorem 3.1 the class of preference
relations for the society is the class of all asymmetric relations.

Remark: Note that in order to realize all asymmetric relations we need
that the number of individuals be exponential in the number of alternatives.
It seems possible that a polynomial (or even close to linear) number of
individuals in terms of the number of alternatives would suffice.

The following corollary can also be derived from the proof of Theorem
3.1:

Corollary 3.3. For every natural numbers n and m and a real number
d > 0 there exists € = e(n,d) > 0 such that the following holds: Let T be a
subset of linear orders on m alternatives such that for the majority rule on
n individuals we can restrict the profile to T and obtain a preference relation
R for the society. Then for every social choice which satisfies conditions (I),
(P), (N4), (A3[e]) and (M) there is a probability distribution v on T such
that if every individual makes the choice randomly according to v then for
every pair a and b, the social preference for the pair (a,b) coincide with R
with probability > 1 — 6.

The following Corollary is in the spirit of theorems by Maskin (1995)
and Dasgupta and Maskin (1997):



Corollary 3.4. There exists € = e¢(m) > 0 with the following property:
Let T be a set of linear orders on m alternatives. If the majority rule can
yield a non-rational outcome for profiles restricted to T, then every social
choice which satisfies conditions (I),(P),(N4), (A3[e]) and (M) leads to a
non-rational outcome for some profile restricted to T'.

Dasgupta and Maskin (1997) proved this statement without assuming
monotonicity under anonymity and neutrality when there are sufficiently
many individuals in the society.

4 The chaotic behavior of social choice

4.1 The setting

Given a set X of m alternatives recall that a choice function ¢ is a mapping
which assigns to nonempty subsets S of X an element ¢(S) of S. In the case
of a a rational choice function there is a linear ordering on the alternatives
such that ¢(S) is the maximal element of S according to that ordering. Let
P, (X) denote the family of non-empty subsets of X.

The social choice functions considered in this section are of the form
¢ = F(Ry,Ry,...,R;) where c is a choice function on X which depends on
the profile of individual preferences Rji,... R,. Independence of Irrelevant
Alternatives asserts that ¢(A) may depend only on the preference relations
restricted to the set A. We require the stronger property Independence of
Rejected Alternatives:

(IRA) (Independence of Rejected Alternative (IRA)) ¢(S) is a function of
(c1(5),c2(8), - - - en(S))
Therefore we can write ¢(S) = Fs(c1(S), c2(S),- .. cm(9)).

(P) (Pareto) If s(S) € {c1(S), c2(5),...,cn(S)}.

4.2 Further assumptions

We will make the following additional assumptions:

(U) (Unrestricted domains) The social choice function is defined for arbi-
trary rational profiles of the individuals.

(N1’) (Neutrality) The social choice is invariant under permutations of the
alternatives.



(A2’) (Weak anonymity) The social choice is invariant under a transitive
group of permutations of the individuals.

(M’) (Monotonicity) The function ¢(S) is monotone in the following sense:
If ¢(S) = s and ¢;(S) = ¢ for t # s then changing the choice of the i-th
individual from ¢ to s will not change ¢(.5).

4.3 The result

Theorem 4.1. Let ¢y be a choice function on P (X) where X is a set of m
alternatives. There is a probability distribution v on the space of orderings
of the alternatives such that the following holds: For every positive real
number 6 < 1, there exists N = N(d§,m) such that for every social choice
function which satisfies conditions (IRA) (P) (U’) (N1°), (A2’) and (M’): If
the number of individuals n is larger than N and if every individual makes
the choice randomly and independently according to v, then for the social
choice ¢(S) = co(S) with probability of at least §.

The proof is indicated in Appendix B.

Corollary 4.2. There ezxists N = N(m) such that when the number n of
individuals is larger than N(m), every choice function on Py (X), where X

is a set of m alternatives, is in the range of every social choice which satisfies
conditions (IRA), (P), (U’) (N1’), (A2’) and (M’).

Again, in the spirit of Dasgupta and Maskin’s theorem we have the
following:

Corollary 4.3. There exists N = N(m) > 0 with the following property:
Let U be a set of linear orders on m alternatives. If for the plurality rule
there is a profile restricted to U which leads to a choice function c for the

society, then when n > N(m) this is the case for every social choice function
which satisfies conditions (IRA), (P), (N1’), (A2’) and (M’).

5 Probabilistic assumptions which lead to rational
outcomes

We will now consider an additional application of the threshold phenomenon
which in this case leads to the conclusion that the social choice is rational.
There are several papers which show that under certain probabilistic condi-
tions voting paradoxes are rare (see, for example, Tangian(2000). Here we
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would like to produce results which apply to arbitrary social choice func-
tions.

We will consider two simple models. In the first, the profiles are biased
towards some fixed order. Let ¢ < 1 be a fixed real number.

For an ordering 7 of {1,2,...,m} let i(mw) be the number of inversions
in 7. Here, {i,7} is an inversion if i < j but 7(7) > 7(j).

e The choices of each individual are rational. The probability of an
ordering 7 is proportional to ¢*(™).

It is easy to see that for the majority rule, if the size of the society tends
to infinity, then the outcome for both these rules will tend to the ordering
1<2<3<---<m.

Theorem 5.1. For every social choice function that satisfies (P),(I),(N4),
(A2) and (M), as the number of individuals tends to infinity the probability
that iRj when ¢ < j tends to 1.

Proof: In the rules described above the probability that an individual
will prefer 7 to j when 7 < j is (1 +¢)/2 < 1/2. By the threshold theorem
under our conditions the probability that the society will prefer 7 to 7 tends
to zero as the number of individuals tends to infinity. (Of course, for all the
results of this section condition (A2) and the assumption that the number of
individuals tends to infinity can be replaced by (A3)[e] and the assumption
that e tends to zero.)

Remark: The result and proof extends to the case in which the indi-
vidual preferences are arbitrary asymmetric relations (not rational) which
are biased towards a fixed order relation.

The second model describes a situation in which the individual choices
are not biased but are correlated. The model is a simple variation of the
Ising and Potts models from statistical physics. Let G =< V(G), E(G) >
be a graph.

e The individuals are placed on the vertices v of G. The preference
relation of the individual located at v is rational and is described by
the ordering m,. The probability for a set of orderings {m, : v € G} is
proportional to:

H exp(t - i(mym, ).

{v,u}€E(Q)
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Theorem 5.2. (1) Let G be the complete graph with n vertices, or a graph
of a rectangular grid in the plane. There exists Ty such that whenevert > Ty,
for every social choice function that satisfies (I), (P), (N4), (A3) and (M),
the probability that the outcome will be rational tends to 1 as the number of
individuals tends to infinity.

Proof: It follows from standard facts about the Potts model on graphs
that for the cases described above that the distribution for the order relations
on the vertices of the graph will be biased towards a single order relation
with high probability. This property allows us to use the threshold property
for social choice as before. 1.

Remarks: 1. It would be interesting to relate the phenomenon de-
scribed in this section to economic models which attempts to predict the
outcome of the aggregated actions of individuals and, in particular, to mod-
els concerning equilibrium.

2. The Ising and Potts models are related to dynamical processes in
which each voter’s choice is influenced by the choices of its neighbors.

3. In some situations when we allow individual preferences to be irra-
tional increasing the correlation between individual choices result in them
being less rational and the social choice more rational.

6 Taking rejected alternatives into account

This section describes a crucial example suggested by Bezalel Peleg. First,
recall how we can progress from choices on pairs to a choice correspondence:
Given an asymmetric binary relation R on the set of alternatives let ¢(S)
be the set of elements y of S such that the number of z € S such that yRz
is maximal. In other words, when we consider the directed graph described
by the relation we choose the vertex of maximal out-degree.

Let R denote the class of rational choice functions and B denote the
class of choice correspondences obtained from binary relations R as just
described. Consider also the class B’ of choice functions obtained from B by
choosing a single element in ¢(S) according to some fixed order relation on
the alternatives. The number of choice functions in B’ and the number of
choice correspondences in B is exponential in (}).

Now describe a social choice function as follows: aRb if a majority of the
society prefers a to b.

In this case the social choice of S does not depend solely on the individual
choices for S but also on the preferences among pairs of elements in S.

12



When the individual choices are rational then the social choice still be-
longs to the class B (or B'). In this case the choice from S is simply those
elements of S which are Condorcet winners against the maximal number of
other elements in S. In this example the social choice for a set S is typically
large but this apparently be corrected by various methods of “tie breaking”.

In these examples the size of the resulting classes of choice functions
is exponential in a quadratic function of m?. It is much smaller than the
number of all choice functions which is double exponential in m.

The Borda rule can be analyzed by a similar consideration, see Kalai
(2001). For this rule ¢(A) is determined as follows: For each alternative
a € A let rj(a) be the number of individuals who ranked a in the ith place
(among the elements of A). Let 7(a) = Y 4 -7;(a). The chosen element by
the society c¢(A) is the element of a¢ with the minimal weight.

Another way to describe the Borda rule is as follows: First construct
a directed graph (with multiple edges) with A as the set of vertices by
introducing an edge from a to b for every individual that prefers a to b.
Next, define (as before) ¢(A) as the vertex with maximal outdegree.

It is easy to prove that the number of choice functions that arise in this
way is at most exponential in m®. (The choice function can be recovered
from the sign patters of (less than) 2™ - m? linear expressions in m? real
variables. (See, Kalai (2001a).)

To summarize, the size of classes of choice functions that arise from a
social choice function such that ¢(S) may depend on the individual prefer-
ences of the elements of S is at least exponential in m? and this bound is
sharp.

7 Extending the scope of the main theorems

7.1 Social choice with no small set of decisive individuals

Condition (A3), which requires that the Shapley value of every individual
is small can be replaced by a weaker condition (A4) which allows for the
existence of some powerful individuals as long as there are no small sets of
individuals with decisive power.

(A4)[6, 7] (Non-existence of a small set which typically decides outcomes)
Here § < 1 and r is a natural number. For every a and b the sum of the
Shapley values for every r players in c(a, b) is at most 1 — .

Clearly, (A3)[e] implies (A4) [1 —¢,[1/€] —1].

Theorem 3.1 remains true if we replace (A3)[e] in which the size € depends
on the number of alternatives m and on the probability vy, by (A4)[d,r], in
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which § < 1 is fixed and how large r is depends on m, v and d.

7.2 Weakening and removing the monotonicity assumption

Monotonicity is a natural condition to demand but is often unrealistic. The
question of whether this condition can be removed is therefore of interest.
Intuitively, it appears that non-monotonic methods of aggregating individual
choices will yield chaotic outcomes.

Let p be fixed and let I,f (A) be the probability that toggling the value
of z from 0 to 1 will change the value of f from 0 to 1 and let I (A) be the
probability that toggling the value of z; from 0 to 1 will change the value
of f from 1 to 0. Let Ii (A) = >, I (A) and L} (A) = >, IF (A).

(M2)[# | Weak monotonicity: For some constant # > 1 and for every p

IF(A) > 01, (A).

The assertion of Theorems continues to hold if (M) is replaced by (M2)[6]
for a fixed 6 > 1.

When we remove the monotonicity condition altogether, then the asser-
tions of Theorems 3.1 and 4.1 are no longer valid. To see this consider a
case in which n is odd and f(,) is a if an odd number of individuals prefer
a and f(,p) = b if an odd number of individuals prefer b.

However, the assertions of Corollaries 3.2, 3.3 3.4, 4.2 and 4.3 probably
remain valid. To this end we would like to pose the following conjecture: 2

Conjecture 7.1. If the social choice satisfies conditions (A2) (weak anonymity)
and (N3) (neutrality) then for every asymmetric relation R the probabilities
pr that for random uniform profiles the social choice will yield R is bounded
away from zero as n tends to infinity.

8 Comments

8.1 Learnability

The motivation for the results described in this paper were derived from my
attempts to study the learnability properties of classes of choice functions
that describe individual and collective choice in theoretical economics.

In Kalai (2001a) it is argued that the choice functions of individuals and
even several interacting individuals which appear in theoretical economics

2This conjecture has now been proved by Friedgut and the author
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are “learnable” from a “small” number of examples. The notion of PAC-
learnability is used there to analyze learnability. Rational choice functions
are statistically learnable from a number of examples which is proportional
to the number of alternatives. Various classes of choice functions are shown
to be learnable from a number of examples which is bounded by a polynomial
in the number of alternatives. A closely related (much simpler) feature of
rational choice functions is that they can be described by a small number
of examples. A specific order relation is determined completely by n — 1
examples.

We know that a non-dictatorial social choice cannot (under Arrow’s as-
sumptions) guarantee rational choice. Can a social choice mechanism guar-
antee that the class of choice functions that arise for the society will be
statistically learnable from a number of examples which is polynomial in
the number of alternatives? If we cannot guarantee a rational social choice
can we at least guarantee that the class of choice functions that represent
the society’s choices will allow parsimonious description?

Our results support the conjecture made in Kalai (2001a) that no such
social choice mechanism exists if the social choice genuinely depends on a
large number of individuals and the society’s choices depend only on the
individual choices.

8.2 On threshold phenomena

The main mathematical tool used in the paper is the threshold behavior
of social choice functions for two alternatives. The threshold results enable
us to demonstrate that “Bad” behavior and “good” behavior for the ma-
jority (or plurality) rule is carried over to arbitrary monotone social choice
functions when the power of individuals diminishes.

It would be of interest to study threshold phenomena in economic sys-
tems for their own sake and not just as mathematical tools. The possibility
that certain economic systems demonstrate sharp transitions between two
(or more) types of behavior is intuitively appealing, and the results concern-
ing threshold intervals may be useful in analyzing such situations.

9 Discussion

We have considered social choice functions in which the power of individuals
diminishes and more general “genuine” social choice functions in which no
small set of individuals has decisive power. Our notion of “power” is based on
the Shapley value. Examples where the power of the individuals diminishes
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is when there is a large number of them and the social choice function is
invariant under a transitive group of permutations of the individuals.

In the first case we considered the social choice function yield an asym-
metric relation on the alternatives and our main result asserts that.

[1] Every genuine social choice function which is neutral and monotone
leads to the class of all asymmetric relations for large societies.

Next we considered more general social choice functions that yield a
choice function on the alternatives. We demonstrated:

[2] Every social choice function which is weakly anonymous, neutral and
monotone in which the society’s choice is a function of the individual
choices leads to the class of all choice functions for large societies.

It follows that the class of asymmetric relations and the choice functions
that are obtained in these two cases cannot be learned or described based
on a few examples. Based on the society’s choices for several sets of alter-
natives, we are unable to deduce what the choice will be for any other set
of alternatives.

Another implication of our results is the following:

[3] There is a sharp difference between classes of choice functions that
can arise from voting schemes when the society’s choice depends on
the individual choices and those when the society’s choice depends on
the individual preferences for the available alternatives.

Recall that the Independence of Irrelevant Alternatives is the crucial
assumption underlying Arrow’s theorem. If the social choice takes into ac-
count the individual preferences over all possible alternatives, not only the
available ones, then non-dictatorial social choice functions are possible. The
assumption of Independence of Rejected Alternatives (IRA) is of a similar
nature: Can the society’s choice for an available set S of alternatives take
into account the preference relations of individuals for the elements of S7
or only the element chosen by each individual? In the latter case, under
our assumptions the class of choice functions that represent the society’s
choices is the class of all choice functions hence it has double exponential
size in terms of the number of alternatives. However, when the social choice
can depend on individual preferences the resulting class of choice functions
may be rather small and at the minimum will be exponential in a quadratic
function of the number of alternatives.
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One implication of our proof is closely related to the results of Maskin
and Dasgupta:

[4] If a certain restriction T' on the individual preferences is sufficient to
guarantee rational outcomes for a certain neutral social choice function
when the power of every individual is sufficiently small (namely smaller
than some function of the number of alternatives), then restricting
the individual preferences to T" will lead to rational outcomes for the
majority rule.

Our proofs were based on an analysis of the social choice function under
certain probabilistic assumptions and the threshold phenomenon for Boolean
functions. Using similar reasoning we derived the following:

[5] For certain probabilistic models in which individual choices are either
biased towards a fixed ordering or positively correlated, the following
holds: For social choice functions in which the power of individuals is
diminishing the social choice will almost certainly be rational.

In summary, the “bad news” is that under fairly mild conditions every
social choice mechanism leads to all possible choice functions when the so-
ciety is large. In particular, the resulting class of choice functions is highly
chaotic. The “good news” is that under certain probabilistic assumptions
the outcome of every social choice function in which the individual’s power
diminishes will be rational with a high probability.

The results of this paper therefore suggest, perhaps unsurprisingly, that
the type of interaction between the choices of the individuals and the prob-
abilistic consequences of these interactions may be more important to the
aggregate outcome than the combinatorial mechanism used for the aggrega-
tion.

For large societies and diminishing power of the individuals not only
is there no combinatorial mechanism to guarantee rational outcomes, as
implied by Arrow’s theorem, but even learnable (or predictable) outcomes
cannot be guaranteed. Indeed, under some probabilistic assumptions on
individual choices we can expect chaotic behavior for the society’s choices.
Under certain other probabilistic assumptions the social choice will “invisi-
bly” lead to rational outcomes.

Understanding the conditions under which these two types of behav-
ior arise, the transition between them and possible intermediate situations
remains an interesting problem for further research.
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10 Appendix A: Thresholds, influences and the
Shapley value

Influences, Russo’s Lemma and the Shapley value

Consider a monotone non-constant Boolean function f(z1,z2,...,%x).

The influence of the variable k on the Boolean function f, denoted by
Ig (f), is the probability that toggling the value of z; will change the value
of f. The total influence I?(f) equals Y It (f).

Russo’s lemma, (see Grimmett (1989) asserts that

dPy(f)

25 =),

By Russo’s lemma, if the total influence in the threshold interval is large
then this threshold interval is small.

Let P, py....p,) (f) be the probability that f(z1,z2,...,7,) = 1 when
we choose zp = 1 independently with probability px, £ = 1,2,...,n. For
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the partial derivatives we have:

6P(p15“'7pn) (f)

oy |@oen) = TE()-

Define 1
slf) = [ )b
sk(f) is the Shapley value of k for f. Clearly,

n 1 n 1 ld a
kZ:lsk(f):/O ;I};(f)dp:/o Ip(f)dpz/o %Wp:Pl(f)_PO(f):l'

The main results regarding thresholds

Theorem 10.1. Consider a monotone Boolean function f on n wvariables.
For every €,6 > 0 there is v > 0 such that if the Shapley value s;(f) < for
everyi = 1,2,...n then |I.(f)| < 4. v can be taken as K -log(1/¢)/log(1/6),
where K is an absolute constant.

Corollary 10.2. If f is weakly anonymous then
I(f) < Klog(1/€)/log n.

A more general result is the following:

Theorem 10.3. For some absolute constant K,

n
I(f) < Klog(1/e)(D_ sk log(2/sk)) ™"
k=1
Remark: These relations may be of some relevance the theory of values
of non-atomic games.

10.1 The derivation of the results and related literature

Russo’s lemma is a fundamental result in percolation theory (see Grimmett
(1989)). The integral representation for the Shapley value is due to Owen
(1989).

An early general result concerning threshold behavior is due to Russo
(1982). Many of the more recent results rely on a theorem by Kahn, Kalai
and Linial (1988) and its extensions. The reader is referred to Talagrand
(1994) which contains the sharpest and most general results and to Friedgut
and Kalai (1996). Theorems 10.3 can be derived directly from Theorem 1.5
of Talagrand (1984) combined with Owen’s representation of the Shapley
value.
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11 Appendix B: Threshold results for larger al-
phabets

The known results about threshold properties of Boolean functions are
tailor-made for the results in Section 3 when the social choice function give
a asymmetric relation. However, some extensions are needed for the more
general setting of Section 4.

Let S = {s1,89,...,8;} and consider a function f = f(z1,z2,...,Ty) :
S™ — S. Assume that f is monotone in the sense considered in Section 4.
Let p = (p1,p2, - --px) be a vector of probabilities, > p; = 1. Suppose that
each z; is chosen at random independently and z; = s; with probability p;.
We would like to understand the distribution of f(z1,z2,...,2,). Define
M,(f) to be the set of probabilities p such that the probability that f = s
is less than 1 — € for every k. M(f) is a subset of the (k — 1)-dimensional
simplex A of all probability vectors p which is the higher dimensional analog
of the threshold interval. For our purposes we need theorems that asserts
that if f is weakly anonymous and even if the “power” of the individual
variables is diminishing then M.(f) consists of a “thin membrane” inside
the simplex of probabilities.

Theorem 11.1. Let S = {s1,89,...,58;} and consider a neutral, weakly
anonymous monotone function f = f(x1,x2,...,2,) : S® = S. The volume
of Mc(f) is bounded from above by a function H(k, m,e€) which, for fized

values of k and € tends to zero as n — oo.

The proof of this Theorem will appear elsewhere.

Proof of Theorem 4.1

Let cg be a choice function and consider a profile with ng individuals such
that the plurality leads to ¢g. Such a profile exists by Saari’s theorem. For an
ordering 7 of the alternatives let w'(7) be the number of appearances of the
order 7 and let w(7) = w'(7)/ng. Consider a random profile on n individuals
where for each individual ¢ the probability that i-th preference relation is
described by 7 is w(w) (independently for the individuals). Consider now
the set U of vectors of probabilities (p, : S € S) where p!, € [ps+1/10n¢,ps+
1/10ng]. It follows from Theorem 11.1 that (as n tends to infinity) the value
of fs(s1,...,8y) is determined with high probability for almost all points in
U and from the monotonicity it follows that this value must be ¢ with high
probabilities for all points in U. This implies that as n tends to infinity for
every S the probability that ¢(S) = ¢o(S) is at least 1 — 6. O
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